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1. Introduction 

Planning surgery for surgical intervention, to evaluate the success of an executed surgical 

intervention, is among keys factors necessary for ensuring quality of minimally invasive 

surgery. The field of medicine dealing with computer-aided preparation of surgical 

interventions, which assists medical interventions such that they are as minimally invasive as 

possible, requires further research.  

The worldwide demand for cutting-edge medical engineering technologies has created an 

impetus in today’s research to launch revolutionary technologies. Specifically, enhanced 

support processes for high precision in diagnostics, surgery planning, and patient treatment 

are in demand. In ear, nose, and throat (ENT) surgery, complex defects and unknown 

processes remain to be discovered, e.g., the physiology and pathophysiology of human 

nasal breathing. Medical modeling allows researchers to obtain knowledge about complex 

formal structures within the human body and makes spatial analysis of structures and their 

effects on flow processes (e.g., nasal airway) possible. Moreover, model-based planning 

procedures support the analysis of final surgical outcomes with respect to patient-specific 

computer-assisted surgery (CAS) planning.  

Medical modeling techniques, known as biomodeling, provide the possibility to reconstruct 

three-dimensional (3D) models of anatomical templates of the human body. Reverse 

engineering (RE) technologies for capturing anatomical structures are available and include: 

computed tomography (CT), magnetic resonance imaging (MRI), and laser scanning (Hieu & 

Zlatov et al., 2005). Along with the development of medical image scanning technologies, 

rapid improvements in medical image processing have revolutionized the planning of medical 

surgery. Since Alberti (Alberti, 1980) first published the notion of generating 3D models via 

CT images, research has resulted in high quality processes for generating spatial structures 

of the human anatomy. In the meantime, technologies such as virtual prototyping (VP) and 

rapid prototyping (RP) have come into focus for processing reconstructed 3D medical image 

data. New medical perspectives have been provided by computer-assisted 3D diagnostic 

and treatment planning, simulation of surgery, 3D design of individual implants (Eufinger et. 

al, 1995; Hierl et al., 2006) and the connection between 3D techniques and navigation 

(Kliegis, Ascherl, Kärcher, 1995; Gibson et al., 2006; D'Urso et al., 1999; Truscott, & de Beer, 

2007). In the past, 3D visualization of medical image data was only possible on computer 

screens and was therefore insufficient for surgeons who were more familiar operating with 

complex 3D geometries. Several steps have been made to process real 3D visualizations of 

medical models using VP and RP technologies (Hieu et al., 2005; Beneke, Metzen, Bergers, 

2003; Mankovich, Cheeseman, Stoker, 1990). Today’s VP and RP applications are 

instrumental for shortening product development processes. In 1987, it was considered a 

success to generate 3D RP models by applying a single process of operations to computer 
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data (Gebhardt, 2003). Today, however, it is possible to produce technical prototypes using 

almost fully automated processes. Medical models are dimensionally accurate models of 

human anatomy generated by means of medical image data, using a medical imaging 

system (e.g., CT). They offer surgeons important and state-of-the-art technological aids for 

various medical applications. Virtual reality (VR), as a VP tool, has found many useful 

applications in computer-assisted surgery, as well (Cai et al., 2004; Gibson et al., 1997; Klein 

et al., 2000). 3D visualizations can play an important role in presurgery planning in terms of 

supporting medical experts in navigating difficult anatomically shaped geometries. 

 

To date, results in the field of RP have mainly been made in response to industrial and 

mechanical engineering demands (Gibson et al., 2006). In such typical engineering 

processes as the manufacturing of technical prototypes, 3D CAD (computer-aided design) 

data are available and form the basis for RP. In order to reconstruct facsimiled medical 

models of existing anatomical parts, the process of producing RP models does not begin with 

the preparation of an already fully defined 3D CAD model, but with the generation of 3D 

models by RE. To generate a 3D model, medical image information about a specific part is 

needed. A technique is needed to process this image data for the generation of 3D models. 

The medical modeling technique known as biomodeling provides the possibility to 

reconstruct 3D models of anatomical templates of parts of the human body. To date, most 

studies investigating the analysis and application of medical image data are restricted to 

either visualization, and the required model reconstruction algorithms (Shi et al., 2006; 

Kalender, 1995), or to post-application tasks (Hieu & Zlatov et al., 2005; Gibson et al., 2006). 

These important studies have not focused on addressing the precise parameters needed in 

the overall process for VP and RP, with respect to generating complex anatomical models. 

Therefore, a VP and RP procedure needs to be developed such that it integrates the whole 

run of capturing medical image data to deriving accurate virtual and physical volume models. 

 

The present thesis aims to develop a prototyping process in medicine that enables the 

generation of medical models. To support this, a classification of RP and VP procedures in 

the field of medical applications is set up. The capabilities of virtual and physical models in 

surgery planning are demonstrated by introducing a concept of how medical models support 

CAS. An unsolved problem in manufacturing medical models using RP technologies is the 

accuracy of the reverse engineered and subsequently manufactured RP models (Gibson, 

2005b; Gibson et al., 2006). This issue has been dealt with in some previous studies. Lill et 

al. (1992) reconstructed a CT model from a real skull, and fabricated a physical model by 

milling hardened polyurethane foam. The reconstructed model deviated from the original 

skull by 1.47 mm on average. A study by Barker et al. (1994) analyzed the dimensional 
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accuracy of an RP model replicated from CT scanning of a bone skull and determined a 

mean difference of 1.9 mm. Further investigations of Wulf et al. (2001) have demonstrated 

that it is possible to achieve mean deviations of ± 0.79 mm using medical images from scans 

with 1-mm slice thickness and the RP procedure of stereolithography (SLA). The study of 

Choi et al. (2002) investigated the failures generated during the fabrication of a skull RP 

model. The average error was 0.62 mm. These former studies on the accuracy of medical 

RP models have not dealt with different scan protocols in evaluating possible deviations. 

They have also not differentiated between possible sources of error, such as the imaging 

system used, the 3D reconstruction process, and the manufacturing procedure. Previous 

investigations did not quantify the relative contribution of geometrical form to total deviation 

of a model. An additional limitation is the accuracy of triangulation procedures in 3D 

reconstruction. According to Giannatsis (2007), the virtual model construction phase 

contributes considerably to observed inaccuracies. The complete procedure and its related 

parameters of virtual model generation are of interest in order to provide accurate and 

reliable medical models for medical prototyping procedures.  

Complex individual anatomical models have traditionally been reproduced with additive RP 

procedures, which result in models of limited translucency and accuracy. Recent studies 

have introduced a general methodology for applying RP to specific research areas of 

biomedical fluid mechanics (Hopkins et al., 2000, Chong et al., 1999, Kim, 2004). For 

instance, De Zélicourt et al. (2005) used the additive RP procedure of stereolithography to 

study a specific case of cardiovascular fluid dynamics. However, the resulting level of 

translucency was rather poor. This situation would demand the use of a procedure that 

enables the generation of translucent models for fluid analysis. The subtractive method most 

ideally suited to this is computer numerically controlled (CNC) machining (Petzold et al., 

2005, Liu et al., 2006). Therefore, former studies of Hastrich (2006) are ongoing in order to 

generate anatomical free-form surfaces of full transparency. Specific milling parameters are 

being evaluated to obtain a fully transparent model. In practice, experimental studies are 

being performed to obtain decisive parameters for a computer-aided manufacturing (CAM) 

procedure that will enable the derivation of machine code for milling accurate, complex-

shaped anatomical surfaces.  

 

First, the present thesis describes the use of prototyping an anatomically correct human nose 

by means of validated process parameters. Several studies (Kim, 2004; Croce et al., 2006; 

Shi, 2006; Hörschler et al., 2006; Finck et al., 2007; Hopkins et al., 2000; Schreck et al, 

1993; Hahn et al, 1993) have attempted to produce a medical RP or VP model of the human 

nose to enable the analysis of nasal anatomy and airflow behavior. This includes 

contributions to our knowledge of the nose’s conditioning of inspired air and particle 
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distribution. However, several limitations have been identified related mainly to inconclusive 

accuracy and process parameters in model generation. Literature dealing with medical nose 

models has traditionally used tomographic slices spaced 2 or 4 mm apart (Hopkins et al., 

2000, Schreck et al, 1993, Hahn et al, 1993). Such large slice increments introduce a degree 

of generalization in the final outcome. In small and thin regions (e.g., the ostium connecting 

the main nasal airway to the sinuses) or in thin regions of the nasal cavities, abrupt changes 

in the airway (e.g., the vestibule or the turbinate heads) occur. A 3D reconstruction made 

from evaluated tomographic images using determined parameters could prevent capturing 

anatomical features in sufficient detail. Croce et al. (2006) used a plastinated specimen of 

the nasal cavities and maxillary sinuses in order to perform flow analysis experimentally. One 

important restriction of this study was that it was not possible to vary different anatomical 

configurations, in terms of comparing the situation before and after surgical treatment. In 

contrast the present thesis introduces an RP method that enables analysis of different nasal 

airway configurations, by exchanging focused layers of the model that represent the region of 

interest. A transparent facsimile model using RP is generated respecting nasal human 

airways including left and right nasal cavities and ostia that connect sinuses to upper 

airways.  

Prototyping of the human hip is the second example whereby validated process parameters 

are used. Various studies have dealt with human hip models for surgical planning and 

biomechanical engineering (Kang et al., 2002, Verdonschot et al., 1993, Handels et al., 

2000). Previous work mainly relates to simulation and biomechanics (Verdonschot et al., 

1993, Kang et al., 2002, Jourdan & Samida, 2009) or visualization and presurgery planning 

(Handels et al., 2000, Lee et al., 2007, Said et al., 2008). As a result, complete process 

parameters are not focused upon in these studies. A valid statement about the accuracy of 

medical hip models is also missing. The present thesis sets out to address this issue by 

presenting accurate prototyping of medical hip models. 

 

Chapter 2 presents state-of-the-art in biomodeling, RP, and VP. The focus of this chapter is 

concentrated on limitations in medical image data processing and related applications that 

arise due to unspecified process parameters. Further, taking into account the different 

process steps stated in Chapter 2, specific demands on RP and VP for medical use will be 

formulated in Chapter 3. These proposed demands form the basis for developing an 

integrated concept of how RP and VP can be embedded in fields of application in medicine 

(Chapter 4). A complete process development for processing medical models by RP and VP 

is presented in Chapter 5. Complex anatomical models are in the focus of interest. 

Subsequently, the presented process is applied to the virtual and physical modeling of the 

human nose and human hip, exemplified in Chapters 6 and 7.   
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2.   Prototyping in biomedical engineering 

“Biomedical engineering integrates physical, chemical, mathematical, and computational 

sciences and engineering principles to study biology, medicine, behavior, and health. It 

advances fundamental concepts; creates knowledge from the molecular to the organ 

systems level; and develops innovative biologics, materials, processes, implants, devices 

and informatics approaches for the prevention, diagnosis, and treatment of disease, for 

patient rehabilitation, and for improving health (NIH, 1997).” 

Biomedical engineering is a fast-paced discipline that provides products that serve modern 

medicine. Specifically, biomedical products support diagnosis, therapy, and scientific 

research. To meet high medical standards, various demands exist for biomedical products. 

Typical standards such as function, ergonomics, and cost efficiency are subject to the 

highest demands on accuracy and surface finishes. RP and VP technologies can be useful 

instruments in biomedical engineering for producing physical and virtual medical models for 

various medical applications. RP encompasses a wide range of technologies and 

applications which involve the manufacturing of free-form-shaped geometries as rapidly and 

efficiently as possible. The various definitions of RP mainly converge in stating that RP is a 

technology that allows fast and automated fabrication of physical objects directly from virtual 

3D CAD data without significant process planning related to part features and geometry 

(Grimm, 2004; Gibson, 2005; Bergers, 2009a). Further, RP is called “rapid” because it can 

prototype parts very rapidly in many cases, that is, in hours rather than in days or weeks 

(Noorani, 2006). Such descriptions of RP emphasize the strength of RP in rapidly fabricating 

models of any shape, by making virtually generated models tangible. Such demands can be 

met by the wide range of uses made available by RP, for medical applications. The most 

important applications for medicine are the design, development, and manufacturing of 

medical models and instrumentations (Noorani, 2006), which succeed the production of 

virtual and physical anatomical models for presurgery planning. The present RP process in 

manufacturing models for applications in early stages of product development processes 

consists of three main processes (Sauer et al., 2004). These processes are the process of 

data generation, data processing and data use (Fig. 2-1). The first process generates 

needed starting data that are the basis for succeeding operations. There are two possibilities 

for data generation. One possibility is to carry out a RE process in order to generate model 

data. A possible field of use is medicine, whereby two-dimensional (2D) medical images are 

generated by tomography devices (e.g., CT scanner). An additional way of generating model 

data is the design of a model using a 3D CAD system in order to create 3D model data. The 

typical field of generating parts or assembly groups with CAD systems is that of engineering.  



6                                                                                             Chapter 2  Prototyping in biomedical engineering       
 

 
Figure 2-1: RP and VP (adapted from Sauer et al., 2004 ). 

 

The process of data processing contains the needed data conversion in order to generate 

either .STL (standard triangulation language) files for RP processes or .VRML (virtual reality 

modeling language) files for VP operations.  

 

To date, RP and VP applications are used mainly in product development processes as 

shown in Figure 2-2. RP is used in all phases of the product development process. The 

product development process, sales, and service are also supported by VP applications. RE 

applications support data acquisition during planning and concept phases of product 

development. Possible failures in early stages of the product development process can be 

detected more easily using RP and VP. Especially, before a product is intended for series 

production, possible changes in the definition of the product have to be identified to reduce 

costs for later adjustments.  
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Figure 2-2: Prototyping in product development (Berg ers, 2009a). 

 

The benefits of using RP and VP in supporting the product development process are reduced 

lead times to generate models, improved ability to visualize geometry due to physical 

existence, earlier detection and reduction of design errors, and increased capability to 

estimate properties of parts and models. Especially in medicine, these benefits are 

necessary but often missing.  

