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ABSTRACT 

Computer Aided Diagnosis (CAD) systems for melanoma detection aim to mirror the expert 

dermatologist decision when watching a dermoscopic or clinical image. Computer Vision 

techniques, which can be based on expert knowledge or not, are used to characterize the 

lesion image. This information is delivered to a machine learning algorithm, which gives a 

diagnosis suggestion as an output.  

This research is included into this field, and addresses the objective of implementing a 

complete CAD system using ‘state of the art’ descriptors and dermoscopy images as input. 

Some of them are based on expert knowledge and others are typical in a wide variety of 

problems. Images are initially transformed into oRGB, a perceptual color space, looking for 

both enhancing the information that images provide and giving human perception to machine 

algorithms. Feature selection is also performed to find features that really contribute to 

discriminate between benign and malignant pigmented skin lesions (PSL). The problem of 

robust model fitting versus statistically significant system evaluation is critical when working 

with small datasets, which is indeed the case. This topic is not generally considered in works 

related to PSLs. Consequently, a method that optimizes the compromise between these two 

goals is proposed, giving non-overfitted models and statistically significant measures of 

performance. In this manner, different systems can be compared in a fairer way. A database 

which enjoys wide international acceptance among dermatologists is used for the 

experiments. 
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1. Introduction and project objectives 

Melanoma is the leading cause of death among skin diseases, being responsible for the 75% of 

deaths associated with this organ. According to the World Health Organization (WHO), there 

are about 48.000 deaths related to this disease each year. The number of diagnosed cases is 

also increasing in white people living in places with sunny climate. Its aggressive nature creates 

the need of detecting it at its early stages, when there are high expectations to cure it. 

Dermoscopy has revealed as a useful imaging technique to accomplish this objective when a 

dermatologist is well trained. 

The introduction of digital systems has provided an easy way of getting and store images, 

making easier the routine of the dermatologist. This also increases the availability of digital 

images, which leads Computer Vision techniques to appear in dermatology, as in some other 

medical fields. 

At first, there was an initial tendence of developing image segmentation techniques for 

dermoscopy images. Later, common recommendations from dermatologists started to be 

replicated into automated systems, using common and dermoscopic images. This started the 

developing of Computer-Aided Diagnosis (CAD) systems, which tried to objectify rules used by 

dermatologists and to apply classical imaging techniques to help the diagnosis of the clinician. 

Today, there is a large set of commercial systems that offers this possibility and mobile 

applications like Dermaskin have started to diffuse among people. 

This project aims to design a ‘state of the art’ CAD system which uses dermoscopy images as 

input. Descriptors will be developed, in order to get the relevant information from images and 

turning them into feature vectors. This strategy allows the use of Machine Learning techniques 

to allow the implementation of an automatic system that makes diagnosis suggestions to the 

images it receives. 

Small databases are usual in this field, so the problem of experimentation with small datasets 

will be deeply addressed. Concretely, a new cross-validation procedure which leads getting 

correct evaluation measures and the training of robust systems is described. A technique of 

feature selection is also implemented, in order to get information about what features are 

really significant among all that can be tried. 
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2. Regulatory framework 

When working with medical images, it is mandatory to respect the privacy rights of the 

patients. The construction of a skin lesions database requires a signed consent for its 

publication. This issue is not treated in this project, because the database was commercial, so 

coming with these problems solved. 

The other fact that needs to be clarified is the use of software. Almost all tools used in this 

project are free software, so they can be obtained by any user through the internet. However, 

all the expensive computations needed by experiments required computation software and 

Matlab was chosen. Microsoft Office is used for the making of this memory. So, these two 

tools are commercial and require the use of a license for its use. 
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3. Planning 

The tasks involved in the project were gathered in three phases. The temporary distribution of 

tasks needed to make a whole system is showed in FIGURE 3.1 (See APPENDIX II: Tasks 

breakdown for a connection between ID numbers of the figure and tasks). Due to the nature of 

research projects, some schedule variations are expected. A workday of 4 daily hours from 

Monday to Friday, so as 2 daily hours at the weekend, have been established. 

 

The first phase includes two conceptually different groups of tasks: the previous study and the 

subsequent preparation of the database for the later experimentation phase. The former 

starts with some background knowledge on dermatology of skin lesions and dermoscopy with 

the aim of understanding the medical viewpoint and getting insights about what makes benign 

lesions dermoscopically different from malignant lesions. It is followed by an initial contact 

with the state of the art of similar systems, including the analysis of overview articles and a 

first group of proposed systems and descriptors. The latter group starts with the selection of 

the images decided to be included in the study, the extraction of manual masks and the 

analysis of all useful metadata included with them. This phase ends with the definition of the 

architecture of the prototype system, at Milestone 1, estimated on March, the 6th. 

The second phase covers the implementation of each of the blocks of the prototype system 

and the first experiments. This involves coding an initial set of descriptors, a classifier and 

algorithms for feature selection and parameter validation. After an evaluation to check the 

correct operation of the prototype, the first set of experiments is launched. The analysis of its 

performance gives the needed feedback to deal with the decision of the components of the 

final system, programmed to be made on March, the 29th. 

Figure 3.1: Gantt chart. 
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The final system implementation is addressed at the third phase. The analysis of a new group 

of state of the art articles and personal reflection itself should have offered a new set of image 

descriptors at this point. New improvement proposals of the implemented algorithms are 

coded and validated. Experimentation and results analysis end on April, the 20th. This 

milestone is set as an estimation of the date to finish the first whole system. Future 

improvements of the system follow the same sequence of this phase, with a conclusive 

experimentation finishing on June, the 10th, when the final revision of the project report is 

programmed. 

The documentation tasks not included above occur in parallel with each of the described 

phases and contain the three scheduled phases of project report composition and revision, so 

as further extensions to the study of dermoscopy, image descriptors and similar systems. They 

converge with implementation tasks in a revision process which ends at the milestone and 

starts the next phase. 

The summary of deadlines and work hours can be viewed in TABLE 3.1. See APPENDIX II: Tasks 

breakdown for a detailed description of the hours that involved each task. 

Start date 10-February 

End date 10-June 

Work hours 364 
Table 3.1: Planning summary 
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4. Economic environment 

Computer systems are gaining importance in the dermatological field. At present, its influence 

can be found on mobile applications which analyze the potential malignancy of a mole through 

common images, software tools to help the routine tasks of a dermatologist and even 

commercial automated diagnosis systems to help non-experts (See section 5.6). As our system 

aims to help the clinician with a diagnosis suggestion, its potential usefulness leads to develop 

the budget of the project, in order to value the study. 

4.1. Finances 

The staff costs have been calculated based on the internship period in which the project was 

developed. Assuming a salary of 543.91 €/month with 80 work hours per month, the expense 

per hour is fixed at 6.80 €. The costs per phase are presented in TABLE 4.1. 

Phase Work hours Cost (€) 

Planning 8           54,39 €  

Initial study 36        244,76 €  

Prototype development 54        367,14 €  

Complete system development 52,5        356,94 €  

System improvement 136        924,65 €  

Documentation 77,5        526,91 €  

Total 364     2.474,79 €  
Table 4.1: Staff costs for each project phase. 

The amortizable materials needed for the execution of the project were classified in hardware 

and software categories. The considered amortization period is 5 years for hardware and 10 

years for software. See TABLE 4.2 for details. 

Type Element Cost (€) 
Amortization 

period 
(months) 

Amortization 
(€/month) 

Use 
period 

(months) 

Cost for the 
project (€) 

Hardware 
HP Pavilion dv6 Notebook 
PC       699,00 € 60              11,65 €  4                        46,60 €  

   Computer at workspace    1.200,00 € 60              20,00 €  4                         80,00 €  

Software Windows 8                -   € 120                     -   €  4                                -   €  

  Office 2013 Professional       539,99 € 120                4,50 €  4                         18,00 €  

  Open Project                -   € 120                     -   €  4                                -   €  

  LiBSVM                -   € 120                     -   €  4                                -   €  

  Fedora                -   € 120                     -   €  4                                -   €  

  Matlab 7.9 2.000,00 € 120                     16,67 €  4                         66,67 €  

  Total                                211,27 €  

Table 4.2: Costs of amortizable material. 
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The last direct costs taken into account have been perishable goods, which are specified in 

TABLE 4.3. 

Element Units Prize/unit Cost 

Paper 500 sheets 1               4,99 €              4,99 €  

Pen BIC Crystal Blue 10               0,25 €              2,45 €  

Total                 7,44 €  
Table 4.3: Costs of perishable goods. 

The workspace rent covers light, office furniture, maintenance… It costs 1000 € per month, 

which is shared among 7 people and used during 4 months for the project, leading to 572 €. 

This analysis is assembled to give a summary of direct and indirect costs. See TABLE 4.4: 

Type Concept Cost 

Direct costs Staff     2.474,79 €  

  Amortizable equipment        211,27 €  

  Perishable equipment             7,44 €  

  Total     2.693,50 €  

Indirect costs ADSL line           34,29 €  

  Workspace rent        572,00 €  

  Total        606,29 €  
Table 4.4: Summary of costs. 

After addressing the costs for the project, the budget is completed with the inclusion of 

earnings, considering a profit margin of 10%, and the VAT tax (See TABLE 4.5). The value of the 

project is then finally established on 3.604, 38€. 

Concept Cost 

Direct costs     2.693,50 €  

Indirect costs        606,29 €  

Total costs     3.299,79 €  

Earnings        263,98 €  

Total budget     3.563,77 €  

Total budget + VAT     4.312,16 €  
Table 4.5: Final budget. 
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5. Some notions of melanoma diagnosis and computer aided 

diagnosis systems 

In this section, an introduction to the clinical view of the problem of the melanoma diagnosis 

along with an explanation of different image acquisition techniques and the role of Computer 

Aided Diagnosis (CAD) systems are made. It starts with an introduction to the human skin, 

followed by a description of the skin lesions covered in this study (types of skin cancer and 

some others). Then, it follows a description of the different image data available. Also, some 

diagnosis algorithms used by dermatologists are commented, because of the valuable insights 

that they provide for feature extraction. Finally, this section ends with an overview of the role 

of CAD systems and the evaluation of it by clinicians. 

5.1. The human skin 

 

Figure 5.1: The human skin. 

The human skin is the outer covering of the body and its largest organ. The skin manages the 

contact with the environment, so it is responsible of protection against external damage, 

sensations, heat regulation and water loss control. It is globally divided into two layers: 

epidermis and dermis. See FIGURE 5.1 to check each part described next. 

The epidermis is made up of stratified squamous epithelium, a scale-like tissue arranged in 

layers, which carries out protection functions against infections, injuries and ultraviolet 

radiation. Four types of cells can be recognized: keratinocytes, melanocytes, Langerhans cells, 

and Merkel cells. 

Keratinocytes are present at all stratums of the epidermis and are filled with keratin. In their 

lifecycle, they undertake a journey that lasts around 30 days, changing their morphology and 
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biochemical properties on each epidermis layer through a cell process called differentiation. 

This trip starts at the basal layer, where are named basal cells, and ends at the stratum 

corneum, the inner and outer epidermis layers, respectively. Due to this differentiation 

process the cells are flattened and lose their nuclei when they reach the stratum corneum, 

named corneocytes, and finally lose their cohesion to the epidermis in the desquamation 

process. 

Melanocytes are found at the basal layer of the epidermis and they are responsible for 

distributing melanin to keratinocytes, which gives its color to skin and hair. 

Langerhans cells are found in all layers of the epidermis and are in charge of capturing antigens 

(foreign bodies) and delivering them to the lymph nodes. 

Merkel cells are associated with the sense of touch and act as sensors. 

 

Figure 5.2: Layers of the epidermis. 

The dermis is the inner layer of skin, arranged between the epidermis and subcutaneous 

tissue. It consists of collagen and elastic fibers, and cushions the body from stress and strain. 

