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Abstract

Skin lesion describes any abnormal skin tissue and it can be indicative of cancer. Skin tumors
are divided in non-melanoma, and melanoma, a very life-threatening condition despite accounting
for a minority of cases. Given its tendency to metastasize, early diagnosis is of extreme import-
ance. The process of diagnosis involves visual inspection by dermatologists, however it portrays
subjective results. This has motivated the development of automated skin lesion analysis systems.

The encouraging advent of artificial intelligence has allowed for the development of intelligent
solutions for skin lesion classification, firstly with machine learning algorithms and, in recent
years, with deep learning networks capable of matching human level performance. Nonetheless,
there is still room for improvement in order to incorporate this type of computer-aided diagnosis
solutions in a clinical setting. Another crucial limitation is the lack of standardized test datasets,
run by a third-party organization, for evaluation and comparison of systems.

This dissertation introduces an automated system for skin lesion classification using deep
neural networks with innovative aspects. In opposition to the majority of methods described in
the literature which focus on detecting melanoma, the work aims to classify several types of skin
lesions. To build a robust deep learning model which meets the aforementioned requirements,
several techniques were explored: transfer learning, multi-tasking and multimodal learning.

Firstly, the performance of a multi-layer perceptron with hand-crafted features based on the
ABCD rule of dermoscopy was compared to a model with deep learning generated features ex-
tracted by the EfficientNet-B3 pre-trained on the ImageNet dataset. After inferring the superiority
of the latter, a multi-task model with auxiliary related tasks was implemented, providing super-
ior results in all considered metrics. To handle the imbalance of the dataset, oversampling was
applied in addition to the introduction of class weights in loss functions; no improvement was
verified in the area under the curve values but the models with weighted loss functions originated
significantly higher sensitivity for melanoma and seborrheic keratosis. The role of segmentation
in classification was also assessed and it was concluded that it was detrimental to performance.
Later, manually extracted asymmetry ratio and border gradient were divided in classes and used
as auxiliary targets due to their possible correlation to melanoma but no overall increase in per-
formance was observed, only a rise in sensitivity of seborrheic keratosis and specificity of nevus
and melanoma. Finally, multimodal learning was studied with the implementation of early fusion
technique (combination of the dermoscopic image with its corresponding lesion mask), and the
late fusion strategy (concatenation of hand-crafted asymmetry and/or border with deep learned
features). The first produced poorer results, specifically for melanoma where the model is just
making random presumptions; the second allowed to increase area under the curve of all classes.

This project proved the feasibility of these techniques and their application in skin lesion
diagnosis systems, however there is still a clear window of opportunity for further developments.

Keywords: skin lesions, multimodal learning, multi-task learning, deep neural networks.
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Resumo

Lesdo cutanea descreve qualquer tecido de pele anormal e pode indicar cancro. Estes tumores sdo
divididos em ndo melanoma e melanoma (condi¢do que pde em risco a vida, apesar de representar
a minoria de casos). Dada a tendéncia para metastizar, diagnéstico precoce € de extrema importan-
cia. O processo de diagndstico envolve inspecdo visual por dermatologistas mas € subjetivo. Tal
motivou o desenvolvimento de sistemas automatizados de andlise de lesdes da pele.

O encorajador surgimento da inteligéncia artificial permitiu o desenvolvimento de solucdes
inteligentes para a classificacdo das lesdes da pele, primeiramente com algoritmos de aprendiza-
gem automdtica e, mais tarde, com redes neuronais profundas capazes de igualar peritos humanos.
No entanto, ha espaco para melhorias a fim de incorporar este tipo de solu¢des de diagndstico
assistido por computador em contexto clinico. Outra limitagdo crucial € a falta de bases de dados
padronizadas, geridos por entidades externas, para avaliacdo e comparagdo de sistemas.

Esta dissertacdo introduz um sistema automatizado de classificacdo de lesdes da pele, utiliz-
ando redes neurais profundas inovadoras. Este trabalho visa classificar varios tipos de lesdes, em
oposicdo aos métodos descritos na literatura que detetam melanoma. Para construir um modelo ro-
busto de aprendizagem profunda que satisfaca os requisitos mencionados, foram exploradas vérias
técnicas: aprendizagem por transferéncia, aprendizagem multi-tarefa e multimodal.

Primeiramente, comparou-se o desempenho de um perceptron multicamadas com caracter-
isticas manuais baseadas na regra ABCD de dermatoscopia com um modelo com caracteristicas
extraidas pelo modelo EfficientNet-B3 pré-treinado na base de dados ImageNet. Apds inferir a
superioridade deste, implementou-se um modelo multi-tarefas, com resultados superiores em to-
das as métricas consideradas. Para lidar com o desequilibrio entre classes da base de dados, foram
aplicadas sobreamostragem e pesos de classe nas funcdes de perda; ndo se verificou qualquer mel-
horia nos valores da drea sob a curva, mas os modelos com funcdes de perda ponderada originaram
sensibilidade mais elevada para melanoma e dermatite seborreica. O papel da segmentagdo na clas-
sificagdo foi também avaliado, concluindo-se que € prejudicial. Depois, o racio de assimetria e o
gradiente do limite foram divididos em classes e utilizados como alvos auxiliares devido a sua pos-
sivel correlacdo com melanoma, mas ndo se observou qualquer aumento global do desempenho,
exceto na sensibilidade de dermatite seborreica e especificidade de nevos e melanoma. Final-
mente, estudou-se a aprendizagem multimodal com a implementacdo da técnica de fusdo precoce
(combinacio da imagem dermatoscdpica com a mdscara de lesdo correspondente), e de fusdo tar-
dia (concatenacdo da assimetria e/ou limite com caracteristicas de aprendizagem profunda). O
primeiro produziu resultados mais pobres, especificamente para o melanoma onde o modelo faz
presuncdes aleatdrias; o segundo permitiu aumentar a drea sob a curva de todas as classes.

Este projeto provou a viabilidade destas técnicas e a sua aplicagdo em sistemas de diagndstico
de lesdes cutaneas, no entanto, existe ainda oportunidade clara para futuros desenvolvimentos.

Palavras chave: lesdes cutaneas, aprendizagem multimodal, aprendizagem multi-tarefa, redes
neuronais profundas.
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Chapter 1

Introduction

This chapter introduces the general context of the work and the motivation to accomplish the pro-
posed objectives. Innovative aspects of the dissertation’s methodologies and the structure adopted

are also described.

1.1 Context and Motivation

Cancer is a group of diseases characterized by the uncontrolled growth and spread of abnormal
cells. It is, undeniably, a major public health problem worldwide, being the second leading cause
of death globally [1]. Skin cancer comprises melanoma (MM) and non-melanoma skin cancer
(NMSC), which are ranked the 18" and 5" most common cancers in the world, respectively.

It is widely known that early diagnosis improves prognosis of skin cancer. If diagnosis happens
in a localized stage, patients have a 98% 5-year relative survival rate, i.e. 98 out of 100 people
are expected to be alive 5 years after the diagnosis, whereas if diagnosed in a distant stage, the
survival rate drops to 17% [2]. Therefore, the lives of human beings highly depend on a timely
diagnosis.

The difficulty of early clinical diagnosis has led to the development of a non-invasive imaging
technique: dermoscopy. This procedure improves the process of diagnosis of skin lesions by
dermatologists by revealing dimensions of skin morphologic characteristics imperceptible to the
naked eye [3], hence reducing the number of benign lesions unnecessarily biopsied. Algorithms
for the identification of dermoscopic criteria which allow to distinguish between melanocytic and
non-melanocytic as well as benign or malignant lesions were therefore developed. However, these
systems are subjective, with a diagnosis highly dependent on the physician’s training, previous
experience and interpretation [4]. Moreover, visual differences between benign and malignant
skin lesions can be particularly subtle and differentiating between them can be extremely difficult,
even for trained professionals. Thus, the success of these methods is limited.

Due to the importance of early diagnosis, the shortage of experts in some regions and the in-
sufficient and subjective nature of diagnosis algorithms, there exists a clear window of opportunity

and motivation to develop computer-aided diagnosis (CAD) systems for this problem. Automated
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classification systems can help to develop a screening of a large number of patients and reduce
waiting times. This can be achieved because by promoting triage of most dangerous cases, it is
possible to identify the individuals at higher risk. Ideally, the goal is to detect all skin cancers at
an early stage.

Numerous solutions for automatic skin lesion classification have proposed in the literature,
among which deep neural networks (DNNs) that have proved to deliver comparable results with
medical experts [5]. This has been showcased in multiple skin image analysis challenges, hos-
ted by the International Skin Imaging Collaboration (ISIC), where the top performing algorithms
are consistently DNN-based [6, 7]. Recent studies found that the multimodal and multi-tasking
training of classifiers are beneficial to performance [8, 9, 10].

Despite the promising results obtained in literature, there still exist limitations in automated
systems that must be overcome. This fact stimulates the development of new, faster and more
reliable algorithms.

Motivated by these aspects, this work is focused on investigating a multimodal and multi-

tasking approach for classification of skin lesions using DNNss.

1.2 Aim of the Work

This dissertation was developed at the Fraunhofer Centre for Assistive Information and Com-
munication Solutions (Fh-AICOS), as part of the Derm.Al: Usage of Artificial Intelligence to
Power Teledermatological Screening project'. This project aims to improve the teledermatology
processes between primary care units and dermatology services in the National Health Service,
through a mobile application to acquire macroscopic skin lesion images and the development of
Al-powered risk prioritization and decision support platform [11].

To contribute to this project, this work focus on the development of a skin lesion classification
system based on a DNN approach, since this type of machine learning (ML) has demonstrated
good performance in recent years. Moreover, it is currently the best performing approach, accord-
ing to results in competitions dedicated to skin lesion analysis.

The main objective of the dissertation is to implement a system for skin lesion classification
using DNNs, while making use of the multi-tasking and multimodal methods. Multi-tasking is
employed for more efficient training. Furthermore, the fusion of two distinct modalities of data,
dermoscopic images and metadata, is investigated to generate a better prediction.

The research in this work aims to contribute with two main innovative aspects.

* Multi-Class Prediction - Although the DNNs are delivering satisfactory results for skin
lesion classifications, most of the methods described in the literature are focused to detect
only one kind of skin lesion (MM detection). In this work, multiple skin lesion types are

inspected and discriminated.

1http ://dermai.projects.fraunhofer.pt/
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1.3 Document Structure 3

» Extraction of Auxiliary Metadata - The multimodal and multi-tasking methods are limited to
the available dataset, which has the skin lesions attributes labelled by medical professionals.
In this work, useful features are extracted using computer vision or ML techniques and their

impact in the prediction of the classifier is investigated.

1.3 Document Structure
This document is structured as follows:

* Chapter 2 - The Skin presents a broad overview of the biological framework of skin physiology
and different types of skin lesions, providing the reader with the essential biological in-
sights on the subject. The importance of early diagnosis is reinforced and the most common
algorithms for skin lesion diagnosis are explored. A discussion on teledermatology as a

helpful tool in triage referrals is also presented.

* Chapter 3 - Automatic Skin Lesion Analysis introduces a brief reflection on the evolution
of automated skin lesion analysis. Furthermore, background information on the typical
pipeline of ML systems in the field of skin cancer classification is provided and state-of-the-
art DL approaches are summarized. The important role of challenges and publicly available

datasets for benchmarking is also discussed.

* Chapter 4 - Methodology presents the dataset employed in the work, detailing its composi-
tion. Training settings used for the experiments are also described, differentiating between
the design of a ML model and a convolutional neural network (CNN) architecture to address

the stated problem. Performances measures are introduced as well.

» Chapter 5 - Experiments delineates the strategies implemented to build a robust skin lesion
classification system, opposing a ML model and a pre-trained CNN, exploring methods
to address the class imbalance problem as well as the multi-task and multimodal learning

paradigms.

* Chapter 6 - Results and Discussion displays the results obtained for all experiments, pro-
ceeding to its analysis, discussion and comparison with state of the art methods. The clinical
applicability of this study, main limitations and activities to be developed in future research

opportunities are also stated.

* Chapter 7 - Conclusions concludes the main takeaway of the dissertation.
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Chapter 2

The Skin

The biological structure of skin, types of skin lesions, incidence of skin cancer and the importance

of its early diagnosis as well as the dermoscopic algorithms are discussed throughout this chapter.

2.1 SKkin Biology

Skin is the largest organ in the body and covers its entire external surface. Its structure works as
the body’s first barrier against pathogens, UV light, chemicals and mechanical injury. Skin also
regulates temperature and controls the release of water into the environment [12]. It is composed

by three layers: the epidermis, dermis and hypodermis (or subcutis), as observed in Figure 2.1.

Hair Epidermis

follicle

Squamous
cells

Epidermis

|- Melanocyte

7Basal

Dermis cells

Subcutis

Figure 2.1: Skin structure (from [13]).

The upper skin layer is the epidermis and it can be structurally subdivided, as perceived in
Figure 2.2. Its layers include: Stratum Corneum (predominant layer; consists in keratin and horny
scales made up of dead keratinocytes. These secrete defensins which are part of the first immune
defense of the body), Stratum Lucidum (thin clear layer, present in thicker skin found in the palms
and soles), Stratum Granulosum (contains diamond shaped cells with keratohyalin granules and

lamellar granules which keep the cells stuck together), Stratum Spinosum (where dendritic cells
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can be found) and Stratum Basale (deepest layer; the proliferative capacity of the skin has been
observed to be restricted to this layer, which is due to the presence of epidermal stem cells) [12].

The types of cells found in the epidermis are:

» Keratinocytes, the predominant cell type of epidermis. They originate in the basal layer
and are responsible for the production of keratin. Upon reaching the outermost skin layer,
the keratinocytes have undergone a further maturation process, have lost their nucleus and
cytoplasmic organelles and are, from that moment on, referred to as corneocytes [14], re-

sponsible for the formation of the epidermal water barrier;

» Langerhans cells, which are the skin’s first line defenders, belonging to the skin immune

system;

» Merkel cells, oval-shaped cells located in stratum basale which serve a sensory function as

mechanoreceptors for light touch, thus being most populous in fingertips [12];

* Melanocytes are neural-crest derived cells and primarily produce melanin, in dedicated or-
ganelles known as melanosomes. Melanin is a natural pigment that comes in different forms:
brown/black eumelanin (leading type in the skin), red/yellow pheomelanin and brown/black
neuromelanin. Differences in skin pigmentation can be attributed to a difference in the

amount of melanogenesis and the distribution, size and content of melanosomes [15].
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Figure 2.2: Epidermis structure (from [16]).

Dermis is connected to the epidermis at the level of the basement membrane and consists
of two layers of connective tissue: papillary (upper and thinner layer, composed of loose con-
nective tissue) and reticular (deeper and thicker, less cellular and with dense connective tissue),
which merge together without clear demarcation [12]. The dermis contains the sweat glands, hair
follicles, sensory receptors, blood and lymphatic vessels.

The hypodermis, also known as subcutaneous fascia, is the deepest layer of skin, consists of

loose connective tissue and contains adipose lobules, thus functioning as an energy reserve.
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2.2 Skin Lesions

A skin lesion is an atypical change in the normal appearance of skin tissue. The lesion is normally
classified as benign or malignant, according to the non-cancerous, pre-cancerous or cancerous
nature of the cell. Skin cancer refers to the abnormal growth of aberrant skin cells.

Risk factors associated with skin cancer are lighter skin, past sunburns, personal or family
history of skin cancer. However, exposure to ultraviolet radiation (UVR) is the main cause. The

sun’s UVR can damage the deoxyribonucleic acid (DNA) in skin cell progressively, resulting in

the growth of cancerous cells [17].

Skin cancers can be divided into two main types:

1. Non-Melanoma Skin Cancer is the most frequently diagnosed type of skin cancer in
Caucasian population and is defined as a malignant neoplasm formed from keratinocytes,
subdivided in basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) [18]. The
incidence of NMSC is 18-20 times higher than MM [19] and increases with age. About 80%
of NMSC are BCC (it is also considered the most common form of skin cancer), whereas
SCC represents 19%. The former grows mostly on sun-exposed areas, however they do it

slowly and are unlikely to spread to other body parts; the latter also affects sun-exposed

areas as well as damaged skin [18].

2. Melanoma Skin Cancer is a malignant tumor that arises from uncontrolled proliferation of
melanocytes. Cutaneous MM is the most dangerous form of skin cancer [20]. MM used to
be a rare cancer, but in the last 50 years its incidence is spreading faster than other cancers.

Although it accounts for less than 5% of all cutaneous malignancies, MM is the most lethal,

making up the largest portion of skin cancer deaths [20, 21].

Classification of Pigmented Skin Lesions

Skin lesions can be organized in a hierarchical way, as shown in Figure 2.3.

Malignant

Melanoma

Melanocytic

Benign

’;
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Melanocytic
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Malignant
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Basal Cell
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Dermatofibroma

Benign

Vascular Lesion

Figure 2.3: Hierarchical classification of skin lesions (adapted from [22]).
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Firstly, it is important to identify the type of cells which are the source of the lesion: melano-
cytic lesions develop from melanocytes (skin cells responsible for the production of melanin);
non-melanocytic lesions come from keratinocytes and can be subdivided in different classes ac-
cording to their location on the epidermis (at the basal or squamous cell layers) [23]. The dis-
tinction between the two can be done based on the presence or absence of a set of pre-defined
structures. Then, differentiation of lesion type is possible: malignant neoplasm or a benign lesion.

The malignant non-melanocytic neoplasms - NMSC - are described above. In opposition,
benign non-melanocytic lesions include dermatofibromas, which are firm nodules whose surface
is smooth and are mostly located on the lower extremities; vascular lesions, described as anomalies
derived from capillaries, veins, lymphatic vessels and arteries [24]; and seborrheic keratosis (SK),
which appear in older people and on any body area.

MM is the malignant form of melanocytic lesions. Their growth occurs at a much faster pace
than BCC and they exhibit a remarkable capability to invade tissues and metastasize to other
organs. It is of utmost importance to detect MM at an early stage, i.e., when it is located in the
epidermis: MM in situ. When in a localized stage, the malignant cells are contained within the
epidermis and have no contact with deeper skin layers and the blood stream. Thus, the cancer
has not yet metastasized and it can be removed by an excision. The shape of early stage MMs is
normally irregular and they exhibit a variety of colors. Invasive MMs may be papular or nodular,
ulcerated and present a brown/black coloration with regions of red, white or blue. A melanocytic
NV, or mole, is a common benign skin lesion. These lesions may be acquired or emerge at birth
and may appear in any layer of the skin. However, it is indispensable to pay attention to this type
of lesions, as they can be precursors to cutaneous MM.

Some examples of the referred lesions are represented in Figure 2.4.

e) f)

Figure 2.4: Examples of pigmented skin lesions: a) Melanoma, b) Melanocytic Nevus, ¢) BCC, d)
SCC, e) Dermatofibroma, f) Seborrheic Keratosis (images retrieved from [25]).
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2.3 Diagnosis

As described in Section 2.2, there are two main types of skin cancer: NMSC and MM. In 2020,
almost 325k new cases of MM were detected worldwide, ranking it as the 18" most common
cancer, and over 57k deaths were registered. NMSC is the 5™ most commonly occurring cancer
globally, after breast, lung and bronchus, prostate and colorectal [26]. This type of tumor accoun-
ted for 1.2M new cases and almost 64k deaths, although the number of cases is likely to be much
higher since NMSC is often not tracked by cancer registries (Source: Globocan 2020").

Incidence rates of MM skin cancer rose by 44% between 2008 and 2018 with deaths increasing
by 32%?2. Globally, one person in every 26 522 develops MM skin cancer; Australia holds the 1%
position, with 1 case per 1 746 individuals, followed by Northern European countries. As stated
by European Cancer Information System (ECIS), MM incidence rates across Europe vary greatly,
with highest estimated rates in Nordic countries, namely Denmark, the Netherlands and Sweden
(with 1 per 2011, 2079, 2398 individuals, respectively); lowest incidence in Bulgaria, Romania,
and Cyprus (1 per 11 164, 12 547, 13 988 individuals, respectively) (data from 2020) [27].

Duarte et al. (2018) [28] assessed the clinical and economic burden of MM and NMSC at
public hospitals in mainland Portugal and found that, between 2011 and 2015, 6567 and 45 309
patients with MM and NMSC, respectively, were evaluated. Associacdo Portuguesa de Cancro
Cutaneo predicted that 13k new cases of skin cancer would appear in 2020, with over 1000 of
these being MMs, which present a mortality rate of 15%.