 

 

 

2.1   Biomodeling 

Medical models are generated from patient data that are derived from computerized medical 

imaging (CT, MRI, ultrasonic imaging, etc.). The two main tomography techniques are CT 

and MRI. CT technology is normally used for bony tissues, while MRI scans generate images 

of soft-tissue regions (Gibson, 2005). A comparison of the advantages and disadvantages of 

MRI and CT scanners is situation-dependent. In terms of image data processing, the 

standardized image intensity (Hounsfield units) of CT data (Chapter 2.1.2.2) is relatively 

easier to process than MRI data, where the intensity can vary from protocol to protocol. In 

MRI, this can lead to difficulties in detection of organ boundaries (Bartz, 2005) and is a 

disadvantage for 3D reconstruction processes. However, MRI has advantages in scanning 

soft tissues and does not apply radiation to patients. Summarizing the advantages and 

disadvantages of CT and MRI imaging, CT technique enable the generation of images with 

an intensified representation of tissue boundaries. This is because threshold settings in 

segmentation can be applied more precisely, reducing possible model deviation. Therefore, 

the present thesis refers to content and developments based on CT imaging. 
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The process of medical RE encompasses the following three process steps: 

 

� Tomographic scan (CT) 

� Segmentation and 3D reconstruction  

� Conversion to RP data format (.STL) or VP data format (.VRML) 

 

The objective of running these process steps is to obtain a complete representation of part of 

a patient’s body as a 3D model in.STL file or .VRML file format. Further application of these 

data supports VP or RP.   

 

 

 

2.1.1   Anatomical terminology 

When referring to medical imaging of human anatomy the relative positions of organs, 

extremities, and other specific features are only useful if the body is in a known position. It is 

standard to assume that the body is in position when describing relative positions of 

anatomy. The principal axis of the human is through the centre of the body running from 

head to feet; this is referred to as the long axis (Fig. 2-3).  

 

Figure 2-3: Anatomical planes (adapted from Spinuniv erse, 2009). 
 

Once the anatomical position is set, perpendicular planes divide the body. The transverse 

plane which runs through the body perpendicular to the long axis is defined as the axial 

plane. The coronal and sagittal planes lie perpendicular to the axial plane. Thus, the final 

defined position of the part of interest allows capturing human anatomy in all three 

dimensions. 
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2.1.2   Medical imaging 

The process of obtaining CT data for later 3D reconstruction begins with the selection of an 

appropriate scan protocol related to the reconstruction case in question. Once a patient’s 

body is positioned in the scanning machine according to the body part concerned, a scan 

protocol has to be determined (Fig. 2-4). A volume scan is initiated and is followed by an 

internal slice interpolation process that generates a set of image slices.  

 
Figure 2-4: Reverse engineering in medicine 

 

Finally, a complete set of 2D images ready for later 3D reconstruction is generated. The 

output format of these images is .DICOM (digital imaging and communications in medicine) 

format (see Chapter 2.1.5).  

 

 

 

2.1.2.1   CT Scanning 

Today’s spiral CT technology, which was invented in the early 1990, represents a 

fundamental step in the generation of volume scans. However, such technology only 

permitted scans of one slice at one time. The main disadvantage of single-slice CT 

technology lies in the unsatisfying volume coverage in the longitudinal direction (z-direction). 

In 1998, the principle CT manufacturers introduced multislice CT scanners to the market, 

which enabled simultaneous scanning of various slices. Today, CT scanners can scan up to 

64 image slices per rotation (e.g., Siemens Somatom Definition with 64 detector arrays). 

Moreover, such developments permit scanning at a higher resolution in the longitudinal 
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direction. Nevertheless, appropriate scanning parameters need to be set in order to provide 

accurate data sets for 3D reconstruction. The principle of X-ray technology involves using a 

short wavelength of light to penetrate a material under consideration. X-rays are 

electromagnetic radiations having wavelengths ranging from 100 to 0.01 Å (Noorani, 2006). 

The shorter an X-ray’s wavelength is, the greater its energy and power of penetration. An X-

ray is generated whenever high-voltage electrons strike a material object. The absorption of 

X-radiation by any substance depends strongly on its density and atomic weight (Noorani, 

2006). The CT is one of the most important tools in radiology today, even in industrial RE 

processes. After Radon pronounced the basic mathematical principles of X-ray technology, 

the time was ripe to introduce the first CT machine, late in the year 1970 (Prokop et al., 

2006).  

 
Figure 2-5: CT Scan process (adapted from Siemens, 20 08; Bergers, 2009a) 

 

A CT machine involves an X-ray that scans a patient from different directions (Fig. 2-5). 

Through a process of parallel collimation, X-rays are formed into a thin fan, which then 

defines appropriate slice thickness (Prokop et al., 2006). After the X-ray fan has crossed the 

considered body part, the transmitted X-rays are captured by detectors. With the use of 

inverse Radon transformation, local radiation is reconstructed for every point in the scanned 
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slice. The local absorbed radiation dose is then calculated as so-called “CT values” (Prokop 

et al., 2006).  

 
Figure 2-6: CT Internal reconstruction process (ada pted from Prokop et al., 2006) 

 

In the scanning process, 500–1500 different absorption values are captured by the scanner 

for each position of the tube and each detector row to generate an absorption profile for 

obtaining the raw data (Fig. 2-6). The internal image reconstruction starts with the definition 

of the considered field of view (FOV). In this way, each ray traveling from the tube to the 

detector is captured. The objective is to project all rays backwards by collecting all of the 

different rays together that are captured (Prokop et al., 2006). The result is a undefined 

washy image. In order to rework an unfinished image, several rays are combined into one 

projection to filter the emerging absorption profile with an edge, stressing mathematical 

convolution. This so-called reconstruction filter allows setting spatial resolution and image 

noise by varying between smooth and high resolution (Fig. 2-6).  

The reconstruction filter, a kernel function, enhances high-contrast or low-contrast structures.  

Therefore, the kernel needs to be adjusted to the object of interest. For example, in cases, 

where bony structures are most important, a kernel with strong edge-enhancing 

characteristics should be selected to visualize small gaps. For the differentiation of soft tissue 

structures (e.g., muscles and mucosa) a kernel with a lower local frequency filter and 

smoothing features has proved to be efficient (Falk et al., 1995). There are several 

manufacturers (e.g., Siemens, Toshiba) that sell CT scanners, which use their own specific 

reconstruction filters, and these are not made public. After using an appropriate 

reconstruction filter, CT values are coded in gray values to present a gray value-generated 

image. After the internal reconstruction, voxel-based data sets are available (Fig. 2-5). In 

order to obtain an appropriate data set for 3D reconstruction arbitrary scan parameters have 

to be selected.  

 

 

 

2.1.2.2   3D Acquisition parameters 

The acquisition of medical image data by medical imaging scanners depends on a defined 

scan protocol. Raw data are generated in the scanning machine in terms of deriving .DICOM 

data that contain the scanned medical image slices. The objective is to process the .DICOM 

data by specific segmentation methods along a 3D modeling process.  
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In the discovery and evaluation of appropriate parameters for deriving 3D geometry data, the 

acquisition of useful data must be ensured using a scan protocol. The following parameters 

have to be evaluated before scanning begins: 

 

(1) Scanner determination 

(2) Scan direction and position 

(3) Resolution 

(4) Field of view (FOV) 

(5) X-ray dose (CT)  

(6) Slice thickness 

(7) Slice increment 

(8) Filter algorithm 

 

In the imaging of bony structures, CT has a distinct advantage because of the large 

difference in attenuation between bones and soft tissues (1). Although the soft tissue 

contrast in CT is less optimal for 3D reconstruction than MRI, CT has its advantage in tissue 

structures where there is a large difference in attenuation values, for example, in air-

containing structures such as the nasopharynx, trachea, and larynx (Kung & Fung, 1994). 

Therefore, CT imaging technology is selected as the appropriate application in the present 

thesis. The scan direction and position depends on the particular situation (2). The resolution 

(3) depends on the image matrix that has to be set. A CT image consists of a quadratic 

image matrix that can contain between 256×256 and 1024×1024 pixels but is normally 

defined by 512×512 pixels. A higher resolution corresponds to a higher X-ray dose (5), and 

this has to be preset. The typical value set for head and body scanning is 120 kV (Somatom 

Sensation, Siemens). Each scanned slice is defined by a specific thickness (6). The end 

result is that every single pixel has been transformed into a voxel (Fig. 2-7).  

 
Figure 2-7: Voxel and slice thickness (adapted from Prokop et al., 2006) 
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The size of a voxel follows from the chosen matrix size, the set FOV (4), and the defined 

slice thickness (Prokop et al., 2006). In most cases, the voxel is formed like a bar. The 

consequence is that the pixel size is orientated on the slice plane (x–y plane) 5–10 times 

smaller than the slice thickness (z-direction). That resulting unequally formed voxel 

(anisotropy) can be only improved by taking smaller slice thicknesses.  

Along the reconstruction process every voxel is directed to a specific value, which represents 

the absorption coefficient (µ) for that particular voxel. The CT value is defined as follows, and 

is determined in Hounsfield units (HU):  

 
 

�� = 1000 × (� − �
����)
�
����

														 
 

The Hounsfield scale begins at a value of –1000 for air, 0 for water, and is unlimited in the 

positive extent. The available range for a CT value depends on the specific machine and has 

to be differentiated according to bit depth, which is defined as bits per pixel, e.g., –1024 to 

3071 HU have 12 bits. Figure 2-8 shows a CT scale exemplifying –1000 up to 3000 HU. 

Difficult to determine are the soft tissues including fat, low protein liquids, and fresh blood.  

 
Figure 2-8: CT Value scale (adapted from Prokop et al ., 2006) 

 

In general, it is important to set characteristic CT values for typical scanned materials to 

allow an exact determination of the considered parts. The human eye is able to detect a 

limited amount of gray values ranging from approx. 40–100 gray values (Prokop et al., 2006). 

Therefore, the complete CT value scale is not represented along a CT scan such that the 

inability of differentiating structures with low density differences is avoided. Only a part of that 
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whole scale is shown in the CT window. Therefore, the window setting defines the range and 

level. That is, the range sets image contrast and the level sets brightness.  

 

An important parameter to consider is nominal slice thickness (6) or slice collimation, which 

is determined by the appropriate collimation of the radiation dose during acquisition. As 

mentioned, the slice thickness determines the anisotropy of the resulting voxels. Therefore, 

the X-ray fan has to be adjusted. Every slice is determined by an X-ray composed of a 

divergent fan. To optimize the fan, additional apertures have to be installed to focus the slice 

profile (Fig. 2-9a). Because points that are not localized in the region of interest influence 

object points that are positioned in the region of interest, plan slices are not possible to scan. 

The degree to which an object point contributes to a slice is described by the slice profile 

(Fig. 2-9b).  

 
Figure 2-9 a-c: CT Slice profile (adapted from Prokop  et al., 2006) 

 

As Figure 2-9a shows, the ideal slice profile is a rectangle, the width of which represents 

desired slice thickness. Real slice profiles have a rounded form because related regions 

contribute to image composition (Prokop et al., 2006). As presented in Figure 2-9b, larger 

slices are not characterized by rounded angles to the extent that thinner slices are.  

The full width at half maximum (FWHM) is normally specified as a measure of the width of 

the slice profile (Fig. 2-9c). This measure represents slice collimation or slice thickness 

(Prokop et al., 2006). The difference between slice collimation and slice thickness is related 

to the scanner type. Here, single-detector scanners and multidetector scanners may be 
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(II-2)

(II-3)

differentiated, in which various slices per rotation are scanned (see Chapter 2.1.2.1).  In a 

single detector scanner, the width of the slice is determined by the collimator (Bushberg, 

2002). As shown in Figure 2-10, a multidetector scanner scans various slices simultaneously 

(e.g., four slices shown in Fig. 2-10B).  Here, the collimator determines the outer two edges 

of the scanned slices.  

 

 
Figure 2-10: Slice thickness and collimation (Bushbe rg, 2002) 

 

A related acquisition parameter is slice increment (7), which is the table transition distance 

during a 360° scan. In this context, the so-called pitch is an important parameter to set 

because it is pitch that finally generates radiation toward the patient and defines image 

quality. For single-detector scanners the pitch is defined as the collimator pitch (Bushberg, 

2002): 

 

 

����������	����� = 	 �����	�� ���!�	"��#	���	360°	�������!	�'	(�!��)
����������	*�+��	"��#  

 

 

A pitch less than 1 generates an image of higher quality but more radiation dose to the 

patient. A typical pitch used is 1.5 (Bushberg, 2002). 

Scanners with multiple detector arrays need a corrected pitch definition (Bushberg, 2002): 
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Here, pitch is defined by detector width (Dw). The difference between single and multiple 

detector arrays is shown in Figure 2-11: 

 
Figure 2-11: Pitch (adapted from Bushberg, 2002) 

 

If Si is the slice increment, C the collimation width, and Dw the detector width, the collimator 

pitch is defined as Si/C and the detector width as Si/Dw. For example, a detector pitch of 3 for 

a four-detector scanner is equivalent to a collimator pitch of 0.75 (3/4).  

 

 

 

2.1.3   Segmentation of medical images 

A digital image consists of a finite number of picture elements named pixels (Bergers, 

2009b). These pixels are arranged vertically and horizontally on a grid representing 

differences in brightness (gray scale values). Medical images consist of gray scale values. 

For 3D reconstruction, a medical image data set has to be edited to commute the sequence 

into related regions or structures. In medicine, segmentation is the process of defining 

anatomical structures originating from tomographic image data. Segmentation arranges an 

image into regions of equal conditions (Wiltgen, 1999). Objects are localized and isolated 

(Bergers, 2009b), i.e., an image set is arranged into its constituent objects. But, the process 

of segmentation itself is normally not an end in itself. Instead, segmentation is preparatory for 

succeeding operations such as 3D reconstruction, the analysis of tissues, or the analysis of 

pathological images.  

 

Before starting segmentation a preprocess of filtering has to be conducted. Especially in 

cases in which high resolution scans are needed the noise is often too high. In CT imaging, 

the noise level depends on the magnitude of X-ray dose. Appropriate filters are needed in 

order to reduce increasing noise. As shown in Figure 2-12, noise leads to rough images and 

later to rough surfaces.  



Chapter 2  Prototyping in biomedical engineering                                                                                             17 

Filters usually work as a kernel that can be visualized as an arbitrary set of points moving 

across an image (see Figure 2-12).  

 
Figure 2-12: Image filtering  

 

Pixels within the kernel are selected for filtering. Aside from this rather simplified 

classification, numerous modifications exist. (For explicit and technical reviews of filtering 

techniques, the reader is referred to: Preim & Bartz, 2007;; Russ, 2006; Bankman, 2000.) 

