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Abstract
Let f be a drawing in the Euclidean plane of a graph G, which is understood to be a 1-dimensional
simplicial complex. We assume that every edge of G is drawn by f as a curve of constant algebraic
complexity, and the ratio of the length of the longest simple path to the the length of the shortest
edge is poly(n). In the drawing f , a path P of G, or its image in the drawing π = f(P ), is β-stretch
if π is a simple (non-self-intersecting) curve, and for every pair of distinct points p ∈ P and q ∈ P ,
the length of the sub-curve of π connecting f(p) with f(q) is at most β‖f(p) − f(q)‖, where ‖.‖
denotes the Euclidean distance. We introduce and study the β-stretch Path Problem (βSP for short),
in which we are given a pair of vertices s and t of G, and we are to decide whether in the given
drawing of G there exists a β-stretch path P connecting s and t. The βSP also asks that we output
P if it exists.

The βSP quantifies a notion of “near straightness” for paths in a graph G, motivated by gerry-
mandering regions in a map, where edges of G represent natural geographical/political boundaries
that may be chosen to bound election districts. The notion of a β-stretch path naturally extends to
cycles, and the extension gives a measure of how gerrymandered a district is. Furthermore, we show
that the extension is closely related to several studied measures of local fatness of geometric shapes.

We prove that βSP is strongly NP-complete. We complement this result by giving a quasi-
polynomial time algorithm, that for a given ε > 0, β ∈ O(poly(log |V (G)|)), and s, t ∈ V (G), outputs
a β-stretch path between s and t, if a (1− ε)β-stretch path between s and t exists in the drawing.
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1 Introduction

We study an optimal path problem in planar drawings of graphs, in which we represent edges
as curves of constant algebraic complexity. We seek a path in a graph G from a given vertex
s to another given vertex t that is, in a precise sense, as close as possible to the straight-line
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7:2 Computing β-Stretch Paths in Drawings of Graphs

segment from s to t. We formalize this notion by saying that an s− t path is a β-stretch
path if the distance between any two points along the path (not only the endpoints) is at
most β times the Euclidean distance between them.

The notion of “β-stretch” in this definition is similar to the notion of stretch in a
multiplicative β graph spanner [17], where we want to remove edges from the graph while
ensuring that the shortest path distance in the spanner is at most β times the length of
a shortest path in the original graph. Thorough reviews of existing results for geometric
spanners are available in [4, 9, 16]. In our problem we are not sparsifying the graph; instead,
we try to find the most “natural” path connecting two given vertices s and t in a given
embedded graph. If we interpret the embedded graph as the road network of a country,
such paths can be used as an initial step to partition the country into regions with natural
shapes. One of our motivations, in fact, is the problem of computing natural regions that, in
a precise sense, avoid gerrymandering. A few definitions have been proposed in the literature
to characterize what a “natural” path could entail. For example, a path in a drawing of
a graph is defined to be self-approaching [1, 12] if for any two points p and q on the path,
when moving from p to q along the path, the Euclidean distance to q is decreasing. Icking et
al. [12] proved that a self-approaching path is 5.3332-stretch.

The problem of computing β-stretch paths bears similarities to the graph dilation problem,
where for every pair of vertices s and t in a geometric graph, we compare the shortest-path
distance between s and t to their actual Euclidean distance in the plane, and return the
largest ratio of these two values over all pairs (s, t). In the special case of cycles this problem
is known as computing the maximum detour of a polygonal chain [8]. Klein and Kutz show
that computing a minimum-dilation graph that connects a given n-point set in the plane with
at most m edges is NP-hard [14]. In one direction, if we are given an embedded geometric
graph with a dilation ratio that is at most as large as our target stretch factor, a weaker
variant of a β-stretch path exists between every pair of vertices s− t, in which we consider
only pairs of vertices along the path rather than points. However, since the dilation is a
global property an s− t path that is β-stretch in the given graph might still exist even if the
dilation is more than β. We elaborate on other connections to our problem in Section 1.3.

We naturally extend the notion of β-stretch paths to β-stretch cycles. Interestingly, we
show that a β-stretch cycle bounds a locally “fat” shape in the sense as defined by De Berg [7],
with the parameter of fatness depending on β. The converse is easily seen not to be true.
Our notion of β-stretch cycles may have applications to computing geographic partitions
into regions whose shapes are well shaped in a sense that cannot be captured with fatness
criteria.

The rest of the paper is organized as the following. We formally define the β-stretch path
problem is Section 1.1, followed by key main results and an overview of related results in
the literature in Section 1.2 and 1.3, respectively. In Section 2, we prove a relation between
β-stretch cycles and locally γ-fat shapes. Section 3 proves that β-stretch path problem
is strongly NP-complete. Section 4 develops a quasi-polynomial approximation scheme
algorithms for β-stretch path problem and its extension to computing β-stretch cycles. We
conclude with open problems and future directions in Section 5. Omitted proofs are in the
Appendix (Section 6).

1.1 Problem Statement
Let G = (V,E) be a finite simple graph, with vertex set V and edge set E ⊆

(
V
2
)
. A drawing

of a graph is a representation of G in the Euclidean plane R2, in which vertices are distinct
points and edges are Jordan arcs represented as curves of constant algebraic complexity, i.e.,
described by a constant number of polynomial equations (inequalities), whose maximum
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degree is bounded by a fixed constant.
Formally, a drawing of a graph is a continuous map f : G→ R2, where we treat G as a

1-dimensional simplicial complex. The representation of a vertex v ∈ V , an edge e ∈ E, and
a path P ⊆ G in the drawing f is f(v), f(e), and f(P ), respectively. Here, we consider a
generalized path that can end in a midpoint of an edge.

We will distinguish paths in a graph from paths in a drawing of a graph. The reason is
that we will consider “paths” in a drawing that end in relative interiors of edges. Treating
G as a 1-dimensional simplicial complex, a path in a drawing f of G is f(P ), where P is a
generalized path in G. We will be denoting paths in a drawing by lower case Greek letters.

Let ‖.‖ be the Euclidean norm. Let P ⊆ G denote a path between p and q ∈ G. If both
p and q are vertices of G then P corresponds to a usual path in G. Let f be a drawing of
G. Then π = f(P ) is the path between p and q in f . Let π(p′, q′) denote the sub-path of π
between p′, q′ ∈ G, that is, π(p′, q′) = f(P (p′, q′)), where P (p′, q′) ⊆ P is the path between
p′ and q′. If we want to specify a path π together with its endpoints s and t we denote it by
π(s, t) = π. The path π passes through all of the vertices and edges of G intersecting P . The
length of the path π, denoted by ‖π‖, is the usual Euclidean length, which can be computed
as
∫
P
‖f ′(x)‖dx. The distance between s ∈ P and t ∈ P along π, denoted by dπ(s, t), is the

length of the sub-curve of π between f(s) and f(t).

β-stretch path. Let π be a path in f free of self-intersections. For β ≥ 1, path π is a
β-stretch path if for every p, q ∈ P we have

dπ(p, q)
‖f(p)− f(q)‖ ≤ β. (1)

β-stretch cycle. Let C be a simple cycle in G so that γ = f(C) is free of self-intersections.
The cycle γ in f is a β-stretch cycle if for every pair of points p and q on C we have

dγ(p, q)
‖f(p)− f(q)‖ = min{dπ(p, q), dπ′(p, q)}

‖f(p)− f(q)‖ ≤ β, (2)

where π = π(p, q) and π′ = π′(p, q) are the two paths between q and p whose union is γ.
The left hand side of (1) and (2) is the stretch factor of p and q along π and γ, respectively.

The maximum of the stretch factor of p and q over distinct p, q ∈ P and p, q ∈ C is the
stretch factor of π and γ, respectively. Note that a β-stretch path (cycle) is a β′-stretch path
(cycle), for every β′ ≥ β. If a path π or a cycle γ is self-intersecting, its stretch factor is
undefined.

