174 research outputs found

    Computer aided diagnosis system using dermatoscopical image

    Get PDF
    Computer Aided Diagnosis (CAD) systems for melanoma detection aim to mirror the expert dermatologist decision when watching a dermoscopic or clinical image. Computer Vision techniques, which can be based on expert knowledge or not, are used to characterize the lesion image. This information is delivered to a machine learning algorithm, which gives a diagnosis suggestion as an output. This research is included into this field, and addresses the objective of implementing a complete CAD system using ‘state of the art’ descriptors and dermoscopy images as input. Some of them are based on expert knowledge and others are typical in a wide variety of problems. Images are initially transformed into oRGB, a perceptual color space, looking for both enhancing the information that images provide and giving human perception to machine algorithms. Feature selection is also performed to find features that really contribute to discriminate between benign and malignant pigmented skin lesions (PSL). The problem of robust model fitting versus statistically significant system evaluation is critical when working with small datasets, which is indeed the case. This topic is not generally considered in works related to PSLs. Consequently, a method that optimizes the compromise between these two goals is proposed, giving non-overfitted models and statistically significant measures of performance. In this manner, different systems can be compared in a fairer way. A database which enjoys wide international acceptance among dermatologists is used for the experiments.Ingeniería de Sistemas Audiovisuale

    Computer Aided Diagnostic Support System for Skin cancer: Review of techniques and algorithms

    Get PDF
    Image-based computer aided diagnosis systems have significant potential for screening and early detection of malignant melanoma. We review the state of the art in these systems and examine current practices, problems, and prospects of image acquisition, pre-processing, segmentation, feature extraction and selection, and classification of dermoscopic images. This paper reports statistics and results from the most important implementations reported to date. We compared the performance of several classifiers specifically developed for skin lesion diagnosis and discussed the corresponding findings. Whenever available, indication of various conditions that affect the technique’s performance is reported. We suggest a framework for comparative assessment of skin cancer diagnostic models and review the results based on these models. The deficiencies in some of the existing studies are highlighted and suggestions for future research are provided

    Computer aided diagnostic support system for skin cancer: A review of techniques and algorithms

    Full text link
    Image-based computer aided diagnosis systems have significant potential for screening and early detection of malignant melanoma. We review the state of the art in these systems and examine current practices, problems, and prospects of image acquisition, pre-processing, segmentation, feature extraction and selection, and classification of dermoscopic images. This paper reports statistics and results from the most important implementations reported to date. We compared the performance of several classifiers specifically developed for skin lesion diagnosis and discussed the corresponding findings. Whenever available, indication of various conditions that affect the technique's performance is reported. We suggest a framework for comparative assessment of skin cancer diagnostic models and review the results based on these models. The deficiencies in some of the existing studies are highlighted and suggestions for future research are provided. © 2013 Ammara Masood and Adel Ali Al-Jumaily

    Automatic Detection of Blue-White Veil and Related Structures in Dermoscopy Images

    Full text link
    Dermoscopy is a non-invasive skin imaging technique, which permits visualization of features of pigmented melanocytic neoplasms that are not discernable by examination with the naked eye. One of the most important features for the diagnosis of melanoma in dermoscopy images is the blue-white veil (irregular, structureless areas of confluent blue pigmentation with an overlying white "ground-glass" film). In this article, we present a machine learning approach to the detection of blue-white veil and related structures in dermoscopy images. The method involves contextual pixel classification using a decision tree classifier. The percentage of blue-white areas detected in a lesion combined with a simple shape descriptor yielded a sensitivity of 69.35% and a specificity of 89.97% on a set of 545 dermoscopy images. The sensitivity rises to 78.20% for detection of blue veil in those cases where it is a primary feature for melanoma recognition

    Measuring asymmetries of skin lesions

    Get PDF
    Since 1994, a clinical study has been established to digitize melanocytic lesions from patients who are referred to the Colored Pigment Lesion Clinic in the University of British Columbia. In the past, we have been using circularity as the main feature to reflect the asymmetrical aspect of skin lesions. However, its significance often depends on the accuracy of image segmentation while the borders of many lesions are often fuzzy and irregular. In this paper, we investigate how to use symmetry distance (SD) to improve the measurement of the asymmetries of skin lesions. Two SDs, including the basic SD and the fuzzy SD, and the simple circularity are calculated based on the new set of color images which are digitized under the controlled environment.published_or_final_versio

    An Efficient Block-Based Algorithm for Hair Removal in Dermoscopic Images

    Get PDF
    Hair occlusion in dermoscopy images affects the diagnostic operation of the skin lesion. Segmentation and classification of skin lesions are two major steps of the diagnostic operation required by Dermatologists. We propose a new algorithm for hair removal in dermoscopy images that includes two main stages: hair detection and inpainting. In hair detection, a morphological bottom-hat operation is implemented on Y-channel image of YIQ color space followed by a binarization operation. In inpainting, the repaired Y-channel is partitioned into 256 nonoverlapped blocks and for each block, white pixels are replaced by locating the highest peak of using a histogram function and a morphological close operation. Our proposed algorithm reports a true positive rate (sensitivity) of 97.36%, a false positive rate (fall-out) of 4.25%, and a true negative rate (specificity) of 95.75%. The diagnostic accuracy achieved is recorded at a high level of 95.78%
    corecore