In addition to the considerable problem in public health, the economic burden of treatment is
substantial. From 2002-2006 to 2007-2011, the average annual total cost for skin cancer in the US
increased from $3.6B to $8.1B, representing a growth of 126.2%, while the average annual total
cost for all other cancers only incremented by 25.1%. Average annual total treatment costs during
2007-2011 were $4.8B for NMSC and $3.3B for MM [29]. The increase in treatment costs results
from the number of people treated for skin cancers but also from an increase of cost per capita.
The average cost of treatment per patient increased from $1000 in 2006 to $1600 in 2011 [30]. The
expenses depend of two factors: location (office treatment is more cost effective than that rendered
in a hospital); type of treatment (destruction is the least expensive but with the lowest cure rate,
followed by excision, Mohs surgery, superficial radiation treatment, ASC surgical excision, and,
above all, treatment in the hospital outpatient department) [31].

These substantial expenses can be notably reduced by means of efficient prevention strategies.
Moreover, considering that MM tends to metastasize beyond its primary site, by implementing
these strategies for early diagnosis, it would be possible to reduce skin cancer incidence and mor-
tality as well as treatment costs.

Once MM is advanced, surgery is no longer sufficient and it becomes more difficult to treat the
disease [32]. Thus, an accurate classification of the type of skin lesion is required when choosing

the treatment, as different types require distinct handling.

1https ://gco.iarc.fr/today/fact-sheets—cancers
2https://melanomapatients.orqg.au/wp—content/uploads/2020/04/
2020-campaign-report-GC-version—-MPA_1.pdf
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The process of diagnosing skin cancer usually begins with analysis of the anamnesis, i.e.
medical history, and visual inspection of a suspicious lesion from a clinical expert. In cases where
it is difficult to distinguish between a non-cancerous skin spot and skin cancer, the doctor may need
to take a tissue sample, a biopsy, and perform histopathological examination under a microscope

to confirm the diagnosis.

There are two distinct ways physicians look at a pigmented skin lesion: through a macroscopic

(clinical) or microscopic (dermoscopic) view (cf. Figure 2.5).

Figure 2.5: Comparison of imaging modalities: basal cell carcinoma (top) and in situ melanoma
(bottom), by clinical photography (left) and dermoscopy (right) (images from [25]).

Clinical images are a representation of what the physician observes with the naked eye. On
the other hand, dermoscopic images are magnified representations acquired through dermoscopy,
a technique which follows the clinical screening and increases the sensitivity for skin cancer detec-
tion. Since it is the most commonly used and provides advantages such as reduction of the number
of unnecessary biopsies (benign lesions biopsied), and diagnosis of thinner MMs compared to

naked eye examination [33], this technique will be further explored in the following subsection.

A major obstacle to a successful diagnosis is the presence of artifacts. Namely, hairs, re-
flections, shadows, ruler marking, skin lines and air bubbles can confuse diagnosis and hinder
achievement of better accuracy in the diagnosis process. Different devices and illumination con-

ditions can lead to misdiagnosis, as well.
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2.3.1 Dermoscopy

Dermoscopy is a non-invasive medical technique for in vivo observation of pigmented skin lesions
(Figure 2.6), that uses light and magnification for a better evaluation of colors and microstructures
of the epidermis, the dermoepidermal junction, and the papillary dermis not visible in plain sight.
The identification of specific patterns related to the color distribution and dermoscopic structures
can greatly help in the examination of the skin lesion [34]. This technique provides a valuable

support in diagnosing skin lesions.

Figure 2.6: Dermoscopy assessment.

During a dermoscopy assessment, the pigmented skin lesion is typically covered with a liquid
(oil or alcohol). The application of such fluids is necessary for the reduction of the reflectivity of
the skin and enhancement of the transparency of the stratum corneum. This allows visualization
of the aforementioned structures and it also suggests the location and distribution of melanin [34].
Afterwards, the lesion is investigated under a specific optical system (dermatoscope, stereomicro-

scope, videodermatoscope or digital imaging system).

2.3.2 Dermoscopy Algorithms

The major problem of visual assessment of skin lesions is its subjective nature. To address this,
several algorithms for classification and diagnosis using dermoscopy have been developed.

In the world of dermatology, there are criteria to distinguish between melanocytic and non-
melanocytic lesions and to perform the final diganosis: benign or malignant. These methods are
based on the observation of numerous parameters related with dermoscopic structures and colors.

Several different methods of classification have been proposed in the literature but the most

used procedures are pattern analysis, ABCD rule, Menzies method and seven-point checklist [35].

Pattern Analysis

Proposed by Pehamberger et al. [36], pattern analysis is the classic dermoscopic method for
diagnosing skin lesions.
This procedure progresses in two steps. The first is to classify the lesion as melanocytic or

non-melanocytic. This classification is performed based on global patterns (Table 2.1). A reticular
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Table 2.1: Pattern Analysis [37].

Global Pattern Local Features
Reticular Pattern Pigmented Network
Cobblestone Pattern Dots / Globules
Starburst Pattern Streaks
Homogeneous Pattern Blue-Whitish Veil
Parallel Pattern Hypopigmentation
Multicomponent Pattern Blotches

Vascular Structures

pattern (pigment network that covers most parts of the lesion), a globular or cobblestone patterns
(closely aggregated globules) and a starburst pattern (pigmented streaks in a radial arrangement
localized at the periphery of the lesion) are usually identifiers of melanocytic lesions. The second
step of the algorithm is to distinguish between benign melanocytic lesions and MMs. For this,
an analysis of the local features is required (Table 2.1). If a lesion presents atypical features it is
considered as malignant; typical structures are connected with benign lesions.

Pattern analysis increases the rate of correct decisions made by dermatologists. Nevertheless,
the assessment is still subjective and lacks reproducibility, since its efficiency is correlated to the

previous experience of the physician [34].

Menzies Scoring Method

The Menzies method is a simple dermoscopy method for diagnosing MMs [38]. It consists of
11 features, 2 negative and 9 positive, as specified in Table 2.2, which must be scored as present
or absent by the observer. When none of the “negative features” and at least 1 of the 9 “positive
features” are present, the lesion is classified as MM [39]. Examples of criteria are illustrated in

Figure 2.7.

Table 2.2: Classification system for Menzies scoring method [40].

Diagnostic Criteria

HIGHLY SUGGESTIVE OF MELANOMA
Absence of both: Presence of at least one of the following:

Pattern symmetry Blue-white veil
Color uniformity Multiple brown dots
Pseudopods

Radial streaming
Scarlike depigmentation
Peripheral black dots/globules
5-6 colors
Multiple blue/gray dots
Broadened network
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Pattern Symmetry Blue-White Veil

7 o, *
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Multiple Blue/Gray Dots Broadened Network

Figure 2.7: Examples of criteria for Menzies method (Adapted from [41]).

ABCD Rule

Described by Stolz et al. [42], it was the first dermoscopy algorithm developed to facilitate differ-
entiation between the types of melanocytic lesions. Its functioning addresses whether the lesion is
benign, suspicious or malignant in a quantitative manner. It is based on the criteria: Asymmetry
(A), Borders (B), Color (C), Dermoscopic Structures (D) (Table 2.3).

Table 2.3: ABCD rule [37].

Criterion Description Score Weight

(A) Asymmetry In0, 1, 2 axes. Assess contour, colors and struc-  0-2 x1.3
tures.

(B) Border Abrupt ending at the periphery in 0 to 8 segments ~ 0-8 x0.1

(C) Color Presence of up to 6 colors (white, red, light 1-6 x0.5
brown, dark brown, blue-grey, black)

(D) Dermoscopic Presence of network, structureless or homogen- 1-5 x0.5

Structures eous areas, branched streaks, dots and globules

A scoring system using these criteria allows to calculate the total dermoscopy score (TDS) us-

ing Equation 2.1. TDS represents a grading of the lesions with respect to their malignant potential.

TDS = 1.3 X Agcore + 0.1 X Byepre + 0.5 X Cyeore + 0.5 X Dyeore 2.1)
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For TDS < 4.75, the lesion is classified as benign melanocytic. Values between 4.8 and 5.45
are suspicious and if TDS is higher than 5.45, the lesion is diagnosed as MM.

Asymmetry axes

Asterisk indicates
sharp circumscription

A=1x13=13 A=2x13=26

B=4x0.1=04 B=3x0.1=03
C=3x05=15 C=4x05=2.0
D=2x05=1.0 D=4x05=2.0
TDS =4.2 TDS = 6.9
Benign Lesion Malignant Lesion

Figure 2.8: Examples of the ABCD rule (Adapted from [41]).

In Figure 2.8, one can visualize the diagnosis performed with this rule. The benign lesion
exhibits light-brown, dark-brown and black colors (3xC) as well as networks and dots as dermo-
scopic structures (2xD). The malignant lesion displays 4 colors (4 xC) (light-brown, dark-brown,
blue-gray and black) and 4 dermoscopic structures (4 xD) (network, homogeneous areas, streaks,

globules).

Seven-Point Checklist

Developed by Argenziano et al. [43], this algorithm is a variation of pattern analysis but with a
score system. It requires the identification of 7 criteria, usually associated with MM. These are
divided in two classes: major (3 features) and minor criteria (4 features), with different scores,

respectively.

Table 2.4: Seven-point checklist.

Criterion Score
Atypical Pigment Network 2
Blue-whiteish Veil
Atypical Vascular Pattern
Irregular Streaks

Irregular Pigmentation
Irregular Dots and Globules
Regression Structures

— e = DN DN
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If any of the criteria is present in the lesion, it will receive a score, as seen in Table 2.4. A total
score of greater than or equal to 3 is associated with a high likelihood of MM diagnosis [37]. Two

examples of classification are presented in Figure 2.9.

pattem (linear
irregular vessels
= 2 points

Blue-whitish veil = 2

Regression structures R
=1 point

Seven-Point Score = 1 Seven-Point Score = 5
Benign Lesion Malignant Lesion

Figure 2.9: Examples of the seven-point checklist (adapted from [41]).

Overview

Argenziano et al. (1998) [43] also compared the reliability of the 7-point checklist with the ABCD
rule of dermatoscopy and standard pattern analysis. For this study, 342 images of melanocytic
lesions were used, with 57 and 60 MMs, and 139 and 86 benign lesions in the train and test sets,

respectively. The results are described in Table 2.5.

Table 2.5: Comparison between three dermoscopy algorithms.

Algorithm SE (%) SP (%) Diagnostic ACC (%)

Pattern Analysis 91 90 76
7-Point Checklist 95 75 64
ABCD Rule 85 66 51

Sensitivity (SE) is described as the probability of valid predictions when the lesion is a MM;
specificity (SP) is the percentage of correct classifications of benign melanocytic lesions. Ac-
curacy (ACC) is the number of correctly predicted lesions out of all the images. Formally, it is
defined as the number of true positives and true negatives divided by the number of true positives,

true negatives, false positives, and false negatives.

Pattern analysis is the most accurate algorithm. Nevertheless, this study concludes that all

three methods are reliable for diagnosing MMs.
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2.4 Teledermatological Screening

Telemedicine relies on technology of communication for exchanging expert medical information.
The increasing interest can be explained by the evergrowing development of new technologies.
Access, quality and cost-effectiveness are the basic issues of health care delivery and seemingly

telemedicine can meet them all [44].

Dermatology is particularly suited for telemedicine, given the importance of its visual com-
ponent. There is a growing interest in the potential, feasibility and reliability of teledermatology
[45].

The literature has reported imaging techniques that can assist in the acquisition of skin le-
sion images [46]. Imaging techniques worth mentioning include: digital photography, radio-
graphy, in vivo confocal laser scanning microscopy, optical coherence tomography, ultrasound
imaging, multispectral imaging and thermography. Furthermore, dermoscopy, described in Sub-
section 2.3.1, is seeing a growing increase in its use. Recently, the usage of dermatoscope coupled

to a mobile phone camera has been adopted, hence facilitating acquisition of lesion images.

As rates of skin cancer are increasing, there is a growing concern about the timely delivery of
health care both in rural and urban areas. In this regard, teledermatology (TD) could be a valuable
tool in triage referrals, reducing time to diagnosis and treatment of malignant lesions, besides
its potential benefits in terms of costs and waiting times and the ability to deliver specialised

healthcare to more patients.

Teledermatology is often classified by the technology it uses: store-and-forward (SF) con-
sultation, which involves transfer of clinical data to be evaluated at another location and time, and
real-time (or interactive) videoconferencing [47]. The former has several advantages including
lower costs, use of less complex equipment and less time-consuming consultations, offering the
potential to shorten waiting lists. It is particularly suited for patients with poor access to health-
care as there is no need for coordinating scheduled visits, improving healthcare access and delivery

[48]. It might be used across different time zones, not interfering with daily activities.

Despite the referred benefits, TD also presents a few limitations, namely clinical, economic,
technological, legal and ethical issues [44]. For example, regarding clinical limitations, physical
touch is important in diagnosing some skin conditions and it is lost in TD. For technological con-
straints, the cost of mobile devices equipped with high-quality cameras remains high, not making

it accessible to the entire population [49].

An alternative method to frame teledermatology is based on the type of healthcare delivery. TD
can be categorized into consultative, direct-care and triage models [50]. Notably, triage prioritizes

patients based on the severity and urgency of their skin condition.

The use of teledermatology based on dermoscopy as a triage tool has shown high accuracy
[48] and can reduce burden on healthcare systems and waiting times for necessary skin cancer
surgery [51]. Automated classification systems can be a tool to help quickly screen a large number

of patients, identify those most at risk and ideally detect skin cancers at an early stage.
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2.5 Summary

Skin lesions are organized according to their type of source cells: melanocytic arises from melano-
cytes and non-melanocytic develop from keratinocytes, and is subdivided depending on their loc-
ation at the basal or squamous layer of the upper skin layer, epidermis. Both types of lesions
can then be classified as benign or malignant according to the non-cancerous, pre-cancerous or
cancerous nature of the skin cell. Therefore, skin cancer can be NMSC or MM. The former is the
most common skin cancer, affecting a much higher number of individuals than MM, however the
latter is extremely dangerous due to its rapid pace and capacity to invade tissues and metastasize
to other organs.

Early diagnosis acquires extra importance in this issue and is intrinsic to optimal patient health
outcomes: if skin cancer is diagnosed in an initial state, there is an estimated 5-year relative
survival rate of 98%; if diagnosed in a distant stage, the survival rate drops to 17% [2]. Moreover,
treatment expenses can also be heavily reduced.

The difficulty of early clinical diagnosis has led to the development of dermoscopy, which is
a non-invasive and effective imaging of potential skin cancer cases. The most commonly used
algorithms for lesion inspection using dermoscopy are: pattern analysis, Menzies scoring method,
ABCD rule and seven-point checklist.

These algorithms of dermoscopic criteria allow for an increased sensitivity and accuracy of
the diagnosis process but the process remains highly dependent on the observer’s experience and
training. Moreover, considering that dermatology is particularly suited for telemedicine and with
the burden in healthcare systems at present, automated systems may be the answer toward a system

capable of diagnosing malignant skin lesions at an early stage.
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Chapter 3

Automatic Skin Lesion Analysis

3.1 Artificial Intelligence in Healthcare

"AI will not replace doctors but instead will augment them, enabling physicians to

practice better medicine with greater accuracy and increased efficiency.”

— Benjamin Bell

Artificial intelligence (Al) is popularly known as the property of a computer or machine
that mimics human intelligence characterized by behaviours such as cognitive ability, memory,
learning and decision making. It is defined as the ability to mimic the capabilities of the human
mind—Iearning from examples and experience, recognizing objects, understanding and respond-
ing to language, making decisions, solving problems, and combining these to perform "human"
functions [52].

The idea of "machines that think" has been around for a long time, originating in ancient
Greece and being relegated to science fiction in the first half of the 20™ century. The term Artificial

Intelligence was only created in 1956 [53]. Nowadays, Al is part of everybody’s daily lives.

The evolution of Al has been empowered by the availability of large amounts of data and
development of computer systems that can process data faster, more accurately and efficiently

than humans can and with lower expenses [52, 54].

Al is prevalent in business and society and is beginning to be applied to healthcare due to the

increasing availability of medical data.

Literature suggest that Al can perform as well or better than humans at various tasks such as
diagnosing disease, speech transcription [55] and gaming [56]. Despite providing more accurate
medical diagnosis, machines will not replace human physicians in the foreseeable future; in fact,

Al must be considered an asset that can assist them to make better clinical decisions [57, 58].

19
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3.2 Evolution of Skin Lesion Classification

Skin lesion classification has not escaped the trend toward Al diagnosis and the first description
of using a computer for the analysis of cutaneous MM images was reported in 1987 [59].

Year 1995 marked the advent of dermoscopy, which enhanced the accuracy of both dermato-
logists and automated systems by allowing a better visualization of skin lesions.

The first survey of automated MM diagnosis was published by Day and Barbour (2000) [60].
The major issues reported were: (a) lack of a standard set of test images, (b) lack of detail in the
description the proposed procedures, (c) usage of small datasets for model validation.

The literature was inspected again by Korotkov and Garcia (2012) [61]. The authors organized
the overall pipeline of a computer-aided diagnosis system for skin lesion diagnosis. In addition,
they reinforced the importance of providing a publicly available benchmark dataset for the pro-
posed algorithms as a way to significantly improve performance and unite the efforts of different
research groups. Each pigmented skin image for such a dataset should be accompanied by the
ground truth definition of the lesion’s borders and its diagnosis with additional dermoscopy re-
ports from several dermatologists [62].

A number of CAD systems turned into commercially available products [61, 63], being used
by some dermatologists around the world. However, these solutions are expensive, do not provide
completely automated diagnoses and show need for improvement.

The existing CAD methods can be roughly divided into two groups: machine and deep learn-
ing. The latter is currently the preeminent option for skin lesion analysis [64]. The typical prob-
lems reported in 2000 [60] remained relevant throughout the years and are still observed. However,
they do not affect systems as much because of several attempts to mitigate them.

Figure 3.1 compares the stages followed in a conventional ML setting and, simultaneously,

demonstrates how DL promoted a step forward, by merging components in a single unit.

Digaiiolloggeal Preprocessin; Segmentation Feature Classification zilisitom o
Image P g g Extraction Lesions

Prediction of

Dermatological

Deep Learning

Lesions

Image

Figure 3.1: Comparison between machine learning and deep learning pipelines for classification
of skin lesions.
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3.3 Datasets and the Important Role of Challenges

To elaborate a reliable and a robust system for skin lesion classification, it is of extreme importance
to have a miscellaneous image dataset. The decision of a CAD system depends heavily on the
training set.

There are relatively few datasets in the general field of dermatology and even fewer datasets
of skin lesion images. Most existing works on automated skin disease analysis use either private
or very small publicly available datasets. Hence, such studies act merely as a proof-of-concept for
the efficacy of Al in dermatology. Publicly available datasets are described in the following list

and an overview is given in Table 3.1.

* PH? [65] is a dermoscopic image database acquired at the Dermatology Service of Hos-
pital Pedro Hispano (Matosinhos, Portugal), made available in 2013. It consists of 200
melanocytic lesions, including 80 common nevi, 80 atypical nevi, and 40 MMs. Images
were acquired using a magnification of x20 under the same conditions as Tuebinger Mole
Analyzer system [65]. In addition, manual segmentation and the clinical diagnosis of the
skin lesion as well as the identification of other important dermoscopic criteria are provided.
These dermoscopic criteria include assessment of lesion asymmetry, identification of colors
and a number of dermoscopic structures: pigment network, dots, globules, streaks, regres-
sion areas and blue-whitish veil [66]. The PH? database is freely available for research and

educational purposes’.

e The International Skin Imaging Collaboration (ISIC) is an international effort to improve
MM diagnosis [67], whose aim is to aggregate a publicly accessible dataset of dermoscopy
images”. It is currently the standard source for dermatoscopic image analysis research be-

cause of its permissive licensing, and large size but it is biased towards melanocytic lesions.

— The first ISIC challenge was organized in 2016. A dataset with 900 dermoscopic
images in JPEG format, binary masks in PNG format, dermoscopic feature files in
JSON format and the gold standard malignancy diagnosis was provided [68], with the
goal to support research and development of algorithms for automated diagnosis of
MM.

— In 2017, ISIC organized a new challenge [69] with a dataset of 2000 JPEG dermo-
scopic images, binary masks (PNG), dermoscopic features (JSON) and gold standard
lesion diagnoses, which focused on three specific classes of lesions: MM, SK and
benign nevi (NV).