I Problem 1. β-stretch Path Problem (βSP). We are given a drawing f of a graph G,
β ≥ 1, s ∈ V (G) and t ∈ V (G). Decide whether there exists a β-stretch path in f between s
and t. The instance of the problem is denoted by (G, f, β, s, t).

A self-intersection-free cycle γ in a drawing f of G separates s ∈ G \ C from t ∈ G \ C if
f(s) and f(t) are contained in different connected components of the complement of γ in R2.

I Problem 2. β-stretch Cycle Problem (βCP). We are given a drawing f of a graph G,
β ≥ 1, s ∈ V (G) and t ∈ V (G). Decide whether there exists a β-stretch cycle in f separating
s from t. The instance of the problem is denoted by (G, f, β, s, t).

SWAT 2020



7:4 Computing β-Stretch Paths in Drawings of Graphs

1.2 Main Results
Our main results proved in Sections 3, 4.2 and 4.3, respectively, are the following.

I Theorem 1. βSP is strongly NP-complete.

I Theorem 2. Let (G, f, β, s, t) be an instance for βSP with poly(logn) ≥ β ≥ 1. Suppose
that the shortest edge length in f is 1, and that there exists c > 0 such that the longest
simple path in f has length at most nc. Under the above assumptions there exists a QPTAS
for βSP. In other words, there exists a quasi-polynomial-time algorithm that for a fixed
poly(logn) ≥ β ≥ 1 and ε > 0 returns a β-stretch path between s and t if a β(1− ε)-stretch
path between s and t exists in f .

I Theorem 3. Let (G, f, β, s, t) be an instance for βSC with poly(logn) ≥ β ≥ 1. Suppose
that the shortest edge length in f is 1, and that there exists c > 0 such that the longest path in
f has the length at most nc. Under the above assumptions there exists a QPTAS for βSC. In
other words, there exists a quasi-polynomial-time algorithm that for a fixed poly(logn) ≥ β ≥ 1
and ε > 0 returns a β-stretch cycle separating s from t if a β(1− ε)-stretch cycle separating
s from t exists in f .

1.3 Related Work
Dilation or stretch factor [16] is perhaps the most common measure for the quality of a
geometric graph. There is a subtle difference between the stretch factor of a path versus the
stretch factor of a graph. For a path, the stretch factor only pertains to its endpoints, while
for a graph the stretch factor pertains to every pair of the graph vertices. Our definition of
β-stretch path falls in the middle as it pertains to all pairs of points belonging to the path.

It is worth mentioning that a line of existing results in the literature is not about designing
a geometric graph with desired stretch factor, but about the fast computation of the stretch
factor, given the graph. Narasimhan and Smid [15] considered the problem of computing the
stretch factor of a Euclidean graph, defined as the maximum ratio of graph distance and
Euclidean distance between any two vertices of the graph. Using Callahan and Kosaraju’s
well-separated pair decomposition, they showed that there exists a EPTAS for computing
the stretch factor running in O(|V |3/2) time, which is much faster than computing all-pairs-
shortest-path distances. For general weighted graphs, Cohen proposed fast algorithms to
compute paths with a desired stretch factor [6]. The stretch factor, in this case, is the ratio
of the path length to the graph distance. Farshi et al. studied the problem of adding an edge
to a Euclidean graph that lowers its stretch factor as much as possible [11].

Chen et al. [5] recently proposed a new straightness measure for a path. A polygonal
chain (p1, p2, . . . , pn) is a c-chain if for all 1 ≤ i < j < k ≤ n, we have ‖pi−pj‖+‖pj−pk‖ ≤
c‖pi − pk‖. There is a connection between the notion of c-chain and our proposed notion of
β-stretch paths. On the one hand, if a chain is β-stretch, it is trivial to show that it is also a
β-chain according to the definition in [5]. On the other hand, a c-chain bounds the possible
stretch of the chain according to [5, Theorem 1–3]. Even though the analysis is only for the
endpoints of the path, the results readily follow for any pair of points on the chain. Hence, it
indeed implies the chain has β-stretch (with the difference of only checking pairs of vertices,
not the points on the connecting segments).

A closely related notion to our β-stretch path is the notion of quasiconvexity as defined by
Azzam and Schul [3]. A connected subset Γ of the Euclidean space is said to be quasiconvex
if any two points x and y in Γ can be connected via a path in Γ whose length is bounded by
a constant times the Euclidean distance between x and y [3]. According to this definition, a
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β-stretch path is quasiconvex with constant β. The problem studied by Azzam and Schul is
in some sense opposite to ours. Given a connected set Γ and a target set of points K, they
compute a superset Γ̃ ⊃ Γ that connects the K points, has Hausdorff length comparable
to that of Γ, and is quasiconvex. We, instead, look for a path that is a subset of the given
connected set (graph) and that is quasiconvex with a constant stretch factor β. While a
short quasiconvex set always exists [3, Theorem 1], we show that determining whether a
β-path exists is strongly NP-complete.

One measure of “compactness” designed to quantify gerrymandering in political districting
is the Polsby-Popper score, based on the ratio of the area of a district to the square of the
district’s perimeter [18]. See [19] for a discussion of shape measures used in the study of
gerrymandering.

2 β-Stretch Curves and Locally γ-Fat Shapes

In order to model inputs that represent realistic objects, computational geometers introduced
the notion of fat shapes. The aim of this section is to argue that our notion of β-stretch
cycles captures a local variant of fatness.

Roughly speaking, a planar shape, understood as a closed topological disk T , is locally
γ-fat if every disk that is centered in T and is not containing the whole T has at least a
γ-fraction of its area in T . Let D ⊂ R2 denote a disk. Let D u S, for S ⊆ R2, denote the
path connected component of D ∩ S containing the center of D.

Locally γ-fat shape [2, 7]. For 0 ≤ γ ≤ 1
2 , a closed topological disk T ⊆ R2 is locally

γ-fat if for every disk D centered in T that does not contain D in its interior, we have
area(T uD) ≥ γ · area(D).

We remark that there exists a variant of local γ-fatness that considers area(T ∩D) rather
than area(T uD) [20, 21]. The following applies also to this weaker notion of local γ-fatness.

The notion of β-stretch cycles extends to any measurable Jordan curve, in particular,
boundaries of “nice” topological disks. In the following theorem, we show that by controlling
the stretch factor of the boundary of a topological disk, we also control its local fatness. In
particular, lowering the stretch factor increases the fatness. The corresponding lower bound
on the local fatness is the inverse of a linear function of the stretch factor with the leading
constant factor 2π. We also show that the stretch factor of the boundary cannot be bounded
by a function of its local fatness.

I Theorem 4. Every closed topological disk T ⊂ R2, whose boundary ∂T is measurable and
β-stretch, is locally 1

2πβ -fat. For every β > 1, there exists a locally 1
32π -fat topological disk

whose boundary is not a β-stretch cycle.

Proof. Let D denote a disk, centered at a point p ∈ T , that does not contain T in its interior.
We need to show that 1

2πβ area(D) ≤ area(T uD).
Let D(r) and C(r), for r ≥ 0, denote the disk and circle, respectively, with radius r

centered at p. By rescaling, we assume that D = D(1) is a unit disk. Let re = min{r| r ≥
0, (C(r) ∩ ∂T ) 6= ∅}. Hence, re is the radius of the largest disk D(re), whose interior does
not intersect ∂T . Since D does not contain T in its interior, we have re ≤ 1.

We will presently show that
(
r2
e + (1−re)2

2πβ

)
area(D) =

(
r2
e + (1−re)2

2πβ

)
π ≤ area(T uD).

Then optimizing over the value of re, such that 0 ≤ re ≤ 1, in the previous two inequalities
gives the desired lower bound 1

2β area(D) on area(T uD). The lower bound is minimized for

re = 0. It remains to show that
(
r2
e + (1−re)2

2πβ

)
π ≤ area(T uD). The first term is due to

the fact that D(re) ⊆ T since p ∈ T .