This skin stratum contains two sub-layers: the papillary dermis and the reticular dermis. The 

first is the union with the epidermis. The latter contains blood, lymph vessels, nerve endings, 

sweat glands and hair follicles. It provides energy and nutrition and has important functions in 

thermoregulation, healing and the sense of touch. 

5.2. Pigmented skin lesions 

Pigmented skin lesions (PSL) materialize when melanocytes grow in clusters among other 

normal surrounding skin cells. They are also known as moles or nevi. In a very high percent 

they are a normal part of the skin, however, they are also closely related to melanomas. A 

general description of the most common benign lesions follows. For completeness, [1] can be 

consulted. 
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Clark nevi: these are the most common nevi and they encompass 
all flattened common moles. These nevi contain various brown 
shades and they are often found in skin that has been exposed to 
sunlight, but not always. Atypical ones should be excised or 
followed-up because of their potential risk of developing 
melanoma.  

Blue nevi: these nevi present homogeneous brownish-blue 
pigmentation, sometimes gray-blue or grey-black. They are also 
relatively regular and their transition to normal skin is sharp. 
These features make them easy to detect clinically. Malignancy is 
rare, but difficult to separate from benign cases. 

 
Congenital nevi: these pigmented lesions are present at birth or 
rise during the first months of life. They are precursor of 
melanoma with an estimated risk from 5% to 10%. Pigmentation 
varies between light-brown and dark-brown and they may be 
elevated or not. The variety of sizes is huge. 

 
Dysplastic nevi: they are acquired pigmented lesions of the skin. 
These lesions are usually bigger than common moles and have 
greater shape irregularity, heterogeneous coloration and blurry 
borders may appear. The previous features are also characteristic 
of melanoma, theoretically less noticeable, but they frequently 
make the lesion at least suspicious.  
Spitz nevi: these nevi are more common in the first two decades 
of life. Variable distinctive patterns can be found, such as well 
defined borders, small black to brown or reddish elevations or 
verrucous plaques. For this reason they are often difficult to 
distinguish from melanoma only with information from the naked 
eye. 
 

 

Table 5.1: Common benign lesions description. 

It can be seen that although there are pigmented lesions more potentially malignant than 

others, only a careful examination helps the detection of malignant moles which are 

perceptually very similar to benign ones. Apart from this, melanoma may appear either in a 

previously existing skin lesion or as a new one. Moreover, changes in size and color are very 

informative to detect early melanoma [2]. This makes regular skin screening a valuable tool for 

an early detection of melanoma. 

5.3. Melanoma and other types of skin cancer 

All cells have a little possibility to develop cancer, but there are types more prone to than 

others. Specifically, the most frequent skin cancer is developed by keratinocytes from the 

stratum basale (basal cells) and the stratum corneum (squamous cells), called basal cell 

carcinoma and squamous cell carcinoma, respectively. See FIGURE 5.3. 

Melanoma, developed by an abnormal growth of melanocytes, is the less frequent but its 

aggressive malignancy turns it into the most deadly skin cancer [3] [4, 5]. That is why it is more 

likely to fast spread out of its origin and start metastasis. In these stages it is incurable and the 
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treatment, only palliative, includes immunotherapy, chemotherapy, radiation therapy or 

palliative surgery [6]. Nevertheless, there are high survival rates when melanoma is detected in 

its primary stages, when it is locally confined to its lesion of origin (98% 5-year survival rate 

was obtained in the USA between 2002 and 2008 [6]). Consequently, the main objective for 

physicians is to detect melanoma in its early stages. These facts have placed computerized 

analysis of clinical and dermoscopical images as the main field of research in skin diseases. 

Two measures help to prognosticate the malignancy of melanoma: Clark’s levels and Breslow’s 

depth of thickness. The first counts the sublayers of epidermis and dermis that the invasion 

has reached [7]. The latter consists of an evaluation of the depth of the tumor through a 

biopsy of the entire lesion [3] and it is the current best prognosis method of malignancy. 

 
 

5.4. Melanoma screening and imaging techniques 

When a dermatologist considers a lesion as suspicious, it is excised by a surgeon and 

histologically analyzed by a pathologist. The diagnosis of the pathologist is considered as the 

ground truth about the malignancy of the lesion when it was biopsied, because the tissue of 

the lesion itself is evaluated with a microscope. Applying this kind of definitive analysis to all 

atypical lesions is not appropriate: esthetically, a scar is developed for every excised lesion; 

medical resources to practice every biopsy are limited and shouldn’t be used indiscriminately. 

This environment creates the need for non-invasive techniques that allow the dermatologists 

to detect malignancy without practicing any unneeded excision. Different imaging techniques 

have been developed after the traditional clinical images (ordinary photographs of the lesions) 

such as Dermoscopy, Confocal Scanning Laser Microscopy (CSLM), Optical Coherence 

Tomography (OCT), Positron Emission Tomography (PET), Magnetic Resonance Imaging (MRI) 

and ultrasound techniques [5]. At present, computer vision techniques focus their efforts on 

the analysis of clinical and dermatoscopical images. 

5.4.1. Clinical images 
These are ordinary photographs taken by dermatologists to map the location of the skin lesion 

in the whole body or to perform lesion tracking over time. Clinical images show what a 

dermatologist sees with the naked eye. 

5.4.2. Dermoscopy 

Dermoscopy is a non-invasive imaging technique for the observation of pigmented skin lesions 

that allows appreciation of skin subsurface structures that are not visible with the naked eye. It 

Figure 5.3: Squamous cell carcinoma, basal cell carcinoma, melanoma. Fuente 
especificada 

no válida. 
[108]. 
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[9]. 

is based on illuminating the skin directly by a device that allows magnification, typically from 

6x to 40x or even 100x that can be dynamically adjusted. The optical device uses a method to 

reduce light reflections to visualize structures below the stratum corneum. 

This technique improves melanoma detection with the naked eye, as it has been shown by 

many studies. For instance, Kittler et al. show that the improvement is near 49% after 

analyzing 27 studies from 1987 to 2002 [8]. However, it is needed to point out that this 

accuracy can only be obtained by experts in dermoscopy. Indeed, melanoma detection for 

dermatologists not familiar with this technique is not better than clinical examination without 

dermoscopy. 

Two imaging techniques coexist: non-polarized light dermoscopy and cross-polarized light 

dermoscopy. The former needs to place an immersion fluid on the lesion to place a handheld 

scope or digital imaging system used to evaluate the lesion. This gel is responsible for reducing 

the high scattering of light at the stratum corneum to force deeper light reflections, revealing 

details from inner skin layers. The latter has the ability to use polarized light and polarizing 

filters to isolate useful reflections with or without immersion liquid, obtaining very similar 

images [9]. Subtle differences exist between these two techniques that cause selective 

enhancement of different dermoscopic structures. 

 
Figure 5.4: Clinical image (a), non-polarized light contact dermoscopy (b), polarized light contact 

dermoscopy (c), polarized light non-contact dermoscopy (d). 

5.5. Methods of melanoma diagnosis 

Dermatologists have developed some algorithms to be used by themselves or even by 

clinicians to determine if a pigmented lesion is suspicious to be malignant. They are based only 

on visual information. It should be noted that a clinical diagnosis also goes with 

complementary information, such as the place of the body where the mole has developed, the 

family history of dangerous lesions, changes reported by the patient, the age, and some 

others. Also, it is helpful to remember that a dermatologist selects suspicious lesions to be 

excised, but it is the pathologist who makes the final decision on the malignancy of the lesion 

analyzing histologically the excised tissue. The methods of melanoma diagnosis can be 

classified into two types, according to the kind of image they are applied to either clinical or 
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dermoscopic images. TABLE 5.2 shows a classification of diagnosis algorithms according to the 

image type; TABLE 5.3 and TABLE 5.4 contain disambiguation of two methods adapted to both 

input images. 

Among the existing methods for clinical images, the ABCD criteria and the Glasgow 7-point 

checklist methods should be mentioned. The first was born for clinical practice and it is more 

generally accepted because of its simplicity [10] [11]. This mnemonic stands for Asymmetry, 

Border irregularity, Color variegation and Diameter. It was proposed in 1985 by Friedman et al. 

[12]. Some years later, in 2004, the rule was expanded by Abbasi et al [11] to include 

evolution, which added changes in size, shape, texture and color to the previous list, to turn it 

into ABCDE criteria. These changes over time are pointed out by dermatologists to be 

meaningful [13] [14]. The Glasgow 7-point checklist [15] defines changes in size, shape and 

color as major criteria, while diameter, inflammation, crusting or bleeding and sensory change 

are minor criteria. 

A larger number of diagnosis algorithms have been developed to analyze dermoscopic images 

[16], some of them are redefinitions of the previously discussed methods for this type of 

images. This is due to different visual information between clinical and dermoscopic images. 

These methods, with the exception of pattern analysis, need to determine before if the lesion 

is really a nevus, a melanocytic lesion. In other case, their conclusions are meaningless. 

Dermatologists have procedures to get this information and they are based on the fact that 

certain dermoscopic patterns are characteristic of an abnormal proliferation of melanocytes, 

which is the definition of nevus. This is the key that allows distinguishing between melanocytic 

lesions and the rest of brown colored lesions. Stolz et al [17] published in 1994 the method 

that is more generally followed at present. A detailed description of this method can be found 

in APPENDIX I: Melanoma diagnosis algorithms. 

The ABCD rule of dermoscopy was originally introduced by Stolz et al [17] to provide a 

reproducible algorithm to non experts in dermoscopy.  Lesions are scored using the modified 

mnemonic ABDC, ‘asymmetry, border sharpness, color and differential structure’, leading to a 

final score that is compared with a threshold to decide if they are malignant. 

Pattern analysis is considered by experts as the most accurate in melanoma diagnosis, but in 

contrast to the previous method, its application is not a rule of thumb and doesn’t provide a 

quantitative result. Its application is only effective for highly experienced dermatologists. This 

is because it takes into account the whole list of dermoscopic patterns. It was originally 

developed by Pehamberger et al. in 1987 [18]. This method is based on the thought that each 

diagnostic category is characterized by a particular combination of specific dermoscopic 

patterns. However, the exceptions and wrong pattern identification can only be reduced by 

experience. 
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Clinical image Dermoscopic image 
ABCD rule ABCD rule 

ABCDE rule ABCDE rule 

Glasgow 7-point checklist 7 point checklist 

- Menzies method 

- 
Pattern analysis 

Table 5.2: Classification of diagnosis algorithms according to the type of images considered. 

ABCD rule of clinical images ABCD rule of dermoscopic images 
Asymmetry: shape Asymmetry: shape, colors and structures 

Border: soft skin-lesion transition 
Border: abrupt skin-lesion transition in 8 

divisions 

Color: uniformity of present colors Color: presence of 6 defined colors 

Diameter: threshold of 6 mm 
Differential structures: presence of 5 

dermoscopic structures 

Table 5.3: Comparison between the ABCD rules for clinical and dermoscopic images. 

Glasgow 7-point checklist 7 point checklist 
1. Changes in size 1. Atypical pigmented network 

2. Changes in shape 2. Blue whitish veil 

3. Changes in color 3. Atypical vascular pattern 

4. Diameter greater than 7mm 4. Irregular streaks 

5. Inflammation 5. Irregular dots and globules 

6. Crusting or bleeding 6. Irregular blotches 

7. Sensory change 
7. Regression structures 

Table 5.4: Comparison between the 7-point checklist methods for clinical and dermoscopic images. 

5.6. Computer Aided Diagnosis (CAD) systems for melanoma detection 

Systems for automated diagnosis of melanoma try to mirror the expert dermatologist decision 

when watching the same dermoscopic image. Their primary objective is to help non expert 

dermatologists to improve their sensitivity and reduce benign lesions excision. Although 

computer vision techniques can be applied on every type of image data, clinical and 

dermoscopic images are preferred. These automated systems follow a very stable scheme: 

locating the lesion on the image, preprocessing when necessary, extracting features through 

descriptors, and making a diagnosis suggestion. 