— The ISIC 2018 challenge was divided into three separate tasks: (1) lesion segmenta-
tion, (2) lesion attribute detection, (3) disease classification. Task 1 and Task 2 training

data consist of 2594 images and 12 970 ground truth masks (5 for each image) extrac-
ted from ISIC 2017 Challenge [69] and HAM 100000 datasets [70]. For Part 3, 10 015

'ttp://wuw.fc.up.pt/addi/
2https ://www.isic—archive.com/
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dermoscopic images [70, 71] divided in 7 classes, strongly imbalanced towards benign

lesions, were provided.

— The ISIC 2019 challenge dataset is a collection of some databases (HAM10000 [70]
- Medical University of Vienna, BCN_20000 [72] - Hospital Clinic de Barcelona,
MSK [69] - Anonymous) including 25 331 JPEG dermoscopic images and associated
metadata, and it is labelled in 8 classes. The images have different resolutions and were
corrected using different preprocessing and preparation protocols. Meta information
for most images on the patient’s age, gender, general anatomical site and common

lesion identifier is available.

— In 2020, the ISIC challenge [73] focused on a new approach for their dataset: multiple
lesions from the same patient, because in practice dermatologists base their judgment
integrating information from multiple lesions of the same patient. Therefore, such
dataset totals a number of 33 126 JPEG or DICOM dermoscopic images, represent-
ative of 2056 patients, with an average of 16 lesions per patient; metadata on the
patient’s ID, sex, age, and lesion anatomic site is also provided. Images were collec-
ted in various parts of the globe: Memorial Sloan Kettering Cancer Center, New York
(USA); Melanoma Diagnosis Centre, Sydney, Melanoma Institute Australia and Uni-
versity of Queensland, Brisbane (Australia); Medical University of Vienna (Austria);

and Hospital Clinic de Barcelona (Spain).

* The Edinburgh Dermofit Image Library [74] is a collection of 1300 macroscopic skin lesion

images and corresponding binary segmentation masks collected under standardised condi-
tions with internal colour standards. Images consist of a snapshot of the lesion surrounded
by normal skin. The lesions span across 10 different classes. The gold standard diagnosis is
based on expert opinion (including dermatologists and dermatopathologists). The Dermofit

Image Library is available under an academic licence?.

The 7-Point Criteria Evaluation database described by Kawahara et al. [10] includes 2022
clinical and dermoscopic color images (1011 images for each modality), along with cor-
responding structured patient metadata tailored for training and evaluating computer aided

diagnosis (CAD) systems. The lesion cases span 5 diagnosis labels. The 7-point checklist
is also provided. This dataset is publicly available online at the website*.

Dermnet [75] is a skin disease atlas with website support that contains over 23 000 skin
images separated into 23 classes. The ratio between malignant and benign lesions is heavily

unbalanced.

3https://licensinq.edinburghfinnovations.ed.ac.uk/i/software/

dermofit-image-library.html

4http://derm.cs.sfu.ca/Welcome.html
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3.3 Datasets and the Important Role of Challenges

Table 3.1: Overview of publicly available datasets
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DATASET IMAGES LESION IMAGES CLASSES

PH? [65] 200 80 - Common Nevi, 40 - Melanomas, 80 - Atypical 3
Nevi

ISIC 2016 900 273 - Melanoma, 627 - Non-Melanoma 2

Challenge [68]

ISIC 2017 2000 374 - Melanoma, 254 - Seborrheic keratosis, 1372 - 3

Challenge [69] Benign Nevi

ISIC 2018 10015 1113 - Melanoma, 6705 - Melanocytic Nevus, 514 - 7

Challenge [70, Basal Cell Carcinoma, 327 - Actinic Keratosis, 1099

71] - Benign Keratosis, 115 - Dermatofibroma, 142 -
Vascular Lesion

ISIC 2019 25331 4522 - Melanoma, 12 875 - Melanocytic Nevus, 8

Challenge [69, 3323 - Basal Cell Carcinoma, 867 - Actinic

70, 72] Keratosis, 2624 - Benign Keratosis, 239 -
Dermatofibroma, 253 - Vascular Lesion, 628 -
Squamous Cell Carcinoma

ISIC 2020 33126 26199 - No Melanoma, 6927 - One or more Melan- 2

Challenge [73] oma

Dermofit Im- 1300 76 - Melanoma, 331 - Melanocytic Nevus, 239 10

age  Library - Basal Cell Carcinoma, 45 - Actinic Ker-

[74] atosis, 257 - Seborrhoeic (Benign) Keratosis, 65 -
Dermatofibroma, 88 - Squamous Cell Carcinoma,
78 - Intraepithelial Carcinoma, 24 - Pyogenic
Granuloma, 97 - Haemangioma

7-Point  Cri- 2022 252 - Melanoma, 575 - Melanocytic Nevus, 42 - 5

teria  Dataset Basal Cell Carcinoma, 45 - Seborrheic (Benign)

[10, 76] Keratosis, 97 - Miscellaneous (Dermatofibroma,
Vascular Lesion) for each image modality

Dermnet 23000 190 - Melanoma 23

As described, ISIC has been organizing annual challenges for “Skin Lesion Analysis Towards

Melanoma Detection" since 2016, using photos from their archive. These contribute not only with

a public dataset but also a leaderboard, which present a way to benchmark results. They are,

undoubtedly, the largest standardized and comparative study in this field to date.

With the emergence of these challenges for skin lesion classification, authors began to report

their pipeline performance on pre-established training and testing sets, which allow comparison.

Evaluation metrics are also being standardized: area under the curve (AUC) is systematically

reported.

The problem of reproducibility is finally being tackled, enabling an eased dialogue between

researchers.
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3.4 Machine Learning Systems

3.4.1 Background on Machine Learning

Machine learning is a branch of Al, with algorithms that enable computers to learn from data
and to improve their accuracy over time without being explicitly programmed. These algorithms
extract patterns and features in data, making decisions and predictions in new and non-observed
data [77].

ML is divided into two main types of learning:

» Supervised learning - consists of training on a labeled dataset, i.e., the data is labeled with
information that the ML model must determine. Its aim to find generalized patterns. This
method requires less training data and is used for classification, where the output is a vari-

able, and regression, the result is a real number, tasks.

* Unsupervised learning - the ML model must infer knowledge from unlabeled data, identify-
ing hidden structures or representations. Popular examples include clustering, autoencoders,
Generative Adversarial Networks (GANSs), etc.

Reinforcement learning is often classified as an additional ML paradigm since it is not exactly
supervised nor unsupervised. It does not rely strictly on labels but it also does not explore patterns
in data points, respectively. This kind of ML model learns via interaction and feedback, i.e. using
a trial and error method. It takes actions in order to maximize a cumulative reward. Each time
the algorithm chooses an action, it receives positive or negative feedback on its performance; after
this, the algorithm is updated and will avoid penalties in future similar situations.

ML for skin lesion analysis has been attempted for years with its ultimate goal being improve-

ment of the diagnosis process. Several ML approaches are described in the following section.

3.4.2 State-of-the-Art Machine Learning Methods

As reported by Korotkov and Garcia (2012) [61], the overall pipeline of skin lesion analysis fol-
lows a generic sequence of steps: image preprocessing, lesion segmentation, feature extraction
and classification, as specified in Figure 3.1 of Section 3.2.

Diagnosis is highly dependent on the modality, quality and volume of images used. The inputs
to a skin lesion CAD system are either clinical or dermoscopic images. Often, these do not have
the optimal quality because of the variations in capturing devices and conditions of acquisition
(e.g. contrast, intensity, angle, perspective), therefore affecting the accuracy of the subsequent

algorithm.

Preprocessing

The first phase is preprocessing for removal of artifacts such as hair, ruler markings and dark
corners, for reduction of noise effects and for image enhancement. Among the most necessary

artifact rejection operations is hair removal since it may occlude parts of the lesion, hence making
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correct segmentation and texture analysis impossible. The first widely adopted method for this
task, system DullRazor, was proposed by Lee at al. [78] in 1997. Color normalization must also be
performed as a correction step, to improve the differentiation between the lesion and skin. Median
filtering suppresses noise such as small pores on the skin, shines and reflections. Illumination
and contrast are also corrected. Principal Component Analysis (PCA) is widely used for edge

enhancement during image smoothing.

Segmentation

Segmentation is the primary method for the separation of data into a region of interest (ROI). It
is considered one of the most difficult tasks in medical imaging due to the complexity of skin
images [79] and great variety of lesion colors, shapes, and sizes. An accurately detected lesion
border is crucial for the diagnosis since a number of dermoscopic features (particularly, asym-
metry and border sharpness) depend on it. The analysis of these features is, therefore, only as
precise as the estimated lesion boundary. Additionally, there is high inter-observer variability in
boundary interpretation among dermatologists [80], leading to a lack of definiteness in ground
truth. Other difficulties include low-contrast of the lesion border [81], fuzzy border and irregular
structures. Operations such as PCA and Karhunen-Loéve Transform (KLT), usually performed
in the preprocessing stage, allow for an enhancement of lesion edges, ultimately resulting in bet-
ter segmentation [82, 83]. A number of low-level segmentation techniques such as edge-based
[84], region-based [85] and thresholding [86] approaches have been proposed in the literature
[46]. These are conventional approaches because they are computationally simpler and faster,
however they require post processing. High-level segmentation techniques include the low-level
approaches and build sophisticated algorithms, namely fusion-based techniques, soft-computing
based approaches and deformable models. Among their advantages is the fact that they avoid

post-processing and deal with low contrast lesion boundaries.

Feature Extraction

For correct diagnosis of a skin lesion, dermatologists rely on the features of the lesion. Feature
extraction is an endeavour to mimic clinicians’ performance by extracting dermoscopic structures
essential to diagnosis.

These features depend on the chosen diagnostic technique, from the ones explained in Section
2.3.2. For example, the border of a lesion and blue-whitish veil are dermoscopic features of the
ABCD rule and pattern analysis, respectively. Many studies focus on detecting structures such as
pigment network [87, 88, 89], structure-less areas, namely dots [90], globules [87], blotches [91],
and asymmetry index [92].

In automated pigmented skin lesion classification, the system aims to extract these features
from the images and represent them in a way that can be understood by a computer [93]. These
representations will be referred to as feature descriptors. Different feature descriptors are associ-

ated with specific methods of diagnosis.
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Feature descriptors are mostly classified as either color features [94, 95] or texture based
descriptors [95, 96]. The former include island of color [97], color homogeneity [98] and color
histograms [99]. The latter can be categorised as spatial frequency, statistical, geometric or model-
based [100]. Spatial frequency based texture features are often linked to wavelet transformations;
statistical based descriptors include co-occurrence matrices and Fourier properties for describing
lesion’s local neighbourhood properties; geometric features describe skin lesion characteristics
that include shape, border, symmetry, area, diameter, variance, perimeter, circularity and aniso-
tropy; model based textual descriptors are frequently associated with fractals and Markov random
fields [46]. The most commonly used texture feature descriptors are the gray-level co-occurrence
matrix (GLCM) [96, 99] and wavelet transform [101, 102].

Barata et al. (2013) [95] concluded that the color features outperformed the textual features
when used singly but that the combination of the two yielded the most promising results.

The extraction step allows the determination of the malignancy of a skin lesion by a set of
finite numerical features. Variables such as body location, age, and imaging parameters greatly

influence the resulting values.

Classification

Lesion classification constitutes the final step in the typical framework for automated skin lesion
analysis.

After feature extraction, it is often necessary to proceed to the selection of the most relevant
characteristics and removal of redundant ones. Reducing the number of features will reduce the
computational cost in the later stages. However, this reduction is not trivial as it is may adversely
affect feature’s discriminatory power.

Depending on the objective of the system, the output can be binary (malignant/benign or
suspicious/non-suspicious), ternary (MM/dysplastic NV/common NV) or n-ary for several skin
lesion classes [93].

ML methods such as Artificial Neural Networks (ANN), Decision Trees (DT), K-Nearest
Neighbors (KNN), Support Vector Machines (SVM) and Logistic Regression are among the most
commonly employed.

By using an ANN, Rubegni et al. (2002) [103] proposed a classification system. They reported
great results: sensitivity (SE) of 94.3% and a specificity (SP) of 93.8%, on a dataset containing
550 images, with 200 of them being MM.

With a KNN classifier and a dataset consisting of 391 MM and 449 melanocytic nevi images,
Burroni et al. (2004) [104] produced mean SE and SP equal to 98% and 79%, respectively.

Celebi et al. (2007) [99] employed an SVM on a dataset of 564 images, 88 of which being
MM. They achieved SE of 93.3% and a SP of 92.3%.

Establishing an absolute hierarchy in terms of classifiers’ performance is complicated because
of the distinct datasets, feature descriptors, classifier parameters and learning procedures. Dre-
iseitl et al. (2001) [105] investigated the use of the five mentioned ML classifiers on automatic

skin lesion classification with ternary output. They found that Logistic Regression, ANN and
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SVM perform very well, achieving identical results; KNN has a modest performance; Decision
Tree paradigm is not well suited for this problem domain due to the continuous input variables.

Nevertheless, even the worst of the five achieves SE and SP values comparable to human experts.

Recently, ensemble methods, whose goal is to combine the strengths of separate classifiers,
have also been proposed. They are able to improve the performance of skin lesion classification,

outperforming individual classifiers [106].

Supervised ML algorithms are largely preferred to unsupervised approaches [61]. There is a
high diversity of ambiguous clinical and dermoscopic features, i.e., they can point to either the
malignant or benign nature of a lesion. Thus, there are a number of lesions whose corresponding
biopsy-established diagnosis refutes the observed features [107]. In this case, the labelling is ex-
tremely necessary to teach a classifier to recognize abnormal manifestations of malignant lesions.
Nonetheless, in the past years, a number of studies in which unsupervised learning techniques are
introduced have been published [82, 108].

Overview

An example of the pipeline following the aforementioned steps is shown in Figure 3.2.

- Skin Lesion
Classifier Class (.
(e.g, KNN) Melanoma)
Dermatological Preprocessing Segmentation Feature Classification Prediction of
Image Extraction Lesions

Figure 3.2: Framework of a typical machine learning system (images from [109]).

Results of a CAD system are typically dependent on the dataset, extracted feature descriptors

and strength of the classifiers.

Human-engineered features are the main bottleneck in the ML system, as they are generally
based on the diagnostic tools used by dermatologists, which are proven to be thoroughly subjective
and unreliable. They work well for lesions with well defined and regular features, such as MM and
BCC; in other lesions, the features are more complex and this solution becomes infeasible. Thus,

hand-designed features extraction requires expertise and may not generalize to larger datasets.

Feature extraction and preprocessing are key tasks for the traditional methods but gruelling
operations. Hence, recent literature is distancing from the classical approach and moving toward
DL, as neural networks are capable of extracting features that are possibly more representative of

the lesion.
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3.5 Deep Learning Systems

3.5.1 Background on Deep Learning

Deep learning is a sub-field of ML, which has been highly potentiated by the evolution and em-
powerment of graphics processing unit (GPU) computing and the ever growing public available
datasets. It allows computational models of multiple processing layers to learn and represent data
with various levels of abstraction, in a functioning roughly inspired by the human brain [110].

DL incorporates neural networks, hierarchical probabilistic models, and a variety of unsuper-
vised and supervised feature learning algorithms [111].

This field has recently excelled in human visual tasks [112], delivering significantly superior
performances when compared with traditional computer vision techniques. However, an acute

problem of DL algorithms is that they require massive amounts of data [77].

Deep Neural Networks (DNNs)

DNNss are multi-layered generalized linear models (see Figure 3.3).
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Figure 3.3: Example of a typical DNN architecture

The output of a neuron i localized on layer / is the image of activation function, o(W;;), of a
weighted sum of the neuron’s input, vector x;_1, with the weights being vector W;; and scalar bias
bi; [113] (c.f. Equation 3.1).

fii(x) =o0(Wis-x1—1 +biy) 3.1

The network is evaluated by calculation of a loss function (distance between the expected
output and predicted value). The goal is to minimize the output of said function and such loss
depends on the assigned weights; hence, a neural network model is trained using a gradient descent
optimization algorithm and weights are updated using the backpropagation of error algorithm.

Updating the weights requires calculating the partial derivatives of the loss concerning each
weight. Backpropagation is a technique which uses the chain rule for computing these derivatives.
With this procedure, it is possible to find the weights that best adjust the model to the training
set. The gradient descent algorithm is one of the most used optimization algorithms and seeks
to change the weights in such a way that reduces the error in the next evaluation. Therefore, the

optimization algorithm is navigating down the gradient.
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Convolutional Neural Networks (CNNs)

Deep CNNs are one of the most important types of DL models, specialized in working with image
data. CNNs are a specific type of DNN which use convolution rather than general matrix multi-
plication and are emerging as a very powerful tool for computer vision tasks, even showing ability
to surpass human performance.

The first superlative triumph of CNNs in Computer Vision was achieved when Krizhevsky et
al. (2012) [114] won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [115].
They achieved outstanding performance by implementing a large, deep CNN. Whereas traditional
ML classifier would result in an approximate error of 30%, DL technology established an error
rate under 17%. After this outstanding conquest, the error rate in the competition continued to
decrease rapidly and, in 2015, it matched the average human classification error rate, 5% [116].
By 2017, CNNs were only committing half of the mistakes of a human (2.3%) [117].

One of the biggest assets and key of success of DL is the automatic extraction of features from
the input data. As stated in Section 3.4.2, the extraction and selection of features were the most
challenging and exhausting tasks when performing the traditional methods; by using CNNss, this
is no longer necessary. Moreover, the preprocessing required is also greatly reduced.

Unlike ANNSs, where every node fully connects to the next layer, each node of a CNN only
connects to a number of nodes of the following layer. This pivotal attribute can capture the spatial
and temporal dependencies in an image through the application of relevant filters [118].

As mentioned, the main drawback of DL algorithms is that they require enormous amounts
of data and computational resources. Medical images and their respective labels are often not
publicly available, thus hampering this approach (cf. Section 3.3). As a way to overcome the
problem of small datasets, there are various free to use CNN architectures, pre-trained in enormous
datasets (e.g., ILSVRC [115]), with application in the medical field. Because of their previously
learned ability to extract image features, these can act as feature extractors in new algorithms
through a technique known as Transfer Learning [119]. To apply it, the prior classifier of the
original architecture is replaced with an untrained classifier fitting for the new task and the system
is trained on the medical dataset [120]. A technique designated by data augmentation allows the
generation of a multitude of new data by applying distortions: rotations, flips, color changes.

A generic representation of a CNN system for skin lesion classification is shown in Figure 3.4.

Feature Extractor Classifier

Tood

Skin Lesion Class (e.g.,

Melanoma)

Dermatological Image Deep Learning Prediction of Lesions

Figure 3.4: Framework of a CNN system (dermatological image from [109]). Conv. refers to
Convolution, Norm. to Normalization, Pool. to Pooling and F.C. to Fully Connected.
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Multi-task learning (MTL)

Multi-task learning [121] (Figure 3.5) is a learning paradigm whose aim is to leverage useful
information contained in multiple related tasks to help improve the generalization performance of
all tasks.

Task 1
Input Data (e.g.,
dermatological CNN Model
image, metadata)
Task n

Figure 3.5: Multi-task learning for a deep CNN.

This area of ML can provide several benefits to the model. A number of them occur because
the model accesses more data, and if the tasks are closely related, the model can learn beneficial
representations. Different kinds of datasets have different noise; thus, by learning multiple tasks,

it is easier to distinguish which features are beneficial and detrimental [122].

MTL has proven to be very successful in many computer vision problems [123]. Common ap-

proaches often share the convolutional layers, while learning task-specific fully-connected layers.

Deep Multimodal Learning

In medical diagnosis, dermatologists seldom evaluate only one image. These professionals com-
bine dermoscopic or clinical view with external parameters such as medical history and patient
personal information, namely age, gender, location of the disease, when analysing each lesion.
Thus, it is clear that physicians integrate a myriad of data when making a diagnosis and it would

be valuable for a DL network to replicate this behaviour.

Multimodal learning can meet these requirements. This paradigm aims to merge different data
modalities with the objective of improving a network’s prediction. DNNs offer the flexibility of
implementing data fusion from # modalities with techniques such as early (or data-level), late (or
decision-level), or intermediate fusion [124]. An illustration of the early and late fusion models
is shown in Figure 3.6, as they are the opposite ends of the multimodal learning spectrum. The
majority of work in deep multimodal fusion uses intermediate fusion [124], adopting approaches
in between the two represented.

Multimodal learning allows for richer representation since different data types can provide
complementary information to each other. Consequently, the output is expected to be more accur-

ate than the predictions from individual modalities.
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(e.g., Melanoma)

Skin Lesion Class
(e.g., Melanoma)

{ Skin Lesion Class
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Figure 3.6: Schematic of fusion models for multimodal learning: a) Early fusion, b) Late fusion
(dermatological image from [25]).

