7 research outputs found

    A New Computer-aided Technique for Planning the Aesthetic Outcome of Plastic Surgery

    Get PDF
    Plastic surgery plays a major role in today health care. Planning plastic face surgery requires dealing with the elusive concept of attractiveness for evaluating feasible beautification of a particular face. The existing computer tools essentially allow to manually warp 2D images or 3D face scans, in order to produce images simulating possible surgery outcomes. How to manipulate faces, as well as the evaluation of the results, are left to the surgeon's judgement. We propose a new quantitative approach able to automatically suggest effective patient-specific improvements of facial attractiveness. The general idea is to compare the face of the patient with a large database of attractive faces, excluding the facial feature to be improved. Then, the feature of the faces more similar is applied, with a suitable morphing, to the face of the patient. In this paper we present a first application of the general idea in the field of nose surgery. Aesthetically effective rhinoplasty is suggested on the base of the entire face profile, a very important 2D feature for rating face attractivenes

    A New 3D Tool for Planning Plastic Surgery

    Get PDF
    Face plastic surgery (PS) plays a major role in today medicine. Both for reconstructive and cosmetic surgery, achieving harmony of facial features is an important, if not the major goal. Several systems have been proposed for presenting to patient and surgeon possible outcomes of the surgical procedure. In this paper, we present a new 3D system able to automatically suggest, for selected facial features as nose, chin, etc, shapes that aesthetically match the patient's face. The basic idea is suggesting shape changes aimed to approach similar but more harmonious faces. To this goal, our system compares the 3D scan of the patient with a database of scans of harmonious faces, excluding the feature to be corrected. Then, the corresponding features of the k most similar harmonious faces, as well as their average, are suitably pasted onto the patient's face, producing k+1 aesthetically effective surgery simulations. The system has been fully implemented and tested. To demonstrate the system, a 3D database of harmonious faces has been collected and a number of PS treatments have been simulated. The ratings of the outcomes of the simulations, provided by panels of human judges, show that the system and the underlying idea are effectiv

    Planning Plastic Surgery in 3D. An innovative approach and tool

    Get PDF
    Face plastic surgery (PS) plays a major role in today medicine. Both for reconstructive and cosmetic surgery, achieving harmony of facial features is an important, if not the major goal. Several systems have been proposed for presenting to patient and surgeon possible outcomes of the surgical procedure. In this work, we present a new 3D system able to automatically suggest, for selected facial features as nose, chin, etc., shapes that aesthetically match the patient’s face. The basic idea is suggesting shape changes aimed to approach similar but more harmonious faces. To this goal, our system compares the 3D scan of the patient with a database of scans of harmonious faces, excluding the feature to be corrected. Then, the corresponding features of the k most similar harmonious faces, as well as their average, are suitably pasted onto the patient’s face, producing k+1 aesthetically effective surgery simulations. The system has been fully implemented and tested. To demonstrate the system, a 3D database of harmonious faces has been collected and a number of PS treatments have been simulated. The ratings of the outcomes of the simulations, provided by panels of human judges, show that the system and the underlying idea are effective

    Computer analysis of face beauty: a survey

    Get PDF
    The human face conveys to other human beings, and potentially to computer systems, information such as identity, intentions, emotional and health states, attractiveness, age, gender and ethnicity. In most cases analyzing this information involves the computer science as well as the human and medical sciences. The most studied multidisciplinary problems are analyzing emotions, estimating age and modeling aging effects. An emerging area is the analysis of human attractiveness. The purpose of this paper is to survey recent research on the computer analysis of human beauty. First we present results in human sciences and medicine pointing to a largely shared and data-driven perception of attractiveness, which is a rationale of computer beauty analysis. After discussing practical application areas, we survey current studies on the automatic analysis of facial attractiveness aimed at: i) relating attractiveness to particular facial features; ii) assessing attractiveness automatically; iii) improving the attractiveness of 2D or 3D face images. Finally we discuss open problems and possible lines of research

    Impact assessment of facial recognition algorithms\u27 performance when modifying nose dimensions

    Get PDF
    This work quantitatively measures the impact of modifying the nasal width and length dimensions, in a simulated plastic surgery, on the Facial Recognition algorithms, Principal Component Analysis (PCA), Linear Discrimination Analysis (LDA), and Local Binary Patterns Histogram (LBPH). This was integrated through the use of OpenCV. It was found that as the nose width increases beyond 40% its original width, there is an average decrease in facial recognition performance of up to 14%. It was also found that as the nose was modified vertically, there was less than a 3% decrease in performance for the facial recognition algorithms. These rates are consistent with previous research in the field although, these are more quantitative. The experimental structure used is modular in nature and allows for easy insertion of other Facial Recognition Algorithms and other Facial Recognition Datasets

    An advanced prototyping process for highly accurate models in biomedical applications

    Get PDF
    An integrated prototyping process for the derivation of complex medical models is introduced. The use of medical models can support today’s medicine by improving diagnosis and surgical planning, teaching and patient information. To withstand the challenges of time and accuracy, a process for generating accurate virtual and physical medical models is needed. The introduced process offers the possibility to derive virtual and physical models for biomedical engineering applications. Reviewing the current situation of medical virtual prototyping and rapid prototyping applications, limitations were found related to the influential variables of data acquisition, data processing, virtual reality use, and rapid prototyping manufacturing. An integrated prototyping concept (MPP) is introduced for embedding virtual prototyping and rapid prototyping in biomedical applications. Data processing and 3D modeling of complex anatomical structures from computerized image data were investigated and discussed in detail. Finally, parameter analyses were evaluated to derive optimal parameters needed for preparing 3D models for virtual prototyping and rapid prototyping processing in medicine. Summarizing from the accuracy analysis, the present investigation is the first to examine tomographic scanning as decisive factor for inaccuracy of medical prototyping models. The human nose is an example of a complex anatomical geometry, which has been an object of scientific research interest for several years. One of the applications introduced here uses the developed MPP concept as basis for a procedure that generates animated medical models in a virtual reality environment. Although, attempts are being made to reconstruct the human nose as an experimental rapid prototyping model, a process for accurate reconstruction as a transparent rapid prototyping model is still missing. The MPP concept allows fabricating individual models of the human nose with a high level of accuracy and transparency. Finally, temporal analysis revealed major time improvements in modeling complex anatomical models compared to approaches without optimized process sequences and approved parameters. The prototyping of the human hip was the second example used. The results of this particular example emphasized the strengths of the medial prototyping process in preparing hip models for presurgery planning. Here, accuracy was enhanced considerably. Rapid prototyping hip models can provide assistance as a surgical planning tool in complex cases, especially in improving surgical results and implant stability. Thus, the accuracy and time of model generation is improved, thereby establishing a defined process for medical model generation. Considering the novel findings of broad improvements in accuracy and time, a new field of research is emerging, serving both virtual surgery applications and physical implant generation. The MPP developed in this work can be viewed as an initial approach for launching international standards of prototyping technologies in medicine

    Computer-aided prototype system for nose surgery

    No full text
    corecore