In general, it is supposed that noise occurs at high frequency. Therefore, low-pass filters are 

used for noise reduction (Preim & Bartz, 2007). The design of these filters is based on 

suppositions regarding the amplitude and distribution of noise. There are several filtering 

approaches to in the literature. 

Predefined noise reduction filters ensure that the mean gray value remains the same after 

the filter is applied. A typical noise reduction filter is the mean and Gaussian filter. The mean 

filter is applied by iterating over all pixels and replacing image intensity with a weighted 

average of neighboring pixels (Preim & Bartz, 2007). The Gaussian filter convolves the 

image with a Gaussian kernel in order to reduce the noise using a Gaussian distribution. The 

main problem with both noise reduction filters is that they are rather inflexible in terms of 

taking the full characteristics of an image into account; they typically smudge edges leading 

to a washy image. The difficulty of edge detection in segmentation is more difficult for this 

reason.  

A noise reduction filter that leads to better edge detection is the so-called median filter, which 

takes into account image intensities of the local neighborhood. The median filter replaces the 

original gray value of a pixel by the median of gray values of pixels in the specified 

neighborhood. Instead of exchanging the pixel value with the mean of neighboring pixel 

values, the median filter replaces it with the median of those values (Dhawan et al., 2008). 

An advanced filtering technique, curvature flow, attempts to remove noise from an image by 

maintaining boundaries. Curvature flow filtering is a method used for both smoothing and 
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enhancement and is based on curvature flow interpretation of the geometric heat equation 

(Malladi & Sethian, 1995); smoothing is realized by diffusion, which is controlled by minimum 

and maximum criterion that are determined in reference to local gradient and curvature. 

Diffusion results when local image brightness diffuses due to a concentration difference with 

neighboring pixels. Once a level is set such that all noise below that level is removed, all 

features above that level will be preserved (Sethian, 1996). Diffusion speed is proportional to 

the curvature of the contours. Therefore, the higher the time is set for selecting the gradients, 

the more details that are smoothed in an image. And conversely, the lower the time is set, 

the slower the computation of level-set evolution, and the more details that are preserved.  

In any case, the problem remains that resolution will decrease if a smoothing operation is 

carried out. Applying smoothing filters results in a smooth image but details are ultimately 

reduced (Fig. 2-13). 

 
Figure 2-13: Image noise  

 

The conclusion is that the higher the native contrast difference is, the less impact the noise 

will have on the correct arrangement of pixels. In conducting CT scans for 3D reconstruction, 

it is essential to know the appropriate parameters for actual application. There are four 

classes of segmentation processes to consider (Wiltgen, 1999): 

 

(1) The segmentation procedure of sorting gray values according to their similarity.  

(2) The point-oriented procedure of identifying objects by their gray values. 

(3) The segmentation procedure of sorting gray values according to their abrupt change. 

(4) The edge-orientated procedure of identifying objects by their edges. 

 

The most important procedure is the segmentation procedure of identifying objects by their 

gray values (2). Here, the gray value is the decisive factor if a pixel belongs to an object or 

not. The gray value scale is used to define a threshold that makes it possible to divide an 

object with equal gray values from the background. The basis for that procedure is the 
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histogram of an image. Important procedures that apply this principle include (1) thresholding 

and (2) region growing. 

The basis of thresholding (1) is the histogram and the value range of an image. It is 

supposed that the considered object is presented in a closed range of the complete gray 

value scale. The final separation of object and background is carried out by defining the 

threshold T (Wiltgen, 1999): 

 
 

�´(., )) = 0�(., )); �(., )) ≥ �
	0									; �(., )) < �  

 
 

Hereby, pixels (b) can be related to an object if they are above T while pixels under T can be 

sorted to the background and not to the object. Important to note is that some parts of an 

image can be related to a segmented object although they do not belong to that specific 

object. This effect results when selected gray values lie within the same gray value 

distribution purely by accident. The best-suited method is the manual execution threshold 

and is considered the most accurate segmentation procedure (Bowers et al., 2009). 

The segmentation procedure that compares the pixels of a region with a selected starting 

pixel or seeding point is that of region growing (2). The region-growing operation involves the 

definition of one or more seeding points (xs, ys) in an image according to their gray value b 

(xs, ys). The process starts by taking the seeding point’s gray value and comparing it with the 

proceeding distance of every other pixel (x, y). The following term confirms the pixel’s gray 

values: 

 

|�(., )) − �(.5, )5)| ≤ �	 
 

 

The basic concept of region growing is that a selected seed point is used to connect 

consecutive neighboring voxels, with the provision that selected threshold (T) determined by 

the seeding points gray value is not exceeded. The threshold for the deviation of a gray value 

of the next-related pixel compared with the gray-value of the seed point (xs, ys) is defined by 

T. The approach aims to find merging criteria to obtain homogenous regions (Ayache et al., 

1996). Figure 2-14 depicts different stages (1–4) of a region-growing algorithm. From a user-

defined seed point (x), more and more voxels are aggregated that fulfill the inclusion criterion 

(Preim, & Bartz, 2007). 
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Figure 2-14: Region growing procedure (adapted from  Preim & Bartz, 2007) 
 

A current wave front (X) is defined by successively found voxels that fulfill the threshold 

criterion defined by the seed point. After the geometric forms in the scanned images are 

defined, the successively scanned 2D images are used to connect the forms in the third 

dimension. 

 

 

 

2.1.4   3D Reconstruction of medical images  

To carry out a 3D reconstruction process using data scanned by tomography, there are 

several 3D reconstruction parameters by which the complete modeling process is 

determined. These parameters are speed, data handling, and accuracy. After the acquisition 

of image data sets using appropriate acquisition parameters, image reconstruction follows to 

determine the final data set. The following parameters have to be set: 

 

(1) Internal interpolation methods of scanner 

(2) slice thickness 

(3) slice increment. 

 
In the use of spiral and multidetector scanning machines, a reconstruction failure occurs 

every 360° rotation. This effect depends on the con tinuous table feed that leads to artifacts. 

Failures are caused by the principal problem that the first and last projection along a 

1 2

34
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complete 360° rotation deliver different data, due to continuous table shift. Therefore, an 

internal interpolation method of the raw data is essential to attain a complete 360° data set of 

projections for the considered table position in one plane. One such algorithm that can run 

the interpolation is a linear method called 360° LI  (Linear interpolation). The basic principle of 

this method is that the algorithm interpolates for every angle (equaling 360° in total) between 

the two projections, which are then located to the given z-position. Two 720° rotations are 

needed to run this interpolation with the result that the rotation failure is nearly eliminated. 

However, the slice profile increases in width as a result. Another algorithm used is the 180° 

LI method. Here, the fact that radiation absorption is nonanisotropic is used to virtually 

calculate a second spiral for interpolating the real sequence with the corresponding angles of 

both spirals (Prokop et al., 2006). The most frequently used reconstruction algorithm is the 

180°LI interpolation method with a pitch of 1. This  value prohibits an increase of slice 

thickness with respect to slice increment (Prokop et al., 2006).  

The second 3D reconstruction parameter to consider is the slice thickness. Important to note 

is that in traditional CT the width of the slice profile is the same as the chosen slice 

increment. For the spiral CT scanner and multidetector CT machine an effective slice 

thickness is calculated because here, it depends on different factors such as table feed and 

interpolation algorithms (Prokop et al., 2006).  

The third and main parameter that must be set is the slice increment or reconstruction 

increment. In general, the slice increment is defined as the space between the interpolated 

(internally calculated in CT machine) slices (Prokop et al., 2006). The choice of an 

appropriate slice increment is an important parameter due to the fact that there is no 

information available about the gray value distribution between slices (Fig. 2-15). 

 

 
 Figure 2-15: 3D reconstruction principle 
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There are three possibilities for selecting an optimal slice increment. The first method is to 

take the same value for slice thickness and slice increment as seen in Figure 2-16 to ensure 

that no gaps exist. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-16: Coherence of slice thickness and slice  increment 
 

The second method applies if the original contours should be reconstructed in detail, and the 

slices should be overlapping to some degree. The result is that the original contours, which 

are represented by several slices, are positioned closer to each other (compare Fig. 2-16). 

The third method involves choosing a larger slice increment value as chosen for slice 

thickness, for purposes of making a rough scan. 

 

 

 

2.1.4.1   Surface meshing  

For a 2D dataset describing a landscape, the value at each point represents height. When 

connecting points of equal height, iso-lines are generated, which are commonly used in 

elevation maps. In 3D, the corresponding connected components are called iso-surfaces. 

These are commonly used when visualizing volumetric data generated by tomographic 

scans. In this case the values in the dataset represent the density at a certain point and can 

be used to locate parts of interest, such as bone structure.  
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Figure 2-17: Iso-surface (adapted from Kirschner, 2 006) 

 

A very efficient method to construct the 3D surface was first described in 1987 by Lorensen 

and Cline (Lorensen & Cline, 1987). Their so-called marching cube (MC) algorithm creates a 

polygonal surface representation of a scalar field for a surface with a constant value (Fig. 2-

17). In the case of CT, this represents a certain material density. MC has become the de 

facto standard algorithm for generating polygonal models of 3D implicit surfaces 

(Bennamoun, 2001). The algorithm uses a divide-and-conquer approach and works by 

determining how the iso-surface, the surface that represents a defined constant value from 

segmentation, intersects each cell. Given an iso-value T, each corner in a cell can be 

classified as being either above or below T. LI shows that the iso-surface must intersect any 

edge, which has one corner above, and the other corner below, T (or vice versa). Thus, there 

are 28 = 256 different ways in which the iso-surface can intersect the cell. Due to symmetry, 

these 256 cases are reduced to 14 as presented in Figure 2-18. 

When the corners (e.g., x1, x2) have been classified, the threshold T (X*) and the case has 

been found, the intersection point α along each edge is calculated using linear interpolation.  

 

7∗ = 	9.: ; (1 − 9).< 

 

Then, normal vectors needed for shading the surface are calculated at each corner. For 

calculating normal vectors it is assumed that the direction of the gradient vector ((�) is normal 

to the surface. For calculating gradient vectors of a surface, the gradient vectors at the eight 

cube vertices are calculated first. Then, the gradient at the point of intersection (mesh vertex) 

is calculated via linear interpolation. 

(II-4) 
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Figure 2-18: Marching cubes algorithm 

 

Normalization generates the needed normal vector. In sequence, processing occurs as 

follows (Lorensen & Cline, 1987): 

 

• Read four slices into memory 

• Scan two slices and create a cube from four neighbors on one slice and four 

neighbors on the next slice (Fig. 2-19) 

 
Figure 2-19: Marching cubes procedure (Lorensen, 19 87) 

 

• Calculate an index for the cube by comparing the eight density values at the cube 

vertices with the surface constant 

• Using the index, look up the list of edges from a precalculated table (Fig. 2-18) 

• Using the densities at each edge vertex, find the surface edge intersection via linear 

interpolation 
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• Calculate a unit normal at each cube vertex using central differences 

• Interpolate the normal to each triangle vertex 

• Output the triangle vertices and vertex normals 

 

Often, the MC algorithm generates surfaces that are too rough-edged. The typical task in 

mesh editing is to smooth rough surfaces by removing the surface intersection points from 

the center to the corner of the cube. A disadvantage in using this reconstruction principle is 

the approximation by linear interpolation and the often seen large number of triangles 

(Schroeder et al., 1992). This problem persists in generating high-resolution scans and 

makes mesh editing and associated triangle reduction necessary. However, the results of 

reconstruction ultimately depend on the quality of the originally generated data. 

 

 

 

2.1.4.2   3D Reconstruction failures 

There are parameters that do not result in well-shaped geometric 3D models. The main 

problem for a valid 3D reconstruction is the edge resolution of structures represented by 

pixels along the z-axis, which is the length axis of a patient. The length of edges is 

determined by the chosen slice thickness and slice increment. When both parameters are 

selected as too high, the total length of edges is not scanned and the exact geometry cannot 

be reconstructed. The following effects are caused by an inaccurately chosen slice thickness, 

slice increment, and associated adjustments:  

 

(1) Resolution → “staircase effect” 

(2) Partial volume effect → blurred edges 

(3) Noise → surfaces not well-shaped  

 

If the interslice distance is too large, there is information lost about the real geometry in it. 

Figure 2-20 shows how a lack of image information is responsible for a roughly resolved 

surface. 

 

 

 

 

 

 

 



26                                                                                             Chapter  2  Prototyping in biomedical engineering       
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2-20: Surface resolution 

 

As demonstrated in Figure 2-20, more detailed resolution can be interpolated much better (1) 

and results in a rounded anatomical contour. This may be compared with the use of a rough 

resolution, which leads to the typical “staircase effect”. Here, the original contour in z-

direction is approximately based on geometrical information given by the original slice 

contours. With greater distance between the original contour slices, there is a loss of data. 

Thus, the resulting resolution is as good as the slice increment that has been chosen. The 

partial volume effect (2) occurs due to the fact that the gray value of a voxel represents only 

an average value of the radiant absorption of material that is positioned within it (Klein & 

Broeckel, 2005). The results are blurred edges that are difficult to catch for segmentation.  

Figure 2-21 shows the principle of a partial volume effect. The gray voxels (v1 …, v5) that 

should represent the blue tube are calculated by the average tone of the amount of gray- 

value given by the tube. Two voxels are shown to describe this effect. The first one (v2) has 

less additional information about the tube (less blue) than the second one (v3).  

 

 

 

 

 

 

 

 

 

 
 
 

Figure 2-21: Partial volume effect (adapted from Ro galla, 2006) 
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The result is that voxel v3 has a darker gray value than voxel v2. Nevertheless, in both cases 

the exact geometry or contour is blurred and the tube is not caught accurately with that size 

of a voxel.  

 

Another effect occurring during the 3D reconstruction process involves the noise of an image 

(Chapter 2.1.3). Noise is a parameter that is determined by the dose of radiation of detectors 

in the CT. A typical case of high noise occurs when level of radiation is small with respect to 

slice thickness. To remedy this, a reconstruction filter (kernel) in the CT can be used for 

smoothing. However, smoothing is limited due to decreasing regional resolution inherent in 

the smoothing process. Figure 2-22 represents the principles of, and effects caused by, high 

noise.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 2-22: Noise effect (adapted from Rogalla, 20 06) 
 

In case 1, low noise and a good resolution adjustment are shown. The tissues are well 

separated and the surface is smooth. Half of the given slice thickness increases the image 

noise by a factor of approximately √2 (Rogalla, 2006). That result can be seen in case 2 

where pixels have randomly chosen density values. They will be positioned by the 

classification principle to the next related region. The resulting effect is that the surface looks 

rough. Moreover, there are isles of false selected pixels within the already separated regions. 