3.5.2 State-of-the-Art Deep Learning Methods

The blossoming of DL has promoted the development of promising skin lesion classification meth-
odologies. CNNs have showcased promising results, capable of outperforming dermatologists [5].

Opposed to the tasks performed in a conventional setting, in DL all features and classification
are learned and performed as a single unit (cf. Figure 3.1 of Section 3.2).

A solution to overcome the problem of limitation of data for skin lesion classification is by
exploiting CNN architectures through transfer learning procedures [125, 5, 69]. Another practice
to dodge this major issue of DL is a simple procedure: data augmentation [126, 127, 128]. This
allows for an expansion of the dataset without all difficulties inherent to image acquisition.

One of the most important implementations of skin lesion classification with CNNs was
achieved by Esteva et al. (2017) [5]. A private dataset of 129 450 clinical images, consisting
of 2032 different diseases, trained a CNN. For this, a transfer learning procedure was implemen-
ted, by using Google’s Inception v3 architecture. The final layer was replaced by the skin cancer
classification task. All layers of the network were finetuned with RMSProp. The authors used
a hierarchical partitioning algorithm using a taxonomy tree for data balancing. Altogether, the
network showed performance results on par with 21 experts, indicating a solution capable of clas-
sifying skin lesions with a level of competence comparable to dermatologists.

Codella et al. (2015) [125] also applied transfer learning. Two fully-connected layers were
taken from the Caffe CNN [129] pre-trained on the ILSVRC 2012 dataset [115, 114] and used
as feature extractors; those features were subsequently fed to a SVM classifier. Their dataset was

obtained from the ISIC Archive [67], containing 2624 clinical cases. The reported performance
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matches the results with hand-designed features, which illustrates the feasibility of using these
networks to extract relevant features.

Further work on the use of pre-trained CNNs on the ILSVRC dataset [115] was developed by
Kawahara et al. (2016) [126], demonstrating how filters from a pre-trained network generalize
to classifying 10 classes of 1300 non-dermoscopic skin images from the Dermofit Image Library
[74], with a logistic regressor. This approach outperformed previously published results. Data
augmentation with rotations and left-right flips improved results.

Ensemble techniques fuse the results from several classifiers into a final decision and have also
been proposed for skin lesion classification [130, 131].

The correlation between skin lesions and their body site distributions was exploited by Liao et
al. (2018) [9]. The authors built a deep MTL framework to jointly optimize skin lesion classific-
ation with a related auxiliary task, body location classification. The dermatology images used in
the study were collected from DermQuest (as of 2021, it is deactivated), an atlas with both skin
lesion and body location labels. The dataset categorizes lesions in 25 types and identifies 23 dif-
ferent body locations. Yang et al. (2017) [127] also suggested a MTL model which solves lesion
segmentation and lesion classifications tasks at the same time. The model trained on 2000 train-
ing samples and 150 evaluation samples from the ISIC 2017 Challenge [69] attained promising
results.

Yap et al. (2018) [8] investigated the combination of available data for classification. The
Microsoft ResNet-50 CNN architecture with weights pre-trained on ImageNet was used to reduce
the overfitting for a database of 2917 cases containing both clinical and dermoscopic images. A
CNN trained on dermoscopic images presented higher accuracy than a CNN trained with clinical
images. Nonetheless, when training the network on combined feature information from dermo-
scopic and clinical images, the accuracy outperformed single modal CNN, which indicates that
both imaging modalities have dissimilar classification information. This new algorithm could be
a step forward in developing a skin lesion classifier with both image modalities.

Deep network architectures can also be used as a way to provide features for the final classi-
fier, as demonstrated in the works of Codella et al. (2015) [125] and Ge et al. (2018) [132]. The
latter capture discriminative features of a private dataset (MoleMap), annotated by expert derma-
tologists with disease labels, composed by more than 30 000 images for both imaging modalities.
The authors are able to demonstrate that the proposed multimodal method significantly defeats
single-modal ones.

Kawahara et al. (2019) [10] proposed a multi-task deep CNN with a base model Inception
v3, pre-trained over ILSVRC [115]. The CNN architecture was then trained on multimodal data
(clinical and dermoscopic images, as well as patient metadata), to classify the 7-point checklist
criteria and perform skin lesion diagnosis. Their dataset containing the 2022 images and metadata
has been made publicly available online (cf. Section 3.3). The network was trained using several
multi-task loss functions, where each loss considers different combinations of the input modalities,

thus allowing the model to be robust to missing data.

5https ://www.molemap.co.nz/
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3.6 Towards Robust Lesion Classification

Computer-Aided Diagnosis has attracted significant research attention and emerged as a tool to
support skin lesion diagnosis. CAD systems can be used as a triage tool or second opinion capable
of expanding the precision of analysis and decreasing the quantity of unnecessary biopsies. These
systems do not depend on the individual, thus an automated analysis has the potential to empower
patients with timely and reproducible diagnoses.

Previous dermatological computer-aided classification techniques require extensive prepro-
cessing, lesion segmentation and extraction of features before classification. Recently, DL al-
gorithms have been arising due to their excellence in computer vision tasks. The first DL pipelines
for automatic skin cancer diagnosis [125, 133] emerged in 2015. Esteva et al. (2017) [5] published
the landmark paper for skin lesion analysis, proposing a method which outperformed 21 special-
ists. DL solutions have now become a standard, with Haenssle et al. (2018) [134] also reporting
higher performance than dermatologists. Multi-task and multimodal approaches have also been
adopted by some authors [8, 10] and show ability to increase the performance.

The lack of standardized data is a dire problem for benchmarking. As a response to this,
public datasets of skin lesion images, with structured and reliable information, are arising. The
appearance of an open and global skin image analysis challenge in 2016, hosted by the ISIC,
was a remarkable accomplishment. This international partnership has allowed the organization of
the world’s largest public repository of dermoscopic images of skin. Such dataset allows for the
standardization of the conditions for evaluation of competing algorithms.

Nevertheless, the latest models still exhibit a number of limitations which need further progress
in order to build an overall high-performance diagnosis system. For example, some lesions are
falsely labelled as malignant, leading to unnecessary biopsies. Han et al. (2018) [135] tested an
algorithm, trained on data from Asian individuals, in images from Europeans and its performance
dropped, thereby demonstrating the need for a diverse dataset with all ethnicities. Furthermore,
most methods in the literature are focused on detecting only one kind of skin lesion (MM). The
multimodal and multi-tasking methods are also limited to the available dataset, which has the skin

lesions attributes labelled by medical professionals. Such issues are tackled in this dissertation.
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Chapter 4

Methodology

This chapter presents an overview of the training dataset utilized in this work, followed by a
detailed description of the two major groups of models and training settings used in the dissertation
experiments. The first type of model is a traditional CAD system, with steps of manual feature
extraction and a multi-layer perceptron (MLP) architecture; the second is built upon a successful
pre-trained CNN architecture, implementing a transfer learning approach which is widely used in

image classification problems. The metrics used to assess the models are also presented.

4.1 Dataset Selection

The dataset employed in this work is from the ISIC 2017 challenge, as it provides access to mul-
tiple classes of skin lesions as well as ground truth annotations which fit and are useful for the
objectives of this dissertation. The database aggregates 2000 training, 150 validation and 600 test

JPEG dermoscopic images.

Table 4.1: ISIC 2017 challenge dataset description.

Benign Nevi Melanoma Seborrheic Keratosis Total

Training 1372 374 254 2000
Validation 78 30 42 150
Test 393 117 90 600

Images are labelled according to expert consensus and pathology report information, as ma-
lignant and melanocytic melanoma, benign and non-melanocytic seborrheic keratosis and benign
and melanocytic nevus. Additionally, superpixel-mapped annotations (JSON files) of the presence
and absence of the dermoscopic features (pigment network, negative network, milia like cyst and
streaks), as well as expert manual tracing of the lesion boundaries (segmentation masks in PNG
format) are provided (Figure 4.1).

Gold standard diagnosis are required for the training of our supervised models for skin lesion

classification; annotations for the presence of dermoscopic features are employed in auxiliary tasks

35
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of the multi-task approach and segmentation masks are used in the extraction of supplementary

information.

a) b) c)

Figure 4.1: Examples of: a) Original dermoscopic image, b) Superpixel-mapped annotations of
dermoscopic features (Yellow = denotes pigment network, blue-green M is negative network,
green M is milia like cyst and dark blue M is streaks), ¢) Segmentation mask.

When analysing random examples from the dataset, represented in Figure 4.2, one can verify
the difference in luminosity, contrast, aspect ratio, size and/or position of the lesion in different
samples. Hence, with such heterogeneity, the dataset can be considered an accurate represent-
ation of real-world images, which allows for the training and validation of robust classification
algorithms. Moreover, the quality of the data provided by this database allows researchers to fo-
cus on developing reliable models rather than concentrating in extensive pre-processing methods

before training.
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Figure 4.2: ISIC 2017 challenge dataset: samples of nevus in the first row, melanoma in the second
and seborrheic keratosis in the third.

The test subset is reserved with the purpose of benchmarking classification results against

other submissions presented in the challenge leaderboard.
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As most real-world datasets in the health domain, classes are imbalanced. Figure 4.3 repres-

ents the distribution of the lesion classes across the train, validation and test sets.

Test | — ]
Validation  [EE— |
Train | —— |

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

m Nevus Melanoma m Seborrheic Keratosis

Figure 4.3: Dataset distribution.

4.2 ABCD Rule Feature Extraction

Among the diagnosis algorithms of dermatology, the most popular and responsible for inspiring
many CAD systems is the ABCD rule of dermoscopy. According to this method, pigmented
skin lesions can be characterized based on four criteria: asymmetry, border, color and number of
dermoscopic structures, as described in Section 2.3.2. Thus, hand-crafted features based on this

dermoscopy algorithm are designed to replicate this process.

Asymmetry

A pigmented skin lesion is considered asymmetrical when a line across its middle divides it into
two halves and one half does not match the other. The overall asymmetry score (Agcore) Of a
pigmented lesion is important when evaluating its malignant potential, with the ABCD rule giving
it the highest weight out of all criteria (refer to Equation 2.1). This assessment is performed
with respect to the shape: benign lesions are usually approximately circular, asymmetrical lesions
provide a warning sign of MM.

We start by identifying the major and minor axes of the lesion with regard to the provided
segmentation binary mask, calculating the major axis orientation (8), as described in [99], with u

denoting the central moment:

2
0 =—-tan"!( il

_— “4.1)
2 H20 — Ho2

Secondly, the lesion is rotated 6 degrees clockwise to align its major and minor axes with the
x and y axes of the image and is centered (Figure 4.4b). For each axis, the mirrored version of one
half is overlapped with its correspondent (Figures 4.4c and 4.4d, respectively) and the exclusive
OR area between them is computed. A non overlapping area mask is obtained (Figure 4.4¢), which
allows the estimation of an asymmetry ratio (A) [136, 137], between the preceding (AT'), and the
total lesion area (T): A = ATT, for both axes.
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(a) Original Mask  (b) Mask Rotated and (c) Top Half Mirrored (d) Bottom Half  (e) Non-Overlapping
Centered Area Mask

Figure 4.4: Illustration of the asymmetry extraction pipeline.

Border

Melanomas are usually associated with irregular and poorly defined borders, while benign nevi
present even and smooth borders. In the clinical evaluation of the border, the sharpness of the
transition from the lesion to the skin is determined (Bycore)-

Thus, to reproduce this modus operandi, the gradient is computed along the border points,
using the blue channel as skin lesions are usually more noticeable in this channel [138]. The first
step is to characterize the contour with 200 equidistant points and find the normal direction of
each point (Figures 4.5a and 4.5b, respectively). The gradient in each border area is reduced to
the mean difference of the pixel intensities along a line, represented in Figure 4.5¢c, whose length
equals 30% of the lesion radius, as described in Equation 4.2 (N refers to the number of periphery

points).
1 N
Gradient = N Z (inner pixels intensity — outer pixels intensity) 4.2)
n=1

The lesion is subsequently divided into 8 equi-angle slices (Figure 4.5d), and, for each, an

average value of the gradient is computed, as in [139].

(a) Equidistant Contour (b) Normal Direction at (c) Contour Point and (d) Division of Lesion into
Points each Point Normal Neighbor Pixels Octants

Figure 4.5: Illustration of the border extraction pipeline.

Color

The extraction of color features plays a significant role in distinguishing between MM lesions,
which often contain more than two colors, and benign lesions which tend to be generally uniform

in color.
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Prevalent statistical measures for characterization of the color distribution are the average,
standard deviation, skewness, maximum, minimum in at least one color space [140].

With a methodology based in the Texture-Colour-Geometry Feature Extraction (TCGFE) lib-
rary [141, 142] developed at Fh-AICOS Portugal, we proceed to the extraction of the average,

standard deviation and skewness of the red, green, and blue components of the lesion.

Dermoscopic Structures

There are five dermoscopic structures identified by the ABCD rule: structureless areas, dots, glob-
ules, streaks and pigment network, the latter being the most thoroughly analysed.
Relying on manual segmentations of pigment network and streaks regions provided by the

ISIC 2017 Challenge (Figures 4.6b and 4.6¢), one can extract features such as the percentage of

the lesion occupied by each criteria.

(a) Original Image (b) Pigment Network (c) Streaks

Figure 4.6: Example of image pixels with dermoscopic structures.

Furthermore, motivated by the specific visual pattern of each of these structures, descriptors
which characterize the texture of a lesion, particularly the existence of repeated visual patterns, are
also extracted. The GLCM is computed over the grayscale image for the estimation of the joint
probability of two pixels that are separated by a fixed distance [140]. By employing the GLCM
descriptor, we estimate the following statistical measures: homogeneity and correlation.

4.3 ABCD Rule-Inspired Neural Network

4.3.1 Model Architecture

With the aim to study a simple ML approach inspired by the ABCD rule of dermoscopy for skin
lesion classification, a MLP classifier is initialized with two hidden layers of 16 neurons each
activated by a ReLLU function and followed by dropout regularization layers (rate of 20%), which
results in neurons being randomly omitted at each epoch. From the ABCD features described in
Section 4.2, a total of 25 features were generated and used as input for the neural network. The
output of the final layer is passed to a softmax function to obtain a distribution over 3 classes. The

network is represented in Figure 4.7.
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Figure 4.7: Architecture of the ABCD rule inspired neural network for skin lesion classification.

4.3.2 Training Strategy

Normalized ABCD rule-inspired features are used as input to the MLP classifier represented in
Figure 4.7. For the training protocol, a batch size of 3 and the Adam optimization algorithm with
a learning rate (LR) of le-3 are employed.

A loss function is of extreme importance in ML: it determines the distance between the model’s
current output and its expected output, therefore guiding the training of the model. Categorical
cross entropy (CCE) (Equation 4.3) is the loss function employed in this work, since it leads to bet-
ter generalization models and faster training [143]. By computing the average loss for validation

data, one can verify if the model is generalising or overfitting.

K
Cross Entropy = — Zyi log(9:) 4.3)
i=1
with K equaling to the number of scalar values in the model output, J; being the i-th predicted
value and y; the corresponding true value.
All experiments are trained for a consistent number of epochs: 130; nevertheless, as too many
epochs can lead to overfitting of the training dataset, early stopping is utilized to halt training when

the validation loss no longer yields an improvement after 20 epochs.

4.4 CNN for Skin Lesion Classification

CNNs are widely used in automatic image classification systems, outperforming classic systems
and even surpassing the documented human performance on ImageNet [112]. To overcome the
limitation of the size of publicly available skin lesion datasets and following the trend in the field
of skin lesion diagnosis, a transfer learning scheme is implemented. By employing a pre-trained
model, it is possible to take advantage of its previous knowledge while retraining it for the new
task, i.e., fine-tuning. The EfficientNet-B3 architecture with weights pre-trained on ImageNet is

used in this work.
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4.4.1 Model Architecture

EfficientNet [144] is a family of CNNs created using a scaling ratio of depth (number of layers),
width (number of channels per layer) and resolution (input image size), which vary depending on
the variant of the CNN selected (EfficientNet-BO to EfficientNet-B7). This architecture focuses on
both accuracy and efficiency, as the name indicates, and is able to achieve state-of-the-art results

while being multiple times smaller and faster [144], as represented in Figure 4.8.
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Figure 4.8: EfficientNet VS other CNNs on the ImageNet dataset (taken from [144]).

EfficientNet-B3, designed to receive RGB images with dimensions of (300 x 300) as input, is
used as the backbone of all experiments performed in this dissertation, with the exception of the
two-layer neural network presented in Section 4.3.1. Variant B3 is chosen because of the balance
when comparing the number of parameters required and accuracy achieved with other CNNs. The
input data must range [0, 255] as rescaling and normalization are included as part of the model.

Although other pre-trained CNNs such as VGG [145], ResNet [146], Inception [118], could
be considered for this problem, the main focus of the work is the investigation of the multi-tasking
and multimodal approaches and their impact on the results, independently of the model structure.

Therefore, such methodologies can be applicable with any other architecture.

4.4.2 Training Strategy

To optimise performance, the following training strategy was employed. Each dermoscopic image
is resized to (300 x 300) pixels in order to make it compatible with the original dimensions of
the EfficientNet-B3 and leverage the natural-image features learned by the ImageNet pre-trained

network.
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To perform a fair comparison, all models were set with the same hyperparameters. Each CNN
model is compiled using the Adam optimization algorithm [147] and the loss function is specified
to be CCE (Equation 4.3).

To accommodate EfficientNet-B3 for the desired tasks, the classification layers are replaced
with specific ones for prediction of specific tasks related to skin lesion diagnosis. A frozen layer
approach [10, 148] is adopted to ensure the best performances, avoiding destroying any of the
information that the pre-trained layers contain. Newly added layers are initialized randomly and
the weights associated with them are changed until they converge, with the LR initially set to
le-3. Because the skin lesion dataset is quite different from ImageNet and to push for better
performance, we unfreeze an entire sub-block of the architecture at a time and fit the model for
5 epochs with a very low LR (1le-6), saving it after this number of epochs. This procedure is
repeated until all blocks are unfrozen. We have models with batch size of 3 or 6, depending if data

balancing techniques are being applied. Each model is trained for 130 epochs.

Data Augmentation

The amount of data being used on any ML process has a significant impact on its success: labeled
data is scarce in the field of medical imaging. Publicly available skin lesion datasets are small and
this number of samples may not be sufficient for an adequate performance in our DL models. To
address such problem, image data augmentation [149, 150, 151] is applied.

Online data augmentation (transformations applied during training) is performed in the DL
models, ensuring that these receive new variations of the images at each epoch and therefore being
a method to reduce overfitting. The following transformations are employed:

» random clockwise rotation of 5 degrees;
* horizontal flips and shifts up to 20% of the image size;
* zoom between 80% (zoom in) and 130% (zoom out);

* brightness adjustment between 0.2 and 0.8 (note that values below 1 result in darkening the
image; above 1, it is the opposite).
Augmentation techniques are only applied in the training set, as it is the learning data; validation

and test sets were not augmented for comparison purposes.

4.5 Evaluation Metrics

The evaluation metrics used to rate the performance of the models proposed in this dissertation are
in line with the ones used in the ISIC 2017 challenge.

The effectiveness of the algorithm is validated through the computation of the loss on the
provided validation set. The performance of the different frameworks presented in this dissertation
is evaluated on the test set of 600 samples (considering the distribution provided by ISIC 2017

challenge), which remains unused during training.
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For a multi-class classification problem, metrics are applied to each label independently to
get a per-class metric or are averaged out across all classes. Moreover, each sample is given a
predicted class according to the maximum predicted probability amongst all cases, rather than
using a specific threshold.

The classification score consists of True Positives (TP), False Positives (FP), True Negatives
(TN) or False Negatives (FN):

# TP - Number of samples correctly diagnosed as a specific lesion

# FP - Number of samples wrongly diagnosed as a specific lesion

# TN - Number of samples correctly diagnosed as not being a specific lesion

# FN - Number of samples wrongly diagnosed as not being a specific lesion

These measures can be organized under the concept of a confusion matrix. A confusion matrix,
used as foundation of other metrics, allows a tabular evaluation of the performance of a classific-
ation model, by comparing the actual target values with those predicted by the network. Matrices
can be normalized through the division of each entry by the total number of true samples in the
class. Given that the dataset used in this dissertation is imbalanced (Figure 4.3), a normalized
version of the confusion matrix will be used since the unnormalized matrix does not consider
the proportion of the total class size which is predicted correctly, possibly leading to improper
conclusions.