SWAT 2020



7:6 Computing β-Stretch Paths in Drawings of Graphs

To get the second term we consider slices S(r) = T ∩ C(r), for re ≤ r ≤ 1. First, we
treat r ∈ [re, 1+re

2 ]. We claim that S
( 1+re

2 − t
)
, for 0 ≤ t ≤ 1−re

2 , contains a circular arc of
angular length greater than or equal to 1

β · 2
1−re−2t
1+re−2t . The claim is proved with the help of

the following lemma; see Figure 1 for an illustration.

p

p1

p2

C( 1+re
2 − t)

C(1)

αt

C(1)

A(x)

∂T

p1

p2
C(x)

p

τ1

τ2

C(re)

Figure 1 An illustration of Lemma 5 (left) and inequality (3) (right).

I Lemma 5. The slice S(x), re < x ≤ 1, contains a circular arc A(x), whose relative interior
is contained in the interior of T uD, and whose endpoints p1 ∈ ∂T and p2 ∈ ∂T split ∂T
into two parts τ1 and τ2 sharing p1 and p2, such that τ2 ∩ C(re) 6= ∅ and τ1 ∩ C(1) 6= ∅.

Proof. Refer to Figure 1 (left). First, we perturb ∂T a little bit to eliminate touchings
between C(x) and ∂T without increasing the total length of C(x) contained in the interior
of T . Let p′1 and p′2 denote a point in ∂T ∩C(re) and ∂T ∩C(1), respectively. Let τ ′1 and τ ′2
denote the two parts of ∂T connecting p′1 and p′2. We assume that τ ′2 is shortest possible. In
particular, τ ′2 is contained in ∂(T uD). Note that both τ ′1 and τ ′2 intersect C(x) in an odd
number of path connected components.

Let A1, . . . , Ak denote the path connected components of T ∩ C(x). Note that none of
Ai’s is a point since we eliminated touchings between ∂T and C(x). It must be that there
exists Aj , 1 ≤ j ≤ k, such that one endpoint of Aj belongs to τ ′1 and the other to τ ′2. Indeed,
otherwise the number of path connected components in τ ′1 ∩ C(x) and τ ′2 ∩ C(x) would be
even.

By the choice of τ ′2, putting A(x) = Aj concludes the proof. J

We show that A
( 1+re

2 − t
)
from Lemma 5 is an arc of the desired angular length, which

is at least 1
β ·2

1−re−2t
1+re−2t . Let τ1 and τ2, and p1 and p2 be as in Lemma 5 for x = 1+re

2 − t. Note
that due to the choice of t and the fact that C(re)∩τ2 6= ∅, we have dτ2(p1, p2) ≥ 2

( 1−re
2 − t

)
.

The same inequality holds for dτ1(p1, p2), since τ1 ∩ C(1) 6= ∅. Let αt denote the smaller
angle defined by the rays emanating from p through p1 and p2. Since ∂T is β-stretch, we
have, see Figure 1 (right),

β ≥
2
( 1−re

2 − t
)

‖p1 − p2‖
=

2
( 1−re

2 − t
)

2 sin αt
2
( 1+re

2 − t
) . (3)

The desired lower bound 1
2β ·

1−re−2t
1+re−2t on the angular length of A

( 1+re
2 − t

)
follows since this

is lower bounded by 2 sin αt
2 .

Similarly we prove that S
( 1+re

2 + t
)
, for 0 ≤ t ≤ 1−re

2 , contains a circular arc of angular
length at least 1

β · 2
1−re−2t
1+re+2t .
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Finally, by summing up infinitesimal thickenings of the slices of width dt we get

area(D u T ) ≥ 1
2β

∫ 1−re
2

0
21− re − 2t

1 + re − 2t

((
1 + re

2 − t
)2
−
(

1 + re
2 − t− dt

)2
)

+

+ 1
2β

∫ 1−re
2

0
21− re − 2t

1 + re + 2t

((
1 + re

2 + t

)2
−
(

1 + re
2 + t− dt

)2
)
,

which simplifies to

area(D u T ) ≥ 2
β

∫ 1−re
2

0
(1− re − 2t)dt.

It follows that (1−re)2

2β ≤ area(T uD), concluding the proof of the first part of the theorem.

ε p

D
(√

2
4 − ε

2

)

Figure 2 A family of topological disks T witnessing that a locally 1
32π -fat shape can have boundary

with an arbitrarily large stretch factor, which is achieved by choosing ε arbitrarily small.

Refer to Figure 2. For the second part of the theorem, consider a topological disk T , that
is a unit square with an ε > 0 wide slit from the middle of an edge to the center as in Figure 2.
Clearly, if we choose ε < 1

β then ∂T is not a β-stretch cycle. However, T stays locally 1
32π -fat

for any ε > 0. Indeed, it is not hard to see that for r <
√

2
4 −

ε
2 , a disk D(r) centered at a

point p in T of radius r has area(T uD(r)) ≥
(
r√
2

)2
> r2

32 = area(D(r))
32π . For r ≥

√
2

4 −
ε
2 , we

have area(T uD(r)) ≥ 1
16 , but it is enough to consider r ≤

√
2, since otherwise the whole T

is contained in D(r). Hence, area(T uD(r)) ≥ 1
16 = 2π

32π ≥
area(D(r))

32π . J

3 NP-completeness of βSP

The aim of this section is to prove Theorem 1. Let G, f, s and t be as in the statement of
the problem βSP. First, we show that we can certify that a given path π in f is a β-stretch
path in polynomial time, which follows by the next lemma.

I Lemma 6. Let π be a non-self-intersecting path in f between s and t. There exists a
quadratic time algorithm to check if π is a β-stretch path.

Proof. Note that it is enough to compute the maximum of

max
s∈e,t∈f

dπ(s, t)
‖f(s)− f(t)‖ , (4)

over pairs of edges e and f on the path P in G such that π = f(P ). Due to a constant
algebraic complexity of edges in f , (4) can be seen as a rational function of two variables whose

SWAT 2020



7:8 Computing β-Stretch Paths in Drawings of Graphs

maximum can be computed in constant time by the standard calculus and approximated
by solving a system of polynomial equations, and therefore the quadratic time complexity
follows. J

Thus, the problem is in NP, and it remains to argue the NP-hardness. We proceed by a
reduction from the graph vertex cover problem, which is one of the first known NP-complete
problems from Karp’s seminal paper [13], and which we state next. A vertex cover in a
graph G = (V,E) is a subset V ′ of its vertex set V such that every edge in E has at least
one vertex in V ′.

I Problem 3. Vertex cover. We are given a graph G, and a positive integer k. Decide
whether there exists a vertex cover in G of size at most k. The instance of the problem is
denoted by (G, k).

For any instance (G, k) of vertex cover we construct an instance (H, f, β, s, t) of βSP
that is positive if and only if (G, k) is positive. It will follow from the reduction that βSP is
strongly NP-complete, since all of the numerical values in the constructed instance of βSP
are bounded by a polynomial in the size of G. The construction follows.

Note that the problem βSP in trees is solvable in quadratic time, by Lemma 6, since in a
tree there exists exactly one path between every pair of vertices. Our reduction shows that
βSP becomes NP-hard even for graphs whose maximal 2-connected components are cycles.