In case 3, a smoothing filter is used additionally for noise reduction.  

The present thesis employs the Taubin filter for smoothing in order to withstand typical 

problems of shrinkage due to applying the frequently used Laplacian filter for smoothing. 

Laplacian smoothing changes the position of the vertices, but does not add or remove any 

vertices. One limitation of this type of smoothing lies in the fact that the triangles slide across 
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the mesh (Bray, 2004). This movement pushes the mesh towards more regular triangulation. 

The effect of that sliding leads to a distortion of the shape of the mesh. For applications in 

which accuracy plays a role, shape distortions should be avoided. Taubin smoothing relies 

on the use of two filtering steps, one inwards and one outwards, to approximately preserve 

the volume of the mesh (Bray, 2004). Nevertheless, inaccuracy cannot be avoided 

completely. 

 

 

 

2.1.5   File format 

The exchange of generated medical image data is only possible if data are defined according 

to a general standard. Without this, it would be difficult to run related processes that use 

medical image data. A standard format was passed in 1983, defined as ACR-NEMA 

standard (DICOM Homepage, medical.nema.org/ 2008). The following design objectives of 

the ACR-NEMA standard have been formulated: 

 

• The transfer of image data that are not manufacturer-related 

• The design of an image archive that can be used by different departments 

• The creation of a database for diagnostic information that can be accessed 

globally  

 

Most of these objectives had still not been realized before the introduction of the .DICOM 

format, a successor of the ACR-NEMA standard. Since the introduction of the .DICOM 

format, it is possible to make data transfers from scanners to a network (that supports data 

transfer) and then to external data mediums such as CD-ROM or USB-stick (Sonek, 2004).  

A .DICOM file is a data stream that consists of single data elements (Raphan, 2004).  A 

.DICOM file contains first the appropriate gray value information that comprise the images 

taken (e.g., JPEG-format). Secondly, a .DICOM file includes a header with important 

information about scan parameters including patient data, date, slice thickness, slice 

increment, resolution, image size, etc. A description of scan information based on specific 

attributes, which can be sorted, is shown in Figure 2-23. 
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Figure 2-23: Example of a DICOM file header 

 

The exact identification of an attribute is made possible by taking the appropriate tag, 

consisting of two 16-bit numbers. The first number, the group tag, indicates the relation to a 

specific group, and the second number, the element tag, identifies the element of the 

determined group. Together these numbers represent the format and type of data, for which 

values are shown in the column’s value representation (Fig. 2-23). Additionally, a data 

element contains information about its length and can be either 16-bit or 32-bit. With the 

exact carrier identification information it is possible to create an object-coordination system 

using image coordinates of the pixels and the table position (Reinhart, 2002). By using the 

data information in combination with gray values of the image slices, it is possible to carry out 

a reconstruction process such that a 3D model is created. To date, an appropriate software 

tool that is able to conquer large .DICOM files for use in 3D reconstruction, is sought. 

 

 

 

2.1.6   Software processing  

A decisive point in the 3D reconstruction process is the use of a software tool capable of 

reconstructing accurate data models as well as suitable for subsequent engineering 

processes like RP. The worldwide commercial software leader in RP modeling technology, 

providing the most detailed and precise virtual 3D models available from medical data, is 

Materialise N.V. (Leuven, Belgium) interactive medical image control system (Mimics) 

(Gibson, 2005). Mimics can be used for visualization, segmentation, and 3D rendering of CT 

or MRI image sets. With Mimics, it is possible to display image data in all essential views: the 

original axial view of the image, the coronal and sagittal view using re-sliced data, and the 

calculated 3D view (Fig. 2-24). 

data element

data VR length attributes/tag
group-tag element-tag

…

patient  data              PN             02CCH                  0002                       0000

pixel                           DA             0000 0H                 0002                        0001  

resolution                  CS             FFFFH                  0002                        0002

table position            OW             ….                        7FEQ                      0010

slice thickness          UI               ….                        0008                        0060  

slice increment         US              ….                        0010                        0040

….                               ….              ….                         ….                            ….

… data elementdata element
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Figure 2-24: Mimics layout  

 

The main operations performed by Mimics (Version 13) software for 3D reconstruction are: 

 

(1) Thresholding 

(2) Region growing 

(3) Editing 

(4) Dynamic region growing 

(5) Morphology operations 

(6) Boolean operations 

(7) Cavity fill 

(8) Import/export modules 

 

The first operation carried out by Mimics to set up a segmentation mask is the thresholding 

function (1). A region of interest is defined by selecting a specific range of gray values, 

whereby the selected region’s boundaries represent the upper and lower threshold values. 

Mimics software then allows the setup of masks in which all pixels from a selected range of 

gray values are highlighted. The region growing operation (2) is a segmentation tool used for 

the elimination of noise and the separation of structures and objects that are unrelated. 

Frequently used, an important function for drawing and erasing operations is the editing tool 

(3), which functions by setting local thresholds. The drawing and erasing function is typically 
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used for larger separation procedures such as those required in complex bone and tissue 

structures that cannot be segmented alone using the main thresholding function. The 

dynamic region growing tool (4) allows the specific segmentation of an object on the basis of 

the connectivity of gray values in a predetermined range of gray values. Another tool that is 

used for segmentation is the morphology function (5). This function is used for removing and 

adding pixels from the source mask for the purposes of copying into a target mask. Mimics 

offers the possibility of performing Boolean operations, which are essential (6). That is, 

different combinations of two specific segmentation masks are made possible with a 

subtraction, union, or intersection operation. These operations are typically used for the 

separation of joints. The function of cavity filling (7) is used for filling internal gaps of a 

segmented mask for the purpose of copying results to a new and optimized mask.  

If objects under consideration are segmented systematically by setting up different 

segmentation masks, 3D models can be calculated using the MC surface meshing algorithm. 

Then, a 3D calculation may be run whereby parameters for resolution and filtering must be 

set. Related object information such as height, width, surface, volume, etc. may be added. 

Following 3D calculation, Mimics displays a 3D model using the advanced rendering option 

of OpenGL, which is a hardware acceleration function enabling high-quality renderings for 

the optimal display of 3D objects. Added to its basic functionality of object segmentation for 

conversion into 3D models, Mimics offers additional modules:  the import module (8) and 

STL+ module (8) are relevant to this thesis.  

The import module (8) allows importing 2D stacked uncompressed medical images from CT 

in a variety of formats such as the frequently used .DICOM file format. In this module it is 

possible to specify the appropriate slices that comprise the considered object. The STL+ 

module (8) is an interface that allows exporting generated 3D models as triangulated files 

(.STL or .VRML) (see Chapter 2.3) to subsequent applications. Overall, it is possible to 

export .STL files from a mask or a calculated 3D object. Two important options for reducing 

file size for easier handling in further data processing are triangle reduction and matrix 

reduction. By adjusting the matrix, the grouping of voxels to calculate triangles can be 

determined to reduce resolution. The function of triangle reduction allows the number of 

triangles to be reduced in the mesh. Accordingly, file size decreases and later manipulation 

of the file is facilitated. An additional function of the STL+ module is smoothing, which makes 

rough surfaces smoother. Mimics permit mesh editing by setting different parameters for 

triangle reduction and smoothing. The parameters relevant for the present thesis are 

depicted in Table 2-1. 

 

 

 

 



32                                                                                             Chapter  2  Prototyping in biomedical engineering       
 

Table 2-1: Mesh editing parameters 

Parameter Function 
Triangle 
Reduction:  

Tolerance Maximum deviation of triangles that build an aggregation of triangles, which 
deviate in relation to the set value for tolerance. 

Edge Angle 
Defines the maximum angle that triangles enclose in one plane before they 
will be linked to a different plane. Triangles with an angle smaller as the set 
edge angle will be modified. 

Iterations Defines the number of runs for reducing the data. 

Mode Defines the methodology of triangle reduction.  

Smoothing: 

Iterations  Defines the number of runs for smoothing the surface. 

Factor  Application of this factor controls weight (Taubin filter) 

 

The use of tolerance enables the user to define deviation between the original contour and 

approximated contour (see Chapter 2.2.3). Setting the edge angle allows the angle of the 

normal vectors occurring in one plane to be determined. Mimics contains three different 

mesh simplification algorithms (modes): point, edge, or advanced edge. The differences 

between these algorithms are “where” in the object that is used, for simplifying the mesh. The 

mode point deletes the vertices in the mesh. The mode edge eliminates the edges first to 

reduce the number of triangles. Advanced edge is based on the edge mode and reduces 

triangles additionally (further details classified confidential by Materialise N.V. Leuven). 

 

 

 

2.2   Rapid prototyping 

Supporting and systematic tools are characteristic of the product development process. RP 

or as announced recently additive manufacturing (AM) (Gibson et al., 2010) is an important 

tool for reducing time and costs in such processes. Today, alternative ways are sought 

worldwide to develop higher quality products, faster, within traditional engineering fields as 

well as in related fields such as biomedical engineering. RP allows fast and automated 

fabrication of physical objects directly from virtual 3D CAD data without significant process 

planning related to part features and geometry (Gibson, 2005). Originally set up to increase 

the speed of prototype manufacturing in the manufacturing industry, RP can also be used for 

different applications, such as in medicine (Beneke et al., 2003). 

The basic premise of RP divides a 3D manufacturing problem into several single 

manufacturing steps to reduce complexity (Lorenzen & Breitinger, 1997).   

RP is widely known and based on various manufacturing principles: On one hand, there are 

the so-called additive RP processes of stereolithography (SLA), selective laser sintering 
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(SLS), fused deposition modeling (FDM), and 3D printing (3DP) for example. These additive 

RP processes are based on the principle of adding material in layers as required, without 

shaping machine tools in order to merge layers three-dimensionally (1-step procedure). On 

the other hand, there are the subtractive procedures of milling and turning that use cutting 

edges to generate a model. Their combination is the quasi-additive processing such as layer 

laminate manufacturing (LLM) and CNC based milling and joining (Bergers & Mallepree, 

2010) that may be classified with additive RP procedures according to three process steps: 

contouring, joining, and finishing (3-step procedure) (Fig. 2-25). 

 
Figure 2-25: Classification of selected RP procedure s (Bergers & Mallepree, 2010) 

 

All RP procedures are based on a high level of automation to expediate manufacturing of 

models without time-consuming process interventions. From this perspective, RP procedures 

with more than one process step such as LLM or milling and joining have no deviating basis 

principle. These procedures are thus quasi-additive (Assmann, 2003). The requirements for 

a high accurate, fast, and economic manufacturing process can be fulfilled. 

 

 

 

2.2.1   Classification of models and prototypes 

Novel product ideas may be realized using RP, with physical models and prototypes. To 

date, a standardized designation for model and prototype is not defined. The German 
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industrial designer union (Verband Deutscher Industrie Designer e.V.; VDID) has 

differentiated models according to six different types: specimen, prototype, design model, 

ergonomic model, functional model, proportional model. In contrast, the German NC 

Gesellschaft e.V. (NCG) has organized the different models according to four different 

classes on the basis that the different models do not differ from each other to a significant 

degree (concept model, geometry prototype, functional prototype, technical prototype). In 

general, Gebhardt (2007) recommends orientation on the classification from VDID. Both 

classifications are designed with respect to industrial applications and are still under 

development. To date, such classifications do not comprise medical applications because of 

the difference in model generation and designated use. Therefore, the present thesis aims to 

find a model classification for medical applications (Chapter 4). 

 

 

 

2.2.2   CNC Milling as a quasi-additive RP procedur e 

Chip removal processes belong to procedures that offer highest accuracy in shape and 

grade. Milling offers a wide range of machining scenarios from rough contouring to final 

finishing. Based on the German standard DIN 8580, the manufacturing methods are 

classified in six main groups, which are split up into sub-groups (Fig. 2-27). 

 

 
Figure 2-27: Manufacturing methods (adapted from DI N 8580, 2003) 

 

The process of milling belongs to manufacturing methods within the main group “machining”. 

Machining is divided in sub-groups that are numbered accordingly. Milling is a sub-group of 

the group 3.2 “cutting with geometric defined cutting edge”. With respect to cutting the 

international standard is ISO 3002 (part 1-5). The terms for machining are defined 

internationally in the standard ISO 10791 (part 1-10). But, machining is not a singular 

process; these additional processes however, are not in focus of the present thesis. 

In milling, a rotating tool with multiple cutting edges is moved slowly relative to a material to 

generate a plane or straight surface. The direction of feed motion is perpendicular to the 

tool's axis of rotation. The speed motion is provided by the rotating milling cutter. Therefore, 

Manufacturing methods 3. Machining

3.2 Cutting with geometric defined cutting edge (DIN 8589-0)

3.2.3 Milling (DIN 8589-3)
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milling offers a wide range of application. The following paragraphs describe the main milling 

parameters that have to be considered if the aim is to generate a specific surface. 

The three-step procedure of quasi-additive milling employs knowledge existing in the field of 

subtractive or machine manufacturing procedures, respectively. The decisive advantages in 

using CNC milling include the possibility to mill every material that is suited for machining, to 

mill models of high accuracy, to mill models in nearly every size (restricted only by available 

machine space), and to manufacture transparent models (Chapter 2.2.5). Compared with the 

RP procedure of SLS, the quality of surfaces is better within a decimal range. The accuracy 

of the geometry of an SLS-produced model can vary up to 0.6 mm (Assmann, 2003).  

Due to this reason, CNC milling is considered an ideal process technology for manufacturing 

models for medical applications in which accuracy, transparency, and material issues all play 

major roles. Possible disadvantages may result in cases of complex geometries as source 

data. The basic challenge is to overcome the occurrence of undercuts (Fig. 2-28). 

 

 
Figure 2-28: Undercuts in the case of complex geome tries (3 axis machining) 

 

As shown in Figure 2-28 in case of 3 axis machining it is impossible to mill a complete 

contour in a one-step process. There is only one contour that can be reached by the tool for 

operation (positive milling path, green line). The rest of the contour (negative milling path, 

blue line) is impossible to mill in the condition shown.  