Accuracy (ACC) is the most commonly used metric. Nonetheless, it is not advisable to use
it as the main metric when there is a high class imbalance, since the model can correctly predict
majority class samples while classifying incorrectly samples from minority classes and still have

considerably high accuracy.
TP+TN

ACC = 4.4
CC= TP FPTTNLFN 44)

As such, balanced multi-class accuracy (BMA), the macro-average of the per-class recall (also
known as sensitivity or true positive rate - TPR), is the primary metric considered in the ISIC

Challenge.

1 C
BMA = —-) TPR; 4.5
c igé i 4.5)

Sensitivity (SE) is the percentage of true positives that are correctly identified:
TP

SE=_——"
TP+FN

(4.6)
Specificity (SP), also called true negative rate (TNR), measures the proportion of true negatives
classified as negative:

TN

SP=
FP+TN

4.7)
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Precision (or positive predictive value - PPV) is the ratio between the number of correctly

predicted cases and the total number of positives.

TP
PPV =—— 4.8)
TP+FP

Contrarily, negative predictive value (NPV) is the percentage of correctly predicted negative

cases.

TN
NPV = ——— 4.9)
TN+FN

Receiver Operating Characteristic (ROC) curve and Area Under the Receiver Operating Char-
acteristic (AUC) are obtained for each class considering a binary classification of each vs. all
remaining classes. AUC is a representation of the TPR with respect to the false positive rate
(FPR), equal to 1 — Specificity, at various threshold settings, where a score of 0.5 indicates a

random classifier and AUC = 1 denotes a perfect classification.



Chapter 5

Experiments

This chapter reports the experiments implemented to assess the impact of different ML, methodo-
logies in the automatic skin lesion analysis problem.

Firstly, a classical CAD system with hand-crafted features based on the ABCD rule of dermo-
scopy faces the standard in image classification in current days: a fine-tuned pre-trained CNN. A
multi-task model with dermoscopic feature classification as auxiliary tasks is proposed and optim-
ized through a number of class balancing techniques. The inclusion of a segmentation step in the
framework before inputting the images to the CNN is also discussed. The hand-crafted features
extracted from the dermoscopic images are used as auxiliary data for multi-tasking prediction and,

finally, used as additional input for multimodal learning.

5.1 Hand-Crafted versus Deep Learning Generated Features

To assess the relevance of hand-crafted features for experiments described below, an approach to
automatically classify skin lesions based on the ABCD rule is firstly proposed. In addition, such
ML model is compared to a transfer learning approach in order to evaluate if pre-trained models
and their automatically generated features are superior in skin lesion classification problems.

The standard pipeline in automatic dermoscopic image analysis (Figure 3.2) is composed by
three main stages: image segmentation, feature extraction and lesion classification. Whereas seg-
mentation masks are provided by the dataset used in this work, annotated features are not provided.
In this work, besides the findings regarding multi-tasking and multimodal training, methods to ex-
tract features related to the ABCD rule and use them as auxiliary data are proposed.

Asymmetry, border, color, and dermoscopic structures descriptors are extracted through meth-
odologies delineated in Section 4.2 and are grouped together into a single feature vector, with 25
categories. Normalization is then employed through MinMaxScaler so that the features values
remain in range [0,1], thus preventing characteristics with greater intervals from having a bigger
influence in model fitting. The selected normalized characteristics are used as input data for the
MLP classifier (Figure 4.7) which classifies skin lesions into three classes: NV, MM or SK. The

framework followed is visualized in Figure 5.1.

45
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Segmentation Mask

l

RGB Image | — | Feature Extraction | — | MLP Classifier —— Output: Skin Lesion Classification

Figure 5.1: Diagram of the neural network model for skin lesion classification.

As reported in Section 3.5.2, current state of the art in image classification show that transfer
learning is more effective than training a model from scratch. Accordingly, transfer learning in a
DL based approach must also be explored.

An EfficientNet-B3 architecture with the weights and biases of the network pre-trained on
the ImageNet dataset is initialized. A detailed explanation of this CNN choice is presented in
Section 4.4.1. A global average pooling layer is introduced on top of the frozen base network
(EfficientNet-B3) to reduce the number of parameters for the classifier, followed by batch nor-
malization and dropout (rate of 0.2) layers as regularization to prevent overfitting. The original
pre-trained model’s classifier is replaced by a softmax layer with x neurons (x being 3 which is the
number of lesion classes) to translate each of the class’s probabilities. A visual representation is
provided in Figure 5.2.

This system is trained end-to-end from RGB image pixels and labels annotated by experts.

IRm(a}]gSe — EfficientNet B3 —» 1;:51 —_— BN — Dropout ——- Output: Skin Lesion Classification

Figure 5.2: Diagram of the baseline model for skin lesion classification. *Avg. Pool’ denotes the
average pooling layer, " BN’ is Batch Normalization, "FC’ is fully connected layer.

5.2 Multi-Task Learning

In this experiment, we propose to jointly optimize several tasks: skin lesion classification (the main
focus of our work), with one or more related auxiliary tasks. Multi-tasking is performed with
the intention of biasing the model towards more meaningful features. With proposed auxiliary
tasks closely related to the main task, learning them likely allows the model to learn beneficial
representations and focus attention on parts of the image that the baseline network could possibly

ignore.

Skin Lesion and Dermoscopic Features Classification

The baseline model is altered after the dropout layer with the inclusion of new softmax layers, one
for each structure (Figure 5.3), with the number of neurons equaling the number of classes per
task. A hard parameter sharing approach, i.e., sharing the hidden layers between all tasks while

keeping separate task-specific output layers, is adopted.
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Figure 5.3: Diagram of the multi-task model. *Avg. Pool’ denotes the average pooling layer, ' BN’

is Batch Normalization, "FC’ is fully connected layer.

The first auxiliary tasks tested are the classification of the presence of clinical dermoscopic
features. The motivation behind this design is to make use of the correlation between the two: for
example, milia like cyst structures are usually indicative of SK [152] whereas negative network
has high SP for MM [153]. One can avail the superpixel annotations from the dataset to infer

the existence of the aforementioned dermoscopic structures and, consequently, label the data in

different classes.

(a) Presence Labels

FC | Auxiliary Output n

Table 5.1: Class distribution of dermoscopic structures in the training set.

Structure Class # Samples
Pigment Network I’;“rlzzzitt 1816391
Negative Network l?rlf):zzlritt 1182764

Milia like Cyst ﬁiﬁiﬂi 1547219
Streaks Absent 1884

Present 116

(b) Multi-class labels (r is the percentage of lesion occupied by the dermoscopic feature)

Structure Class Class Interval # Samples
0 r=0 869
1 0<r <004 275
Pigment Network 2 0.04 < r <0.1 278
3 0.1 <r<02 296
4 r> 0.2 282
0 r=0 1874
Negative Network 1 0 <r<0.035 63
2 r > 0.035 63
0 r=0 1429
e 1 1 0<r<o0.01 179
Milia like Cyst 2 0.0l < r < 0.03 196
3 r > 0.03 196
0 r=0 1884
Streaks 1 0 < r<0.025 55
2 r > 0.025 61
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Hence, the first multi-task model includes 5 outputs: the main being skin lesion classification
and 4 auxiliary tasks for pigment network, negative network, milia like cyst and streaks classific-

ation.

Two strategies are experimented. The first uses binary classification in the auxiliary tasks
as we are only interested in predicting if each structure is present or absent; in the second, the
percentage of the total lesion that contains each feature is used and, after analysing the distribution
of the percentages, the former positive class is divided and labelled in well distributed degrees of
presence, i.e, classes with approximately the same number of cases, as a way to help the model to
focus (refer to Table 5.1).

5.3 Optimization of Multi-Task Models with Class Balancing

The skin lesion dataset employed in this work is imbalanced between classes. As a result, class
imbalance introduces bias towards the most represented class, compromising the performance of

the previously described models, which must be tackled.

Resampling Techniques

A prominent technique for handling imbalance is resampling: by performing undersampling,
samples from the majority class are removed, whereas in oversampling, examples from the minor-
ity class are duplicated. The latter is applied in this dissertation since it is widely used and proven
to be robust [154], and, unlike undersampling, it does not discard a portion of available data, which

is extremely important given the small size of the dataset.

The first methodology lies in the duplication of MM and SK samples so that there is the same
number of disease samples per class. Batches contain 3 random skin lesion cases and are arranged

in such a way that there is one copy per lesion class.

Thereafter, we carry out another procedure which ensures data frequency [10], i.e., each batch
always holds at least 1 positive sample of every skin lesion and dermoscopic feature, resulting in a
batch size of 6. Because the number of cases is not equal for all classes, after picking all possible
choices from one of the labels, the set must be restarted. Additionally, since the category labels are
not mutually exclusive, it is important that the same sample is not represented twice in the same

batch; we secure that by removing each case from the set after picking it.

By guaranteeing there exists one case of each unique label, model weights will be updated
based on all the unique labels in each gradient descent step [10]. Nonetheless, while this improves
class balance, there is still imbalance as including a case within one category will also include its

labels in all other categories. To further address this issue, class weights are used.
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Class Weights

Class weighting is also employed for handling the skewed distribution of classes: its purpose is
to over-penalize the misclassification of samples from the minority class. The weight W; of each

class i is given by Equation 5.1:

W, = 5.1
Com CRY;

where N is the total number of samples, C is the number of classes, and #; is the number of samples
for class i.

By applying this modification (W;) in the loss function employed in this work (CCE), a weighted
loss function (Equation 5.2) is obtained:

Weighted Cross Entropy = — f W;-yi-log(P:) (5.2)
i=1

The different weight values will influence backpropagation during the training phase. In prac-
tical terms, the added loss from a misclassified sample of MM will have a bigger impact than a
misclassified benign NV.

The difference between calculating class weights based on the distribution of the training set
prior to training and finding the dynamic weights, i.e., computing according to the dispersal of
classes in each batch is examined.

After applying the oversampling and class weighting techniques to the training data, their
impact in the multi-task model, described in Section 5.2, is tested and compared against passing

raw data, as described in the same section.

5.4 Assessment of Segmentation Impact in Skin Lesion Analysis

Segmentation can be applied as a preprocessing method in a skin lesion classification pipeline,
aiming to remove background noise and/or artifacts such as hair, ruler markings and non-target
lesions, which could deceive the classifier.

The goal of this investigation is to understand the role that segmentation plays in classification
performance and whether removing the pixel intensities outside the target lesion is advantageous
or not. The performances of 3 identical models which receive different inputs are assessed. Such
models are optimised through data oversampling and computation of dynamic weights. The inputs,
which can be observed in Figure 5.4, are:

* unaltered skin lesion images;

» segmented images with no background information, created through a bitwise AND opera-

tion using the original image and its corresponding binary mask;

* images cropped around the lesion, with a bounding box obtained from the binary mask

dimensions.
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(a) Original Image. (b) Segmented Image (c) Cropped Image

Figure 5.4: Examples of the inputs for the multi-task model.

5.5 Multi-Task and ABCD Rule Criteria Classification

We further explore the multi-task paradigm and how parallel tasks can improve the focus of a
model by adding more auxiliary classification outputs to the top performing version proposed in
previous Section 5.3. For a supervised classification in the new tasks and because the dataset of
this work does not contain expert annotations of ABCD rule criteria, we are required to proceed

to data labelling.

Dermatologists assess semi-quantitatively the ABCD rule traits. Considering asymmetry, skin
lesions are divided in three levels: fully symmetric (0), asymmetric on one axis (1) and asym-
metric on two axes (2). For the definition of such classes given the asymmetry ratio calculated in
Section 4.2, a threshold, Tp, is set in such a way that more than half of MMs have A, = 2 and
approximately 60% of benign lesions are scored O or 1 (note that MMs are typically asymmetrical
whereas both halves of benign lesions usually match) . Hence, if the non overlapping area exceeds
6% of the lesion area, the lesion is considered asymmetrical in that axis.

0 — fully symmetric, ifA,<Toand A, < Ty

<
<ThorA, <Ty (5.3)

Ascore = § 1 — asymmetric on one axis, if A,

2 — asymmetric on two axes, otherwise

Regarding the border, an abrupt cut-off of the peripheral region of the lesion sets a particular
octant to a score of 1; otherwise, it is scored as 0. Therefore, we set a threshold value of 50 for the
gradient which classifies the transition into either soft (0) or abrupt (1). This procedure is executed
for all the divisions, resulting in a final B, between 0 and 8.

Only asymmetry and border information are considered in three separate trials:

» Addition of one task: asymmetry classification - 3 classes;
» Addition of one task: border classification - 9 classes;

¢ Addition of the above tasks.
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5.6 Multimodal Multi-Tasking

The objective of this technique is to provide the network with readily available information tailored
to what physicians use (ABCD rule) and thus are characteristics proven to be relevant for malig-
nancy classification. Through the usage of these appropriate features, we aim to decrease the
amount of overfitting, therefore enhancing the performance of CNN-based algorithms. Further-

more, they could potentially be useful to help explain the diagnosis prediction.

Early Fusion

We explore pixel-level image fusion, whose goal is to generate a composite image from mul-
tiple inputs containing complementary information [155], by combining the original dermoscopic
images with the corresponding expert traced segmentation masks prior to introducing this inform-

ation into the best performing multi-task model, as represented in Figure 5.5.

RGB FC | Main Output: Skin Lesion
Image —l FC | Aux. Output 1: Pigment Network
@ — | EfficientNet B3 i —> 11?::(%1 —| BN | — | Dropout FC | Aux. Output 2: Negative Network
J FC | Aux. Output 3: Milia like Cyst
o Aux. Output 4: Streaks

Figure 5.5: Diagram of the multimodal multi-tasking model with pixel-level image fusion. "BN’
is Batch Normalization, "FC’ is fully connected layer.

As in previous experiments, the backbone model chosen is EfficientNet-B3; this pre-trained
model expects the input dimensions of the new problem to be equal to the dimensions of the pre-
vious of the old task: (300 x 300) for the height and width, and 3 channels for RGB components,
as detailed in Section 4.4.1. Therefore, a challenge arises: the network must be modified to take
an image with 4 channels as the third dimension.

Changing the number of channels affects the dimensions of the pre-trained weights of the
CNN: the preprocessing normalization layer only holds the mean and variance of each RGB chan-
nel and the weight dimensions of a convolutional layer are determined by the input and output
depths. To deal with the first, we set the state of the fourth channel of the layer by exposing it to
the masks of the training data. For the latter, the weight dimensions of the first convolutional layer

are expanded and the fourth value is set to be the mean of the pre-trained RGB weights.

Late Fusion

The purpose of this investigation is to analyse the impact of features extracted using computer
vision or ML techniques in the prediction of the classifier.
To perform late feature fusion, the multi-task models are set to receive two inputs: the dermo-

scopic images and the characteristics of skin lesion that doctors look for when diagnosing and
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classifying MMs. Hence, the aforementioned hand-crafted ABCD rule features are directly con-
catenated with the feature vector obtained by the EfficientNet-B3. Figure 5.6 provides a repres-

entation of this framework.

RGB . Avg. Main Output: Skin Lesi
— | EfficientNet B3 | — g FC | Main Output: Skin Lesion
Image Pool .
FC | Aux. Output 1: Pigment Network
l @ —| BN Dropout FC | Aux. Output 2: Negative Network
FC | Aux. Output 3: Milia like Cyst
Extracted [ P i
Auxiliary FC | Aux. Output 4: Streaks
Metadata

Figure 5.6: Diagram of the multimodal multi-tasking model with late feature fusion. "BN’ is Batch
Normalization, ’FC’ is fully connected layer.

Not all features might be beneficial to the classification task, some can possibly weaken the
performance of the classifier. Consequently, different cases are tested: including only asymmetry

or border information, or using both simultaneously.



Chapter 6

Results and Discussion

The results of the aforementioned experiments are evaluated, critically analysed and discussed
throughout this chapter. The best performing ISIC challenge submissions are presented and com-
pared to the solutions proposed in this work. A reflection about relevant information found in the
results is also provided, in addition to the clinical applicability, limitations and opportunities for
further development of this study.

For the sake of length, this chapter’s result tables are limited to AUC, SE, SP and BMA as
evaluation metrics; additional metrics for each experiment are found in Appendix A.

6.1 Hand-Crafted versus Deep Learning Generated Features

The proposed ML approach, based on the classical ML pipeline, to evaluate the success of ABCD
rule inspired features in skin lesion diagnosis is tested on the ISIC 2017 Challenge database.
Extracted features from all images are used as an input to the MLP classifier, predicting three
possible outcomes: NV, MM and SK.

CNNss are a specific type of neural networks, as MLPs, particularly suited for image classifica-
tion problems. These networks act as automatic feature extractors and preserve spatial interaction.
Given the requirements for big amounts of labeled data in DL classification problems opposed to
the small size of medical datasets, transfer learning procedures are the current start of the art in
automatic skin lesion analysis. To make use of the advantages of this methodology, a model for
this problematic built on EfficientNet-B3 is tested and compared to the preceding CAD system.

ROC curves comparing the performance of the above-mentioned models in each skin lesion
class and normalized confusion matrices are shown in Figures 6.1 and 6.2, respectively.

Through analysis of the ROC curves, one can observe the improvement in MM classification
with DL generated features. The normalized confusion matrix of the ML model denotes a strong
bias of the algorithm towards NV. Around 70% of the dataset images are classified as NV, when
only 55% are in fact, and more than 80% of MM are being treated as a benign lesion which is

potentially dangerous.
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(a) Nevus. (b) Melanoma. (c) Seborrheic keratosis.

Figure 6.1: Comparison between ROC curves of the models with hand-crafted and deep learned
features.
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Figure 6.2: Normalized confusion matrices for the models with hand-crafted and deep learned
features.

Table 6.1: Results of the models with hand-crafted and deep learned features (bold values highlight
the best result for each metric).

AUC SE SP
Model Nv MM SK Nv MM SK Nv MM Sk DBMA

ABCD rule neural network 0,75 0,72 087 085 021 040 044 092 091 0,49
Transfer learning model 084 081 090 0984 042 068 065 093 09 0,65

Table 6.1 confirms the intuition: pre-trained CNNs significantly outperform traditional ML
approaches. MM SE of the transfer-learning model is twice the value obtained for the ML model
and SK SE also denotes a major improvement (from 0.40 to 0.68). In terms of SP, results are
similar except for NV where the CNN model outperforms the other once again.

This experiment is comparing the hand-crafted features against the ones generated automat-
ically by a DNN, allowing to confirm the superiority of the latter. Over the last decade DL,
particularly CNNs, have become the standard technique in most computer vision systems. CNNs
combine the benefits obtained by ANNs, such as the MLP of this work, and, additionally, take
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advantage of spatial information. Thus, although the hand-crafted features used as input in the
MLP classifier attempted to mimic clinical diagnosis procedure as they are inspired by the ABCD
rule, deep learned features outperform them and are more effective at solving the problem of skin
lesion classification.

This experiment establishes a baseline that the following models are built upon on.

6.2 Multi-Task Learning

Skin Lesion and Dermoscopic Features Classification

A multi-task network is compared against the baseline lesion classification model. By sharing
representations between related tasks, the intention of this paradigm is to enable the model to
generalize better on the main task [122].

Figure 6.3 compares the ROC curves of the baseline and the multi-task models for each skin

lesion class. Normalized confusion matrices for the same models are represented in Figure 6.4.
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Figure 6.3: Comparison between ROC curves of multi-task models with dermoscopic features
classification as auxiliary tasks.
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The ROC curves (Figure 6.3) suggest that the preceding models achieve very similar results,
with a slight advantage for the multi-task model with binary classification of the dermoscopic
features in all lesion classes. Matrices 6.4b and 6.4c show that the addition of binary auxiliary
tasks increases the number of correctly predicted MM and SK. On the other hand, multi-class

prediction of dermoscopic features is worsening MM classification.

Table 6.2: Results of the multi-task models, along with the results from the baseline multi-class
model (bold values highlight the best result for each metric).

AUC SE SP
Model Nv MM SK Nv MM SK Nv MM Sk DBMA

Baseline transfer-learning 0,84 081 090 0,84 042 068 0,65 093 090 0,65

Multi-task with binary dermoscopic 0,86 0,82 0,92 083 043 0,74 0,69 093 088 0,67
features classification as auxiliary

tasks

Multi-task with multi-class dermo- 0,84 0,80 090 085 039 0,71 0,66 092 091 0,65
scopic features classification as

auxiliary tasks

Through an attentive analysis of Table 6.2, one can verify that the MTL algorithm which pre-
dicted absence or presence of the dermoscopic structures exceeded the performance of the baseline
model in all metrics of interest, therefore being considered in further steps of the framework. Con-
trarily, the multi-task model which graded the presence of features in several levels had a poorer

performance, only marginally improving NV SE and SK SP.