As revealed in some studies, the performance of these systems is satisfactory under 

experimental conditions [19]. A few systems showed enough true positive detection rate, but a 

false positive tendency greater than that of human diagnosis was detected, so automated 

diagnosis is not recommended as the only judgment to be taken into account. Day and 

Barbour [20] suggested a general flaw of the usual approach to the problem: an automated 

system is intended to reflect the decision of a pathologist using the same information than a 

dermatologist, who only decides on the suspiciousness of the lesion to be malignant; 

histopathological data may be not available for some examples because only suspicious lesions 
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considered by dermatologists are excised. According to the study made by Dreiseitl et al [21], 

CAD systems should provide a kind of suspiciousness index to really resemble the decision of a 

dermatologist. This also would be helpful information for the clinician. 

It may be added that the design of these systems should explore more alternatives to really 

support clinicians. Features extracted by a machine are objective and may find out information 

that is hidden to the eye. So, after selecting features through proper selection techniques, an 

analysis of significance could be made. The results would be explained to the clinician in order 

to be used as an information complement. This approach would let the dermatologist to learn 

from the numbers extracted by the automatic system, which may be a useful contribution. 
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6. State of the art of computer-aided melanoma diagnosis 

Research on this field includes a great variety of applications, although the number of 

publications is not evenly distributed among all of them. A lot of effort has been devoted to 

segmentation of either the whole skin lesions or sub-regions corresponding to relevant 

dermoscopic local patterns. Feature extraction approaches follow two different paradigms: 1) 

extracting a large list of potential features followed by a feature selection process; and 2) 

relying on expert-based feature selection by exploiting the experience of dermatologists to 

design specific descriptors that account for similar information to that sought by 

dermatologists. In addition, some commercial CAD systems have been developed, mainly 

based on dermoscopy, likewise systems have been proposed for alerting patients about 

suspicious lesions, using either clinical images or even multispectral dermoscopy. The general 

review by Konstantin Korotkov and Rafael García [22] or the one by Magliogianis and Doukas 

[23] about feature extraction, selection, and classification techniques are highly 

recommended. 

6.1. Lesion segmentation and image preprocessing 

This is one of the classical topics of research in the field. First, the lesion segmentation consists 

in isolating the pigmented skin lesion from the normal skin as a singular region. Second, the 

image preprocessing covers techniques to highlight patterns and details which are informative 

for dermatologists through the application of certain image processing algorithms on the 

original image (image enhancement), or techniques to perform artifact removal, such as gel 

bubbles or hair, that could make more difficult subsequent computer vision-based analysis. 

Celebi et al. [24] make an interesting review of image preprocessing techniques. 

Studies about lesion segmentation usually rely on manual outlines of the lesions performed by 

dermatologists as reference, which are used as ground truth to evaluate the performance of 

the method. However, it has to be noted that human observers are not very good at detecting 

soft changes in contrast or blur [25]. Particularly, dermatologists tend to overestimate lesion 

borders, usually including some healthy skin as a security margin when they outline the lesion 

contour to surgeons [20]. Furthermore, the morphology of some structures of pigmented skin 

lesions, such as regressions, or the variability of lesion-to-skin gradient also contribute to 

different segmentation criteria in practice. This problem is usually addressed by means of the 

fusion of manual segmentations of a certain number of experts. 

Clinical images. The earliest works that can be found, published in 1989, used a spherical 

coordinate system for color space representation [26] and reported a comparison of color 

spaces for segmentation [27]. Jackowski et al [28] proposed a thresholding method followed 

by a refinement using border detection, using CIE Lab color space. A combination of grey level 

intensity and textural information was the choice of Dhawan and Sicsu [29]. Other approaches 

can be found, such as active contours [30] or gradient vector flow [31]. 

Dermoscopic images. Research using this imaging technique continued the trend started by 

clinical image. Fleming et al [32] performed a comparison of some segmentation and hair and 
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bubble removal methods, and developed a global segmentation method based on inverse 

diffusion equations. Thresholding approaches evolved from the previous simple ones [32] to 

threshold fusion [33] or hybrid thresholding [34]. Another set of techniques can be mentioned, 

such as evolution strategies [35], dynamic programming [36] or supervised learning [37]. It 

should be noted that, apart from the advantages and drawbacks offered by each method, 

algorithms were usually tested on small datasets coming from different sources, which makes 

difficult the evaluation of the results reported by the authors. 

When a clinical or dermoscopic image is acquired, some noisy artifacts could be present on the 

image, which adds difficulties to subsequent image analysis. The objective of artifact rejection 

techniques is to remove all these spurious elements, keeping the rest of the image as intact as 

possible. These methods can be classified according to the artifact they aim to clear: Dullrazor 

[38] is a widely used method for hair removal. A procedure that tries to remove hair and 

interpolate the skin pixels below the hair along with a recent overview of the technique on 

dermoscopic images can be found in the work of Abbas et al. [39]. Gel bubbles are treated in 

[40]. Ruler markings are sometimes made by dermatologists to have a reference concerning 

the size of the lesion are considered in [41]. Image enhancement includes: color calibration 

techniques, to suppress undesired effects of the capture device can be found on [42] [37]; 

illumination correction is useful to normalize images [43] [44]; contrast enhancement 

procedures could help automatic segmentation and improve the perception of some 

dermoscopic structures [37] [45]. 

6.2. Feature extraction 

There is a wide variety of features used to describe pigmented skin lesions. Some of them have 

been developed directly from expert knowledge, specifically created for this discrimination 

problem. The other approach is to adapt classic Computer Vision features to this matter. Both 

ideas are detailed below. 

6.2.1. Features for lesion description 

This category includes features intended to describe some global aspect of the lesion. They are 

usually implemented relying on a dermoscopical insight; however, other descriptors either 

coming from another medical field or even others classical descriptors in image analysis are 

sometimes tried also. Umbaugh et al [46] performed a review of CAD systems to introduce 

their feature extraction system, which has a wide variety of typical visual features (properly 

described in the paper). In particular, this paper describes features extracted from the binary 

mask of regions of interest, histogram-based descriptors, color transformations or Fourier 

descriptors for spectral analysis. The study reported by Magliogianis and Doukas [23] is a good 

review of features typically used for describing pigmented skin lesions. Descriptors based on 

the dermoscopical ABCD rule can be found, likewise other more general geometric features 

(area, perimeter, circularity, symmetry distance …). Histogram features and perceptual color 

spaces used are also described. Also, wavelet analysis and Gray Lever Co-occurrence Matrix-

based features for texture modeling are described and referenced. 
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TABLE 6.1 provides a list of descriptors. The first four rows cover ABCD rule based descriptors, 

which are the typical expert concepts used for feature developing. The rest of rows list more 

general image analysis techniques which have been adapted in some way to work on this field. 

Asymmetry [47] 

Border [48] [49] 

Color variation [47] [50] [51] [52] [53] 

Differential structures [51] 

Fractal geometry [50] [54] 

Local Binary Pattern [55] 

Gabor filters [56] [57] 

Wavelets [58] [59] 

Bag of features [60] [61] 

Geometric [47] [50] [52] 

Table 6.1: References for different descriptor classes. 

6.2.2. Pattern-oriented features 

As described in section 5.5, abnormal local patterns can raise certain alerts. Indeed, the 

detection of these patterns is what allows expert dermatologists to make accurate and early 

diagnosis of melanoma. Some of the most common are pigmented network, globules, blue 

whitish veil, or homogeneous pattern (See APPENDIX I: Melanoma diagnosis algorithms for a 

complete description). Additionally, the detection of this local pattern by clinicians becomes a 

difficult task for non-experts in dematoscopy. These two facts make automated pattern 

detection an important matter of research in this field. 

Articles on this field are essentially focused on the detection of one or two of the dermoscopic 

patterns described in APPENDIX I: Melanoma diagnosis algorithms. In contrast, Di Leo et al [62] 

developed a complete system that allows the detection of all the dermoscopic patterns 

needed by the application of the 7-Point Checklist algorithm [63]. Specifically, a combination of 

one or more of these techniques was suggested to perform the detection of each local 

pattern: spectral analysis, Principal Component Analysis, structural analysis, and 2D 

thresholding. The work by Sáez, Acha and Serrano [64] performs an exhaustive review of these 

dermoscopic pattern detection research works. It starts with a discussion about dermoscopical 

characteristics of the patterns, followed by an explanation about the 7-Point Checklist [63] and 

pattern analysis-based [18] diagnosis methods. Finally, a wide variety of algorithmic methods 

for pattern detection and classification are described, and others referenced. 

6.3. Classification 

The last block of the CAD systems is the classification stage, whose output is the 

diagnosis/suspiciousness suggestion regarding the analyzed lesion. Some lesion distinctions 

can be made such as benign/malignant, common nevus/dysplastic nevus/melanoma, or even a 

finer classification that distinguishes other classes known by dermatologists. The classifier is 

fed with features extracted from the image, which try to obtain meaningful values for 

discrimination (instead of using directly the image pixels). See TABLE 6.2. The paper by 

Magliogianis and Doukas [23] provides a review of the different classifiers used in literature 



6. State of the art and computer-aided melanoma diagnosis 

18 
 

and reports their performance. Besides discussing the classifiers, the paper also proposes 

feature extraction and selection processes. A subset of the general-purpose image analysis 

features, such as border modeling, asymmetry, statistical moment-based texture features, or 

Grey Level Co-occurrence Matrix-based features are proposed. Then, three feature selection 

methods are evaluated together with the 11 most-frequently used classifiers. The comparison 

of such different system configurations using the same dataset is considered as highly useful 

among all the studies proposing different systems evaluated on proprietary databases. 

When the number of features extracted is large, feature selection algorithms are often used. 

This is due to the fact that the performance evaluation of the proposed systems is typically 

performed using small datasets. Feature selection algorithms are then a solution that prevents 

from noisy features or an undesired number of the parameters to estimate for a limited 

dataset. An interesting example is the work by Rahil Garnavi [65], in which images are filtered 

by a 4-level wavelet decomposition and then some statistics are obtained from each filtered 

image as descriptors. Then, Gain Ratio Feature Selection (GRFS) and Correlation-based Feature 

Selection (CFS) are compared to find an optimal subset of features with reduced 

dimensionality. Finally, the performance of Support Vector Machines (SVM), Random Forest 

(RF), Logistic Model Tree and Hidden Naïve Bayes classifiers is checked, leading to a maximum 

Area Under Curve (AUC) (See section 8.3.2 for details of this measure) of 0.923 obtained with 

RF. 

Classification algorithms References 
SVM [47] [55] [66] [65] 

Neural networks [67] [68] [51] [69] 

Discriminant analysis [70] 

Bayesian classifier [61] 

Decision trees [62] [65] [71] [60] 

Multiple classifiers [72] [73] 

Table 6.2: Types of classifiers and examples of use. 

It should be noted that the most general case is that of presenting a research work evaluated 

on proprietary databases obtained through the collaboration with a determined hospital or 

dermatologist. The number of samples is usually small, because of the added efforts needed 

from dermatologists for segmenting lesions and local patterns besides their routine clinical 

work. These databases are not published and so, fair same-database comparisons are not 

possible with these studies. 

On the other hand, there is another set of articles that use commercial databases to evaluate 

system performance. However, the whole set of images is never used because of reasons such 

as the presence of noisy artifacts, the lesion is partially out of the image, heterogeneity of 

image sizes, types the lesions not considered in the study, etc. In a few words, a subset of 

images is selected from the database according to some criteria determined by the authors of 

each work. Consequently, again, fair same-database comparisons are difficult to perform, even 

when the compared works using the same commercial database. Moreover, sometimes these 

subsets of commercial databases are combined with other sets obtained again through 

collaboration with a hospital or dermatologist, which increases the difficulty of making proper 
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comparisons. ‘Interactive Atlas of Dermoscopy’ [74], ‘Interactive CD-ROM of Dermoscopy’ [75] 

or ‘An Atlas of Surface Microscopy of Pigmented Skin Lesions: Dermoscopy’ [76] are often 

found in these works. 