To overcome the problem of undercuts, a process of slicing the model at exactly the point 

that defines the maximum milling depth is suggested (Fig. 2-29). 
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Figure 2-29: Slicing line 

 

After the slicing is complete it is possible to mill the parts 2-3 (Fig. 2-30) in a single 

processing step. The consequence of slicing a model is that an appropriate joining principle 

has to be selected for completing the model (Fig. 2-30). 

 
Figure 2-30: Sliced of milling components 

 

As Figure 2-30 shows, there is a specific joining range along the slicing line for which an 

appropriate joining principle has to be selected.  

If no undercuts are found on a model (e.g., cube), slicing and joining of layers are 

unnecessary. The principles of quasi-additive RP technology enforce a specific formulation 

procedure for the manufacture of a RP model based on 3D CAD data. The sequence of the 

quasi-additive RP process is shown in Figure 2-31: 
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Figure 2-31: Quasi-additive RP process 

 

Figure 2-31 shows that the quasi-additive RP process is differentiated into several 

processing steps. The process starts with importing an appropriate volume model, i.e., the 

generation of a 3D CAD model in a 3D CAD system (e.g., SolidWorks, Dassault Systèmes). 

The second step is the definition of slices to mill, which are oriented on maximal milling depth 

(Fig. 2-29) if undercuts are found. The next task is to determine the appropriate joining 

principle needed for the given case (e.g., communicational model, functional model). Then, 

each slice can be transferred into the CAM programming system to program the machine 

code for CNC milling. During CAM programming, an appropriate clamping principle has to be 

decided upon. Once the definition of clamping allows a sufficient repeat accuracy for exact 

joining, slices can then be milled. Afterwards, milled slices can be joined to complete a RP 

model.  

A decisive factor in conducting the quasi-additive RP process is the selection of an 

appropriate slicing strategy that encompasses the succeeding process steps of clamping, 

milling, and joining. The challenge is to orient the procurement strategy precisely towards the 

case of use. The right strategy has to balance the decisive factors of accuracy, time, and 

costs. 

An exemplary joining procedure is one with inner supporting geometries (Assmann, 2003). 

Here, required supporting elements are set as positive and negative. The idea behind the 

supporting elements, which are designed as tenon dowel joint, is that they serve on the one 

hand as needed joining elements and on the other hand as needed clamping element in the 

CNC milling machine. The first step in the manufacturing process is to manufacture the 
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supporting geometry in order to realize a clamping possibility. This is done for both side 

surfaces of the raw material used. For a part with positive-formed geometry, it is possible to 

use a standard clamping procedure because positive-formed supporting geometry gives a 

force application point for standard clamping elements. For clamping a part with the 

negative-formed supporting geometry, an appropriate sacrificial block is needed that contains 

the exact counterpart suitable for adaptation. The sacrificial block is only a temporal 

supporting clamp element that will be adapted to the supporting geometry. After 

manufacturing both parts, it is possible to join them using their respective supporting 

geometries. This guarantees that both parts will be joined very precisely (Assmann, 2003). 

Note, the tenon dowel joint can be designed additionally for more than two parts depending 

on the case in point, how many slices have to be made, and how many connections have to 

be set. Moreover, whether or not a model should be joined reversibly or irreversibly must be 

planned. Reversible connections often comprise the objective during product development 

processes when there is a need to vary several segments of a model. By designing models 

that are joined reversibly, the varied segments can easily be pasted into the existing model 

without the need to manufacture the complete model again. If a model needs to be 

manufactured for functional use, a solid connection must be defined where it is not a priority 

to provide a reversible connection. A lasting connection can be achieved by designing the 

tenon dowel joint as a friction-locked and positive-locking press-fitted assembly (Assmann, 

2003). This assembly principle is realized by an interference fit that causes specific pressure 

forces. These forces are caused by the assembly procedure of both parts (parts A and B) 

whereby the geometries are damaged. Such pressure forces lead to a friction-locked 

connection in relation to a friction coefficient and friction surface. An additional joining 

possibility is to use a self-centering joining method such as serration. Standke (2008) 

suggests that serration makes reversible joining possible, even for functional prototypes.  

 

Milling strategies 

The surface finish is influenced mainly by the milling paths used. A previous study by 

Hastrich (2006) demonstrated that tool paths are always visible after machining even with the 

use of optimized parameters. Especially, stops of the tool are the cause of surface marks 

and appear in cases where tool path changes are needed or the tool dips into the work piece 

to start milling. Therefore, it is essential to reconcile tool paths with given geometry to avoid 

unnecessary stops that lower surface quality. 

There are variety of options and parameters available for programming an appropriate CNC 

code to realize an accurate piece of work with high surface quality. For example, there are 

several possibilities as to how a tool can approach the surface (e.g., helical, tangential, 

curved). For an appropriate definition of tool approach, it is often necessary to define an 
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angle or radius in combination with the type of movement. With regard to milling the surface, 

there are several operational strategies possible (Fig. 2-32). 

 

 
Figure 2-32: Milling strategies (Deskproto, 2010) 

 

In summary, the most important milling strategies are as follows: 

 

(1) Parallel, parallel in x- and y-direction, zig 

a. Milling cutter operates in xy-plane, moves back in fast motion and operates 

again in xy-plane in offset of one increment; also possible (2) 

(2) zig zag, meander, plane 

a. Milling cutter operates in xy-plane and moves back parallel in xy-plane in 

offset of one increment 

(3) Intersected 

a. Combination of (1) and (2) 

(4) Inside/outside, pocket inside/outside 

a. Milling cutter operates from centre of geometry in a rectangular spiral from 

inside to outside or from outside to inside 

(5) Helical, helical from inside to outside 

a. Milling cutter operates from centre of geometry circular from inside to outside 

or from outside to inside 

(6) Cut 

a. Combination of (1) and (2) 

(7) Z-constant, Z-plane, contours 

a. Tool paths with constant Z-level (cutting depth, increment) along the contour 

of geometry 
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Cutting parameters 

The cutting parameters determine how fast and how deep the milling cutter goes in a work 

piece, and how much material will be removed. The following cutting parameters influence 

surface finish the most: 

 

• Revolutions per minute, rpm  

• Feed rate, vf 

• Cutting rate, vc 

• Feed, f, fz 

• Infeed (Z-direction)  

• Axial cutting depth, ap 

• Radial cutting depth, ae 

• Lateral off-set  

 

The revolutions per minute are defined as [rpm], and describe the revolutions of the main 

control rod per minute. The feed rate (vf) determines how deep the milling cutter goes in the 

work piece and is defined by [m/min]. The cutting rate (vc) is related to the tool diameter and 

rpm and is defined by [m/min]. The cutting rate specifies the speed of the perimeter cutters in 

rotational direction (Böge, 1995). The feed (f) describes the rectilinear forward motion of 

milling cutters during operation (Knaur, 1988) with units defined as [mm/rpm]. If there are 

multiblade milling cutters in use, the feed will be described as feed per tooth (fz) in [mm]. The 

difference of the level of the tool paths is specified by the infeed or z-infeed in [mm]. The 

axial cutting depth (ap) and radial cutting depth (ae), determine the axial and radial 

dimensions of the tool cutters, respectively (Böge, 1995). The cutting depth [mm] specifies 

how much material the milling cutter can remove in one sequence. Running a milling 

operation, the milling cutter racks out various tool paths. The lateral off-set describes how far 

tool paths have shifted relative to each other. This shifting has a wide influence on the 

geometric accuracy. Especially, precision of curvatures and free-formed surfaces is 

determined by lateral off-set. When lateral off-set is high, the appearance of staircase effects 

cannot be avoided.  

 
Figure 2-33: Staircase effect related to lateral off -set  
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Staircase effects shown in Figure 2-33 (red) will be generated if lateral off-set is chosen too 

high. In this case, curvature is square-cut in contrast to an optimal result, which can be 

achieved using an appropriate lateral off-set adjustment (e.g., under 1 mm).  

 

The main effect of cutting speed on surface quality is in determining whether a chip is cut out 

or torn out. Cutting speed (vc) is defined by the product of rpm (n), pi (π), and tool diameter 

(D) (Conrad, 2006). 

 

nDVc ∗∗= π  

  

An additional important influence on cutting material is the feed rate (vf), which is defined by 

the product of feed (f) and rpm (n) (Conrad, 2006). 

 

nfv f ∗=  

 

In general, when running a milling operation, two process steps are carried out. First, a rough 

contour is milled using a tool for roughing large chip volumes. The exact geometry is usually 

generated by smaller milling cutters in order to countersink small contours and tight pockets. 

By conducting such finishing procedures, smaller feeds and smaller lateral off-sets are 

typically selected to generate accurate models of high surface quality. If large parts or 

models with complex geometrical morphologies need to be manufactured, a rough finishing 

process can be added following standard roughing to reduce processing time. In this way, 

the removal of as much material as possible will be achieved before finishing starts, and 

where less chip volume can be subsequently removed. As already mentioned, cutting 

parameters can have a deep impact on accuracy and surface quality by controlling the action 

that takes place between tool and work piece. Thermal influences during cutting comprise 

another factor. Especially, in milling plastics, heat plays a role in cases where excellent 

surface finishes are needed. It is well known that plastics (e.g., thermoplastics) are limited 

heat conductors. The resulting heat is normally 75 % absorbed within the chip. Typically, 18 

% is absorbed by the tool and 7 % by the work piece (Spur and Stöferle, 1979).    

It is important to guide the heated chip away because it has the ability to heat up the work 

piece two-fold times more than the original cut (Spur and Stöferle, 1979).  . Therefore, one 

should aim to generate many small chips to lead the heat away as quickly as possible, which 

is frequently supported by cooling lubricants.  

 

 

 

(II-5) 

(II-6) 



42                                                                                             Chapter  2  Prototyping in biomedical engineering       
 

2.2.3   File formats 

Triangulated meshes are the de-facto standard in RE applications, largely due to their 

simplicity and to the possibility of file size reduction. The dominant file format in RP is the 

well-established .STL format, although it is not a standard. There are additional data formats 

used in RP applications such as .IGES (Initial Graphics Exchange Specification) or .STEP 

(Standard for the Exchange of Product model data), but these are not as widely established 

as the .STL format. The developments of CAD and CAM systems have lead to an integration 

of CAM modules in CAD systems. By that integration it is possible to generate machine 

codes in one system (CAD/CAM) by using the same data basis. With that enhancement it is 

possible to combine CAD and CNC code programming to operate one system in one process 

sequence. 

 

STL  

As mentioned, the .STL format is the dominating data format in RP data processes. The 

advantage .STL offers is that it allows independent usage by manufacturers, suppliers, and 

in particular, software developers (Gebhardt, 2007). However, the .STL format is an 

approximate representation of a true solid-surface model, and a huge amount of .STL data is 

needed to provide sufficient accuracy for RP. The basis of an .STL data set is the description 

of model surfaces by triangulation. .STL files are surface approximations of models 

generated by CAD or RE data processes (e.g., 3D reconstruction with medical images). The 

.STL format is a tessellation representation, which defines a 3D object by a series of 

triangular facets. Each triangular facet is defined by three vertices and a unit normal vector 

for the facet where the normal vector direction indicates the outside of the object (Lin, 2002).  

Figure 2-34 shows the description of a triangular facet needed for triangulation.  

 

 
Figure 2-34: Triangulation principle (adapted from Lin, 2002) 

 

The Cartesian coordinates system for three vertices are (X1, Y1, Z1), (X2, Y2, Z2), and (X3, 

Y3, Z3). The facet normal vector is (VX, VY, VZ). As depicted in Figure 2-34, a triangle 

P2 (X2, Y2, Z2)

P1 (X1, Y1, Z1)

P3 (X3, Y3, Z3)

[VX, VY, VZ]

Facet structure ASCII data format

Solid FileName
facet normal  VX, VY, VZ

outer loop
vertex X1 Y1 Z1
vertex X2 Y2 Z2
vertex X3 Y3 Z3

end loop
end facet

End solid FileName
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consists of three vertices and according edges. The normal vector defines the surface plane 

of the triangle (Fig. 2-34) and is positively vectored if being directed away from the volume. 

The presentation of complex and curved surfaces is described by triangles varied in size by a 

setted cusp height. That leads to approximated surfaces and models. To attain high surface 

quality such that higher approximations are derived, the number of set triangles has to be 

increased along with a fine adjustment of the cusp heights (Fig. 2-35).  

 
Figure 2-35: STL Approximation (Gebhardt, 2007) 

 

Figure 2-35a shows the example of a circle that can be described by four (f/4), (f/8), and 

(f/12) straight lines (a). Figure 2-35b shows how the approximation influences the 

dimensional accuracy of a sphere. Generally, a larger number of triangles increases 

accuracy, but also the amount of data. 

A decisive point in medical RP is the processing of large data volumes that are inevitably 

generated by 3D reconstructions from medical tomography data. There are two goals to 

medical RP using .STL: the first is to achieve very high quality and the second aim is to 

effectively operate with low data volumes so that arithmetic operations are performed faster. 

Unfortunately, when processing higher surface qualities, the volume of data increases 

disproportionately to the designated accuracy of the approximation (Zäh, 2006). A 

compromise thus has to be found (see Chapter 4). 

Additionally, 16-bit attribute information can be added in an .STL file. Such attribute 

information is mostly used for coloring (Zäh, 2006). The attributes and coordinates of an .STL 

data set can either be generated as an ASCII (American Standard Code for Information 

Interchange) file or a binary file. A binary file has the advantage of generating smaller data 

volumes in comparison to ASCII source code that may be easier to read for humans. 

However, binary files are easier to read and to control for machines.  

 

NC and CNC  



44                                                                                             Chapter  2  Prototyping in biomedical engineering       
 

NC is the abbreviation for numerical control (Kief, 2005). An NC program consists of a 

sequence of commands (e.g., words, sentences) controlling NC/CNC machine tools for the 

processing of predefined working steps. Accordingly, several movements of different axes 

can be carried out to realize arbitrary tool paths and to therefore process complex 

geometries at once (Kief, 2005).  

 

The difference between a CNC program and an NC program is its input and controlling 

procedure. A CNC controller consists of one or more microprocessors which process work 

sequences. Addressing the controller, CNC software provides all the necessary functions 

such as positioning controller, speed controller, visualizations and editor, data saving and 

data processing.  