6.3 Optimization of Multi-Task Models with Class Balancing

Methodologies presented thus far did not address the problem of the imbalanced classes: inevit-
ably, such models usually present a superior prediction in the majority class in comparison with
the two other classes. To overcome this issue, data balancing techniques are applied to the best

performing model at this point.

Figure 6.5 shows that when doing the one-vs-rest method, the basic multi-task model with no

class balancing strategies outperforms the others.

Contrarily, when considering the three classes, one can verify the positive impact of imbal-
anced learning techniques in the normalized confusion matrices of Figure 6.6. By assigning higher
weight to the minority classes (MM and SK), the model grants more attention to these misclassi-
fied samples therefore learning to classify them better. While in the basic multi-task model, most
cases are classified as NV, there are many more correct predictions of the outnumbered classes in

the optimized multi-task models.
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Figure 6.5: Comparison between ROC curves of the multi-task models with class balancing tech-
niques.
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Figure 6.6: Normalized confusion matrices for the multi-task models with class balancing tech-
niques.

The best overall performance, according to BMA scores, is achieved by the baseline multi-
task with no class balancing techniques (Table 6.3). Nevertheless, SE of MM and SK as well as
SP of NV are significantly improved with the introduction of class weights. When considering
the distribution of the training set for the calculation of class weights, half of MMs are correctly

classified, which is the best result thus far.
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Table 6.3: Results of the multi-task models with data balancing techniques (bold values highlight
the best result for each metric).

Model AUC SE SP BMA

Basic multi-task with no class 0,86 0,82 092 083 043 0,74 0,69 093 088 0,67
balancing techniques

Skin lesions oversampled + no 0,83 0,76 0,89 0,78 042 0,73 0,73 0,88 0,87 0,64
class weights

Data oversampled + no class 0,84 0,77 089 0,78 040 0,77 0,74 0,89 0,86 0,65
weights

Data oversampled + «class 0,82 0,74 088 069 050 080 081 084 084 0,66
weights from training set

Data oversampled + class 0,84 0,75 0,89 0,76 045 0,78 080 0,89 0,84 0,66
weights from batch

It is important to note that in clinical situations, early diagnosis is of great importance and
incorrect classification of a malignant lesion as benign can have dire consequences; hence it could

make clinical sense to raise a false positive instead of creating a false negative.
6.4 Assessment of Segmentation Impact in Skin Lesion Analysis
The impact of background information is tested in this experiment, by comparing the performance

of the multi-task model optimized with data oversampling and class weights computed according

to the composition of each batch, when different versions of the images are used as input.
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Figure 6.7: Comparison between ROC curves of multi-task model when segmented images and
cropped around the lesion images are used as input.

Figure 6.7 demonstrates the poor performance of segmented images (images whose back-
ground was removed). The original dermoscopic images surpass the cropped versions in NV and
MM classification and the opposite occurs for SK. Matrix of Figure 6.8b shows that more than

half of MMs are being correctly predicted.
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Figure 6.8: Normalized confusion matrices for the multi-task model when segmented images and
cropped around the lesion images are used as input.

Using a manually segmented mask to remove background information and pass only the lesion
as input to the multi-task model significantly decreases performance, when comparing it with the
unaltered input. It is possible that segmented images removed contextual information which could
be relevant for the classification task. Results of the original dataset and the crop bounding box
images are extremely similar, with the original images providing advantage in the AUC of MM,
as seen in Table 6.4, but the cropped images achieving higher MM SE, which could be preferable

in a clinical setting.

Table 6.4: Results of the optimized through data balancing multi-task models with modified im-
ages as inputs (bold values highlight the best result for each metric).

AUC SE SP
Model Nv MM SK Nv MM SK Nv MM sk BMA

Original images 084 075 08 0,76 045 0,78 080 089 084 0,66
Segmented images 0,75 0,69 082 0,75 044 050 062 082 091 0,56
Cropped images 084 073 091 067 052 0,78 082 0,78 088 0,66

The modification of the input images through the crop of a lesion bounding box results in a
bigger number of MM predictions, increasing the number of true positives (SE is 52%) but also
doing a worse job at identifying true negatives (SP reduces from 89% in original images to 78%
in cropped images). Nonetheless, it is more detrimental not knowing that an individual has cancer

than to refer them for additional exams by a dermatologist.

The main conclusion drawn from this experiment is that the network appears to be coarsely
focusing on the region of interest, thus meaning background noise does not seem to affect clas-
sification; in fact, it may be beneficial. Neighbor pixels surrounding the lesion are important as
the difference between background (skin) and foreground (lesion) intensities provides relevant

information regarding color and texture variations.
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6.5 Multi-Task and ABCD Rule Criteria Classification

This experiment, besides predicting the five tasks described above, includes the addition of more
auxiliary tasks related to the scoring system utilized by dermatologists when differentiating between
benign and malignant melanocytic lesions. Labelled training data with asymmetry and border
scores is introduced to the multi-task model with oversampled data and class weights (calculated
according to the composition of the training set) applied in the loss function. Three versions are
studied concerning the insertion of both tasks concurrently or each separately.

By inspecting ROC curves in Figure 6.9, one concludes there is no overall benefit in the inclu-
sion of auxiliary tasks for scoring of the first two ABCD criteria. Normalized confusion matrices
of Figure 6.10 present an increase in the percentage of correctly predicted SK. Moreover, they also

expose the bias in these models towards SK as well as a deterioration in MM-related metrics.
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Figure 6.9: Comparison between ROC curves of the multi-task models with ABCD rule criteria
classification tasks.
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Figure 6.10: Normalized confusion matrices for the multi-task models with ABCD rule criteria
classification tasks.

All metrics of interest are compiled in Table 6.5. Although SK exhibits high SE (87%, 90%
and 88% opposed to a value of 80% in the model with no ABCD related auxiliary tasks), its SP is
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Table 6.5: Results of the optimized through data balancing multi-task models with ABCD rule
related auxiliary tasks (bold values highlight the best result for each metric).

AUC SE SP
Model Nv MM SK Nv MM SK Nv MM sk DPMA

Multi-task with binary dermoscopic 0,82 0,74 088 0,69 0,50 080 0,81 084 084 0,66
features classification as auxiliary

tasks

Multi-task with binary dermoscopic 0,82 0,71 0,89 0,58 046 087 090 0,84 0,73 0,64
features & multi-class asymmetry

prediction as auxiliary tasks

Multi-task with binary dermoscopic 0,81 0,67 0,88 0,62 029 090 084 090 0,69 0,60
features & multi-class border pre-

diction as auxiliary tasks

Multi-task with binary dermoscopic 0,81 0,69 0,87 0,57 0,32 0,88 0,84 0,88 0,67 0,59
features, multi-class asymmetry &

border prediction as auxiliary tasks

diminished (73%, 69% and 67%, respectively). On the other hand, SE of MM is severely affected
by border prediction but it allows to obtain the highest SP value.

The features extracted automatically for the asymmetry and border classification tasks were
expected to be correlated with MM detection and improve the prediction of this class but this does
not occur. One can argue that these hand-crafted features are mere surrogates for the true ABCD
features and, consequently, the labels that we defined may be imperfect. It is possible that using

actual ABCD ratings annotated by dermatologists could yield different results.

6.6 Multimodal Multi-Tasking

Early Fusion

The EfficientNet-B3 architecture was modified to accept a 4-channel input, consisting of the red,
green and blue channels of the dermoscopic image and corresponding segmentation mask. The
goal of this experiment is to provide the lesion location and investigate if this can enhance the
features extracted and, consequently, the prediction.

Through the examination of the ROC curves in Figure 6.11 and normalized matrix in Figure
6.12, one can conclude that having the composite image formed by the dermoscopic snapshot
and corresponding expert traced mask as input of the multi-task model reduces considerably its
overall performance. Prediction of MM is particularly influenced, decreasing its AUC to 53%
which in practice means that the model is making random guesses and has no capacity to distin-
guish between MM and non-MM samples. As shown in Section 6.4, the CNN already appears
to understand which portion of each image corresponds to the lesion; therefore the introduction
of the corresponding segmentation mask would not generate beneficial information and a major
improvement was not expected. Nevertheless, such a degradation of the performance was also un-
foreseen. Furthermore, the early fusion approach contributes to the identification of the majority

of samples as SK, i.e., it is biased towards this class.
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Figure 6.11: Comparison between ROC curves of the multimodal multi-task model with pixel-
level image fusion.
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Figure 6.12: Normalized confusion matrix for the multimodal multi-task model with pixel-level
image fusion.

Late Fusion

Through late fusion, the objective is to evaluate if the combination of the traditional features
inspired by the ABCD rule and CNN features has the ability to boost the classifier performance.

The ROC curves generated for the usage of both criteria simultaneously and one at a time are
shown in Figure 6.13. One can infer that the fusion of image and extracted auxiliary metadata
reveals a small improvement over the single image modalities. Confusion matrices demonstrated
in Figure 6.14 reveal that the addition of both asymmetry and border information positively affects
SK diagnosis.

A summary of experimental results of multimodal models is shown in Table 6.6. Pixel-level
image fusion only aids the identification of non-NV lesions (SP of 93%). The late-fusion of hand-
extracted ABCD rule criteria from the dermoscopic images with DL features extracted by the CNN
provides similar results which confirms that the network is able to automatically learn good image
representations by itself. However, the AUC values of the multimodal models with late fusion are
slightly enhanced: there is an improvement for NV and SK when using the border gradient and

the addition of asymmetry benefits MM. Similarly to what we stated in the previous section (6.5),
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Figure 6.13: Comparison between ROC curves of the multimodal multi-task models with late

feature fusion.
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Figure 6.14: Normalized confusion matrix for the multimodal multi-task models with late feature

fusion.

a bias towards SK is detected, hence confirming the strong correlation between this lesion and the

first two ABCD criteria. Again, these traits raise the number of MMs missed (SE decreases from

50% to values below 44%) but improve SP and the opposite occurs for SK.

Table 6.6: Results of the optimized through data balancing multi-task models with multiple inputs
(bold values highlight the best result for each metric).

AUC SE

SP

Model Nv MM SK Nv MM SK Nv MM Sk OMA
Multi-task with single input (RGB 0,82 0,74 088 0,69 0,50 0,80 0,81 084 084 0,66
image)

Multi-task with 4 channel input 0,70 0,53 0,76 029 031 084 093 075 053 048
(RGB image + segmentation mask)

Multi-task with RGB image + 0,82 0,75 0,89 0,63 038 084 083 089 0,73 0,62
asymmetry ratio as inputs

Multi-task with RGB image + bor- 0,83 0,73 0,90 0,066 036 087 084 091 0,72 0,63
der gradient as inputs

Multi-task with RGB image + 0,83 0,74 090 053 044 090 091 083 0,69 0,62

asymmetry ratio and border gradi-
ent as inputs
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6.7 Comparison with Benchmark Performances

The aforementioned results are compared to the "ISIC 2017 Part 3: Lesion Classification’ lead-
erboard'. The top 10 performing models and our model with the best performance in terms of
AUC and BMA (multi-task model with dermoscopic features classification as auxiliary tasks and
no class balancing techniques) are confronted are Table 6.7. For a fair comparison, direct differ-
entiation must be performed with models which did not use additional data sources to train and

did not implement ensemble modelling.

Table 6.7: Comparison between the top performing solution proposed in this work and the best
challenge submissions (Avg. denotes Average).

Ensemble External AUC
Model Models ~ Data MM  SK  Avg. DMA
Matsunaga et al. [6] v v 0,868 0,953 0911 0,831
Diaz [156] - v 0,856 0,965 0911 0,883
Menegola et al. [157] - - 0,874 0,943 0.901 0,844
Bietal. [130] v v 0,870 0,921 0.896 0,843
Yang et al. [127] - - 0,830 0,942 0.886 0,847
DeVries et al. [158] v v 0,836 0,935 0.886 0,809
Vasconcelos et al. [159] - - 0,791 0,911 0.851 0,738
Jia et al. [160] - - 0,804 0,855 0.830 0,729
Harangi [161] v - 0,783 0,867 0.825 0,829
Galdran et al. [162] - - 0,765 0,881 0.823 0,772
Top performing dissertation approach - - 0,820 0,920 0.870 0,668

Note: there are 20 submissions in the challenge. Only the top 10 entries ranked according to BMA are
shown here, as well as the top performing model presented in the dissertation.

Thus, the leading solution presented in this work reached an average AUC of 87% placing it
among the top 35% of the ISIC 2017 challenge submissions. Nonetheless, the fact that we have
limited ourselves to a a single model and limited data also has an impact and must be emphasized.
Even so note that the main focus of this work was not to achieve the best possible classification
performance but rather to investigate the potential of multi-task and multimodality learning and

act as a proof-of-concept study.

The most successful ISIC 2017 challenge submissions implemented ensembles of DL net-
works and extended the provided dataset by using additional data sources to train [163]. Future

derivations of this work can be inspired by those approaches.

As explained in Section 4.4.1, EfficientNet-B3 was the only pre-trained CNN architecture
employed in this study. The studied techniques can be reproduced in other CNNs to investigate if

they lead to superior performance.

1https ://challenge.isic-archive.com/leaderboards/2017
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6.8 Lessons Learned, Limitations and Future Work

Valuable lessons can be extracted after analysis of the proposed models and corresponding results.
The best performance solution proposed in this work with respect to the AUC scores and BMA
was the multi-task model with no imbalanced learning techniques, which confirms the multi-task
network technique is more robust and efficient as compared to the conventional CNN technique.
However, regarding three-class prediction, the highest results were obtained in the multi-task
model with duplicated samples for each unique label and weighted loss functions (weights com-
puted based on the distribution of the training set) which highly penalize misclassifications of this
malignant lesion. Evaluating MM SE is important because the higher it is, the fewer false neg-
ative results, and thus fewer cases of cancer are missed. When using both imbalanced learning
techniques, more than half of MMs were correctly predicted.

It appears to be an easier task to correctly classify SK than MM and the hand-crafted ABCD
rule-inspired features seem to strongly correlate to the first. It can be considered that too many
auxiliary tasks might be detrimental to performance. Multimodal fusion of data has the potential to
improve the classifier’s prediction if more competent characteristics are extracted and/or provided.

Providing segmented images to the CNN model does not add value; the network is capable
of detecting the lesion and extracting meaningful features. Hence, when inputting segmentation
masks along with the original images, no significant differences were expected; however, MM
prediction was heavily degraded and the reasons behind this behavior are unknown.

Regarding the dataset used, while it allows for robust training/validation and comparison to
other state of the art methods, it also has significant limitations that must be addressed in future
work. Firstly, the methodologies presented were only tested on one dataset, meaning that the
results will vary when moving to a different dataset. Moreover, a single train-val-test was used,
since it is the ISIC division, allowing for direct comparison to other state of the art methods, and
this random division of the data, as well as the ratio of each class can play a significant role. Cross
validation tests would be important to ensure that these results are not a consequence of random
data allocation for such a dataset split.

To bypass the problem of the small size of the database and broaden the availability of data for
research, methods such as GANs, particularly Auxiliary Classifier GANs as they provide stability
[164], can be employed to generate artificial and realistic skin lesion images [165, 166].

There is a real concern about the interpretation and explainability of decisions made by DL
methods in medical diagnostic systems. Deep learned features are optimal, as they are optimized
to achieve the best classification performance. However, DL algorithms are frequently considered
as "black box solutions"; the opacity of these algorithms is an obstacle to the trustworthiness of
their outcomes [167], specially in medical applications where an incorrect diagnosis can incur
in high costs for both the patient and the physician. Hence, it can be important to address this
question, moving into the research field of ’Explainable AI’ as done by Barata et al. [168].

In terms of clinical applicability, a question that can be raised is the possibility to correctly

predict and triage skin cancer based on a single image per case. In a clinical setting, dermatologists
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usually combine the visualization of the pigmented skin lesion with external parameters such
as medical history and patient personal information, namely age, gender and body part in their
assessment, which gives an insight beyond the imaging features used by DL algorithms. The
models presented in this dissertation can be further developed to incorporate patient information
and/or clinical images as additional inputs, since combining complementary information from
multiple modalities has the potential to improve performance. Metadata provided by the database
of this work can be used for this purpose, but there is sometimes missing data so such networks
would need to be robust to this issue. Moreover, as the ISIC 2017 challenge dataset does not
contain macroscopic images, other datasets would also need to be gathered.

The ABCD rule has been further expanded to ABCDE, including a criterion for "Evolving".
For this specific trait, a change in shape, size, color and elevation is evaluated. It has become
the most important factor to consider in diagnosis since a changing lesion is a warning sign of
MM. The development of datasets which track the same individual at different points in time
(longitudinal data), thus reflecting the evolution in characteristics of the lesion, could represent
an interesting challenge for the community. Additionally, a number of researchers recommend
including the "ugly duckling sign", besides the ABCDE rule. It states that MM lesions deviate
from the remaining lesions of an individual, and exhibit very different properties. ISIC 2020
challenge [73] presented the first dataset of MM and comparative benign lesions within the same
patient. Hence, the inclusion of ugly duckling method in our proposed solution can be beneficial.

This work was developed within the scope of Fh-AICOS Derm.Al project®, which aims to
use Al to power teledermatological screening through the integration of a mobile application to
acquire macroscopic skin lesion images with RSE-SIGA? and the development of Al-powered risk
triage and decision support platform.

Given Derm.ATI’s framework for risk prioritization and the convenience of a smartphone ap-
plication for early and autonomous diagnosis, future endeavours can focus on the deployment of
the proposed models into real-world scenarios. For this integration, the CNN architecture of this
work (EfficientNet-B3) would not be suitable, with a more lightweight model being required: Mo-
bileNet [169] could be a solution. Mobile acquired macroscopic images also pose a challenge
because they are often subject to various types of distortion [170], hence it would be important to
add a block focused on quality classification, i.e., evaluating if an image has sufficient quality for
the system.

Altogether, even if decisions made by DL models still have to be corroborated by human
experts, automated systems can be a valuable help in the reduction of the workload of physicians
as they can assist in decision making processes. Thus, resources of health systems can be more

efficiently utilized.

2http ://dermai.projects.fraunhofer.pt/
3https ://rse-siga.spms.min-saude.pt/
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Chapter 7

Conclusions

Skin cancer is a major global health problem. With its ever-growing incidence and importance
of an early diagnosis for a positive prognosis, computer assisted diagnosis systems can play an
important role in reducing the burden of physicians. The first approaches reported in the literature
followed a process consisting of pre-processing, segmentation also regarded as border detection,
feature extraction and classification steps. DL for computer vision is an emerging technology and
there have been implementations with DNN architectures for skin lesion classification capable of
outperforming human experts performance. MTL has also been explored as a way to improve
the predictions of a task by jointly training it with auxiliary related tasks, which helps in the
distinction between beneficial and prejudicial features. With multimodal learning, the goal is to
help the model to focus on features which are known to be relevant for malignancy classification.
To our knowledge there is a small number of comprehensive studies in the literature related to
multimodal and multitasking learning applied on skin lesion diagnosis, therefore being the line of
research explored throughout the work.

The ultimate objective of this dissertation was to achieve a robust, reliable and competent
algorithm for multi-class skin lesion prediction, unlike most methods in the literature which are
focused on detecting one class - melanoma. Innovative aspects were introduced: we investig-
ated if extracting auxiliary metadata from the dermoscopic images and fusing it with deep learned
features could improve the prediction of the classifier and if MTL could help improve the gener-
alization performance of the main task: skin lesion classification.

A first methodology consisted of comparing the performance of low-level hand-crafted fea-
tures inspired by the ABCD rule of dermoscopy to deep learned ones extracted by the EfficientNet-
B3 architecture pre-trained on ImageNet in a multi-class prediction system. A transfer learning
procedure was adopted in the latter to overcome the limitation of data and make use of knowledge
learned during training on a general dataset (ImageNet). Best performance was achieved by this
pre-trained model (average AUC of 85% against a value of 78% for the manually extracted fea-
tures), confirming the current trend in this area. This was thus considered the baseline, meaning

that more complex solutions and techniques were then applied in this model.

A multi-task model was proposed, with the main focus and principal output still being skin

67
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lesion classification but with the addition of auxiliary related tasks which consisted on prediction
of dermoscopic structures correlated with the lesions. The goal of these auxiliary tasks was to
provide inductive bias and allow the model to learn representations which can be beneficial for
the main task. The application of this learning paradigm produced superior results, achieving an
average AUC equal to 87%.