6.4. Complete systems 

In this section we review the most important CAD systems found in the literature. This covers 

the implementation of diagnosis methods used by dermatologists, with the aim of putting the 

results in objective terms and making them repeatable, and complete commercial systems 

with hardware for image acquisition and storage that also provide image analysis software. 

 

6.4.1. Automatic versions of dermoscopic diagnosis methods 

Among all contributions whose features are based on previous expert knowledge, some of 

them try to follow in a more strict way the diagnosis methods used by dermatologists. The aim 

is that automated implementations of these procedures can make them repeatable because of 

deleting subjectivity variations inner to humans. 

The works by Gola, García and Méndez [77] develop a system which implements an automatic 

ABCD rule calculation method taking a dermoscopic image as input, combining it with local 

pattern detection. The latter consists of making a detection of 8 different dermoscopic 

patterns, with an average accuracy above 85%.First, the lesion is automatically segmented, so 

the mask taken can be used to compute four features representing each of the steps of the 

rule and then, punctuation is fused with the results of automated pattern segmentation to 

perform the final punctuation. 

An automatic implementation of the 7-Point Checklist is developed by Di Leo et al [62]. An 

image processing procedure is used to detect each dermoscopic structure taken into account 

in this algorithm. These automatic decisions are used as input to the original algorithm 

developed by dermatologist to decide its malignancy on a dataset of 300 images. For the 

detection of each dermoscopic pattern a training and a test set are taken from the primal 

dataset, keeping the same percentage of occurrences and absences of the corresponding 

dermoscopic criterion in both sets. Feeding the automatic detection of dermoscopic patterns 

to the original algorithm used by dermatologists, they get sensitivity and specificity of 0.83 and 

0.76, respectively. 

6.4.2. Commercial CAD systems 

Here follows an exposition about commercial automated diagnosis systems. Reported 

evaluations of these commercial systems are commented, in order to explain the actual 

acceptance of these systems by the community of dermatologists. 

Clinical support decision systems have been the center of many publications and their 

commercial availability is a fact. These image analysis systems use in general dermoscopic 

images as input data. Most of them consist of a complete set of devices, covering image 
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acquisition, analysis and storage tasks as a unit. Among the expert systems that consist purely 

on image analysis, DANAOS and MoleMax should be highlighted (See TABLE 6.3 for references).  

System Imaging technique References 
DB-Mips Dermoscopy [78] [79] [80] [81] [67] 

DANAOS Dermoscopy [82] [83] [84] 

MEDS Dermoscopy [50] [72] 

MoleMax Dermoscopy [85] [86] 

MelaFind Multispectral dermoscopy [87] [88] 

SpectroShade Spectrophotometry [89] 

Table 6.3: Summary of commercial CAD systems. 

The idea of supporting the dermatologist is focused on providing a diagnosis suggestion as 

output. For this reason, a large amount of medical articles places them as methods that work 

in parallel rather than in support of physicians. Vestergaard and Menzies [90] made a review of 

evaluation studies of these systems, assessing their methods and test datasets to find really 

meaningful works. Their revision shows three systems (DB-MIPS, Telespectrometry and 

Electrical Impedance) that provide similar performances to that of the experts in terms of 

sensitivity. However, human specificity is always found higher, so they have not gained the 

confidence of the experts. Dreiseitl and Binder [86] tried to find out insights about CAD 

systems interactions with dermatologists, in the sense of checking if they changed the 

diagnosis of a physician when different decisions occurred. It was found that in a 24% of cases 

clinicians changed their decision accepting the automatic system suggestion. This variation 

arose at interactions with non-expert dermatologists or dichotomous situation, revealing that 

clinicians are prone to accept CAD system decisions. An alternative view about the idea of CAD 

systems may be needed on this field. An interesting research area could focus on how 

automatically extracted features should be displayed to the dermatologist, in order to give 

them complementary information. 

It is also worth mentioning that CAD systems are usually focused on visual information, while 

clinicians manage other data related to medical history of the patient, which is also useful and 

(usually) unknown by automated systems because of privacy reasons. 

6.5. Image registration systems 

Image registration is usually applied to make body maps of lesions, in order to detect changes 

which need more careful examination. This initial selection is critical when the patient exhibits 

a high number of pigmented skin lesions, which makes impractical more rigorous approaches. 

Other interesting field is the study of the evolution of the lesion during follow-up examination, 

removing disturbing transformations such as illumination changes or rotations, in order to 

appreciate variations in a fair way or even modeling them. However, the absence of databases 

with these characteristics directs the research efforts towards fields with available data. 

The work by Röning and Riech [91] described a semi automatic method for registration of skin 

lesions in subsequent body images, called baseline algorithm. The physician can provide the 

initial matches or they can be selected by the algorithm, finding the most likely initial matches 
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according to the images provided. The evaluation shows independence of the number of 

lesions and a matching accuracy of 99%. McGregor [92] aimed to remove noise caused by 

changes of camera angle or patient position through an automatic registration system that 

initially creates a lesion map from each image and then provides the identification of initial 

lesion in the following images using ‘local neighborhood graphs’. The four pairs that provide 

lower matching distance are used to estimate an appropriate transformation between images. 

Huang and Bergstresset [93] proposed a graph matching technique, validated by means of the 

addition of noisy points after the lesion segmentation step, leading to a reduction in accuracy 

of 3% when 10% of points are noisy. Mirzaalian et al [94] added proximity-based 

regularization, used of anatomical information in the matching process, angular consistency 

checking between pairs, and normalized coordinates to compare graphs. The method was then 

evaluated over 56 pairs of real cases and hundreds of synthetic data pairs.  
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7. System description 

The block diagram of the proposed system follows the standard arrangement of CAD systems 

and it is shown on FIGURE 7.1. As it can be observed, the input to the system is a dermoscopical 

image and the output is a diagnosis suggestion (expressed as a soft decision: a real number 

between in the interval {-1, 1}). The classes to be distinguished are benign lesion and 

melanoma. The process starts with the segmentation of the region of interest, which in this 

case has been done manually because this study has focused on finding out features that are 

useful to discriminate the considered classes. Then, the feature vector is obtained from the 

region of interest (ROI). Finally, the classifier provides a soft decision. Each block of the system 

is explained in detail in the following subsections. 

 

 

 

 

 

7.1. Segmentation 

Focusing the feature extraction process on the region of interest prevents from some noise 

sources, such as chromatic differences of the skin in different people or the differences 

between skin pixels and lesion pixels. As already mentioned, all the images of the database 

considered in our study have been segmented manually, in order to focus on feature 

extraction and selection and classification. 

 
Figure 7.2: Manual segmentation of a nevus. 

7.2. Feature extraction 

The following features have been extracted and their relevance to the considered classification 

problem has been studied. 

             

      

      

             

        

                      
          

           

Figure 7.1: Block diagram of a generic CAD system. 
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[95]. 

7.2.1. Color space description and justification 

Opponent RGB [95] (oRGB) is part of the group of color spaces which consider a separation 

between luminance and chrominance information, such as CIE Lab, YCbCr or HSV. The model 

retains the ideas of hue and saturation present in HSV but using a non linear perceptual 

brightness, similar to HSB, but focusing on colors perceived as opposed. The oRGB color space 

proposes a different spacing between hues, setting the red-green opponence as the 

perpendicular chroma axis to yellow-blue opponence, rather than the magenta/red-

cyan/green opponence. It covers the subjective fact that yellow does not seem to be 

composed by primaries as orange (mix of red and yellow) or purple (mix of red and blue). This 

adds the advantage of characterizing the warmth or coldness of a color using this 

confrontation (See FIGURE 7.3). These ideas make this model useful for color adjustment, color 

transformation or color transfer [95]. 

 
Figure 7.3: Color division according to their suggested temperature. A color is getting temperate when 

it approximates the drawn diameter.  

After the first theory of the perceptual base of color opponency, advocated by Hering [95], 

some psychological and physiological discoveries have evidenced it. Leo Hurvich and Dorothea 

Jameson suggested that the organization of color perception is partially based on opponent 

axes [96]. Cones are known to be the cells of the visual system that are responsible for the 

perception of colors, acting as photon counters. Each of the three types is associated with the 

detection of each of the three primary colors (red, green and blue), but the information about 

the wavelengths of individual photons is lost [97] and the information about wavelength and 

intensity for an individual cone, are both lost. The visual system performs at the retina a 

processing stage of the cones information to create three channels that are transmitted to the 

brain [98]. These three channels are related to the intensity, the red-green component and the 

blue-yellow component of a stimulus. 

It is important to note that oRGB is merely a simplification of the real perception of colors that 

is focused on a particular aspect of human vision, as all perceptual color models. 

The oRGB computation starts from perceptually corrected RGB coefficients as some models 

used for video encoding and televisions systems such as YIQ and YCbCr. A brightness-chroma 

separation followed by a non uniform color transformation leads to oRGB coefficients. The 
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[95]. 

simplest implementation approach described below leads to some out-of-gamut problems 

performing the inverse transform [95]. However, this process is chosen because of 

computational reasons and knowing that the problem does not include any inverse transform. 

Linear transform of RGB to a transition color space: the initial RGB cube is turned into the LCC 

parallelepiped through a linear transformation expressed by the matrix shown in EQUATION 7.1. 

This intermediate color space has a brightness axis, a yellow-blue axis and a magenta/red-

cyan/green axis. 

 

  

  
 

  
 
   

                  
                   
                   

  
  

  

  
  

Equation 7.1: Transformation matrix of the        device dependent cube into the     
   

 . 

Non uniform rotation around brightness axis: as red and green are not positioned 

perpendicular to the yellow-blue axis, a non uniform transformation to stretch the space from 

yellow to red and green, compressing at the same time the space from blue to red and green 

(see FIGURE 7.4). It consists of a different constant scaling of angle for each of the two regions. 

 
Figure 7.4: of the gamut or oRGB chromatic components for a certain luminance value, before (left) 

and after (right) uniform rotation to obtain orthogonal axes of opponent colors. 

7.2.2. Entropy 

This feature measures the degree of heterogeneity of the pixel levels and can be computed for 

any of the color components. The entropy concept is taken from the classic Shannon’s theory 

and applied to digital image processing [99]. It is a statistical measure of randomness that is 

computed from the histogram of the image (See FIGURE 7.5). 

 

[95]. 

Figure 7.5: Color component of a nevus image (left) and its histogram (right). 
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Relying on the entropy, it is easy to separate images with uniform histograms from those of 

sparse histograms. Consequently, this descriptor can be used to describe the texture of an 

image focusing on intensity proportions, without taking into account any spatial relation 

between pixels. The computation over the histogram of a color component ranging from 0 to 

255, where        is the probability of each value, is as follows: 

                   

 

      

   

   

 

Equation 7.2: Shannon's classic Entropy formula. 

7.2.3. Variance of the contour gradient 

This descriptor measures the variability of the skin-to-lesion transition along the lesion 

contour. It allows us to distinguish between a mole with a uniformly defined border from a 

mole with alternating steep and soft transitions. As the entropy, it can be computed for any of 

the color components. The feature is based on the works by Grana et al [49]. The calculation 

procedure is detailed below. 

The contour of the lesion is approximated as the boundary of the (manually segmented) region 

of interest. This contour is densely covered by short segments, which are centered on the 

contour line and perpendicular to it. The steepness of skin-lesion transition is then estimated 

on each segment using the pixel samples that each one covers. The length of the gradient 

segments, which will be denoted as  , is selected by visual inspection through the images of 

the database. To prevent from segmentation differences caused by human intervention, the 

length of gradient segments is initially duplicated. This brings a longer line of length    (see 

black lines on FIGURE 7.6) where a sliding window technique, with window size  , can be 

performed from one end to the other. A gradient slope is estimated at each sliding window 

step, and then the highest slope is selected to represent the steepness of the skin-lesion 

transition at each particular segment. 