 

An NC program is an overarching term for NC and CNC control. The generation of NC 

programs mostly proceeds in two sequential steps: In the first step, a CAM module calculates 

the trajectory of the cutting tool according to the designed part. In the second step, the tool 

path output as a machine controller independent Cutter Location DATA file (CLDATA), is 

converted by an NC postprocessor to a machine-specific NC program. 

An NC program consists of an arbitrary number of sentences that describe the complete 

work sequence of a CNC machine’s successive operations.  

 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 2-36: NC program structure (Kief, 2005) 
 

The sentences in the NC program describe the geometrical working sequence and, if 

necessary, specific machine functions. Every sentence is related to a consecutive number 

and ends with the specific symbol $ (Fig. 2-36). Additionally, words in the sentences are 
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composed of address characters and numerical values. The address determines the function 

required for an operation by arranging the successive numerical values to the appropriate 

memory cell (Kief, 2005).  

There are several commands that enable operation of a machine tool (Kief, 2005): 

 
• Geometrical commands , used to realize relative movements between work piece 

and tool. Typical addresses are X, Y, Z, A, B, C,etc. 

• Technological commands , used for selecting the feed rate (F), the spindle speed 

(S), and the tool (T)  

• Operating instructions , used for selecting the type of movement (G) 

• Switching commands , used for selecting the tools (T), and the operational settings, 

such as coolant supply on/off (M)  

• Subprogram commands , used for repeating program steps (P, Q) 

 

CAM applications typically use translators called post-processors to output a code that is 

optimized for a particular machine type or family.  

 

 

 

2.2.4   Data processing 

For generating machine code for manufacturing models specific data processes need to be 

run. Two possibilities are available for RP data processing: First, 3D CAD modeling can be 

carried out (Fig. 2-37). This process leads to CAD-internal or CAD-external data processes in 

CNC programming (Hastrich, 2005). This differentiation can be derived by Kief´s (2005) 

statement that in NC programming there are two possibilities: Either programming NC code 

directly in CAD system, i.e., CAD/CAM, or programming NC code in a separate NC 

programming system using imported geometry data from the CAD-system (Kief, 2005).  

The CAD-internal data process is an integrated modeling and NC programming method 

using CAD and CAM in one plane. In CAD/CAM, the CAM module operates on the CAD-

system kernel in order to use the geometric algorithms from the CAD platform for deriving the 

required NC code (Fig. 2-37) 
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Figure 2-37: CAD internal process 

 

For example, the use of the CAM module SolidCAM (SC) 2007 (SolidCAM GmbH) in 

combination with the 3D CAD system SolidWorks 2007, illustrates the typical data processes 

involved in running NC code programming (Fig. 2-37). The whole process is based on CAD 

data and starts with the generation of a control file (.mac-file) by a preprocessor to provide a 

post-processor machining operation. The post-processor operates a file containing the 

appropriate machine-related parameters (.gpp-file, G-Code) to generate NC code.   

 

In conclusion, it has to be stated that the quality of a data process is characterized by its 

accuracy. Hereby, the CAD/CAM (CAD-internal) procedure serves as a highly accurate 

process. That is, data format conversions can be avoided thus reducing inaccuracies due to 

lost information. Moreover, that the CAD-internal procedure makes it possible to determine 

special operating procedures of specific surfaces, for later milling process. For example, it is 

possible to choose a cylinder (ruled surface) associated with a specific machining strategy. 

This automatic feature detection function is useful for 3D CAD models. But, the CAD/CAM 

(CAD-internal) procedure has the disadvantage that it cannot be operated with .STL files. In 

particular, for .STL file-based data processes, additional data processing possibilities have to 

be found. One such possibility is the CAD-external data process (Fig. 2-38). The CAD-

external procedure is characterized by two different and independent procedures in data 

processing. The first procedure is standard 3D CAD modeling using the provided CAD 

functions in order to build a 3D CAD model (.prt-file) (Fig. 2-38).   
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Figure 2-38: CAD External process 

 

For example, the use of the CAM module Mill.it (COSCOM Computer GmbH) in combination 

with the 3D CAD system SolidWorks, illustrates the typical data processes involved in 

running NC code programming (Fig. 2-36). The 3D CAD model is converted into a 3D model 

on .STL file data basis and then imported in the second procedure of CAM programming. 

Hereby, it is possible to generate the needed NC code with the post-processor directly on the 

.STL file. An advantage Mill.it offers is the possibility to choose an appropriate supporting 

frame including bridges for mounting the work piece in the machine. This allows mounting 

even complex-shaped 3D models, which is normally laborious. The general idea of Mill.it is to 

support the user in processing .STL file-based 3D models for quasi-additive RP. A 

disadvantage of this process is that data format conversion has to be performed from the 3D 

CAD file format (.prt) to the .STL file format. Another disadvantage is that it is not possible to 

select specific surfaces for different machining operations. This is because the .STL file 

format that does not offer any features that can be selected separately. If a model features 

free-form geometries, problems can arise in milling exact geometry. The reason for this is 

that it is not possible to assign specific milling parameters, including specific tools for defined 

surface areas to fulfill particular manufacturing demands (e.g., transparent surfaces).  

In carrying out RP in medicine, a fundamental problem is that no complete 3D CAD files can 

be derived from a 3D reconstruction process. The only way to post-process a reconstructed 

3D model is to derive a .STL file that is generated by a meshing algorithm, such as MC. 

Attempts at creating point clouds to create NURBS-generated surfaces that are 

representational of a model, have not shown sufficient results. The problem is that in most 

cases medical models contain a lot of data that lead to very large file sizes. Today’s 3D CAD 

systems cannot cope with gray value data files (point clouds) larger than 1 MB (e.g., 

SolidWorks). Therefore, only processes that can operate with .STL-formatted 3D models are 

.prt-file – CAD data basis

3D CAD modeling

CAD external

3D-CAD system (SW)

CAD functions 3D CAD file

Export: .STL file

Import: .STL file

Export:     
NC Code

CAM programming (Mill.it)

Post-processor G-Code



48                                                                                             Chapter  2  Prototyping in biomedical engineering       
 

possible. Medical application features the additional goal of guaranteeing high accuracy in 

the production of models with specific attributes (e.g., transparency). 

 

 

 

2.2.5   Transparency 

A suitable material for manufacturing transparent RP models is plastics. Investigations have 

revealed that the RP procedure of CNC milling is ideally suited for fabricating for transparent 

surfaces. Hastrich (2006) found that polymethylmethacrylat (PMMA) is suitable for producing 

transparent models by means of CNC milling. Producing PMMA, methacrylic ester is 

processed in a radical polymerization to generate crystal clear high-molecular-weight 

polymer (Schwarz & Ebeling, 2005). PMMA has the following attributes (Schwarz & Ebeling, 

2005): 

 

• Hardness, solidness and rigidity 

• Scratch resistance and burnishing ability 

• Thermal endurance 

• Transparency approx. 92% 

• Good electrical characteristics and dielectric properties 

• Low absorption of water  

 

PMMA is available in two forms: PMMA casted (GS) and PMMA extruded (XT). PMMA (GS) 

offers a manufacturing advantage in terms of making machining easier (Hastrich, 2006). 

PMMA (XT) tends to melt in manufacturing and smudges the cutting edges of tools. Although 

PMMA (XT) is available at a cheaper price, PMMA (GS) is the preferred material for 

manufacturing transparent RP models.   

  

Transparency of RP models is often in high demand, especially in systems in which interior 

flow is not well understood, e.g., in the field of human medicine dealing with upper airways 

and bronchial tree (Gebhardt, et al., 2005). For visualizing and analyzing the interior 

processes of a system consisting of cavities, contact-free measurements or optical 

measuring systems have to be used. Therefore, in such situations, transparent models have 

to be used to produce usable results. 

The term transparency encompasses the words light transmission, scattering, and 

transparentness (Michaeli, 1999). Light transmission describes the relation of light that has  

passed through a body and incident light. In the case that there is light dispersion, then there 

is scattering (Michaeli, 1999). Transparentness is not of good quality if defined patterns or 



Chapter 2  Prototyping in biomedical engineering                                                                                             49 

points are blurred. Low transparency can result due to low surface quality arising from 

surface irregularities (Michaeli, 1999). During the chipping procedure, striae, rills, and 

corrugations have a negative effect on surfaces that should be transparent (Wimmer, 1989).  

Plastics are used frequently in RP applications and biomedical engineering (Bertsche & 

Bullinger, 2007; Gebhardt, 2007). Transparent plastic models are characterized by various 

optical appearances. The optical properties of thermoplastics are determined by their 

chemical constitution of macromolecules, which can be amorphous or semi-crystalline 

(Domininghaus, 2005). Amorphous and semi-crystalline thermoplastics have different optical 

appearances: semi-crystalline thermoplastics are opaque or milky and amorphous 

thermoplastics transparent (Domininghaus, 2005). A typical amorphous thermoplastic is 

PMMA. Previous analyses carried out by Hastrich (2006) revealed a relation between 

transparency and surface quality. Transparent surfaces show a lower roughness than 

opaque-looking surfaces. In evaluating a technical surface, surface roughness can be used 

as an indicator for transparency. The roughness of a technical surface is described by the 

average surface finish Ra and is the arithmetic mean of the total profile deviation y within a 

defined measuring length l (DIN 4762, 2008).  

A transparent surface is characterized by high surface quality. However, average surface 

finish Ra is low and stable. A typical value of Ra for a transparent surface is Ra = 0.03 µm (De 

Zelicourt et al., 2005). 

 

 

 

2.3   Virtual prototyping 

VP technologies aim to establish realistic simulations for different process, objects and 

systems in computer-generated virtual worlds in order to shorten the product development 

process. Users should be involved in virtual scenery to interact with digitalized processes 

and objects. VP is a process of using a digital model, rather than a physical model, for testing 

and evaluating specific product characteristics. 

Virtual reality (VR) is a procedure typically carried out in product development processes and 

can be used in VP (Bergers, 2009a). VR offers continuous development of interactive, 3D 

simulation and employs specific input and output devices. As such, it provides a tool to 

perform a number of what-if studies, and hence supports an understanding of a model. The 

purpose of VR is to reduce the iterations of product development cycles. 

The medical field offers various possibilities whereby VR can contribute to research and 

application (Bullinger and Bauer, 1994; Székely and Satava, 1999). 

 

 



50                                                                                             Chapter  2  Prototyping in biomedical engineering       
 

2.3.1   Medical applications in virtual reality  

VR is the term commonly used to describe a human–computer interface that enables users 

to interact with computers in a radically different way. VR consists of a computer-generated, 

multidimensional environment, and interface tools that allow users to: 

 

• immerse themselves in the environment, 

• navigate within the environment, and 

• interact with objects and other inhabitants in the environment (Greenleaf, 2004). 

 

According to Bullinger´s and Bauer´s (1994) findings, VR has the potential for broad 

application in the field of medical research, including medical training (Berlage, 1997), 

therapeutic use supporting surgery (Grönemeyer et al., 1996), and studies in the field of 

neuroscience (Glantz et al., 1997). Moreover, VR is an application that can be used for 

surgery planning Robb, 2008), enabling medical experts to practice a wide variety of health 

care tasks ranging from performing triage to emergency first aid to coordinating planning and 

training (Zajtchuk and Satava, 1997).  

In addition, displaying a medical model in a VR environment may enhance comprehension 

by adding stereovision and interactivity. An example of a VR technique for visualizing 3D 

models in a VR environment is stereovision.  

 
Figure 2-39: Medical VR using passive stereovision system  

 

A frequently used stereovision system is the power wall. It belongs to the category of passive 

systems in the case that projectors used are positioned behind the visualization wall (Fig. 2-

39). VR typically employs the .VRML data format, which is suitable for defining virtual worlds. 
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An in-depth analysis of the state-of-the-art of medical applications in VR is given in Mallepree 

et al. (2010).   

 

 

 

2.3.2   VRML  

The .VRML format is a description language for modeling interactive, virtual 3D worlds and 

3D objects. The arrangement of 3D objects and their relation to each other is defined. 

Moreover, the .VRML format contains an interface to the programming language JAVA.  

A .VRML file contains polygon scenery, which is based on objects that are arranged 

hierarchically. This hierarchal-based data is named scene graph and defines the object’s 

relation. Nodes describe the geometry of a polygon object. Additional nodes are used to 

describe material attributes such as colors and reflections. A node consists of fields that 

contain values for describing the condition of a node in parametric representation. In such a 

parametric representation, the fields of a node contain the points of the polygons as well as

the indexes that describe the surfaces of the polygons. By grouping nodes, the nodes of 

polygon scenery are compiled. A variety of additional nodes can be used for defining a 

scene.  For implementing interaction and animation, events are used to control nodes. 

Events are edited by the following data types: eventIn, eventOut and exposedField. The 

transfer of events between nodes is done by using appropriate route commands (Kloss, 

1998).  

An alternative to event passing via routes is to pass references to .VRML nodes as values for 

fields in a script node. A script node is used to program motion in a scene. Script nodes 

typically signify a change or user action, receive events from other nodes, contain a program 

module that performs computation, and effect change in a scene by sending events. A script 

encapsulates JAVA code and provides naming conventions for interconnecting JAVA 

variables with field values in a scene. Interfaced JAVA classes import the .VRML class 

libraries in order to provide a type conversion between JAVA and .VRML  
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3. Conclusion and demand for a medical prototyping process  

RP and VP are technologies that can have great impact on the medical field. Applications of 

RP traditionally used as support in product development should interface with medical 

practices.  

As stated by Wohlers (Wohlers, 2007) there is a need for RP in the following range of 

applications in order to support product development. A survey of 85 international companies 

interrogated the extent to which applications are needed: 

 

• Functional models – 17.4% 

• Visual aids (for engineers, designers, architects, medical professionals) – 15.3% 

• Fit and assembly – 12.1% 

• Rapid manufacturing (custom and short-run production) – 11.7% 

• Patterns for metal castings – 9.9% 

• Presentation models – 8.9% 

• Tooling components – 4.7% 

• Ergonomic studies – 2.7% 

• Visual aids (for toolmakers) – 2.4% 

• Patterns for prototype tooling – 2.2% 

• Fixtures and manufacturing aids – 1.7% 

• Other – 3.2% 

 

Considering Wohlers investigations, one can see that there is a great demand for functional 

models (17.4%) and visual aids (15.3%), including for medicine. The general contribution of 

RP models in medicine is described by the Phidias validation study of stereolithographic 

models in Europe in 2001 (database, N=172 questionnaires). Reported reasons why a model 

may be useful are given by surgeons, in Figure 3-1. 
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Figure 3-1: Phidias study (adapted from Wulf et al. , 2001) 
 

Most surgeons (115) believe that medical models improve surgical planning. They also 

stated that medical models could be used for producing an implant preoperatively and could 

support orientation during executed surgery. According to Wulf (2001), these results suggest 

that the use of medical RP models would help to improve the quality of planning, 

communication, and procedures in medicine. Regarding use of RP models for presurgery 

planning, 22.1% of surgeons reported a decrease of saved operation-time of 2 hours or more 

and 23.8% reported that using RP models can save up to 1 hour execution time (Wulf et al., 

2001). But, this time-saving effect depends on a surgeon’s experience. Highly experienced 

surgeons are able to perform faster using planning models than average-experienced users 

(Wulf et al., 2001).  