We put β = n5, where n is the number of vertices in G. Let m be the number of edges in
G. We identify V (G) with [n] = {0, . . . , n− 1} and label the edges e0, . . . , em−1. The graph
H = (V (H), E(H)) is constructed as follows; see Figure 3 for an illustration. Roughly, H is
composed of chains of 4-cycles arranged in a serial fashion between the distinguished vertices
s and t, and drawn as diamonds. Each 4-cycle in a chain (except the two rightmost chains)
corresponds to an edge-vertex pair in G, and each pair of consecutive chains except the last
one corresponds to an edge of G. Two consecutive chains are joined by an edge or a subdivided
edge. The abstract graph H depends only on the number of vertices and edges in G, that is,
n and m, and the structure of G is encoded in the drawing of H. Every vertex of H is either
a triplet or a 4-tuple: the first element corresponds to an index of an edge of G or is equal to
m, the second element corresponds to a vertex of G or is equal to −1 or n, the third element
is “L” (for left) or “R” (right), and the fourth element is “E” (for east), “S” (for south) or “W”
(for west). Formally, the vertex set is V (H) = {s = (0,−1, L), t} ∪ {(v, e, α, β)| v ∈ [n], e ∈
[m + 1], α ∈ {L,R}, β ∈ {E,S,W}} ∪ {(e, n, α, S), (−1, e, α)| e ∈ [m + 1], α ∈ {L,R}},
and the edge set E(H) = {(e, v, α,W )(e, v, α, S), (e, v, α, S)(e, v, α,E), (e, v, α,E)(e, v +
1, α, S), (e, v + 1, α, S)(e, v, α,W )| v ∈ [n], α ∈ {L,R}, e ∈ [m + 1]} ∪ {(e,−1, R)(e +
1,−1, L), (e, n, L)(e, n,R)| e ∈ [m]} ∪ {(e,−1, α)(e, 0, α, S)| e ∈ [m + 1], α ∈ {L,R}} ∪
{(m,−1, R)t}.

The drawing f represents H in a zig-zag fashion, and has a grid-like structure reminiscent
of the edge-vertex incidence matrix of G with rows corresponding to the vertices and columns
corresponding to the edges of G. Thus, every chain of 4-cycles of H occupies its own column,
and 4-cycles corresponding to the same vertex of G occupy their own row. First, we define
f(v) for each v ∈ V (H). Let ε = β−1 = n−5. Let h > 0 and h′ > 0 be sufficiently small
constants that we specify later. We put f(t) =

(
2m+ 1

2 + h′, n− 1
2
)
. We put f((e,−1, L)) =

(2e − h,−1) and f((e,−1, R)) = (2e + h,−1). We put f((m,−1, L)) = (2m,−1) and
f((m,−1, R)) = (2m+ 1,−1). We put f((e, v, L,E)) = (2e− ε, v), f((e, v,R,E)) = (2e+ 1−
ε, v), f((e, v, L,W )) = (2e−1+ε, v), and f((e, v,R,W )) = (2e+ε, v). We put f((e, v, L, S)) =(
2e− 1

2 , v −
1
2
)
and f((e, v,R, S)) =

(
2e+ 1

2 , v −
1
2
)
, for v ∈ [n] and e ∈ [m+ 1].
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s

t

0 1 2 3 4

vertex 0

vertex 1

vertex 2

-1

-1

(0,-1,R) (1,-1,L) (1,-1,R) (2,-1,L) (2,-1,R)

(0,3,L,S) (0,3,R,S) (1,3,L,S) (1,3,R,S) (2,3,L,S) (2,3,R,S)

(0,0,L,E)

(0,0,L,S)

(0,0,L,W)

(2,2,R,E)

(2,1,R,E)

(2,0,R,E)

e0 e1

h′

hh

Figure 3 The drawing f of H in the NP-hardness reduction if G is a path on three vertices 0, 1
and 2, with edges e0 = 02 and e1 = 21. Letters in the 3rd and 4th component of a vector representing
a vertex stand for Left,Right and East,South,West, respectively. A β-stretch path π between s and
t is depicted bold, and corresponds to the minimum vertex cover VC(π) of G consisting of the single
vertex 2. (A vertex v is contained in VC(π) if and only if π passes through (2, v, R,E).)

In f , all of the edges are drawn as straight-line segments except in the following cases.
For every v ∈ V and ei such that v ∈ ei, we draw the edge (i, v, R,W )(i, v + 1, R, S)
in a close neighborhood of the straight-line segments connecting their end vertices as an
xy-monotone curve (that is, a curve that intersects every vertical and horizontal line in
at most 1 point) that is longer by more than 20n−4 in comparison with the straight-line
segment (i, v, R,W )(i, v + 1, R, S). We do not care about the shape of the curve and
we can think of it as a slightly perturbed line segment. Note that the length of the
curve is at most

√
2‖f((i, v, R,W )) − f((i, v + 1, R, S))‖. In the same way, we also draw

all of the edges (m, v,R,E)(m, v + 1, R, S), for all v ∈ [n]. Finally, we draw the edge
(m,−1, R)t as a concatenation of the horizontal line segment between f(t) and the point
p = f((m,n,R, S))− (20n−4, 0) ∈ R2 and a y-monotone curve (that is, every horizontal line
intersects the curve at most once) of length 10n between f(m,−1, R) and p such that its
relative interior does not pass very close to the rest of the drawing.

To finish the drawing f = f(h, h′) it remains to choose the values of h and h′. We denote
faux = f(0, 0) an auxiliary drawing of H with h = h′ = 0. Let πe = faux(Pe) be the 2nd
shortest path in faux between the vertex (e,−1, L) and (e,−1, R), which is independent of the
choice of e ∈ [m]. Note that πe is a path all of whose edges but 1 are drawn as line segments,
and its first and last vertex coincide in the drawing. We put h = ‖πe‖

2β ≤
20n
2n5 = 10n−4. Let

π′ = faux(P ′) be the (k + 1)-st shortest path in faux between (m,n,R, S) and t. We put
h′ = ‖π′‖

β ≤ 20n
n5 = 20n−4. Note that π′ is a path with all but k + 1 of its edges drawn as

line segments, and its first and last vertex t coincide in the drawing.

I Observation 7. The path f(Pe), for e ∈ [m], and f(P ′) is shorter than πe and π′,
respectively, and longer than ‖πe‖ − 20n−4 and ‖π′‖ − 20n−4.

For every v ∈ [n], e ∈ [m + 1] and α ∈ {L,R}, every path in G between s and t must
pass either through (e, v, α,W ) or (e, v, α,E). Furthermore, due to the very short distances
between blue vertices in the figure we have the following.
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I Lemma 8. Let π be a β-stretch path in f between s and t. If π passes through (e, v, L,E)
then π passes through (e, v,R,E) and (e′, v, α,E), for all e′ > e and α ∈ {L,R}. If π passes
through (e, v,R,E) then π passes through (e′, v, α,E), for all e′ > e and α ∈ {L,R}.

Proof. Suppose that π passes through (e, v, L,E), and, for the sake of contradiction, let e′ ≥ e
denote the smallest value such that π passes through (e, v, α,E) 6= (e, v, L,E) for some α ∈
{L,R}. Suppose that e = e′. The other case is treated analogously. By the construction of the
drawing f , ‖f((e, v, L,E))−f((e, v,R,W ))‖ = 2ε = 2

β , and dπ((e, v, L,E), (e, v,R,W ))) > 2.
Hence, the stretch factor of π is strictly more than β (contradiction). J

Proof of Theorem 1. It is easy to verify that the construction of (H, f, β, s, t) can be carried
out in polynomial time, and all of the numerical values appearing in the construction of
f can be bounded from above by a polynomial function of n, the number of vertices in G.
Thus, the strong NP-completeness of βSP follows once we show that (G, k) is a positive
instance if and only if (H, f, β, s, t) is a positive instance.

First, if (G, k) is a positive instance, there exists a vertex cover V ′ ⊆ V of G of size at
most k. Let πmax denote the longest path of H in f . Let π be the path in f between s

and t passing through (e, v, α, w) if and only if v ∈ V ′, for all e ∈ [m+ 1] and α ∈ {L,R}.
We need to show that π is a β-stretch path. Note that π is uniquely determined, and
that by the choice of β, the only possible pairs of points that could violate the property
of π being a β-stretch path are (e,−1, L) and (e,−1, R), for some e ∈ [m], and (m,n,R, S)
and t. Indeed, it is easy to check that the union of two edges sharing a vertex is always
a β-stretch path in f , which follows from the fact that an xy-monotone curve is at most√

2-stretch. Hence, in order to violate that π is a β-stretch path, we need to find a pair of
points p ∈ ei ∈ E(H) and q ∈ ei′ ∈ E(H), ei ∩ ej = ∅, such that f(p) ∈ π, f(q) ∈ π, and
‖f(p) − f(q)‖ < ‖πmax‖

β < 20n3

n5 = 20n−2. We can assume that n is sufficiently large such
that the pre-image in f of a disk neighborhood of f(p) ∈ R2, p ∈ H, with radius 20n−2 is a
single component of H, that does not intersect a pair of edges not sharing a vertex, except
when p is very close to (e,−1, α), for some e ∈ [m+ 1], α ∈ {L,R}, (m,n,R, S) or t, which
are colored red in the figure.