In order to decrease the effect of class imbalance and to prevent infrequent labels from having
little contribution to the parameter updates, we proceeded to the implementation of two important
class balancing techniques: oversampling and weighted loss functions, to duplicate and over-
penalize misclassifications of minority class samples. Additionally, we also ensured that each
mini-batch contained at least 1 positive case of each unique label, to update model weights based
on all the unique labels in every training step. These methods decreased the overall performance
of the model, nonetheless they lead to significantly higher melanoma and SK sensitivities (50%
and 80%, respectively), which is desirable for screening purposes.

The role of background information was also evaluated in this work, through the comparison
of the same model with different inputs: original dermoscopic view, images cropped around the
lesion and images containing only lesion information. The latter led to poor results, explained
by the removal of contextual information. The other two resulted in similar results with a slight
advantage in melanoma SE (52%) for the cropped images, which suggests that the CNN is able to
automatically identify which pixels belong to the lesion.

The MTL technique was further studied with the insertion of more auxiliary tasks closely
related to the main task: ABCD rule criteria. By creating features for the asymmetry and border
classification tasks, it was expected that those would be shared with skin lesion prediction, hence
improving it. However, the results suggested that border strongly correlates with SK as a bias was
added towards this class and melanoma classification was jeopardised.

Furthermore, adding the segmentation mask as an extra channel to the RGB dermoscopic im-
age and combining hand-crafted ABCD features with deep learning generated ones through con-
catenation was investigated. The first approach was not expected to generate a major improvement
given that as concluded earlier, the network can perceive what the lesion is and extract meaning-
ful features; nevertheless, MM AUC has a big decrease (from 74% to 53%) which means that the
model had no discriminating ability regarding melanoma and was making random guesses. For the
late feature fusion approach, asymmetry ratio appeared to improve MM AUC and border gradient
benefited NV and SK AUC.

Overall, the main objectives of the dissertation were accomplished. The results reported prove
that MTL allows different tasks to share meaningful features, making it more robust and efficient
as compared to the conventional CNN technique. Auxiliary classification of ABCD rule criteria
did not translate into enhanced performance, which can possibly be explained by the fact that this
information was manually extracted, divided in classes and labelled, therefore being imperfect and
introducing bias. Even so, the multimodal late fusion strategies with such descriptors increased
AUGC:s. The learning paradigms approached in this work are active areas for improvement and can

lead to reliable skin lesion classification systems.



Bibliography

[8]

[9]

[10]

[11]

[12]

[13]

Cancer. URL: https://www.who . int /news—room/ fact —sheets/detail/
cancer (visited on 20/01/2021).

Rebecca L Siegel, Kimberly D Miller and Ahmedin Jemal. “Cancer statistics, 2019”. In:
CA: a cancer journal for clinicians 69.1 (2019), pp. 7-34.

Juliana Berk-Krauss and Mary E Laird. “What’s in a Name—Dermoscopy vs Dermato-
scopy”. In: JAMA dermatology 153.12 (2017), pp. 1235-1235.

Michael Binder et al. “Epiluminescence microscopy: a useful tool for the diagnosis of
pigmented skin lesions for formally trained dermatologists”. In: Archives of dermatology
131.3 (1995), pp. 286-291.

Andre Esteva et al. “Dermatologist-level classification of skin cancer with deep neural
networks”. In: nature 542.7639 (2017), pp. 115-118.
Kazuhisa Matsunaga et al. “Image classification of melanoma, nevus and seborrheic ker-

atosis by deep neural network ensemble”. In: arXiv preprint arXiv:1703.03108 (2017).

Nils Gessert et al. “Skin lesion classification using ensembles of multi-resolution Efficient-
Nets with meta data”. In: MethodsX 7 (2020), p. 100864.

Jordan Yap, William Yolland and Philipp Tschandl. “Multimodal skin lesion classification
using deep learning”. In: Experimental dermatology 27.11 (2018), pp. 1261-1267.
Haofu Liao and Jiebo Luo. “A deep multi-task learning approach to skin lesion classifica-

tion”. In: arXiv preprint arXiv:1812.03527 (2018).

Jeremy Kawahara et al. “Seven-point checklist and skin lesion classification using multi-
task multimodal neural nets”. In: IEEE journal of biomedical and health informatics 23.2
(2018), pp. 538-546.

Derm.Al. URL: https : / / www . aicos . fraunhofer . pt / en / our _ work /
projects/dermai.html (visited on 20/06/2021).

Hani Yousef, Mandy Alhajj and Sandeep Sharma. “Anatomy, skin (integument), epi-
dermis”. In: (2017).

What Are Basal and Squamous Cell Skin Cancers? | Types of Skin Cancer. URL: https:
//www.cancer .org/cancer/basal-and-squamous-cell-skin-cancer/

about /what-is-basal-and-squamous—-cell.html (visited on 09/11/2020).

69


https://www.who.int/news-room/fact-sheets/detail/cancer
https://www.who.int/news-room/fact-sheets/detail/cancer
https://www.aicos.fraunhofer.pt/en/our_work/projects/dermai.html
https://www.aicos.fraunhofer.pt/en/our_work/projects/dermai.html
https://www.cancer.org/cancer/basal-and-squamous-cell-skin-cancer/about/what-is-basal-and-squamous-cell.html
https://www.cancer.org/cancer/basal-and-squamous-cell-skin-cancer/about/what-is-basal-and-squamous-cell.html
https://www.cancer.org/cancer/basal-and-squamous-cell-skin-cancer/about/what-is-basal-and-squamous-cell.html

70

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

BIBLIOGRAPHY

Robert Lanza et al. “Essentials of Stem Cell Biology”. In: (2009).

Jennifer Y Lin and David E Fisher. “Melanocyte biology and skin pigmentation”. In:
Nature 445.7130 (2007), pp. 843-850.

Epidermis | Biology for Majors Il. URL: https://courses.lumenlearning.com/
wm-biology2/chapter/epidermis/ (visited on 09/11/2020).

R Shayini et al. “Classification of Skin Lesions in Digital Images for the Diagnosis of Skin
Cancer”. In: 2020 International Conference on Smart Electronics and Communication
(ICOSEC). IEEE. 2020, pp. 162-166.

Randy Gordon. “Skin cancer: an overview of epidemiology and risk factors”. In: Seminars

in oncology nursing. Vol. 29. 3. Elsevier. 2013, pp. 160-169.

Melody J Eide et al. “Identification of patients with nonmelanoma skin cancer using
health maintenance organization claims data”. In: American journal of epidemiology 171.1
(2010), pp. 123-128.

Eleni Linos et al. “Increasing burden of melanoma in the United States”. In: Journal of
Investigative Dermatology 129.7 (2009), pp. 1666—-1674.

Natalie H Matthews et al. “Epidemiology of melanoma”. In: Exon Publications (2017),
pp- 3-22.

Sertan Kaymak, Parvaneh Esmaili and Ali Serener. “Deep learning for two-step classifica-
tion of malignant pigmented skin lesions”. In: 2018 14th Symposium on Neural Networks
and Applications (NEUREL). IEEE. 2018, pp. 1-6.

Ana Catarina Fidalgo Barata. Automatic detection of melanomas using dermoscopy im-
ages. Tech. rep. Technical report, Instituto Superior Tecnico Lisboa, 2017.

Ravindhra G Elluru. “Cutaneous vascular lesions”. In: Facial Plastic Surgery Clinics 21.1
(2013), pp. 111-126.

Dermoscopy Atlas. URL: http : / / www . dermoscopyatlas . com/ (visited on
17/01/2021).

Rebecca L Siegel, Kimberly D Miller and Ahmedin Jemal. “Cancer statistics, 2017”. In:
CA: a cancer journal for clinicians 67.1 (2017), pp. 7-30.

Cancer burden statistics and trends across Europe | ECIS. URL: https://ecis. jrc.
ec.europa.eu/ (visited on 28/11/2020).

A. F. Duarte et al. “Skin cancer healthcare impact: A nation-wide assessment of an admin-
istrative database”. In: Cancer Epidemiology 56 (2018), pp. 154—160.

Gery P Guy Jr et al. “Prevalence and costs of skin cancer treatment in the US, 2002- 2006
and 2007- 2011”. In: American journal of preventive medicine 48.2 (2015), pp. 183-187.

Jenny T Chen, Steven J Kempton and Venkat K Rao. “The economics of skin cancer: an
analysis of Medicare payment data”. In: Plastic and Reconstructive Surgery Global Open
4.9 (2016).


https://courses.lumenlearning.com/wm-biology2/chapter/epidermis/
https://courses.lumenlearning.com/wm-biology2/chapter/epidermis/
http://www.dermoscopyatlas.com/
https://ecis.jrc.ec.europa.eu/
https://ecis.jrc.ec.europa.eu/

BIBLIOGRAPHY 71

[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

William Gillen and Brett Coldiron. Skin Cancer Chapter 4 Burden of Disease. Tech. rep.

Esther Erdei and Salina M Torres. “A new understanding in the epidemiology of melan-

oma”. In: Expert review of anticancer therapy 10.11 (2010), pp. 1811-1823.

Zachary J Wolner et al. “Enhancing skin cancer diagnosis with dermoscopy”. In: Derma-
tologic clinics 35.4 (2017), pp. 417-437.

Dermoscopy: Overview, Technical Procedures and Equipment, Color. URL: https :

/ / emedicine . medscape . com / article / 1130783 - overview (visited on
03/11/2020).

Robert H Johr. “Dermoscopy: alternative melanocytic algorithms—the ABCD rule of
dermatoscopy, menzies scoring method, and 7-point checklist”. In: Clinics in dermato-
logy 20.3 (2002), pp. 240-247.

Hubert Pehamberger, Andreas Steiner and Klaus Wolff. “In vivo epiluminescence micro-
scopy of pigmented skin lesions. I. Pattern analysis of pigmented skin lesions”. In: Journal
of the American Academy of Dermatology 17.4 (1987), pp. 571-583.

Melanoma Molecular Map Project. URL: http://www.mmmp .org/MMMP / import .
mmmp ?page=dermoscopy .mmmp (visited on 03/11/2020).

Giuseppe Argenziano et al. “Dermoscopy of pigmented skin lesions: results of a consensus
meeting via the Internet”. In: Journal of the American Academy of Dermatology 48.5
(2003), pp. 679-693.

Menzies Method - dermoscopedia. URL: https://dermoscopedia.org/Menzies$
7B%5C_%7DMethod (visited on 03/11/2020).

Using Dermoscopy to Identify Melanoma and Improve Diagnostic Discrimination (FULL)
| AVAHO. URL: https : / / www . mdedge . com / fedprac / avaho / article /
165262 / melanoma / using — dermoscopy — identify — melanoma — and -

improve—-diagnostic (visited on 03/11/2020).

Dermoscopy_tutorial. URL: http://www.dermoscopy .org/consensus/2b.asp
(visited on 09/11/2020).

Wilhelm Stolz. “ABCD rule of dermatoscopy: a new practical method for early recognition
of malignant melanoma”. In: Eur. J. Dermatol. 4 (1994), pp. 521-527.

Giuseppe Argenziano et al. “Epiluminescence microscopy for the diagnosis of doubtful
melanocytic skin lesions: comparison of the ABCD rule of dermatoscopy and a new 7-
point checklist based on pattern analysis”. In: Archives of dermatology 134.12 (1998),
pp- 1563-1570.

Paulina Pala, Beata S Bergler-Czop and Jakub M Gwizdz. “Teledermatology: idea, bene-
fits and risks of modern age—a systematic review based on melanoma”. In: Advances in

Dermatology and Allergology/Postpy Dermatologii i Alergologii 37.2 (2020), p. 159.


https://emedicine.medscape.com/article/1130783-overview
https://emedicine.medscape.com/article/1130783-overview
http://www.mmmp.org/MMMP/import.mmmp?page=dermoscopy.mmmp
http://www.mmmp.org/MMMP/import.mmmp?page=dermoscopy.mmmp
https://dermoscopedia.org/Menzies%7B%5C_%7DMethod
https://dermoscopedia.org/Menzies%7B%5C_%7DMethod
https://www.mdedge.com/fedprac/avaho/article/165262/melanoma/using-dermoscopy-identify-melanoma-and-improve-diagnostic
https://www.mdedge.com/fedprac/avaho/article/165262/melanoma/using-dermoscopy-identify-melanoma-and-improve-diagnostic
https://www.mdedge.com/fedprac/avaho/article/165262/melanoma/using-dermoscopy-identify-melanoma-and-improve-diagnostic
http://www.dermoscopy.org/consensus/2b.asp

72

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

BIBLIOGRAPHY

Adelina Costin and Constanga Furtado. “Experience of a Pilot Project of Teledermato-
logy Screening at the Department of Dermatology and Venereology of Hospital Garcia de
Orta”. In: Journal of the Portuguese Society of Dermatology and Venereology 77.4 (2019),
pp- 311-314.

Damilola A Okuboyejo and Oludayo O Olugbara. “A review of prevalent methods for
automatic skin lesion diagnosis”. In: The Open Dermatology Journal 12.1 (2018).

DJ Eedy and R Wootton. “Teledermatology: a review”. In: British Journal of Dermatology
144.4 (2001), pp. 696-707.

E Tan et al. “Successful triage of patients referred to a skin lesion clinic using teleder-
moscopy (IMAGE IT trial)”. In: British Journal of Dermatology 162.4 (2010), pp. 803—
811.

Sarah J Coates, Joseph Kvedar and Richard D Granstein. “Teledermatology: from histor-
ical perspective to emerging techniques of the modern era: part II: emerging technolo-
gies in teledermatology, limitations and future directions”. In: Journal of the American
Academy of Dermatology 72.4 (2015), pp. 577-586.

Akhilesh S Pathipati, Luke Lee and April W Armstrong. “Health-care delivery methods in
teledermatology: consultative, triage and direct-care models”. In: Journal of telemedicine
and telecare 17.4 (2011), pp. 214-216.

Alexander BORVE et al. “Smartphone teledermoscopy referrals: a novel process for
improved triage of skin cancer patients”. In: Acta dermato-venereologica 95.2 (2015),
pp. 186-190.

What is Artificial Intelligence (AI)? | IBM. URL: https://www.ibm.com/cloud/
learn/what-is—artificial-intelligence (visited on 04/12/2020).

The History of Artificial Intelligence - Science in the News. URL: http://sitn.hms.
harvard.edu/flash/2017/history—artificial-intelligence/ (visited
on 04/12/2020).

Al and robotics are transforming healthcare: Why Al and robotics will define New Health:
Publications: Healthcare: Industries: PwC. URL: https : / / www . pwc . com / gx /
en/industries/healthcare/publications/ai-robotics—-new-health/

transforming-healthcare.html (visited on 04/12/2020).

Wayne Xiong et al. “Achieving human parity in conversational speech recognition”. In:
arXiv preprint arXiv:1610.05256 (2016).

David Silver et al. “Mastering the game of Go with deep neural networks and tree search”.
In: nature 529.7587 (2016), pp. 484-489.

Fei Jiang et al. “Artificial intelligence in healthcare: past, present and future”. In: Stroke

and vascular neurology 2.4 (2017).


https://www.ibm.com/cloud/learn/what-is-artificial-intelligence
https://www.ibm.com/cloud/learn/what-is-artificial-intelligence
http://sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/
http://sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/
https://www.pwc.com/gx/en/industries/healthcare/publications/ai-robotics-new-health/transforming-healthcare.html
https://www.pwc.com/gx/en/industries/healthcare/publications/ai-robotics-new-health/transforming-healthcare.html
https://www.pwc.com/gx/en/industries/healthcare/publications/ai-robotics-new-health/transforming-healthcare.html

BIBLIOGRAPHY 73

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

Thomas Davenport and Ravi Kalakota. “The potential for artificial intelligence in health-

care”. In: Future healthcare journal 6.2 (2019), p. 94.

Natale Cascinelli et al. “A possible new tool for clinical diagnosis of melanoma: the com-
puter”. In: Journal of the American Academy of Dermatology 16.2 (1987), pp. 361-367.

Greg R Day and Robert H Barbour. “Automated melanoma diagnosis: where are we at?”
In: Skin Research and Technology 6.1 (2000), pp. 1-5.

Konstantin Korotkov and Rafael Garcia. “Computerized analysis of pigmented skin le-

sions: a review”. In: Artificial intelligence in medicine 56.2 (2012), pp. 69-90.

Josep Malvehy et al. “Dermoscopy report: proposal for standardization: results of a con-
sensus meeting of the International Dermoscopy Society”. In: Journal of the American
Academy of Dermatology 57.1 (2007), pp. 84-95.

M Hand, A Chien and D Grossman. “Screening and Non-Invasive Evaluative Devices
for Melanoma Detection: A Comparison of Commercially Available Devices and Dermo-
scopic Evaluation”. In: J Clin Dermatol Ther 1.005 (2015).

Titus Josef Brinker et al. “Skin cancer classification using convolutional neural networks:

systematic review”. In: Journal of medical Internet research 20.10 (2018), e11936.

ADDI - Automatic computer-based Diagnosis system for Dermoscopy Images. URL:
https://www.fc.up.pt/addi/index.html (visited on 20/11/2020).

TF Mendonca et al. “Ph2: A public database for the analysis of dermoscopic images”. In:

Dermoscopy image analysis (2015).

ISIC Project — ISDIS. URL: https : / / isdis . isic — archive . com/ isic -
project/ (visited on 20/11/2020).

David Gutman et al. “Skin lesion analysis toward melanoma detection: A challenge at the
international symposium on biomedical imaging (ISBI) 2016, hosted by the international
skin imaging collaboration (ISIC)”. In: arXiv preprint arXiv:1605.01397 (2016).

Noel CF Codella et al. “Skin lesion analysis toward melanoma detection: A challenge at
the 2017 international symposium on biomedical imaging (isbi), hosted by the interna-
tional skin imaging collaboration (isic)”. In: 2018 IEEE 15th International Symposium on
Biomedical Imaging (ISBI 2018). IEEE. 2018, pp. 168-172.

Philipp Tschandl, Cliff Rosendahl and Harald Kittler. “The HAM10000 dataset, a large
collection of multi-source dermatoscopic images of common pigmented skin lesions”. In:
Scientific data 5.1 (2018), pp. 1-9.

Noel Codella et al. “Skin lesion analysis toward melanoma detection 2018: A chal-
lenge hosted by the international skin imaging collaboration (isic)”. In: arXiv preprint
arXiv:1902.03368 (2019).

Marc Combealia et al. “BCN20000: Dermoscopic lesions in the wild”. In: arXiv preprint
arXiv:1908.02288 (2019).


https://www.fc.up.pt/addi/index.html
https://isdis.isic-archive.com/isic-project/
https://isdis.isic-archive.com/isic-project/

74

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

BIBLIOGRAPHY

Veronica Rotemberg et al. “A patient-centric dataset of images and metadata for identify-

ing melanomas using clinical context”. In: Scientific Data 8.1 (2021), pp. 1-8.

Dermofit Image Library - Edinburgh Innovations. URL: https : / / licensing .
edinburgh - innovations .ed.ac.uk/1i/software/dermofit - image —

library.html (visited on 23/11/2020).

About Us | Dermatology Education. URL: http://www.dermnet .com/about—-us/
(visited on 23/11/2020).

7-point criteria evaluation Database. URL: http://derm.cs.sfu.ca/Welcome.
html (visited on 22/11/2020).

What is Machine Learning? | IBM. URL: https://www.ibm.com/cloud/learn/
machine-learning (visited on 04/12/2020).

Tim Lee et al. “Dullrazor®: A software approach to hair removal from images”. In: Com-
puters in biology and medicine 27.6 (1997), pp. 533-543.

Wen-Yu Chang et al. “The feasibility of using manual segmentation in a multifeature
computer-aided diagnosis system for classification of skin lesions: a retrospective com-
parative study”. In: BMJ open 5.4 (2015), e007823.

Guillod Joel et al. “Validation of segmentation techniques for digital dermoscopy”. In:
Skin Research and Technology 8.4 (2002), pp. 240-249.

Ezzeddine Zagrouba and Walid Barhoumi. “A prelimary approach for the automated re-
cognition of malignant melanoma”. In: Image Analysis & Stereology 23.2 (2004), pp. 121-
135.

David Delgado Gomez et al. “Independent histogram pursuit for segmentation of skin

lesions”. In: IEEE transactions on biomedical engineering 55.1 (2007), pp. 157-161.

Ezzeddine Zagrouba and Walid Barhoumi. “An accelerated system for melanoma dia-
gnosis based on subset feature selection”. In: Journal of Computing and Information Tech-
nology 13.1 (2005), pp. 69-82.

Célia A Zorzo Barcelos and VB Pires. “An automatic based nonlinear diffusion equations
scheme for skin lesion segmentation”. In: Applied Mathematics and Computation 215.1
(2009), pp- 251-261.