 

 

Then, for each segment the slope of the skin-to-lesion transition is estimated through a linear 

regression. This method aims to get the line that minimizes the mean square error from a 

particular set of samples (EQUATION 7.3 to EQUATION 7.5), each of them consisting on a pair of 

Figure 7.6: Segments modeling the direction of lesion-skin gradient (left). Pixel samples from a 
segment and estimated line to model transition sharpness (right). 

[99]. 
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coordinates        . In this case,    is the index of the pixel value taken from one line segment, 

ranging from 1 to the length of the segment and incremented in the sense lesion-skin. This rule 

gives a common x axis which gives sense to the comparison among slopes of different 

segments. The    values are the pixel values corresponding to the    index of a particular 

gradient segment. 

       

Equation 7.3: Lineal model to fit. 

  
      

 
       

 
      

 
   

    
  

        
 
     

 

Equation 7.4: Slope formula. 

  
 

 
    

 

   

     

 

   

  

Equation 7.5: Independent term formula. 

Where   is the number of samples taken by each gradient segment. 

The slopes measure how steep is the skin-lesion transition. The variance over all of them finally 

gives the feature. 

 

 

7.2.4. Area 

The area is computed as the sum of the pixels that make up the segmented region of interest. 

Melanomas tend to be bigger than benign lesions, but this difference becomes smaller when 

malignancy is more incipient. 

Figure 7.7: Comparison of lesion to skin transition histograms between a nevus with regular border 
(left) and another with more irregular contour (right). 
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7.2.5. Compacity 

It describes how similar is the shape of the lesion to that of a circle. Malignant lesions tend to 

have more irregular shapes and, therefore, they would be less similar to a circle. 

The procedure to compute this feature is as follows: first, the center of mass of the lesion is 

computed as the average of all lesion pixel coordinates; then, a circle of the same area is 

superimposed on the center of mass; the overlapping area that the circle and the lesion share 

constitutes the degree of similarity between them, which is divided by the area of the lesion to 

normalize with respect to all different lesion sizes. 

 
Figure 7.8: Compacity descriptor is based on the common area between the ROI of the lesion and the 

equivalent circle. 

 

7.2.6. Asymmetry 

This feature measures the lack of symmetry of a lesion with respect to its center. Melanomas 

tend to grow differently on each direction, becoming more asymmetric than benign lesions. 

The computation of this features is performed as follows: first, the center of mass of the lesion 

is computed; an axis passing through this computed center is created to divide the lesion into 

two halves; taking this estimated symmetry axis, one half is superimposed on the other and 

the non-overlapping region is obtained; the process is repeated for several potential symmetry 

axis; the mean non-overlapping area divided by the total area of the lesion becomes a 

normalized asymmetry descriptor (to make it invariant to lesion size). 

         

 
 
 

 
    

 

 
          

 

   
 

 
          

 

  

          
   

 
 

 

Equation 7.6: Centroid computation. 

Equation 7.7: Compacity formula. 
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7.2.7. Ellipsoidality 

This descriptor measures how much the shape of the lesion resemblance that of an ellipse with 

the same area. It is a generalization of circularity that encompasses lesions which are benign 

but have ellipsoidal shape rather than circular. 

The computing procedure is as follows: the center of mass of the region of interest is 

computed as the average of all lesion pixel coordinates (See EQUATION 7.6); then, an ellipse 

with the same area of the ROI is centered at the computed center of mass, matching its major 

axis direction with the main axis of the lesion; finally, the overlapping area between the ellipse 

and the lesion region is divided by its total area to make the descriptor invariant to lesion size. 

 
Figure 7.10: Ellipsoidality. Area inside the equivalent ellipse contributes to ellipsoidality. 

               
   

 
 

              

                     

                        

 

Equation 7.10: Ellipsoidality formula. 

 

            
 

 
     

 

   

 

                                

Equation 7.9: Asymmetry computation.      
     

       
             

           
 

 

 

Equation 7.8: Symmetry formula. 

 

Figure 7.9: On the left, a lesion divided into two halves by one rotating axis. On the right, the 
half below overlapped over the half above, with the intersection highlighted as the green-

colored region. 
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7.2.8. Histogram modeling features 

Every pixel of an image is represented as a three-component color vector. Consequently, three 

color histograms can be extracted. The histogram of a color component is a graphical 

representation of the relative frequency of every possible intensity value (typically ranging 

from 0 to 255 in discrete values). After some preliminary experiments dealing with several 

color spaces (RGB, HSV, Lab, Opponent RGB), the chosen color space was opponent RGB. 

Furthermore, we observed that the histograms can be approximately modeled as Gaussian 

(see FIGURE 7.11). For this reason, the histograms were decided to be modeled through their 

means and standard deviations. 

 

 

7.3. Feature selection and classification 

Since the feature selection process that we propose involves the use of the classifier, we first 

describe the basic of the proposed classifier, the Support Vector Machine, and then the 

feature selection algorithm, the Sequential Forward Selection algorithm. 

7.3.1. Support Vector Machine 

Support Vector Machines (SVM) [100] [101] [102] are a supervised learning algorithm, which 

means that they need a training set made up by example-label pairs to infer a model able to 

predict the class of unknown labeled data. Currently, they are among the most used learning 

algorithms because of both simplicity of use and high generalization ability for small datasets, 

which is indeed our case. 

Given a training set, it is reasonable to try to find a decision boundary which looks for the 

largest separation gap between the samples of the two classes. This would bring confident 

predictions for the examples of the training set besides a model that correctly fits the data. In 

the following explanation, the training examples will be denoted as     , representing a feature 

Figure 7.11: Upper left: Blue-Yellow chromatic component. Upper right: Red-Green chromatic 
component. Bottom: Intensity component. 
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vector of   observations, with             being their associated labels, forming a training 

set of size  .The maximum margin classification idea, developed by the SVM, goes after this 

sensible objective, trying to find the parameter values of a separating hyperplane that follows 

the expression               and maximizes the distance between the two classes, 

which is indeed the margin. This idea leads to the following optimization problem: 

             
 

 
         

 

   

 

Equation 7.11: Expression to minimize on SVMs. 

                                                

Equation 7.12: Restrictions based on data. 

                  
Equation 7.13: Restriction for regularization. 

Here,   and   represent the separating hyperplane parameters, result of the optimization 

process. The second term of EQUATION 7.11 is the regularization term, which arises to solve the 

non-separable case. It occurs when the data is not linearly separable, that is, a perfect 

separation of the data cannot be done by a linear function. This is a realistic assumption; 

furthermore, finding a separating hyperplane could not be strictly desired in some cases. In 

FIGURE 7.12 it can be seen that the addition of only one sample has dramatically rotated the 

decision boundary, leading to a margin that is strictly a good fit to the training data. In this 

case, the margin is far from being as large as initially, in a global sense. Regularization reduces 

the influence of outliers and noisy samples in order to get a more robust margin, but paying a 

cost at the objective function that can be tuned by parameter  . This parameter has the 

mission of adjusting the relative weighting between fitting rigorously the training set and 

making the margin large globally, and should be selected empirically by some validation 

process. 

 

 

The natural solution of a SVM results in a linear decision boundary. The use of kernels extends 

the SVM definition to cover non-linearity. The technique consists of performing a feature 

Figure 7.12: Influence of outliers over global margin when there is no regularization term. 
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mapping applying a particular function         to the feature vectors. Carefully choosing this 

transformation, they can be turned into non-linear classifiers. Through the   function the data 

is carried to a space with larger dimension, where is expected to find a separating hyperplane 

between the classes (see FIGURE 7.13). 

 

 

The kernel function is then defined as                 
 
       . The most common are 

listed next: 

 Linear:            
    

 Polynomial:              
      

 
     

 Radial Basis Function (RBF):                       
 
      

 Sigmoid:                  
       

Where     and   are kernel parameters that need to be adjusted empirically. 

The RBF kernel was chosen because of its ability in making robust models when the size of the 

dataset is small. Its characteristic parameter is  , which models the range of influence of each 

sample in feature space. The RBF kernel is similar to a Gaussian, so   can be seen as the 

inverse of the variance, which models the width of the Gaussian (See FIGURE 7.14). 

The LIBSVM [103] library was selected as the implementation of SVMs to perform the 

experiments of this project. 

  

Figure 7.13: Space transformation using a convenient kernel. [102]. 
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To perform the parameter selection, the method proposed in [104]was followed, which uses 

RBF kernel and performs cross-validation to find the optimal value of the parameters:   and  , 

in this case. It lies in sweeping   and   values and pairing them to build a grid where the 

performance is checked for each      pair .The process is detailed in ALGORITHM 7.1. FIGURE 

7.13 is an example of how the performance of the classifier could improve when its 

parameters are tuned. 

 

Figure 7.14: Decision boundary for a fixed gamma (0.1, 10 and 100, respectively) and its corresponding 
C term at its optimal value. The region for class decision is red or blue colored. [115]. 

                 

                 

Set of training examples   is partitioned into   subsets. 

For each       pair 
 

For     to   

       
        

      
    

 

 Use       
 

 to fit a model using the particular       pair.  

 Evaluate the performance of the       pair with      
  as test 

set. 

 End 

 Average the   performance measures of the       pair to obtain its 
global cross-validation performance. 

End 

 

 Choose the       pair with the highest cross-validation performance as 
the optimal one. 

 

Algorithm 7.1: C and   grid search validation algorithm. 
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Figure 7.15: Performance of the classifier as a function of C and γ. 

Scaling of the data before starting the work with the SVM is very important, because of the 

Vector nature of the algorithm. This is mainly to avoid that features with higher numeric 

ranges do not dominate over features with smaller numeric ranges. Another benefit is to 

prevent from numerical problems with the inner products of some kernel computations. See 

ALGORITHM 7.2 to check the training and test procedure for the SVM. 

 

7.3.2. Sequential Forward Selection 

Once the classifier has been described, the problem of making a proper feature selection is 

addressed. Extract all possible features and concatenating them as the input vector to the 

classifier would not be a good approach because feature vector would have a very high 

dimensionality compared with the number of examples in the database. Therefore, the vector 

that represents each lesion should ideally include only those features that really contribute to 

improve the classifier discrimination power. Otherwise, there would not be enough data to fit 

the model because the classifier would have too many free parameters. This task is part of the 

design of the system and tries to select only those features that are useful for discrimination 

between the two managed classes (melanoma vs. benign lesion).  

     
   

 
    

 
 

1. Normalization of the samples. The mean and standard deviation of 
each feature along all the examples is computed. Then, the values 

are transformed by the following formula: 

2. Perform cross validation through the training set to find the 

optimal combination of   and   according to a particular efficiency 
measure (See ALGORITHM 7.1). 

3. Using the best   and   found to train the SVM using the whole 
training set. 

4. Test the classifier onto unseen examples to evaluate its 
performance. 

Algorithm 7.2: Training and test algorithm to use a SVM RBF classifier. 
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The chosen algorithm for feature selection is based on ‘Sequential Forward Selection’ (SFS). 

The procedure starts from an initial feature set, which can contain only one feature. Then, a 

new feature is added among the ones that have not been added yet and the performance of 

the resulting feature set is evaluated. The operation is repeated adding each of the remaining 

features to finally select the one that carried a higher performance measure. The process is 

repeated until a certain stop criterion is met. In our case, the algorithm stops when the 

performance of the new set does not improve the performance of the previous set. See 

ALGORITHM 7.3 for details. 

 

7.4. Diagnosis suggestion 

Margin distance provided by the SVM classifier is used as the diagnosis suggestion. This 

magnitude is related to the distance that is between the sample and the boundary of the 

model fitted by the SVM. Its absolute value is related to the confidence of the prediction 

because large absolute values correspond to samples easy to classify because they are far from 

the margin. The sign of this value gives the information of the class that has been predicted, 

giving one sign to each class. This output is also known as soft output and its usefulness will be 

addressed in section 8.3.2. 