Since V ′ is a vertex cover, we have dπ((i,−1, L), (i,−1, R)) ≤ ‖πi‖, for all i ∈ [m].
Indeed, for each i ∈ [m], the path π misses two non-linear edges incident to (i, v, R, 0)
for v ∈ ei such that v ∈ V ′. Then by Observation 7, dπ((i,−1,L),(i,−1,R))

‖f(i,−1,L)−f(i,−1,R)‖ ≤
‖πi‖
2h = β.

Furthermore, since |V ′| ≤ k, we have dπ((m,n, S,R), t) ≤ ‖π′‖. Then by Observation 7,
dπ((m,n,S,R),(t))
‖f(m,n,S,R)−f(t)‖ ≤

‖π′‖
h = β.

Second, if π is a β-stretch path between s and t, let VC(π) ⊆ V be defined as follows. A
vertex v is contained in VC(π) if and only if π passes through (m, v,R,E). Since π is β-stretch,
we have dπ((m,n,R, S), t) ≤ h′β = ‖π′‖

β β = ‖π′‖. If |VC(π)| > k then by Observation 7 and
the length of non-geodesic edges dπ((m,n,R, S), t) > ‖π′‖ − 20n−4 + 20n−4 = ‖π′‖, which
is in contradiction with the previous claim. Hence, |VC(π)| ≤ k. It remains to show that
VC(π) is a vertex cover of G.

For the sake of contradiction, suppose that there exists an uncovered edge, that is, an
edge uv = ei ∈ E such that ei∩VC(π) = ∅. On the one hand, by Lemma 8 and the definition
of VC(π), π passes through (i, u,R,W ) and (i, v, R,W ). Hence, by Observation 7 and the
length of non-geodesic edges, dπ((e,−1, L), (e,−1, R)) > ‖πe‖ − 20n−4 + 20n−4 = ‖πe‖.
On the other hand, since π is β-stretch, dπ((e,−1, L), (e,−1, R)) ≤ 2hβ = 2‖πe‖2β β = ‖πe‖
(contradiction). J

Note that our NP-hardness proof involves large stretch values (here, β = n5). It would
be interesting to show NP-hardness for small stretch values.
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4 Approximation Algorithms

In Section 3, we proved that βSP is strongly NP-complete, which rules out that there exists
a FPTAS [22, Section 8] for it, unless P=NP; see [22, Corollary 8.6]1. Let (G, f, β, s, t) be
an instance of βSP, and let β∗ = argminβ((G, f, β, s, t) is positive), which is well defined
by compactness. In other words, it is highly unlikely that we can approximate β∗ within a
factor of (1 + ε), for any ε > 0, in time that is polynomial in both |V (G)| and 1

ε .
To complement our hardness result, we show that there exists an algorithm with a quasi-

polynomial, that is O(npoly(logn)), running time that for a given ε > 0 and β, 1 ≤ β ≤ logc n,
for some fixed c ≥ 1, returns a β-stretch path between s and t if a β(1 − ε)-stretch path
between s and t exists thereby proving Theorem 2. We assume that ε, c and β satisfy the
above properties in the rest of the section. Unless specified otherwise, the base of log is 2.

4.1 A Path Filtering Scheme
We give a path filtering scheme that we use in Section 4.2 to prove Theorem 2. The main
idea behind our algorithm is the following. Since we are aiming only at ε > 0 approximation,
we do not need to take into account all of the possible paths between s and t. From a set
of paths that are very “similar“ to each other, in the sense that we specify later, we only
keep one candidate and delete the rest. Our algorithm proceeds in dlogne rounds; in the
i-th round we compute a set of at most quasi-polynomially many (in terms of n, ε and β)
paths of G with at most 2i edges that are (1− εi)β-stretch in f , for some small εi’s, such
that ε0 = ε, εi > εi+1, and εdlogne = 0. In the following, we rigorously define what we mean
by “similar”, and how we cluster similar paths. In particular, we cluster paths connecting
the same pair of verices u and v according to their behaviour with respect to stretched radial
grids centered at their end vertex u or v; see Figure 4 for an illustration.

u

π2π1

(1 + ε′)2

ε′

β

1

2π(1 + ε′)
⌈
2π
∆

⌉−1

u

π2π1

v v

Figure 4 A pair of paths π1 and π2 that are not equivalent (on the left) and that are equivalent
(on the right) w.r.t. a radial grid centered at u .

Radial grid. Let ε > 0, ε′ = ε/β, ri = (1 + ε′)i and ∆ = ε′

1+ε′ . The radial grid Fu(ε, β)
centered at a point (vertex) u ∈ V (G) consists of

⌈
β
ε′

⌉
circles centered at f(u) of radius i ε

′

β ,

for i ∈
[⌈

β
ε′

⌉]
, and circles of radius ri, for i ∈ [dc log1+ε′ ne+ 1], and D =

⌈ 2π
∆
⌉
equiangular

1 Indeed, we can place the vertices in the construction of the reduction on a grid of polynomial size in
n = |V (G)| with the unit corresponding to n1/10.
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7:12 Computing β-Stretch Paths in Drawings of Graphs

spaced rays emanating from f(u). (Recall that we assumed that the shortest edge has length
1 and the largest simple path length is nc for some constant c > 0.) The complement of the
radial grid Fu(ε, β) in R2 consists of at most N = D · (

⌈ 1
ε′

⌉
+ log1+ε′ n

c) = O(poly(logn))
two-dimensional open path connected components, whose closures are cells of Fu(ε, β). Note
that, ε is treated as a constant and β = O(poly(logn)) by the hypothesis of Theorem 2.
In the following, we disregard unbounded cells since they do not intersect f(G). Without
loss of generality, we assume that Fu(ε, β) is sufficiently generic with respect to f , that is,
Fu(ε, β)∩f(G) consists of a finite set of points. To this end we might need to slightly perturb
the value of ε.

Let π = π(u, v) be a path in f . Let Σu
π denote the subset of cells of Fu(ε, β) that π

intersects. We group paths π = π(u, v) between u and v according to Σuπ and approximate
distances between u and cells σ in Σuπ, which we define next. Let dπ(σ, u) be the minimum
length of the sub-path of π between the point p on π such that f(p) ∈ σ and u. Let rσ
denote the Euclidean distance from u to a furthest point in σ from u. Let Ξuπ = Ξuπ(ε, β) ={(
σ,
⌊
log1+ε′

dπ(σ,u)
rσ

⌋)
| σ ∈ Σuπ

}
. If π is a β-stretch path, then dπ(σ,u)

rσ
≤ β. Therefore the

second component of each pair in Ξuπ is a natural number not bigger than
⌊
log1+ε′ β

⌋
.

Path equivalence. Two paths π = π(u, v) and π′ = π′(u, v) are equivalent with respect to
the radial grid Fu(ε, β) if the first and last edge of π and π′ are identical, Ξuπ(ε, β) = Ξuπ′(ε, β),
and the length of π differs from the length of π′ by a multiplicative factor of at most (1 + ε).

Intuitively, equivalent paths pass through the same cells with almost similar distances from
u to each intersected cell. Let N be as above, the number of the cells, and k =

⌊
log1+ε′ β

⌋
+

1. The crucial aspect of the grid Fu(ε, β) is that there are at most kN pairwise non-
equivalent paths. We have kN = (log1+ε′ β)cD(d 1

ε′ e+log1+ε′ n) = O(poly(logn)poly(logn)) =
O(npoly(log logn)), which is quasi-polynomial in n.

The following lemma (proved in Section 6.1) quantifies the approximation guarantee of
our filtering scheme.