M Emre Celebi, Y Alp Aslandogan and Paul R Bergstresser. “Unsupervised border de-
tection of skin lesion images”. In: International Conference on Information Technology:
Coding and Computing (ITCC’05)-Volume I1. Vol. 2. IEEE. 2005, pp. 123-128.

Kerri-Ann Norton et al. “Three-phase general border detection method for dermoscopy
images using non-uniform illumination correction”. In: Skin Research and Technology
18.3 (2012), pp. 290-300.

Matthew G Fleming et al. “Techniques for a structural analysis of dermatoscopic imagery”.

In: Computerized medical imaging and graphics 22.5 (1998), pp. 375-389.


https://licensing.edinburgh-innovations.ed.ac.uk/i/software/dermofit-image-library.html
https://licensing.edinburgh-innovations.ed.ac.uk/i/software/dermofit-image-library.html
https://licensing.edinburgh-innovations.ed.ac.uk/i/software/dermofit-image-library.html
http://www.dermnet.com/about-us/
http://derm.cs.sfu.ca/Welcome.html
http://derm.cs.sfu.ca/Welcome.html
https://www.ibm.com/cloud/learn/machine-learning
https://www.ibm.com/cloud/learn/machine-learning

BIBLIOGRAPHY 75

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

Giuseppe Di Leo et al. “An improved procedure for the automatic detection of dermo-
scopic structures in digital ELM images of skin lesions”. In: 2008 IEEE Conference on Vir-
tual Environments, Human-Computer Interfaces and Measurement Systems. IEEE. 2008,
pp- 190-194.

Catarina Barata, Jorge S Marques and Jorge Rozeira. “Detecting the pigment network in
dermoscopy images: a directional approach”. In: 20711 Annual International Conference
of the IEEE Engineering in Medicine and Biology Society. IEEE. 2011, pp. 5120-5123.

Sumi Yoshino et al. “Application of morphology for detection of dots in tumor”. In: SICE
2004 Annual Conference. Vol. 1. IEEE. 2004, pp. 591-594.

William V Stoecker et al. “Detection of asymmetric blotches (asymmetric structureless
areas) in dermoscopy images of malignant melanoma using relative color”. In: Skin Re-
search and Technology 11.3 (2005), pp. 179-184.

William V Stoecker, William Weiling Li and Randy H Moss. “Automatic detection of
asymmetry in skin tumors”. In: Computerized Medical Imaging and Graphics 16.3 (1992),
pp. 191-197.

Sungjoon Cho. “Dermal Radiomics: a new approach for computer-aided melanoma

screening system”. In: (2016).

R Joe Stanley, William V Stoecker and Randy H Moss. “A relative color approach to
color discrimination for malignant melanoma detection in dermoscopy images”. In: Skin
Research and Technology 13.1 (2007), pp. 62-72.

Catarina Barata et al. “Two systems for the detection of melanomas in dermoscopy images
using texture and color features”. In: IEEE Systems Journal 8.3 (2013), pp. 965-979.

Mariam A Sheha, Mai S Mabrouk, Amr Sharawy et al. “Automatic detection of melanoma
skin cancer using texture analysis”. In: International Journal of Computer Applications
42.20 (2012), pp. 22-26.

Lucio Andreassi et al. “Digital dermoscopy analysis for the differentiation of atypical nevi
and early melanoma: a new quantitative semiology”. In: Archives of dermatology 135.12
(1999), pp. 1459-1465.

William V Stoecker et al. “Detection of granularity in dermoscopy images of malig-
nant melanoma using color and texture features”. In: Computerized Medical Imaging and
Graphics 35.2 (2011), pp. 144-147.

M Emre Celebi et al. “A methodological approach to the classification of dermoscopy

images”. In: Computerized Medical imaging and graphics 31.6 (2007), pp. 362-373.

Mihran Tuceryan and Anil K Jain. “Texture analysis”. In: Handbook of pattern recognition
and computer vision. World Scientific, 1993, pp. 235-276.



76

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

BIBLIOGRAPHY

Ronn P Walvick et al. “Classification of melanoma using wavelet transform-based op-
timal feature set”. In: Medical Imaging 2004: Image Processing. Vol. 5370. International
Society for Optics and Photonics. 2004, pp. 944-951.

Rahil Garnavi, Mohammad Aldeen and James Bailey. “Computer-aided diagnosis of
melanoma using border-and wavelet-based texture analysis”. In: IEEE Transactions on
Information Technology in Biomedicine 16.6 (2012), pp. 1239-1252.

Pietro Rubegni et al. “Automated diagnosis of pigmented skin lesions”. In: International
Journal of Cancer 101.6 (2002), pp. 576-580.

Marco Burroni et al. “Melanoma computer-aided diagnosis: reliability and feasibility
study”. In: Clinical cancer research 10.6 (2004), pp. 1881-1886.

Stephan Dreiseitl et al. “A comparison of machine learning methods for the diagnosis of

pigmented skin lesions”. In: Journal of biomedical informatics 34.1 (2001), pp. 28-36.

Gerald Schaefer et al. “An ensemble classification approach for melanoma diagnosis”. In:
Memetic Computing 6.4 (2014), pp. 233-240.

M Burroni et al. “Dysplastic naevus vs. in situ melanoma: digital dermoscopy analysis”.
In: British Journal of Dermatology 152.4 (2005), pp. 679-684.

Kajsa Mgllersen et al. “Unsupervised segmentation for digital dermoscopic images”. In:
Skin Research and Technology 16.4 (2010), pp. 401-407.

Andrea Pennisi et al. “Skin lesion image segmentation using Delaunay Triangulation
for melanoma detection”. In: Computerized Medical Imaging and Graphics 52 (2016),
pp- 89-103.

Niall O’Mahony et al. “Deep learning vs. traditional computer vision”. In: Science and

Information Conference. Springer. 2019, pp. 128-144.

Athanasios Voulodimos et al. “Deep learning for computer vision: A brief review”. In:

Computational intelligence and neuroscience 2018 (2018).

Alex Krizhevsky, Ilya Sutskever and Geoffrey E Hinton. “ImageNet Classification with
Deep Convolutional Neural Networks”. In: Advances in Neural Information Processing
Systems. Ed. by F Pereira et al. Vol. 25. Curran Associates, Inc., 2012, pp. 1097-1105.

Michael A Nielsen. Neural networks and deep learning. Vol. 25.

Alex Krizhevsky, Ilya Sutskever and Geoffrey E Hinton. “Imagenet classification with
deep convolutional neural networks”. In: Communications of the ACM 60.6 (2017),
pp. 84-90.

Olga Russakovsky et al. “Imagenet large scale visual recognition challenge”. In: Interna-

tional journal of computer vision 115.3 (2015), pp. 211-252.

ILSVRC2015 Results. URL: http://image—net.org/challenges/LSVRC/2015/
results (visited on 21/01/2021).


http://image-net.org/challenges/LSVRC/2015/results
http://image-net.org/challenges/LSVRC/2015/results

BIBLIOGRAPHY 77

[117]

[118]

[119]

[120]

[121]
[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

ILSVRC2017. URL: http : / / image — net . org/ challenges / LSVRC /2017 /
results (visited on 21/01/2021).

Christian Szegedy et al. “Going deeper with convolutions”. In: Proceedings of the IEEE

conference on computer vision and pattern recognition. 2015, pp. 1-9.

Karl Weiss, Taghi M Khoshgoftaar and DingDing Wang. “A survey of transfer learning”.
In: Journal of Big data 3.1 (2016), p. 9.

Yasuhiro Fujisawa, Sae Inoue and Yoshiyuki Nakamura. “The possibility of deep learning-

based, computer-aided skin tumor classifiers”. In: Frontiers in medicine 6 (2019), p. 191.
Rich Caruana. “Multitask learning”. In: Machine learning 28.1 (1997), pp. 41-75.

Sebastian Ruder. “An overview of multi-task learning in deep neural networks”. In: arXiv
preprint arXiv:1706.05098 (2017).

Ross Girshick. “Fast r-cnn”. In: Proceedings of the IEEE international conference on com-
puter vision. 2015, pp. 1440-1448.

Dhanesh Ramachandram and Graham W Taylor. “Deep multimodal learning: A survey on
recent advances and trends”. In: IEEE Signal Processing Magazine 34.6 (2017), pp. 96—
108.

Noel Codella et al. “Deep learning, sparse coding, and SVM for melanoma recognition in
dermoscopy images”. In: International workshop on machine learning in medical imaging.
Springer. 2015, pp. 118-126.

Jeremy Kawahara, Aicha BenTaieb and Ghassan Hamarneh. “Deep features to classify
skin lesions”. In: 2016 IEEE 13th international symposium on biomedical imaging (ISBI).
IEEE. 2016, pp. 1397-1400.

Xulei Yang et al. “A novel multi-task deep learning model for skin lesion segmentation
and classification”. In: arXiv preprint arXiv:1703.01025 (2017).

Fébio Perez et al. “Data augmentation for skin lesion analysis”. In: OR 2.0 Context-Aware
Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Pro-
cedures, and Skin Image Analysis. Springer, 2018, pp. 303-311.

Yangqing Jia et al. “Caffe: Convolutional architecture for fast feature embedding”. In:
Proceedings of the 22nd ACM international conference on Multimedia. 2014, pp. 675-
678.

Lei Bi et al. “Automatic skin lesion analysis using large-scale dermoscopy images and
deep residual networks”. In: arXiv preprint arXiv:1703.04197 (2017).

Balazs Harangi. “Skin lesion classification with ensembles of deep convolutional neural
networks”. In: Journal of biomedical informatics 86 (2018), pp. 25-32.

Zongyuan Ge et al. “Skin disease recognition using deep saliency features and multimodal
learning of dermoscopy and clinical images”. In: International Conference on Medical

Image Computing and Computer-Assisted Intervention. Springer. 2017, pp. 250-258.


http://image-net.org/challenges/LSVRC/2017/results
http://image-net.org/challenges/LSVRC/2017/results

78

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

BIBLIOGRAPHY

Ammara Masood, Adel Al-Jumaily and Khairul Anam. “Self-supervised learning model
for skin cancer diagnosis”. In: 2015 7th International IEEE/EMBS Conference on Neural
Engineering (NER). IEEE. 2015, pp. 1012-1015.

Holger A Haenssle et al. “Man against machine: diagnostic performance of a deep learning
convolutional neural network for dermoscopic melanoma recognition in comparison to 58
dermatologists”. In: Annals of Oncology 29.8 (2018), pp. 1836-1842.

Seung Seog Han et al. “Classification of the clinical images for benign and malignant cu-
taneous tumors using a deep learning algorithm”. In: Journal of Investigative Dermatology
138.7 (2018), pp. 1529-1538.

Zhishun She, Y Liu and A Damatoa. “Combination of features from skin pattern and
ABCD analysis for lesion classification”. In: Skin Research and Technology 13.1 (2007),
pp. 25-33.

Thab Zaqout. “Diagnosis of skin lesions based on dermoscopic images using image pro-

cessing techniques”. In: Pattern Recognition-Selected Methods and Applications (2019).

M Emre Celebi et al. “Lesion border detection in dermoscopy images”. In: Computerized
medical imaging and graphics 33.2 (2009), pp. 148-153.

Hitoshi Iyatomi et al. “Parameterization of dermoscopic findings for the internet-based
melanoma screening system”. In: 2007 IEEE Symposium on Computational Intelligence
in Image and Signal Processing. IEEE. 2007, pp. 189-193.

Catarina Barata, M Emre Celebi and Jorge S Marques. “A survey of feature extraction in
dermoscopy image analysis of skin cancer”. In: IEEE journal of biomedical and health
informatics 23.3 (2018), pp. 1096-1109.

Luis Rosado, Maria Jodo Vasconcelos and Mdrcia Ferreira. “A mobile-based prototype
for skin lesion analysis: Towards a patient-oriented design approach”. In: International
Journal of Online Engineering (iJOE) 9.S8 (2013), pp. 27-29.

Maria Jodo M Vasconcelos, Luis Rosado and Marcia Ferreira. “A new risk assessment
methodology for dermoscopic skin lesion images”. In: 2015 IEEE International Sym-
posium on Medical Measurements and Applications (MeMeA) Proceedings. IEEE. 2015,
pp. 570-575.

Ping Zhou and Jim Austin. “Learning criteria for training neural network classifiers”. In:

Neural computing & applications 7.4 (1998), pp. 334-342.

Mingxing Tan and Quoc Le. “Efficientnet: Rethinking model scaling for convolutional
neural networks”. In: International Conference on Machine Learning. PMLR. 2019,
pp. 6105-6114.

Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for large-

scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).



BIBLIOGRAPHY 79

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of the

IEEE conference on computer vision and pattern recognition. 2016, pp. 770-778.

Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In:
arXiv preprint arXiv:1412.6980 (2014).

Adria Romero Lopez et al. “Skin lesion classification from dermoscopic images using
deep learning techniques”. In: 2017 13th IASTED international conference on biomedical
engineering (BioMed). IEEE. 2017, pp. 49-54.

Luis Perez and Jason Wang. “The effectiveness of data augmentation in image classifica-

tion using deep learning”. In: arXiv preprint arXiv:1712.04621 (2017).

Agnieszka Mikotajczyk and Michat Grochowski. “Data augmentation for improving deep
learning in image classification problem”. In: 2018 international interdisciplinary PhD
workshop (IIPhDW). IEEE. 2018, pp. 117-122.

Connor Shorten and Taghi M Khoshgoftaar. “A survey on image data augmentation for
deep learning”. In: Journal of Big Data 6.1 (2019), pp. 1-48.

SM Stricklin et al. “Cloudy and starry milia-like cysts: how well do they distinguish se-
borrheic keratoses from malignant melanomas?” In: Journal of the European Academy of
Dermatology and Venereology 25.10 (2011), pp. 1222-1224.

Maria A Pizzichetta et al. “Negative pigment network: an additional dermoscopic feature
for the diagnosis of melanoma”. In: Journal of the American Academy of Dermatology
68.4 (2013), pp. 552-559.

Mateusz Buda, Atsuto Maki and Maciej A Mazurowski. “A systematic study of the class
imbalance problem in convolutional neural networks”. In: Neural Networks 106 (2018),
pp. 249-259.

A Ardeshir Goshtasby and Stavri Nikolov. “Image fusion: advances in the state of the art”.
In: Information fusion 2.8 (2007), pp. 114-118.

Ivin Gonzéilez Diaz. “Incorporating the knowledge of dermatologists to convolutional
neural networks for the diagnosis of skin lesions”. In: arXiv preprint arXiv:1703.01976
(2017).

Afonso Menegola et al. “RECOD titans at ISIC challenge 2017”. In: arXiv preprint
arXiv:1703.04819 (2017).

Terrance DeVries and Dhanesh Ramachandram. “Skin lesion classification using deep

multi-scale convolutional neural networks”. In: arXiv preprint arXiv:1703.01402 (2017).

Cristina Nader Vasconcelos and Bédrbara Nader Vasconcelos. “Convolutional neural net-
work committees for melanoma classification with classical and expert knowledge based
image transforms data augmentation”. In: arXiv preprint arXiv:1702.07025 (2017).

Xi Jia and Linlin Shen. “Skin lesion classification using class activation map”. In: arXiv
preprint arXiv:1703.01053 (2017).



80

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

BIBLIOGRAPHY

Balazs Harangi. “Skin lesion detection based on an ensemble of deep convolutional neural
network”. In: arXiv preprint arXiv:1705.03360 (2017).

Adrian Galdran et al. “Data-driven color augmentation techniques for deep skin image
analysis”. In: arXiv preprint arXiv:1703.03702 (2017).

Noel CF Codella et al. “Skin lesion analysis toward melanoma detection: A challenge at
the 2017 international symposium on biomedical imaging (isbi), hosted by the interna-
tional skin imaging collaboration (isic)”. In: 2018 IEEE 15th International Symposium on
Biomedical Imaging (ISBI 2018). IEEE. 2018, pp. 168-172.

Augustus Odena, Christopher Olah and Jonathon Shlens. “Conditional image synthesis
with auxiliary classifier gans”. In: International conference on machine learning. PMLR.
2017, pp. 2642-2651.

Alceu Bissoto et al. “Skin lesion synthesis with generative adversarial networks”. In:
OR 2.0 context-aware operating theaters, computer assisted robotic endoscopy, clinical

image-based procedures, and skin image analysis. Springer, 2018, pp. 294-302.

Alec Xiang and Fei Wang. “Towards interpretable skin lesion classification with deep
learning models”. In: AMIA annual symposium proceedings. Vol. 2019. American Medical

Informatics Association. 2019, p. 1246.

Juan Manuel Durdn and Karin Rolanda Jongsma. “Who is afraid of black box algorithms?
on the epistemological and ethical basis of trust in medical AI”. In: Journal of Medical
Ethics 47.5 (2021), pp. 329-335.

Catarina Barata, M Emre Celebi and Jorge S Marques. “Explainable skin lesion diagnosis

using taxonomies”. In: Pattern Recognition 110 (2021), p. 107413.

Andrew G Howard et al. “Mobilenets: Efficient convolutional neural networks for mobile

vision applications”. In: arXiv preprint arXiv:1704.04861 (2017).

Thanh-Toan Do et al. “Accessible melanoma detection using smartphones and mobile
image analysis”. In: IEEE Transactions on Multimedia 20.10 (2018), pp. 2849-2864.



Appendix A

Supplementary Tables of Chapter 6 -
Results

Table A.1: Additional results of the models with hand-crafted and deep learned features (bold
values highlight the best result for each metric).

Model PPV NPV
Nv MM SK Nv MM SK
ABCD rule neural network 0,74 038 043 061 083 090

Baseline transfer-learning ternary 082 059 048 0,68 087 094

Table A.2: Additional results of the multi-task models, along with the results from the baseline
multi-class model (bold values highlight the best result for each metric).

Model PPV NPV
Nv MM SK Nv MM SK
Baseline transfer-learning ternary 0,82 059 048 068 087 094

Multi-task with binary dermoscopic features classi- 0,84 0,61 0,53 0,68 0,87 0,95
fication as auxiliary tasks

Multi-task with multi-class dermoscopic features 0,82 0,53 0,59 0,69 0,86 0,95
classification as auxiliary tasks

Table A.3: Additional results of the multi-task models with data balancing techniques (bold values
highlight the best result for each metric).

Model PPV NPV

Nv MM SK Nv MM SK
Baseline with raw data 0,84 061 053 068 087 095
Skin lesions oversampled + no class weights 0,85 046 0,50 063 086 0,95
Data oversampled + no class weights 0,85 047 049 064 086 095

Data oversampled + class weights from training set 0,88 0,44 046 0,58 0,87 0,96
Data oversampled + class weights from batch 088 050 045 063 0387 096

81
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Table A.4: Additional results of the optimized through data balancing multi-task models with
modified images as input (bold values highlight the best result for each metric).

Model PPV NPV

Nv MM SK Nv MM SK
Original Images 088 050 045 0,63 0387 096
Segmented Images 0,79 037 0,51 057 086 091
Cropped Images 0,87 037 053 057 087 096

Table A.5: Additional results of the optimized through data balancing multi-task models with
ABCD rule related auxiliary tasks (bold values highlight the best result for each metric).

PPV NPV
Nv MM SK Nv MM SK
Multi-task with binary dermoscopic features classification 0,88 0,44 046 0,58 0,87 0,96
as auxiliary tasks
Multi-task with binary dermoscopic features & multi-class 0,87 0,39 0,32 0,51 0,84 0,97
asymmetry prediction as auxiliary tasks
Multi-task with binary dermoscopic features & multi-class 0,87 0,39 0,32 0,51 0,84 0,97
border prediction as auxiliary tasks
Multi-task with binary dermoscopic features, multi-class 0,88 042 0,34 0,54 0,84 0,97
asymmetry & border prediction as auxiliary tasks

Model

Table A.6: Additional results of the optimized through data balancing multi-task models with
multiple inputs (bold values highlight the best result for each metric).

PPV NPV
Model Ny MM SK Nv MM SK
Multi-task with single input (RGB image) 088 044 046 058 087 0096

Multi-task with 4 channel input (RGB image + 0,88 0,23 0,24 041 0,82 0,95
segmentation mask)

Multi-task with RGB image + asymmetry ratioas 0,88 0,45 0,35 0,55 0,85 0,96
inputs

Multi-task with RGB image + border gradientas 0,89 0,49 035 0,57 085 097
inputs

Multi-task with RGB image + asymmetry ratio 0,92 0,38 0,34 0,51 0,86 0,98
and border gradient as inputs
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