 

It starts with an empty optimal feature set   and a full remaining 

feature set   with all the extracted features. 

Set of training examples  . 

For     to   (maximum number of iterations) 

 

 For     to   (  is the number of remaining features in  ) 

 A temporary feature set     is created adding feature    

to  . 

 Using feature set     : the parameters of the classifier 

are cross validated using K-fold cross validation. 

 The optimal parameters for the feature set are saved and 

an efficiency measure is computed to compare feature set 

performances. 

 End 

 

         is obtained as the temporary feature set with the highest 
performance measure. 

 

 If               is greater than          

 The feature that was added to   to form         is added 

to  , and the rest of them come back to  . 
 End 

 

End 

Algorithm 7.3: Sequential Forward Selection. 
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8. System evaluation techniques for small datasets 

This section covers the design decisions of validation and evaluation of the system. At first, the 

problem of small databases is analyzed to clarify its consequences. Then, the decided 

technique for training, validation and evaluation steps is presented. It gives a statistically 

correct solution to exploit the data in each of these three actions. Finally, the measure chosen 

to quantify the quality of the system is explained. 

8.1. Small datasets problem insights 

When the number of data examples is large enough, they can be separated into a training set, 

a validation set (for parameter selection), and a test set. If the quantity of data is large enough, 

these sets capture the variability of the data even though they are subsets of the total set of 

examples. In this case, training examples are enough to fit a robust data model and test 

examples are enough to provide a precise estimation of the performance of the system on 

unseen examples. 

When the number of data examples is not large enough, a tradeoff appears: on the one hand, 

a large number of samples is needed for the training process, to fit a robust model of the data 

and to reduce the influence of outliers; on the other hand, a large number of samples is 

needed for the test process, to solve the problem of biased performance evaluation measures, 

which occurs when test data do not capture properly the variability of the problem. 

When data samples are scarce, a simple division of the dataset in training and test sets (in any 

proportion) does not solve this problem. Dividing the available data into two halves may be 

fair but not enough for any of the two processes. Giving more samples to the training set will 

let us obtain the best model possible, but evaluation measures estimated from the test set will 

be biased. Consequently, the chosen test samples will have strong influence on evaluation 

measures, leading to high performance variability according to the samples chosen for test. In 

the opposite case, fewer samples for training and more for test, would cause poorly trained 

models highly dependent of the chosen training samples, which would end up in biased 

parameter estimation, high outlier sensibility, low system performance, and so on. 

The proposed system also includes a validation process to optimize the   and   parameters of 

the SVM classifier and a feature selection process, which reduces the dimensionality of the 

input feature vector. This introduces a need to add a validation partition from the whole set of 

available samples, which makes the data even more scarce. 

To solve all these scarcity of samples problems, a more intense use of the data is required in 

order to build robust data models for classification, to make a feature selection process that 

finds out a statistically significant structure among features, and to use enough test samples 

that guarantee confident evaluation measures. 

K-fold cross-validation is a statistical process to perform data exploitation; particularly useful 

when there are not enough available examples to perform an initial partition of the data that 

guarantees a good fit of the data model and statistically significant evaluation measures. The 
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algorithm is focused on assessing how the results of a statistical procedure generalize to a set 

that has not been seen, namely a set of independent samples, but exploiting available 

examples in a more intensive way than dividing into a training set and a test set. The process 

consists of partitioning the data set into K disjoint sets. One of them is used as the validation 

set and the others are joined to be the training set. This process is repeated with one of the 

sets being the validation set at a time. The best classifier parameters obtained for each 

validation set are averaged to find the optimal global ones and the performance measures for 

each set are also averaged to obtain a global averaged performance measure. The number of 

folds is a free parameter. In the stratified version, all folds are built so that they keep the same 

class proportion as the original non-partitioned dataset. Leave-one-out cross-validation is the 

K-fold variation that gives the highest priority to the number of examples used to training, 

using 1 sample for testing, i.e., the number of folds equals the number of observations. 

The purpose of the method can be clarified in general terms as follows. A problem is defined 

through a set of examples and the goal is to adjust a model to this examples. The fitting 

process has to optimize the model so that it captures the structure of the data. If the same 

data is fed to the parameter validation process, the resulting model would be very likely 

overfitted to the data, loosing generalization capability. Using cross-validation, independent 

samples are selected for training and validation steps, assuring that the model is not only 

focused on improving performance on its training examples. The process is repeated with 

different partitions and then averaged to reduce variability. 

8.2. Proposed training and evaluation procedures 

The database used in our study is not large enough to properly capture the problem variability 

of the data when dividing it into a training set and a test set. In addition, classifier parameters 

need to be optimized and a feature selection process has to be performed. A single cross 

validation process would let us perform parameter validation and feature selection. However, 

there would not be any way of knowing the validated system performance on previously 

unseen samples, which is an important drawback for this classic method and provides no way 

of drawing conclusions about how the system would work in real conditions. 

The proposed technique enjoys general acceptance in the world of genomic experiments [105] 

[106], where the number of samples is very scarce and a statistically right method of 

evaluating the performance of a system is strongly needed. As far as we know, the method 

satisfies the requirements of this problem better than any other. 

In particular, two nested K-fold cross validation procedures are performed. The inner one is 

responsible for validating the parameters of the classifier and selecting an optimal feature set. 

The outer one is given the job of evaluating the predicting power of the validated system 

against examples that have not been seen before by the system. 
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On each iteration of the outer layer, the training set is divided into folds to perform a K-fold 

cross validation process to get the optimized parameters of the classifier and an optimal set of 

selected features. The system is evaluated against the test samples, the fold that was not used 

in training, to assure independent evaluation measures. The process is repeated with another 

fold of the outer loop as test set, and the training set is divided to perform the nested K-fold 

cross validation process. Finally, evaluation statistics are averaged to reduce the variance of 

the estimation (See ALGORITHM 8.1: Double K-fold cross-validation nested loop algorithm.). 

It can be argued that this procedure brings no characterized system, in other words, there is 

not a final set of optimized parameters and a final set of selected features. Indeed, there are 

so many systems as folds are in the outer loop. Then, it is possible that different features 

selected and different optimized parameters of the classifier come from each of the 

partitioned training sets. Nevertheless, this method brings more advantages than drawbacks. It 

makes possible to perform a cross validation process to optimize parameters and select 

features where both tasks are validated with independent data. This validated system can be 

evaluated using again samples that have not been seen by the system before. The K-fold 

iterations let evaluation measures to be averaged, so the variance of the performance 

estimation is decreased. 

Thus, this procedure provides an evaluation of the procedure that is statistically correct and 

fair, but it requires a more rigorous analysis of selected features and it does not offer a fixed 

system as output. These disadvantages are not critical because it is the scarce number of 

examples itself which prevents from building a unique system that can be properly assessed. 

                              

  

                                               

                                            

Test fold 

Validatio

n fold 

Feature selection process 

System evaluation 

against independent 

examples 

System validation 

against independent 

examples 

Figure 8.1: Proposed cross-validation method. 
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8.3. Evaluation measure for the performance of the classifier 

A ratio of correctness is needed to guide model adjustment through validation processes and 

to evaluate the performance of the system. The Receiving Operating Characteristic (ROC) curve 

and the Area Under Curve (AUC) were respectively chosen for these two objectives. First, the 

required terminology is introduced, and then, both measures are explained in detail. 

8.3.1. Useful ratio definitions 

In binary (two classes) classification problems, four events can occur, according to the real 

class of a sample and the predicted one [107]: 

 TP: True Positives. Correctly detected melanomas. 

 FN: False Negatives. Not detected melanomas. 

 FP: False Positives. Benign lesions incorrectly classified as melanomas. 

 TN: True Negatives. Correctly classified benign lesions. 

 Number of folds of the outer cross validation loop  . 

 Number of folds of the inner cross validation loop  . 
 

 Initial sample set    is   divided into   validation subsets        

                 with their complementary training subsets          
                         . 

 

For i=1 to K 

 The i-th training subset is partitioned into   validation subsets 

       
        

         
      with their complementary training subsets. 

 

While the addition of a feature increments the previous performance 

 

  For k=1 to number of features out of the optimal feature set 

 

 Temporarily add the k-th feature to the optimal feature 

set. 

 

 Use     (partitioned in   subsets) to perform the 
validation of the parameters of the classifier (See 

[ALGORITHM 7.1]). 
  End 

   

  If the best new feature set is better than the previous optimal set 

 Add the new feature to the optimal feature set. 

  End 

 

End 

 

End 

 

 Average all evaluation measures to obtain a global performance. 

 Do feature selection analysis to try to find out some structure on the 

data. 

Algorithm 8.1: Double K-fold cross-validation nested loop algorithm. 



8. System evaluation techniques for small datasets 

39 
 

[112]. 

These absolute quantities can be turned into ratios using the definitions below [ROC intro]. 

Medical and machine learning domain use different terminologies for some identical concepts, 

which are paired to avoid confusions. 

 TPR: True Positive Rate. Probability that a melanoma is detected by the system. It is 

also known as detection probability, recall, or sensitivity. 

    
  

     
 

 FPR: True Positive Rate. Relation between not detected melanomas and the whole 

bunch of these malignant lesions, and complementary to TPR. It is also known as false 

alarm probability. 

    
  

     
 

 TNR: True Negative Rate. Quotient of correctly classified benign lesions and all absent 

malignancy lesions. Known as sensitivity in medical fields. 

    
  

     
 

8.3.2. Receiving Operating Characteristic curve 

This function is a graphical representation of the performance of a classifier which represents 

TPR as a function of FPR and represents the tradeoff between the two. It is also useful to 

compare different classifiers using a criterion of efficiency. 

 
Figure 8.2: ROC curve registers all possible TPR-FPR for all possible values of the threshold θ. The 

equal error rate diagonal provides an operating point in which FPR and FNR are equal. 

The representation needs a classifier to provide soft outputs; this means a measure of the level 

of confidence of the decision given. The range of all outputs for the samples available to 

validate a classifier can be then separated by a shifting threshold which will have the decisions 

more likely to be positive at one side and the ones more likely to be negative at the other side. 

Example instances are then classified according to this threshold into one of the two classes 

(hard decision), which leads to a (FPR, TPR) pair and determines a particular working point for 

the ROC curve. With the move of the threshold, more (FPR, TPR) are taken to get the complete 
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trace of the ROC curve. A classifier that provides hard outputs is really working at a particular 

point of the ROC curve, so it can be associated only one (FPR, TPR) pair. The objective point of 

the ROC space is (0, 1), which represents the perfect classification: all positive examples 

detected and no false positives. On the other hand, the worst classifier can be found tracing 

the diagonal from (0, 0) to (1, 1) and represents the random chance classifier (See FIGURE 8.2). 

The Area Under Curve (AUC) arrives as a simpler way of comparing classifier performances, 

which are reduced to a single scalar [107]. As the AUC of the perfect classifier is the unit 

square and the area under the random chance classifier is 0.5, it is deduced that a realistic 

classifier must lie in between these two limits. 
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9. Experimental results 

This section covers the experimentation process that was carried out during the project. At 

first, there is an explanation about the questions which will be addressed and some relevant 

aspects of the problem. Then, the protocol followed in the preparation of the database for the 

experimentation phase is detailed. Finally, the results of performance and feature selection 

experiments will be analyzed, with a previous summary of the configuration of the system. 