I Lemma 9. Let j ∈ N such that j ≥ 2. Let π1 = π1(u = v0, v1), π2 = π2(v1, v2) . . . , πj =
π2(vj−1, w = vj), and π′1 = π′1(u = v0, v1), π′2 = π′2(v1, v2), . . . , π′j = π′j(vj−1, w = vj) be
β-stretch paths such that πi and π′i, for every 1 ≤ i < j, are equivalent with respect to
Fvi(ε, β0) and Fvi−1(ε, β0), for some β0 ≥ β. Then the following holds.

If π = π_1 π_2 . . ._ πj is not a β-stretch path, then π′ = π′_1 π′_2 . . ._ π′j is not a (1−31ε)β-
stretch path.

4.2 Approximation algorithm for paths

We give an algorithm proving Theorem 2. Refer to the pseudo-code of Algorithm 1. We
initialize Ψ0 := E(G) and ε′ := ln (1−ε)−1

32dlogne . The algorithm proceeds in dlogne many steps, and
in the i-th step it computes a set of 1−ε

(1−31ε′)i β-stretch paths Ψi in G such that every path in
Ψi has at most 2i edges. The set Ψi+1 is computed from Ψ≤i =

⋃
j≤i Ψj as follows. We pick

every pair of distinct paths π1(u, v) ∈ Ψ≤i and π2(v, w) ∈ Ψ≤i such that the concatenation
π = π(u,w) = π1(u, v)_π2(v, w) is a self-intersection free path with at least 2i + 1 edges.
We put π into Ψi+1 if π is a 1−ε

(1−31ε′)i+1 β-stretch path. At the end of the (i + 1)-st step,
we recursively delete for every pair of vertices u and v of G in Ψi+1 a path π′(u, v) if an
equivalent path π′(u, v) with respect to Fu(ε′, β) and Fv(ε′, β) still exists in Ψi+1.

The algorithm outputs a β-stretch path between s and t if Ψ≤dlogne contains such a path.
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Correctness. Suppose that there exists a (1− ε)β-stretch path π0 in f connecting s and
t with ` edges. We show that the algorithm outputs a β-stretch path connecting s and t.
We show by induction on i that after the i-th step of the algorithm, in Ψ≤i there exists a
sequence Si of

⌈
`
2i
⌉
paths, whose concatenation is a β 1−ε

(1−31ε′)i -stretch path πi between s and
t. If the claim holds, we are done, since, for a sufficiently large n, we have

(1−31ε′)−dlogne(1−ε)β =
(

1− 31 ln (1− ε)−1

32 dlogne

)−dlogne

(1−ε)β < eln(1−ε)−1
(1−ε)β = β.

In the base case the claim holds by the existence of π0. By the induction hypothesis, we
suppose that the claim holds after the i-th round. We apply Lemma 9 with β0 := β, ε := ε′,
and β := β 1−ε

(1−31ε′)i to the paths in Si, whose concatenation πi in the given order plays
the role of π′, and to the equivalent representatives of consecutive pairs of paths in Si that
were not deleted from Ψ≤i+1, whose concatenation plays the role of π. It follows that π is
β 1−ε

(1−31ε′)i+1 -stretch yielding Si+1. Putting πi+1 = π concludes the proof of the correctness
of the algorithm.

Running time. The bottleneck of the algorithm is clearly the path filtering scheme that
filters all but quasi-polynomially many paths, and therefore the claimed running time follows
by the fact that the algorithm ends in dlogne steps and Lemma 6.

Algorithm 1 Approximation algorithm.

Data: An instance of βSP (G, f, β, s, t) and ε > 0.
Result: A β-stretch path between s and t in f if a (β(1− ε))-stretch path between s

and t exists. (The algorithm can possibly output a β-stretch path even if no
(β(1− ε))-stretch path exists.)

ε′ := ln (1−ε)−1

32dlogne ;
Ψ0 := E(G), i := 0; (Ψi : the set of candidate β-stretch paths with at most 2i edges.)
while Ψi 6= ∅ do

Ψi+1 := ∅;
for π1(u, v), π2(v, w) ∈

⋃
j≤i Ψj do

if π = π(u,w) = π1(u, v)_π2(v, w) has at least 2i + 1 edges, and is a
β 1−ε

(1−31ε′)i+1 -stretch path. then
add π to Ψi+1

while there exists two equivalent paths π(u, v) and π′(u, v) with respect to
Fu(ε′, β) and Fv(ε′, β) in Ψi+1. do

remove π from Ψi+1
i← i+ 1;

return A β-stretch path between s and t if
⋃
i Ψi contains such path.

4.3 Approximation Algorithm for Cycles
We discuss an extension of the algorithm from Section 4.2 from paths to cycles thereby
establishing Theorem 3. Let (G, f, β, s, t) be the input instance for βCP. Let G0 = G \ {s, t}.
We subdivide the edges of G0 such that every edge has the length at least 1 and at most 2
in f . Let f0 denote the drawing of G0 inherited from f . The graph G0 has polynomially
many vertices in terms of the number of vertices of G. We will work with the input instance
(G0, f0, β, s0, t0) of βSP, where s0, t0 ∈ V (G0) and ε0 = 1 −

√
1− ε. The reason for the
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7:14 Computing β-Stretch Paths in Drawings of Graphs

choice of smaller ε0 is that we will need to work with ε0 such that (1 − ε0)2 = (1 − ε).
Intuitively, we try to combine all pairs of paths joining the same pair of vertices in Ψ≤dlogne
constructed by the algorithm from Section 4.2.

A self-intersection free cycle in f0 separates f0(s) from f0(t) if and only if it crosses the
line segment between f0(s) and f0(t) an odd number of times. In order to keep track of
the parity of crossings of paths with the line segment between s and t, we extend the path
filtering scheme from Section 4.1 as follows.

Path equivalence. Two paths π = π(u, v) and π = π′(u, v) are equivalent with respect to the
radial grid Fu(ε, β) in f0 if the first and last edge of π and π′ are identical, Ξuπ(ε, β) = Ξuπ′(ε, β),
the length of π differs from the length of π′ by a multiplicative factor of at most (1 + ε),
and additionally the parities of the number of crossings of π′ and π with the line segment
connecting f0(s) and f0(t) are the same.

Algorithm. First, we run a brute-force algorithm to find a β-stretch separating cycle C
such that the length of γ = f(C) is at least 4

ε0
+ 2. If we fail to find a β-stretch cycle C,

we run the algorithm from Section 4.2 with the input instance (G0, f0, β, s0, t0), for ε0 > 0,
using the previously modified notion of path equivalence with radial grids parametrized by
ε′(ε0) = ln (1−ε0)−1

3200dlogne and β, that is, Fu(ε′/100, β) rather than Fu(ε′, β) in comparison with
the original algorithm. The algorithm returns Ψ≤dlogne. We check if there exists a pair of
paths in Ψ≤dlogne, whose concatenation is a β-stretch cycle C separating s from t. If this is
the case we output C.

Correctness. Suppose that there exists a (1− ε)β-stretch cycle γ = f(C) in G0 separating
s from t. Let P1 and P2 denote a pair of paths in G between u ∈ V (G0) and v ∈ V (G0),
whose union is C. We choose P1 and P2 so that the difference of the length of π1 = f(P1)
and π2 = f(P2) is minimized. Note that this difference is at most 2. Suppose that π1 is
not shorter than π2. We claim that π1 and π2 are 1−ε

1−ε0
β-stretch paths. Indeed, for any

p1, p2 ∈ P1 dγ(p1, p2) ≥ dπ1(p1, p2)− 2 ≥ (1− ε0)dπ1(p1, p2). The first inequality is by the
choice of P1 and P2, and the second one by the fact that the length of π1 is at least 2

ε0
, since

the length of γ is at least 4
ε 0 + 2.