 

Computer-assisted, model-based planning procedures like VP and RP are able to cover 

specific modifications of “virtual anatomy” for surgical intervention planning in order to 

evaluate a potential therapeutic outcome. 

CAS is the field that covers innovative support for surgical treatment by computer assistance. 

The general objective of CAS is to support surgeons in achieving better clinical results. This 

is concurrent with the aim of lowering costs, reducing recovery time, and a reducing need for 

repeated surgery (Taylor et al., 1993). CAS covers the full spectrum of treatment, from 

diagnosis through preoperative planning and processing to postoperative evaluation and 

follow-up (Taylor et al., 1993) (Fig. 3-2). 
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Figure 3-2: CAS (adapted from Taylor et al., 1993) 
 

The CAS principle consists of a database that contains all medical information needed for 

surgery. The database includes: a patient’s medical data, laboratory data, and/or images for 

presurgery planning and executed live surgery. In presurgery planning, CAS supports the 

modeling, analysis, planning, optimization, and simulation of a medical case. When carrying 

out live surgery, a computer is used to assist in imaging, registration or manipulation aids 

with medical data from the database. As early as 1985, Murphy and colleagues stated that 

CAS planning has a deep impact on: 

 

• Preoperative planning with computer-generated 3D models 

• Optimal preparation in complex interventions 

• Selection of optimal implant geometry 

• Design of individual implants 

• Adjustment of implants using facsimiled model 

• Selection of suitable surgery tools 

• Improved patient information 

• Shortening of anesthetics times 

• Reduction of surgery times and patient burden 

• Reduction of risk of repeated surgeries 

• General cost optimization 
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Today, the great increase of possibilities for using engineering tools and methods in 

medicine allows surgeons to offer a wide-range of methods in investigating pathologies and 

general treatment. Taylor stated in 1993 that systems that combine medical data information 

with intraoperative (during surgery) sensing, manipulation devices, graphics, and a variety of 

other human-machine interfaces would have a considerable impact on surgical execution 

(Taylor et al., 1993).  

 

Following Taylor’s vision, individual anatomical models are now available as either virtual or 

physical models for use as medical aids. Moreover, the possibility to generate facsimiled 

medical models is possible using VP and RP. 

 

Model accuracy is the principal weakness of medical RP models (Barker et al., 1994; 

Giannatsis, 2007) as well as of medical VP models. Even though medical model accuracy is 

the principal weakness this is getting less of a problem as technology improves (Gibson, 

2005b; Gibson et al., 2006). Previous work in biomodeling (Chapter 2.1) as a preprocess for 

VP and RP applications is not predominantly focused on accuracy. In order to systematically 

enhance accuracy the complete procedure of reproducing medical images into medical 

models has to be analyzed. The following optimizations must be focused upon when 

enhancing biomodeling: 

 

• Scanning parameters  

• Segmentation 

• Surface meshing  

 

An RE and 3D-reconstruction process is required that enables generation of virtual volume 

models appropriate for RP and VP applications. To prevent failure due to model deviation, 

scanning parameters need to be selected appropriately. In this way, appropriate 

segmentation of anatomical structures is enabled. Also, surface meshing should be 

enhanced to achieve the best possible model accuracy and surface smoothness in 

combination with file size reduction, if needed. 

 

Summarizing the current status of RP (Chapter 2.2) and augmenting statements of Gibson 

(Gibson, 2005a, Gibson et al., 2006), Noorani (2005) and Wetzel et al. (2005) about current 

disadvantages of RP in medicine, the following limitations need to be remediated: 

 

• Connection between RP machine and RE  

• Staircase effects on RP model surfaces 
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• Limited transparency of RP models  

• Limited accuracy of scanned data (RE) and final RP model (e.g., shrinkage) 

• Limitations of usable materials 

• Irreversibility of RP models (e.g., press-fitted assembly) 

• Exchange of model morphologies  

• Joining accuracy in quasi-additive RP 

 

In order to solve these issues, a valid data process should be established to accommodate 

all phases, from initial data acquisition to manufacturing. One possibility is to use the .STL 

format for transferring medical image data generated as triangular volume models (Chapter 

2.2.3). In addition, triangulation parameters for deriving a 3D reconstructed .STL model need 

to be determined to provide accurate machining templates. The majority of systems only 

allow setting chord error. Therefore, a systematic analysis of meshing parameters has to be 

made to satisfy the demand in RP to produce models with better accuracy. The accuracy of 

the generated surface mesh affects the quality of the approximation and fidelity of the final 

model. The quasi-additive RP procedure is ideally suited for producing medical models. By 

milling parameters that have to be evaluated for anatomically shaped free-form surfaces, 

staircase effects can be avoided, better transparency is realized, inaccuracies are reduced, 

and various materials can be machined. Reversible models can be realized by an 

appropriate joining principle. Moreover, a logical model configuration is needed to solve the 

problem of testing variants and different model morphologies, respectively. Normally, a 

model is generated separately for each situation repeatedly. To date, an appropriate medical 

RP procedure for generating modular built models does not exist.  

 

Vartanian et al. (2004) used VR to demonstrate the possibility of displaying the human nose 

as a 3D VR model. However, it remains unknown whether this study assessed the accuracy 

of the complete procedure of biomodeling and VR processing. Moreover, the use of 

parameters for performing the complete procedure, from data acquisition to VR stereoscopic 

display, is rather unclear. Glombitza et al. (1999) outlined different methods and applications 

in the field of VR. The accurate processing of VR data remains unknown. In summary, 

current disadvantages of VR data processing in medicine that need to be optimized for a 

possible use in medicine include: 

 

• Connection between VR application and RE 

• Accuracy of generated virtual models 
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The appropriate data format of VR in medicine is .VRML. Therefore, the 3D reconstruction 

process should enable the direct derivation of .VRML models out of medical image data. 

Additionally, parameters have to be determined that allow the accurate derivation of 

triangulated .VRML models that can accurately display even complex anatomies in detail.  

Currently tomographic slice images are used for the presentation of medical image data and 

standardized static 3D visualizations comprise surgical planning support (Gering et al., 2001; 

Hu, 2005; Lee et al., 2005; Vartanian et al., 2004). However, there are major limitations: (a) 

The difficulty to recognize exact spatial relations between two or more objects, and (b) the 

occlusion of relevant objects or parts thereof. Especially in minimally invasive surgery, the 

surgeon is confronted with difficult conditions during the surgical procedure. In contrast to 

common surgery, direct insight into the specific area of interest is missing. Therefore, a 

concept is needed that extends the use of VR in medicine in order to provide a supportive 

instrument for medical experts. 

 

Moreover, a concept that integrates a process for generating complex virtual and physical 

medical models is missing. Although various publications show possible applications of VR 

and RP in medicine (Cai et al., 2004; Choi et al., 2002; De Zelicourt et al, 2005; D’Urso et al., 

1999; Gibson, 2005a; Ma et al., 2001; Szekely & Satava, 1999) a process that combines 

both the VR and the RP application even for complex medical models is lacking. Also, a 

medical classification that assigns VP and RP to possible applications in medicine is 

unavailable. Such a classification would support finding an appropriate application for a given 

case of use. 

To date, there is no prototyping process in biomedical engineering available that is 

composed of consistent process steps. The findings from the present literature show no 

congruence in process design. Tomographic image data has made available different model 

generation processes: 3D reconstruction processes that use .DICOM data and 3D 

reconstruction processes that use point cloud data. Moreover, there are approaches that 

reveal the possibility of generating triangulated 3D models and approaches that attempt to 

generate NURBS-based CAD models. In sum, all approaches lack defined process 

parameters that would enable generation of medical models with defined repeat accuracy in 

a defined time span.  

 

In summary, an embedded prototyping process is needed that allows the generation of 

complex virtual and physical medical models, as rapidly and accurately as possible. In the 

following a prototyping concept in biomedical engineering is presented that includes a 

process, which is verified by experimental studies and examples of use. 
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4.  Prototyping process concept  

To broaden Taylor’s vision introduced in 1993, the present thesis aims to establish computer 

assistance by means of RP and VP in medicine. This includes the use of RP and VP in 

teaching and patient information, presurgery planning, implant generation, and medical 

research (Fig. 4-1).  

 
Figure 4-1: VP and RP in biomedical engineering  

 

Prototyping procedures can be used either as direct surgical support or indirect medical 

support. VP and RP in biomedical engineering fulfill the requirements in teaching and patient 

information as well as in presurgery planning and implant generation. Especially, in cases of 

complex surgery, biomedical prototyping procedures may become a necessary tool for 

surgical intervention.  

 

Presurgery planning has a very important role in medicine and is in the focus of the present 

thesis. The use of medical models supports surgeons in planning complex surgical 

procedures. That is to study the object of interest before the surgery. This can help increase 

surgical precision, reduce time spent on procedures, reduce costs and avoid risks during 

surgery.  

 

In future, RP procedures can be applied for the generation of implants (Eufinger et al., 1995; 

Hierl et al., 2006). Recent investigations deal with the fabrication of human tissues using 

specialized additive printing machines.  

 

Another mode of support for surgical planning is to use functional models generated with 

either VP or RP, in cases where medical research is needed. For example, an experimental 

evaluation of a facsimile may be required to analyze results for subsequent application in 

reality. A specific example is the study of the not completely understood human nasal airflow 
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(Bergers et al., 2010; Finck et al., 2007) by means of experimental models (see Chapter 6). 

Taken as indirect surgical support, interventions or manipulations executed before surgery 

will permit drawing conclusions about a patient later. This means that detailed investigations 

of a potential case in which symptoms are described by a patient, but where pathologic 

underpinnings of specific dysfunction are not obvious for medical experts.  

 

Due to the restricted possibilities to examine the pathological underpinnings of medical cases 

where possible dysfunctions are difficult to detect using noninvasive investigation methods, 

medical VP and RP models offer cutting-edge aids for finding intricate and hidden details of 

site of trauma. Although RP has not been developed directly for manufacturing medical 

models (Gibson, 2006), it is well suited for use in medical applications due to the fast and 

automated manufacturing of models it offers. 

   

As depicted in Figure 4-2 a basis for using VP and RP models in presurgery planning is 

proposed. 

 
Figure 4-2: Medical prototyping in presurgery plann ing 

 

VP can be typically used as a support in navigation, for example, image-guided surgery. In 

such a case, concept models are well suited because they allow a full overview of anatomical 

geometry to support a surgeon in localizing possible pathologies. Moreover, support of 

surgical interventions may employ VP for planning the assembly of an implant virtually as 

well as use RP for planning an implant joining procedure using a physical model in 

combination with real tools and instruments (e.g., hip surgery). Hence, medical models can 

allow practicing surgery and enable multiple trial evaluations for optimizing surgery 

interventions prior to invasive operations. This is in agreement with Lightman’s report in 

which he emphasizes the need for expandable RP models that assist practicing surgery to 

improve subsequent surgical results (Lightman et al., 1995).  

Concept model

Navigation support
(e.g.: image guided surgery)

Pre-surgery planning

Functional model

Surgical intervention support
(e.g.: implant validation, flow analysis)

Virtual Prototyping
Virtual Prototyping
Rapid Prototyping

Prototyping in Biomedical Engineering



Chapter 4  Prototyping process concept                                                                                                             61 

4.1   The medical prototyping process  

Standard RP procedures may be viewed as insufficient in providing medical models for 

functional usage. Medical applications demand that medical models be of highest possible 

quality, manufactured in the shortest possible time and with reasonable cost (Fig. 4-3). 

 
Figure 4-3: Balancing demands in medical prototypin g  

 

To date, medical treatments using innovative technologies are becoming more and more 

expensive in manpower. Accompanying this, possibilities for using new technical 

developments are increasing exponentially. Thus, medical applications must be designed to 

meet these requirements and satisfy needs of new developments by lowering the cost of 

technology so that it can be used for a wider number of cases. One possibility is the use of 

the VR technology. The interaction with 3D visualizations can accelerate the comprehension 

of image data of individual patients. Medical visualization in VR environments can support 

medical experts to understand 3D image information in less time with less elaboration 

(Mallepree et al., 2010). Another possibility to increase the level of model accuracy and to 

decrease fabrication time of functional RP models is the quasi-additive RP process; this is a 

knowledge-based refinement of existing RP procedures. When functional models are needed 

to explore human anatomy by means of a physical model the quasi-additive RP process 

enables high accuracy models to be produced in any machinable material (Mallepree & 

Bergers, 2009c). Fulfilling the demands stated in Chapter 3 implies that a medical 

prototyping process should be established as a tool in biomedical engineering for presurgery 

planning. This includes a definition of all process steps needed to generate and manufacture 

a medical model along with covering demands of accuracy and time (Fig. 4-3, red arrows). It 

should be possible to use as few process steps as possible in order to produce high-quality 

medical models in the shortest possible time span. As a consequence, resulting costs should 

be lowered (blue arrow). The procedure proposed in the present thesis is named medical 

prototyping process (MPP) and consists of two main process steps. The process steps are: 

 

• Biomodeling (RE, segmentation, mesh editing)   

• Application (RP, VR) 

Accuracy

Time

Costs

Medical Prototyping
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By means of the process layout, which is presented in Figure 4-4, an advanced approach of 

generating models for medical applications is introduced. First, that includes the arrangement 

of model generation processes and subsequent applications into a two-step procedure 

(biomodeling, application; blue bars, Fig. 4-4). Secondly, the approach comprises a complete 

process parameter definition that allows standardizing the entire process. The first step 

includes the use of imaging technology to generate 2D medical image data by RE of an 

individual patient’s section, followed by a 3D reconstruction process (segmentation and mesh 

editing) to obtain a triangulated 3D model for medical prototyping (Fig. 4-4). 