9.1. Scope of the study 

The design decisions made in section 0 have also an impact on the information that can be 

obtained with the experiments. There are not one training set and one test set, both covering 

the variability of the problem, because the number of samples is limited. The training set has 

to be large because of model fitting, parameter validation and feature selection processes. In 

contrast, a correct evaluation of the performance of the system cannot be made without 

enough number of samples. This problem, detailed in 8.1, is solved with the method described 

in 8.2. However, the procedure does not provide one system as a solution. Feature selection 

and parameter validation are performed once for each fold of the outer layer, giving as many 

systems as folds has the outer layer. Therefore, we will take advantage of the fairness of the 

procedure to make a global analysis of the features selected by each system, in order to find 

out the most informative ones. It should be noted that this procedure is more statistically 

correct than any other seen on ‘state of the art’ papers, to the best of our knowledge. In 

addition, the ROC curve described in 8.3.2 will be used to provide an averaged performance 

along all folds. This will let the validation of the proposed procedure. 

9.2. Database description and preparation 

The database used in these experiments is the complement of [108], one sourcebook well 

known by dermatologists. Its images were gathered with the objective of providing a 

panoramic view of skin lesions diagnosis using dermoscopy. Consequently, the study is taken 

over a representative set of dermoscopic images. 

All the pictures were saved in JPEG format. They were taken through the usual clinical practice 

in several hospitals, following no acquisition protocol. No kind of metadata can be found 

written on the image files, so both the device and the level of zoom used are unknown. The 

image size is almost uniform. 

The database consists of a little more than 1000 images, all of them are labeled. However, it is 

remarked that each case, different images taken from the same lesion, is made up of 4 images 

on average: one clinical image, one dermoscopic images and two more pictures identical to the 

second but with annotations about interest points to make the diagnosis. Therefore, 1 out of 4 

images can be used for our purposes. The evolution of lesions is only taken into account in 4 

cases, not enough to make a study about follow-up information. 
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As a result of the facts commented before, the dermoscopy image free of annotations is 

chosen from each case. Non melanocytic images and lesions on palms or soles are discarded, 

because of being out of the scope of the study. Finally, lesions which are not entirely watched 

in the picture are rejected also, because geometric features calculation cannot be taken from 

them. 223 images come after this filtering process, 71 of them are melanomas and the other 

152 are benign lesions. 

Every image contained in the final set of images has some associated elements: 

 A label, coming from the database. 

 A mask, indicating the region of the lesion, obtained by manual segmentation. 

In addition, a preprocessing step is applied to all images with the purpose of deleting the hair 

present on the image, which can distort feature computations on the region of the lesion. The 

Dullrazor software [38]was used to carry out this processing. 

9.3. System performance evaluation 

The experiments were all performed using almost the same system configuration. Fixed 

variables are specified below: 

 SVM binary classifier, RBF kernel (7.3.1). 

 Grid search for SVM   and   parameters validation, both ranging           (7.3.1). 

 Feature normalization by mean and standard deviation (7.3.1). 

 SFS for feature selection (7.3.2). 

 8 fold for the outer loop and 5 fold for the inner loop for the nested cross-validation 

algorithm (8.2). 

ROC curve was chosen as the best evaluation measure for the problem, which needs test 

predictions from the soft output of the classifier to be calculated. It should be noted that the 

nested cross-validation method performs   training and test processes (one for each fold) 

giving predictions of the test samples on each step. This ends obtaining test predictions for all 

samples. However, all these test predictions cannot be jointly combined to compute a ROC 

curve directly. This is why each bunch of   predictions comes from a different system with 

potentially different features selected and optimal classifier parameters. The soft output for a 

SVM classifier is the margin distance and has different meanings on each of the   situations, 

so it does not make sense a combination of all margin distances. 

Alternatively, a different ROC curve is obtained for each bunch of   predictions. Then, they are 

all averaged and the standard deviation is extracted. This provides an averaged evaluation 

measure of the performance of the proposed procedure with confidence intervals. At this step, 

the results will be biased because they are partitions-dependent. To solve this, partitions are 

made randomly and the experiment is repeated 50 times in a Montecarlo process. This leads 

to 50 different ROC curves showing the performance of the system on 50 different partitions, 

reducing the uncertainty of the evaluation measure. Their average gives the final estimated 

ROC curve for the global performance of the system. Supposing the Gaussian distribution, we 
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estimate a 95% confidence interval with 2 times the standard deviation divided by the square 

root of the number of iterations. 

Two different initial sets of features are considered. The difference lies in the undesired effect 

of redundant information shared by features. This is applied to entropy and variance of border 

contour, which in feature set 1 are extracted on the three color space components. The 

relevance of the feature itself is distributed among its components, hiding its real significance. 

Compacity is also removed because ellipsoidality is a generalization of this descriptor. These 

intuitions are verified by feature selection analysis in 9.4. The mapping between feature index 

and name for both sets is shown in TABLE 9.1. 

Initial feature sets 

Index Feature set 1 Feature set 2 

1 Lesion area Lesion area 

2 Entropy oRGB 1
st

 component Entropy oRGB 3
rd

 component 

3 Entropy oRGB 2
nd

 component Ellipsoidality 

4 Entropy oRGB 3
rd

 component 
Variance of gradient contour 

oRGB 3
rd

 component 

5 Ellipsoidality Assymetry 

6 
Variance of gradient contour 

oRGB 1
st

 component 
Mean oRGB 1

st
 component 

7 
Variance of gradient contour 

oRGB 2
nd

 component 
Standard deviation oRGB 1

st
 

component 

8 
Variance of gradient contour 

oRGB 3
rd

 component 
Mean oRGB 2

nd
 component 

9 Compacity 
Standard deviation oRGB 2

nd
 

component 

10 Assymetry Mean oRGB 3
rd

 component 

11 Mean oRGB 1
st

 component 
Standard deviation oRGB 3

rd
 

component 

12 
Standard deviation oRGB 1

st
 

component 
_ 

13 Mean oRGB 2
nd

 component _ 

14 
Standard deviation oRGB 2

nd
 

component 
_ 

15 Mean oRGB 3
rd

 component _ 

16 
Standard deviation oRGB 3

rd
 

component 
_ 

Table 9.1: Initial feature sets. 

The ROC curves obtained using the process described above for both feature sets are shown 

below. It can be seen that the proposed procedure gives good global performance even for 

two limited initial feature sets. It should be noted that feature set 2 keeps the same 

performance of feature set 1, which supports the previous suspect of redundant information. 
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9.4. Feature selection analysis 

The objective of this step is to know if the feature selection algorithm is finding out a structure 

inside the problem, or rather the procedure is overfitting the training set used to validate an 

optimal feature set. 

The proposed nested cross validation algorithm (8.2) lets so many feature selection processes 

as folds has the outer cross-validation loop, which is 8 for all experiments. To minimize random 

variations, the whole experiment is also repeated 50 times. 

A histogram which gathers the selection frequency of features is made. Each of them is 

obtained through the number of appearances among all feature selection processes, adding 1 

to its corresponding histogram bar when it is present in a selection. 

Another histogram reflects the step when each feature was chosen besides the number of 

times it was chosen. For each feature, a number, which will be denoted as  , ranging from the 

total number of features to 1 is added when it is present in a selection. This number is   when 

the feature was the first chosen and it is successively decremented by one as the step when it 

was selected moves forward. This lets the histogram to weight the selection frequency of a 

feature in particular with the order when it was chosen. 

For the computation of both histograms, the feature selection algorithm is softly modified to 

stop at the best sixth feature, even when there is no performance improvement with respect 

to the previous step. This less restrictive criterion lets a more uniform analysis, not dependent 

on the number of features selected on each selection process. The histograms for feature set 1 

are shown in ¡Error! No se encuentra el origen de la referencia.. It can be seen that variance 

of border contour of the third oRGB component outperforms the other two components, so 

they can be removed. Ellipsoidality is a valuable feature, and compacity is a particular case, so 

it should be taken out. Entropy of the three oRGB components does not seem very significant 

but it would be possible that its significance was distributed along the three components, so 

9-1: (Left) ROC curve for feature set 1, AUC = 0.7804. (Right) ROC curve for feature set 2, AUC = 0.7909. 
Both with 95% confidence intervals. 
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only the third one remains, as the most significant. These considerations build feature set 2. 

See TABLE 9.1 for a mapping between histogram bars and features. 

 

 

The histograms for feature set 2 are shown in FIGURE 9.2. Variance of border contour and 

ellipsoidality continue being the most significant features. Entropy is indeed a low significant 

feature even when gained some importance due to maintaining only one color component. 

Lesion area and mean of the third oRGB component are again the next important features. 

This makes the third oRGB component highly informative, because it is present in this mean 

and in the computation of the variance of gradient contour kept. 

 

 

This histogram analysis only reflects the importance feature by feature. All the feature 

selection sets obtained in different folds and iterations are then used to get statistics about the 

occurrence of some interesting combinations of features, which in this case involve features 1, 

3, 4 and 10 (Lesion area, ellipsoidality, variance of contour gradient of third oRGB component 

and mean of the third oRGB component, respectively). See TABLE 9.2. It can be seen that 

feature 4 is always selected, giving another argument in favor of its importance. Feature 3 is 

selected almost in 90% of times and when chosen, it is always joined to feature 4. This means 

that they are complementary, which is coherent with the fact that one is extracted from the 

shape and the other from pixel values. For the same reason, 3 and 10 are uncorrelated and the 

Figure 9.2: Frequency histogram (left) and weighted frequency histogram(right) for feature set 2. 

Figure 9.1: Frequency histogram (left) and weighted frequency histogram(right) for feature set 1. 
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table shows it, indeed. As it could be expected, 4 and 10 share some information because of 

coming from the same color component, as 4 almost doubles the importance of 10. 

Set Occurrence probability Set Occurrence propability 
1 0,775 3∩4∩1 0,7375 

3 0,8875 3∩4∩1∩10 0,4875 

4 1 3∩4∩10 0,575 

10 0,575 3∩1 0,7375 

3∩4 0,8875 3∩10 0,575 
Table 9.2: Occurrence probabilities of some interesting groups of features. 
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10. Conclusions and future work 

A small set of features based on expert orientations have been tried in combination with basic 

Computer Vision features, represented by means and variances. The results are satisfactory, 

and, joined to the findings on ‘state of the art’ papers, reveal that image descriptors in this 

field are usually potentially better when based on some previous expert knowledge. In spite of 

this, the exploration of more elaborated descriptors will lead to better results. 

CAD systems should also look friendlier to the clinician to favor their usage. It is difficult for a 

dermatologist to trust in a machine that only makes a final decision for what it is not 

responsible. Research should also explore finding Computer Vision features that could 

complement the information of the expert, to take them as another indication in diagnosis. 

This work provides the needed tools for correct evaluation measures with small datasets, 

taking at the same moment the best exploitation of available data samples. The drawback of 

not providing a final system has been smoothed with correct evaluation measures and the 

extraction of informative features from different selection processes. It would be interesting 

that similar methods were tried, in order to make fair comparisons between different studies. 

It is also needed some database sharing to make comparisons possible, what is scarcely done 

right now. We think that this is the main issue that makes the advance in this field slower than 

that in other fields of Computer Vision. 
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APPENDIX I: Melanoma diagnosis algorithms 

In this section two algorithms used by dermatologists for the detection of melanoma are 

explained, as well as a method to check if a lesion is melanocytic, that is a previous step for the 

first one and many others. They are selected from a wide variety of them that exists nowadays, 

as the more related with our work and the more illustrative of dermatologists’ procedures. 

The ABCD rule 

This dermoscopy diagnosis method was originally introduced by Stolz et al. [] with the purpose 

of providing a more objective and reproducible diagnosis of melanoma for dermatologists who 

are not experienced in the use of dermoscopy. The algorithm was evaluated the same year of 

its publication by Nachbar et al. [] in a prospective study. 172 melanocytic lesions, 69 

melanomas and 103 melanocytic nevi, were used and they obtained 90.3% specificity and 90.8 

sensibility. 

Before applying the algorithm, the studied lesion must be classified as melanocytic. The results 

are meaningless for non melanocytic lesions. Melanocytic lesions are scored using the 

mnemonic ABDC, ‘asymmetry, border, color and differential structure’. Each criterion gives a 

score that is multiplied by a given weight factor that yields a Total Dermoscopy Score (TDS). 