Note that 1−ε
1−ε0

β = (1− ε0)β. Mimicking the proof of the correctness of the algorithm
from Section 4.2, we derive that Ψ≤dlogne contains a pair of (1− ε0)β-stretch paths P ′1 and
P ′2 joining the same pair of vertices at P1 and P2 such that the concatenation of π′1 = f0(P ′1)
and π′2 = f0(P ′2) is a β-stretch cycle γ′. To this end we need to adapt Lemma 9 to the case
when u = w.

I Lemma 10. Let ε > 0 be sufficiently small. Let j ∈ N such that j ≥ 2. Let π1 =
π1(u = v0, v1), π2 = π2(v1, v2) . . . , πj = π2(vj−1, u = vj), and π′1 = π′1(u = v0, v1), π′2 =
π′2(v1, v2), . . . , π′j = π′j(vj−1, u = vj) be β-stretch paths such that πi and π′i, for every
0 ≤ i ≤ j, are equivalent with respect to Fvi(ε/100, β0) and Fvi−1(ε/100, β0), for some
β0 ≥ β. Then the following holds. If γ = π_1 π_2 . . ._ πj has length at least 20, and is not a
β-stretch cycle, then γ′ = π′_1 π′_2 . . ._ π′j is not a (1− 31ε)β-stretch cycle. Furthermore, γ
separates s from t if and only if γ′ separates s from t.

5 Conclusion and Future Work

We proved that βSP is strongly NP-complete, but our reduction seems to work only with large
β that is polynomial in the number of vertices n of the input graph. A natural open problem
is to determine the complexity of βSP for β constant or logarithmic in n. We proposed a
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quasi-polynomial algorithm for βSP that works only for β that is at most logarithmic in n,
and that has a quasi-polynomial running already for constant values of β. Therefore we find
the problem of devising a PTAS for βSP interesting even when β is a fixed constant.

This leads us to suspect that devising an approximation algorithm for βSP becomes
easier if we restrict ourselves to drawings of graphs in which the vertex set is supported by
an integer grid of a polynomial size and edges are straight-line segments.

In the future, we intend to extend our work in the following direction, motivated by the
computation of districts that avoid gerrymandering. We mark some vertices in a plane graph
as “important” and we wish to cut the graph into regions, whose boundaries are β-stretch
cycles, such that each region contains exactly one important vertex. A related work by
Eppstein et al. [10] describes a method for defining geographic districts in road networks
using stable matching. However, their resulting regions might even be disconnected. As
we discussed in Section 2, the β-stretch condition is more constraining than local fatness;
a locally fat region, whose boundary has a large stretch factor, might look like the shape
in Figure 2, which is indicative of a gerrymandered district, with a selective slit removed.
We propose that partitioning of geographic regions using β-stretch paths/cycles can lead to
districting solutions that may better avoid gerrymandering. We leave this work for future
study.
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6 Appendix

6.1 Proof of Lemma 9

p p′

q

p′′

q′′

q′

u

v

w
π2 π′2

σp

σq

π′1

π1

Figure 5 An illustration of Lemma 9 when j = 2. A radial grid centered at v1, and a pair of
paths π = π_1 π2 and π′ = π′_

1 π′
2 that are equivalent with respect to the radial grid centered at v1.

I Lemma 9. Let j ∈ N such that j ≥ 2. Let π1 = π1(u = v0, v1), π2 = π2(v1, v2) . . . , πj =
π2(vj−1, w = vj), and π′1 = π′1(u = v0, v1), π′2 = π′2(v1, v2), . . . , π′j = π′j(vj−1, w = vj) be
β-stretch paths such that πi and π′i, for every 1 ≤ i < j, are equivalent with respect to
Fvi(ε, β0) and Fvi−1(ε, β0), for some β0 ≥ β. Then the following holds.

If π = π_1 π_2 . . ._ πj is not a β-stretch path, then π′ = π′_1 π′_2 . . ._ π′j is not a (1−31ε)β-
stretch path.
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Proof. Refer to Figure 5. Assume that π is not a β-stretch path. It follows that either π
contains a self-intersection, or there exists two points q and p on π, whose stretch factor is
bigger than β. Formally, in either case, there exists a pair of points p an q in G such that

dπ(p, q)
‖f(p)− f(q)‖ > β. (5)

It is enough to consider the case, in which p is on π1 and q is on πj , and p and q are not
contained in the union of 2 consecutive edges of π. Indeed, these 2 consecutive edges would
be also both on π′ by the definition of the equivalent paths.

We show that π′ is not a β(1−31ε)-stretch path. Consider the cell σq and σp in the radial
grid Fv1(ε, β0) and Fvj−1(ε, β0), respectively, that contains p and q. Let q′ ∈ G and q′′ ∈ G,
and p′ ∈ G and p′′ ∈ G, respectively, be the points such that f(q′) ∈ σq and f(q′′) ∈ σq, and
f(p′) ∈ σp and f(p′′) ∈ σp, respectively, minimizing dπ′(q′, v) and dπ(q′′, v), and dπ′(p′, v)
and dπ(p′′, v). We show that the stretch factor of p′ and q′ along π′ is bigger than β(1− 16ε),
which will conclude the proof. To this end we first derive several simple inequalities.

Since π1 and π′1, and πj and π′j are equivalent with respect to Fv1(ε, β0) and Fvj−1(ε, β0),
respectively, the values of dπ′(q′, v1) and dπ(q′′, v1), and dπ′(p′, vj−1) and dπ(p′′, vj−1) are
within the factor of (1 + ε′) of each other, where ε′ = ε/β0. Since π1 is a β-stretch paths,
dπ(q, q′′) ≤ βLσq , where Lσq is the diameter of σq. Therefore

dπ(q, v1) = dπ(q, q′′) + dπ(q′′, v1) ≤ βLσq + (1 + ε′)dπ′(q′, v1). (6)

The same holds for p, p′ and p′′. By the construction of Fv1(ε, β) and Fvj−1(ε, β), the diameter
of σ ∈ {σp, σq} such that rσ = (1 + ε′)i+1 can be bounded from the above as follows

Lσ < (1 + ε′)i+1 − (1 + ε′)i + 2πε′

1 + ε′
(1 + ε′)i ≤ (1 + 2π) ε′

1 + ε′
rσ. (7)

The upper bound on the diameter of all of the other cells σ contained in the unit disk
centered at v1 and vj−1, respectively, follows if p and q is contained in the annulus between
the unit circle and the circle of radius 1

β0
centered at v1 and vj−1.

Lσ <
ε′

β0
+

2πε′
(
rσ − ε′

β0

)
ε′ + 1 < ε′

(
rσ −

ε′

β0

)
+2π

(
rσ −

ε′

β0

)
ε′ = (1+2π)ε′

(
rσ −

ε′

β0

)
(8)

By the triangle inequality, ‖f(q)−f(p)‖ ≥ ‖f(q′)−f(p′)‖−‖f(q)−f(q′)‖−‖f(p)−f(p′)‖ ≥
‖f(p′)− f(q′)‖ − Lσq − Lσp . Therefore

β
(5)
<
dπ(q, v1) + dπ(v1, v2) + . . .+ dπ(vj−1, p)

‖f(q)− f(p)‖

(6)
≤

(1 + ε′)(dπ′(q′, v1) + . . .+ dπ′(vj−1, p
′)) + β(Lσq + Lσp)

‖f(q′)− f(p′)‖ − Lσq − Lσp

≤ dπ′(q′, v1) + . . .+ dπ(vj−1, p
′)

‖f(q′)− f(p′)‖
1 + ε′

1− Lσq+Lσp
‖f(q′)−f(p′)‖

+ β

Lσq+Lσp
‖f(q′)−f(p′)‖

1− Lσq+Lσp
‖f(q′)−f(p′)‖

. (9)

We consider two cases depending on whether π′ is a β-stretch path. If π′ is not a β-stretch
path, then it is also not a β(1− 16ε′)-stretch path and we are done. If π′ is a β-stretch path
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and both σq and σp are not contained in the unit disk centered at v1 and vj−1, respectively,
then we must have

‖f(p′)− f(q′)‖ ≥ dπ′(p′, q′)
β

>
‖f(q′)− f(v1)‖+ ‖f(vj−1)− f(p′)‖

β
≥
rσq + rσp
(1 + ε′)β . (10)

Combining (10) with the upper bound (7) on Lσ from the above yields

Lσq + Lσp
‖f(q′)− f(p′)‖ <

(1 + 2π)ε′(rσq + rσp)
(rσq + rσp)/β = (1 + 2π)ε β

β0
≤ (1 + 2π)ε. (11)

If σq and σp is contained in the annulus between the unit circle and the circle of radius 1
β0

centered at v1 and vj−1, respectively, then (10) becomes

‖f(p′)− f(q′)‖ > ‖f(q′)− f(v1)‖+ ‖f(vj−1)− f(p′)‖
β

≥
rσq − ε′/β0 + rσp − ε′/β0

β
. (12)

Then using (8) and (12), we recover the upper bound from (11).