Values less than 4.75 correspond to benign melanocytic lesions, values between 4.8 and 5.45 

point out suspicious lesions and values greater than 5.45 are strong candidates to melanoma. 

A detailed explanation of each criterion follows. 

 Asymmetry: the lesion is traversed by two perpendicular axes, each of them divides 

the lesion in two halves in such a way that the lowest asymmetry score is obtained. If there is 

asymmetry on one axis division, the score is one. If both axes show it, the score is two. When 

the lesion is symmetric according to both axes, the score is 0. Asymmetry encompasses 

differences of contour, color and dermoscopic structures between the two halves. It is a crucial 

criterion for the correct application of the method because of its high weight factor. 

 Border: the lesion is divided radially into eights. On each of them, sharp transition 

between the nevus and skin has a score of 1, and a gradual gradient has a score of 0. The 

maximum score is 8 and the minimum is 0. It is not very relevant because of its weight factor. 

 Color: it consists on analyzing the presence of six different significant colors in 

dermoscopy, namely, white, red, light brown, dark brown, blue gray, and black. A white area is 

only taken into account when it is lighter than the adjacent skin. Each color presence scores as 

1. Melanomas are known to have a higher variety of colors than nevus. 

 Differential structures: It is related with the presence or absence of five selected 

dermoscopic patterns: pigment network, structureless or homogeneous areas, streaks, dots 

and globules. Structureless or homogeneous regions must be larger than 10% of the lesion. 

Streaks and dots are relevant only if more than two are clearly visible. Globules are considered 

even if only one is present. Each structure scores 1 if present, 0 if absent. 

The tables below show a practical summary of the method. 
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ABCD rule of dermoscopy 

Criterion Description Score 
Weight 
factor 

Asymmetry 
According to 0, 1 or 2 axes. Assess borders, colors 

and structures 
0 – 2 X 1.3 

Border 
Abrupt skin lesion transition occurring at the 

border in 8 radial segments 
0 – 8 X 0.1 

Color 
Presence of 6 different colors: black, dark brown, 

light brown, blue-grey, white, red 
1 – 6 X 0.5 

Differential 
structures 

Presence of pigmented network, globules, dots, 
streaks, homogeneous areas or structureless areas 

1 - 5 X 0.5 

Summary table for ABCD rule of dermoscopy[17]. 

 

Total Dermoscopy Score (TDS) Interpretation 
Less than 4.75 Benign melanocytic lesion 

From 4.8 to 5.45 Suspicious lesion: excision is recommended, 
or a close follow-up 

Greater than 5.45 Lesion highly suspicious for melanoma 
Matching between punctuations and diagnosis in ABCD rule of dermoscopy [17]. 

 

Pattern analysis 

This method is considered by experts as the most accurate in melanoma diagnosis. 

Nevertheless, its application is only effective in highly experienced dermatologists. This is why 

it takes into account the whole list of dermoscopic patterns. It was originally developed by 

Pehamberger et al. in 1987 []. All of the rest diagnosis algorithms are simplifications of this 

one. It shows a correlation found out in different studies between a bunch of dermoscopic 

structures, ordered by how common is their appearance, and its corresponding type of skin 

lesion, no matter if it is melanocytic or not. However, the rules of decision depend on The 

dermoscopic patterns related with melanocytic skin lesions are explained in detail below, 

classified into global and local. Features of non melanocytic skin lesions are omitted because 

they are out of our object of study. 

Global features 

Reticular Pattern 
Pigmented network covering most parts of a given lesion. It 

appears as a grid of thin brown lines over a light brown 
background. It is a sign to detect melanocytic lesions and, if 
globally distributed, it is related to benign lesions. However, 
variations in size and form are one indicative of malignancy. 
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Globular Pattern 
It consists on a certain number of round to oval structures, 

variously sized, with shades that can be brown and gray-black. 
It is a sign of lesion growing, very common in children. If 

present on the whole lesion, it is a sign of benignity. 
 

Cobblestone pattern 
This structure is similar to the globular pattern in the sense 

that it is made up by aggregated circular structures, but they 
are larger, more densely aggregated and somewhat 

angulated, resembling a cobblestone. It can be seen in 
congenital nevi, dermal nevi and sometimes in the dermal 

part of compound Clark nevi. 
  

Homogeneous pattern 
It is a diffuse structure, with brown, grey-black, grey-blue or 
reddish-black shade, where there is no other local feature 
that can be recognized. As a globally distributed pattern of 
bluish hue, it is the hallmark of the blue nevus. With other 

shades, it may be present in several types of lesions, such as 
Clark nevi, dermal nevi or nodular and metastatic melanomas. 

 
 

Starburst pattern 
It is a radial arrangement of pigmented streaks at the border 

of a given pigmented skin lesion. This feature is strongly 
related with Reed nevus, although malignant lesions may 

exhibit morphology very similar to this pattern. 
  

Parallel pattern 
This structure is exclusive of palms and soles skin, caused by 

the particular anatomic structure showed on this location. The 
pigmented pattern follows the direction of the parallel-furrow 

structure of the skin. 

 
Unspecific pattern 

This classification rises when a pigmented lesion cannot be 
categorized into one of the above global patterns, because 
there is not enough resemblance to any of them. No direct 

diagnosis implication can be extracted of it, nevertheless, it is 
more often related with melanoma. At least, it suggests that 

the lesion must be carefully explored. 
 

 

Multicomponent pattern 
It is a combination of three or more of the above global 

patterns joined to the following local patterns. This pattern 
brings to a lesion a high risk of being melanoma, but may also 
be present on several non melanocytic lesions. Consequently, 
the use of criteria to detect melanocytic lesions is needed in 

order to prevent from false positives. 
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Local features 

Pigment Network 
Regular grid of brown lines over a light brown 
background. It is one dermoscopic indicator of 

melanocytic lesion. The assessment of this pattern is 
useful to help differentiating benign and malignant 

lesions, according to its uniformity. The typical 
pigmented network consists on a regular light to dark 

brown mesh with narrow spaces, dissipating smoothly at 
the border of the lesion. On the other hand, the atypical 

pigmented network is made of a black, brown or gray 
irregular mesh, which is also irregularly distributed 

through the lesion and ends suddenly at the periphery. 

 

Globules 
They are rounded or oval shaped structures with sharp 
border and usually aggregated. Sizes can be diverse and 

their color is limited to black, grey and light or dark 
brown. They are histologically related to aggregations of 

pigmented melanocytes, clumps of melanin or 
melanophages. Globules are placed in lesion regions 
that are growing. An even distribution of them with 

regular size and shape is associated with benignity; on 
the other hand various sizes and shapes, and irregular or 

located distribution occur in melanoma. 
 

 

Streaks 
They are black or light to dark brown longish structures 

of variable thickness, not clearly combined with 
pigmented networks, and easily observed when located 
at the periphery of the lesion but could be inside also. In 
the first case they tend to converge to the center or the 
lesion. An even, radial distribution of the streaks around 
the border of the lesion is characteristic of Reed nevus. 

However, an asymmetric or located distribution of 
streaks suggests malignancy. 

 

Blue-whitish veil 
It is a region of grey-blue to whitish-blue shade blurred 

pigmentation, correlated with pigmented network 
disorder, globules or streaks. The blue whitish veil is 

highly related to melanoma, although it can be present 
in Reed or Spitz nevi with no noticeable different 

appearance. 
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Pigmentation 
This term encompasses pigmented diffuse areas with 

uniform color. As this definition allows a lot of variation, 
it can be found as blotches or irregular extensions too, 

its presence does not help discrimination. Nevertheless, 
an irregular distribution throughout the lesion is closer 

to malignancy.  
Hypopigmentation 

This term refers to diffuse areas with lighter 
pigmentation than it would correspond to an ordinary 
pigmented lesion. This localized pattern may appear 

focused in one area or more and its diagnostic power is 
poor, because only in rare occasions irregularly outlined 

hypopigmentation can be found in melanomas. In 
contrast, these areas are sometimes found in Clark nevi. 
It is important to remember that hypopigmented areas 

are distinct to melanomas with regression. 
 

Regression structures 
These structures are present when the immune system 

has attacked the lesion because of considering it 
potentially dangerous for some reason. It is 

dermoscopically revealed as white areas, blue areas and 
a combination of both. White areas are more or less 

well outlined and resemble a superficial scar. Blue areas 
may appear as diffuse blue-grey areas or peppering, 

which is an aggregation of blue-grey dots. 
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APPENDIX II: Tasks breakdown 

 

ID Task name Work (hours ) Start End Previous tasks

1 Bachelor's Degree 364 10/02/2014 10/06/2014 _

2 Planning 8 Mon 10/02/2014 Tue 11/02/2014 _

3 Documentation 77,5 Wed 12/02/2014 23/04/2014 2

4 Project report composition - Milestone 1 12 Wed 12/02/2014 Tue 04/03/2014 2

5 Revision - Milestone 1 8 Wed 05/03/2014 Thu 06/03/2014 16;14;4

6 Project report composition - Milestone 2 18 Fri 07/03/2014 Thu 27/03/2014 17

7 Revision - Milestone 2 6 Fri 28/03/2014 Sat 29/03/2014 6;24

8 Project report composition - Milestone 3 17,5 Sun 30/03/2014 Fri 18/04/2014 7

9 Revision - Milestone 3 4 Sat 19/04/2014 Sun 20/04/2014 8;32

10 Project report  global revision 12 Mon 21/04/2014 Wed 23/04/2014 33

11 Initial study 36 Wed 12/02/2014 Tue 25/02/2014 2

12 Dermoscopy and dermatology basis 18 Wed 12/02/2014 Tue 18/02/2014 2

13 Previous studies examination 18 Wed 19/02/2014 Tue 25/02/2014 12

14 Preparation of the DB for experimentation 18 Wed 26/02/2014 Tue 04/03/2014 13

15 Image selection 10,5 Wed 26/02/2014 Sat 1/03/2014 13

16 Mask production by manual segmentation 7,5 Sun 02/03/2014 Tue 04/03/2014 15

17
Milestone 1: Architecture of the prototype 

system and first phase of project report
0 Thu 06/03/2014 Thu 06/03/2014 5

18 Prototype development 54 Fri 07/03/2014 Thu 27/03/2014 17

19 Implementation of the system 36 Fri 07/03/2014 Thu 20/03/2014 17

20 Prototype validation 4,5 Fri 21/03/2014 Sat 22/03/2014 19

21 Experimentation using prototype system 10,5 Sun 23/03/2014 Wed 26/03/2014 20

22 Experimentation design 1,5 Sun 23/03/2014 Sun 23/03/2014 20

23 Experiments execution 9 Mon 24/03/2014 Wed 26/03/2014 22

24 Results analysis 3 Thu 27/03/2014 Thu 27/03/2014 23

25 Milestone 2: Second phase of project report 0 Sat 29/03/2014 Sat 29/03/2014 7

26 Complete system development 52,5 Sun30/03/2014 Fri 18/04/2014 25

27 Implementation of new components 22,5 29/03/2014 Mon 07/04/2014 25

28 System validation 6 Tue 08/04/2014 Wed 09/04/2014 27

29 Experimentation with complete system 15 Thu 10/04/2014 Tue 15/04/2014 28

30 Experimentation desing 3 Thu 10/04/2014 Thu 10/04/2014 28

31 Experiments execution 12 Fri 11/04/2014 Tue 15/04/2014 30

32 Results analysis 9 Wed 16/04/2014 Fri 18/04/2014 31

33 Milestone 3: Third phase of project report 0 Sun 20/04/2014 Sun 20/04/2014 9

34 Milestone 4: Complete project report 0 Wed 23/04/2014 Wed 23/04/2014 10

35 System improvement 136 Thu 24/04/2014 Tue 10/06/2014 _

36 Final Milestone: project report and system 0 Tue 10/06/2014 Tue 10/06/2014 _