Lσq + Lσp
‖f(q′)− f(p′)‖ <

(1 + 2π)(rσq − ε′/β0 + rσp − ε′/β0)ε′
rσq−ε′/β0+rσp−ε′/β0

β

= (1 + 2π)ε β
β0
≤ (1 + 2π)ε (13)

If σq is contained in the annulus between the unit circle and the circle of radius 1
β0

centered at v1, and σp is not contained in the unit disk centered at vj−1 then (10) becomes.

‖f(p′)− f(q′)‖ > ‖f(q′)− f(v1)‖+ ‖f(vj−1)− f(p′)‖
β

≥
rσp

(1+ε′) + (rσq − ε′

β0
)

β
. (14)

Then using (7),(8) and (10), we again recover the upper bound from (11).

Lσq + Lσp
‖f(q′)− f(p′)‖ <

(1 + 2π)
(
rσq − ε′/β0 + rσp

(1+ε′)

)
ε′

rσp

(1+ε′) +(rσq−ε′/β0)
β

= (1 + 2π)ε β
β0
≤ (1 + 2π)ε (15)

Finally, if σq is contained in the disk of radius 1
β0

centered at v1 we distinguish two cases
depending on whether σp is contained in the unit disk centered at vj−1. If this is the case, q
is contained on an edge of π1 incident to vj , since π1 is a β-stretch path, and β0 ≥ β. Hence,
as every edge has length at least 1 in f , we have that σp is not contained in the unit disk
centered at vj−1 with diameter 1

β0
. Indeed, q and p are not contained in two consecutive

edges of π and therefore they are at distance more than 1 along π, and thus, σp is not in
the disk of radius 1

β , but β0 ≥ β. Depending on whether σp is contained in the unit disk
centered at vj−1, we obtain one of the following bounds.

‖f(p′)− f(q′)‖ ≥ dπ′(p′, q′)
β

>
‖f(vj−1)− f(p′)‖

β
≥

rσp
(1+ε′)

β
(16)

‖f(p′)− f(q′)‖ ≥ dπ′(p′, q′)
β

>
‖f(vj−1)− f(p′)‖

β
≥
rσp − ε′/β0

β
(17)

Then using (7),(8) and (16) and (17), we again recover an upper bound analogous to (11),
but worse by a multiplicative factor of 2.

Lσq + Lσp
‖f(q′)− f(p′)‖ ≤

2Lσp
‖f(q′)− f(p′)‖ ≤ 2(1 + 2π)ε (18)
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Using (11), (13), (15), and (18), (9) can be in every possible case rewritten as follows,
which concludes the proof.

dπ′(q′, p′)
‖f(q′)− f(p′)‖ = dπ′(q′, v1) + . . .+ dπ(vj−1, p

′)
‖f(q′)− f(p′)‖ > β

1− 4(1 + 2π)ε
1 + ε/β

> β
1− 4(1 + 2π)ε

1 + ε
>

1− 31ε
1 + ε

β > (1− 31ε)β J

6.2 Proof of Lemma 10
I Lemma 10. Let ε > 0 be sufficiently small. Let j ∈ N such that j ≥ 2. Let π1 =
π1(u = v0, v1), π2 = π2(v1, v2) . . . , πj = π2(vj−1, u = vj), and π′1 = π′1(u = v0, v1), π′2 =
π′2(v1, v2), . . . , π′j = π′j(vj−1, u = vj) be β-stretch paths such that πi and π′i, for every
0 ≤ i ≤ j, are equivalent with respect to Fvi(ε/100, β0) and Fvi−1(ε/100, β0), for some
β0 ≥ β. Then the following holds. If γ = π_1 π_2 . . ._ πj has length at least 20, and is not a
β-stretch cycle, then γ′ = π′_1 π′_2 . . ._ π′j is not a (1− 31ε)β-stretch cycle. Furthermore, γ
separates s from t if and only if γ′ separates s from t.

Proof. The proof is analogous to the proof of Lemma 9 except that we consider distances
along γ and γ′, which are cycles rather than paths. Due to this reason we slightly weaken
some inequalities. The second claim of the lemma is immediate from the definition of the
path equivalence. In the following we derive the first claim.

Assume that γ is not a β-stretch cycle. It follows that either γ contains a self-intersection,
or there exists two points q and p on π, whose stretch factor is bigger than β. Formally, in
either case, there exists a pair of points p an q in G0 such that

dγ(p, q)
‖f0(p)− f0(q)‖ > β. (19)

It is enough to consider the case, in which p is on πi′ and q is on πj′ , and p and q are not
contained in the union of 2 consecutive edges of γ. Indeed, these 2 consecutive edges would
be also both on γ′ by the definition of the equivalent paths, and the edges have length at
most 2. Therefore the minimum length curve between p and q in γ is contained in these 2
consecutive edges.

We show that π′ is not a β(1 − 31ε)-stretch path. Consider the cell σq and σp in the
radial grid Fv1(ε/100, β0) and Fvj−1(ε/100, β0), respectively, that contains p and q. We
have ε′ = ε

100β0
. The rest of the proof differs from the proof of Lemma 9 in the following

weaker consequence of a variant of (6), and other inequalities with dπ′(q′, p′) that needs to
be replaced with dγ′(q′, p′).

dγ(q, p) = β(Lσq + Lσp) + (1 + 100ε′)dγ′(q′, p′), (20)

where f0(q′) ∈ πi′ ∩ σq and f0(p′) ∈ π′j′ ∩ σp.
In the following we derive (20). Let π = π(q, p) ⊂ γ such that dπ(q, p) = dγ(q, p). Let

π′ = π′(q′, p′) ⊂ γ such that π′ ∩ π′i 6= ∅ if and only if π ∩ πi 6= ∅. Thus, π′ is equivalent to π.
Let `(γ) and `(γ′) denote the length of γ and γ′, respectively. If dπ′(q′, p′) = dγ′(q′, p′)

then (20) holds by the same argument as in the proof of Lemma 9.
Otherwise, dγ′(q′, p′) = `(γ′) − dπ′(q′, p′). Furthermore, dπ′(q′, p′) = β(Lσq + Lσp) +

(1 + ε′)dγ(q, p) ≤ β(Lσq + Lσp) + 1
2`(γ) ≤ β(Lσq + Lσp) + 1

2`(γ
′)(1 + ε′). Combining the

previous two (in)equalities we get that dγ′(q′, p′) ≥ `(γ′)− β(Lσq + Lσp)− 1
2`(γ

′)(1 + ε′) =
1
2`(γ

′)(1− ε′)− β(Lσq + Lσp).
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By the previous paragraph, and (7) and (8),

dπ′(q′, p′)
dγ′(q′, p′)

≤
1
2`(γ

′)(1 + ε′) + β(Lσq + Lσp)
1
2`(γ′)(1− ε′)− β(Lσq + Lσp)

≤
1
2`(γ

′)(1 + ε′) + 16ε′`(γ′)
1
2`(γ′)(1− ε′)− 16ε′`(γ′)

≤ 1 + 33ε′

1− 33ε′ (21)

Now, (20) follows from (6) using (21) for sufficiently small ε′. J
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