 
 

Figure 4-4: MPP Concept 
 

The process of mesh editing includes the preparation of an adequate .VRML file for VR and 

the derivation of an appropriate .STL file for RP (Chapter 4.2.3). After the biomodeling phase, 

both a VR and RP application can be initiated. Underlying the realization of the two-step 

process are various sub-processes. A detailed process analysis and parameter 

determination is shown in the following. 

 

 

 

4.1.1   Process sequence 

As shown in the previous chapter, the process for generating medical models for VR and RP 

applications consists of process steps that have to be integrated. The objective is to avoid 

too many data formats and process steps in order to establish a shortened process 

sequence that is as automated as possible, and allows rapid and computerized processing of 

medical models. The MPP consists of two main processes; the process of biomodeling and 

the process of application (Fig. 4-5). The first process to start with is RE. 

 

Reverse engineering 

The process starts with the selection of an appropriate scanning machine and scanning 

parameters in order to generate medical images (Fig. 4-5). Those images have to be saved 

as .DICOM-files. This process of RE is followed by the process of segmentation.  

 

 

RE Mesh editingSegmentation

- Biomodeling - - Application -

VRRP

Medical Prototyping Process (MPP)
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Segmentation 

The process of segmentation uses the provided image data from RE to define objects of 

interest. The step of segmentation consists of three sub-processes: If required a 

preprocessing is applied to optimize the provided images by means of filtering. An advanced 

filtering technique enhances final model accuracy by offering – in the second process of 

thresholding – an optimal basis for interpreting gray value contours. The third process of 

region growing optimizes the threshold result as previously mentioned in Chapter 2.1.3. 

 

 
Figure 4-5: MPP Sequence  

 

Mesh editing 

An interface is established supporting the transfer of medical image data into technical data 

formats. This data transfer is realized using the .DICOM-format compatible 3D reconstruction 

software Mimics. The imported 2D image data sets (.DICOM-format) are either converted 

into the .STL format, which provides the basis for the following RP process steps, or, into the 

.VRML-format for carrying out the VR process.  

 

.VRML mesh editing is referred to as .STL mesh editing because both the .VRML and.STL 

files are built by means of the same triangulation procedure and both use the same 

Descartes coordinate system. The difference is that .VRML stores all of its vertices together 

in an array structure whereas.STL stores all three vertices in each facet (Zhang et al., 2001) 
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The process of .STL mesh editing (Fig. 4-5) is needed to obtain accurate surface meshes. 

The description of complex, anatomical shaped surfaces by triangulation is often related to 

meshing irregularities. Such triangulation errors can be holes, overlapping triangles, or false-

orientated triangles and normal vectors, respectively. The software-tool 3-Matic (Materialise 

N.V., Leuven) is capable of failure compensation operations and is thus used if such error 

compensations are necessary.  

In sum, the objectives of .STL editing include: 

 

• Smoothing of the relevant anatomical surfaces to optimize 3D reconstruction (e.g., 

staircases) 

• Reduction of files size by triangle reduction, if needed 

• Preservation of geometry details (undercuts, thin-build regions, etc.) 

• Validated accuracy 

 

Application 

The VR presentation is a subsequent application process for displaying a model in 3D 

(Chapter 2.3). The software tool used in this thesis for creating VR scenery is Cosmo Worlds 

(SGI). When generating animation sequences, Cosmo Worlds is ideally suited. Setting up a 

VR presentation encompasses the following objectives: 

 

• Grouping, arranging, and coloring of model elements 

• Improvement of visualization quality 

• Generation of animation 

 

The drawbacks of static visualizations (Chapter 3) can be compensated for by interactive 3D 

VR visualizations (Mallepree & Bergers, 2009b). Nevertheless, navigating in 3D 

environments is time consuming and the viewer can lose sight of important objects or lose 

orientation (Bade et al., 2005). Some of the disadvantages of both static visualizations and 

interactive environments can be avoided by using animation, which effectively provide 

information in a limited and predefined time span.  

This thesis presents a process for generating animation in VR of complex anatomies for 

surgical intervention planning. A novel procedure is applied to support surgeons, especially 

in minimally invasive surgery, in gaining insight in a particular surgical situation. Finally, the 

process of surgical intervention planning can be accelerated in terms of diagnosis and 

treatment planning. 



Chapter 4  Prototyping process concept                                                                                                             65 

3D stereoscopic vision is realized using the software tool VRED (Silicon Graphics). With 

regard to the display of 3D .VRML models VRED enables a precise adjustment of 

stereoscopic parameters (eye separation, parallax distance) and is therefore ideally suited 

(Lubnau, 2009). The principle of visualizing medical image content is described in Chapter 

2.3.

For executing the RP procedure of CNC milling, tool paths have to be programmed. A 

software tool that is able to process .STL files is Mill.it (Chapter 2.2.4). In order to avoid data 

format conversions that reduce accuracy a .STL internal process is set up (Fig. 4-5). Using 

the CAM-module Mill.it allows running CNC code programming (Fig. 4-5). This .STL-based 

process is characterized by not using a 3D CAD system as data basis. An STL model is 

reconstructed in Mimics and directly imported into Mill.it. If further CAD operations have to be 

carried out, 3-Matic is used additionally (e.g., slicing). It allows running all main operations 

known from CAD systems carrying out triangular operations. If a 3D model is defined it can 

be uploaded into any CAM module which is capable of operating .STL-formatted 3D models. 

The advantage of this procedure is that it is possible to run the whole data process without 

making any data format conversions that may cause accuracy problems. 

The requirements for programming CNC code to support milling machine operations include: 

 

• Generation of tool paths for milling .STL slices 

• Selection of appropriate tools, feed, cutting parameter, etc. 

• Selection of suitable milling strategy (z-plane, zick, etc.) 

• Optimization of operation time 

 

The processing of manufacturing data is realized by the MPP concept introduced in Figure 4-

5. 

In the present investigation the generated manufacturing data are operated by a Heidenhein 

controlling unit. The milling machine used is a three-axis CNC machining center (Alzmetall 

BAZ 15). The objective in CNC milling is to provide a high level of accuracy by selection of 

an appropriate positioning and clamping procedure in combination with given programmed 

machining parameters. 
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5.   Process analysis 

An unsolved problem in generating medical models using prototyping technologies lie in the 

nonspecified process parameters of reverse-engineered and applied models. To verify the 

MPP, influential process parameters are analyzed.   

 

 

 

5.1   Segmentation filter analysis 

To determine the most appropriate segmentation filter with respect to accuracy of the 

complete process, arbitrary segmentation filters need to be evaluated. These may be 

analyzed via visual inspection of resultant segmentation images in reference to accuracy of 

the final 3D model. The following segmentation filters are tested: 

 

• Mean  

• Median 

• Discrete Gaussian 

• Curvature flow  

 

Each filter is applied to two datasets by selecting filter parameters through a process of trial 

and error until similar noise reduction is observed. Exemplary anatomically shaped models 

are processed as reference. The models represent a segmented part from the nasal conchae 

inferior with a constant set threshold range. The reference models are based on high-

resolution CT scans as shown in Table 5-1. 

 

Table 5-1: Parameters: reference models segmentation  filter 

Parameters Model 1 Model 2 
Scan parameters 

Scanner SIEMENS-Sensation Open SIEMENS-Sensation Open 

Resolution 512x512 Pixel 512x512 Pixel 

Pixel size 0.342 mm 0.342 mm 

Field of view 17.5 cm² 17.5 cm² 

Slice thickness 0.60 mm 0.60 mm 

Slice increment 0.60 mm 0.60 mm 

Reconstruction filter H60s H50s 

Model parameters 

File size 2,237 kB 1,224 kB 

Number of triangles 45,352 25,060 

Number of vertices 22,652 12,532 

Gray-value range -1024 → -255 -1024 → -255 

 

The scan parameters (Table 5-1) result from predefined clinical data sets provided from the 

Alfried Krupp von Bohlen und Halbach Hospital (Radiology, Dr. M. Montag). After applying 
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the filters, both models are reconstructed as .STL models. They are used for conducting a 

part comparison (3-Matic) for measuring the model accuracy.  As it can be seen in Figure 5-

1, the original 2D images of model 1 contain more noise than model 2. More washy images 

can be seen in reference to model 2. This allows finding the optimal filter independent from 

the level of noise. How the CT internal reconstruction filters influence accuracy is measured 

additionally. Model 1 is acquired using a typical H60s filter for scanning the head region and 

model 2 is measured using the less sharp H50s filter that leads to the more washy images of 

model 2. 

 

 
Figure 5-1: Process sequence segmentation filtering  

 

As shown in Figure 5-1, the reconstructed 3D model surface is rough and full of fissures. 

Figure 5-2 shows the results for model 1 after applying the arbitrary noise reduction filters.  

 

As demonstrated by Figure 5-2, both the mean and Gaussian filters tend to indiscriminately 

smooth the image, which leads to washy image representations due to the lack of edge 

preservation. In contrast, the median and curvature flow methods support edge preservation, 

and lead to the enhancement of boundaries. In consequence, the mean model deviations are 

smaller after applying the median or curvature flow filter. Nevertheless, the curvature flow 

filter leads to best model accuracy with a mean deviation of the final .STL model of 0.801 

mm. 
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Figure 5-2: Filter results model 1  

 

None of the filters is able to avoid a maximum model deviation of 1.75 mm. Observing the 

variance of the number of triangles in final models reveals that the number of triangles is 

reduced in all cases (e.g., from 45,352 to approx. 40,536 triangles using curvature flow). The 

implication is that fewer triangles are generated in the final mesh after applying the noise 

reduction filters. The curvature flow filter leads to the highest number of triangles (40,536). 

This might be a consequence of the filter’s superior ability to preserve complex features, in 

that more triangles can be used for building the triangulated model.  

The filtering results of model 2 show similar effects as depicted in Figure 5-3. The noise 

reduction results of model 2 show again that the curvature flow filter offers the best final 

model accuracy. Even narrowed regions with boundaries that tend to blur are preserved. The 

results of both measurement series suggest that the CT internal reconstruction filter has an 

impact on accuracy. 
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Figure 5-3: Filter results model 2 

 

Comparing the model deviations of models 1 and 2, the curvature flow results show that 

model 1 has a mean deviation of 0.0801 mm and model 2 of 0.0272 mm. This yields a 

difference in mean deviation of 0.0529 mm. This difference reveals that the H50s filter is the 

more appropriate internal CT reconstruction filter.  

A disadvantage of the curvature flow filter is that larger stair-step artifacts cannot be 

smoothed. This may be based on the curvature flow principle: regions with an equal radius of 

curvature should not be manipulated (Chapter 2.1.3). Compared to the mean, median, and 

Gaussian filter, the curvature flow filter leads to less-deviated models. The reason for this 

might be based on the fact that the level of smoothing is not related to a nearby region, but 

rather to the amount of curvature. Visual examination supports the measurement results that 

the final .STL mesh of model 2 is smoother and more evenly generated than that of model 1. 

Therefore, the curvature flow filter is used for the following analysis of medical model 

accuracy. 
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5.2   Model accuracy  

The task of generating accurate medical RP models can be assisted by analyses that reveal 

potential inaccuracies, which may arise during medical model generation (Fig. 4-5). 

Specifically, measurement studies verify the demands on CT scans made by prototyping, by 

using a physical test model. The virtual test model is an .STL model generated from a 3D 

CAD model. The physical RP model is made of PMMA, which is material typically used for 

medical RP models (Hieu et al., 2005; Azmi et al., 2004). As shown in Figure 5-4 the test 

model has a defined geometry: a square block with a free-form contour.  

 
 

Figure 5-4: Test model  
 
The test model has the advantage of having an evenly distributed density of 1.18 g/cm3 

(PMMA), which then provides a more exact threshold setting in the segmentation process. 

The design of the test model is depicted in Figure 5-4. The test model also has the 

advantage that the geometry features an exactly defined 2D contour, which can be 

sufficiently segmented, milled, and measured using a coordinate measurement machine 

(CMM). In addition, the geometry represents an exemplary contour that is typically processed 

in medical radiology. The accuracy analysis is processed two times in order to compare the 

influence of different CT scanners, and is based on the following test sequence (Fig. 5-5): 

First, the test model is defined using the 3D CAD software SolidWorks Version 2007. Here, 

the original measures are set and verified. Then, after the .STL reference test model has 

been milled using the CAM software, CamWorks Version 2007 (Teksoft) and the milling 

machine BAZ 15 (Alzmetall, Heidenhain control system), the reference test model is put in 

the CT imaging machine, Somatom Definition (Siemens; 1 slice per rotation) (Single-slice 
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scanner study). In the second multislice scanner study, the test model is scanned in the 

multislice technology CT scanner, Sensation Open (Siemens) (40 slices per rotation). 

 

 
Figure 5-5: Test sequence accuracy analysis  

 

In both studies, different settings of the scan parameters are evaluated to identify possible 

effects on accuracy. In some cases in the second multislice scanner study, the scanning 

direction is varied from longitudinal to transverse in order to analyze the possible impact of 

the initial scanning direction. The scan protocol used is presented in Table 5-2: 

 

Table 5-2: Scan prototocol accuracy analyis 

Scan parameters: Single-slice scanner study Scan pa rameters: Multislice scanner study 

Scanner Siemens SOMATOM PLUS 4 Scanner Siemens SENSATION OPEN 

Reconstruction-
Algorithm 

H50s Reconstruction-
Algorithm 

H50s 

Slice increment 
slice thickness → Table 5-4, Table 5-5 Slice increment 

slice thickness → Table 5-6, Table 5-7 

Hounsfield unit 
spectrum 

-724 → +574 Hounsfield unit 
spectrum 

 -530 → +1024 

 

The selection of scan parameters (Table 5-2) depends on predefined clinical data 

calibrations provided from the used CT scanners (Alfried Krupp von Bohlen und Halbach 

Hospital (Radiology, Dr. M. Montag)). As stated in Table 5-2, the Hounsfield unit spectrum 

used for the subsequent segmentation process is fixed to reduce the user’s influence on 

segmentation accuracy. The output is a set of .DICOM files that have been imported into the 

3D reconstruction software, Mimics Version 10, to generate .STL models. All .STL models 

are exported in full resolution without any intervention in the triangulated mesh to avoid any 

additional influence on accuracy. The reconstructed models are imported again into 

CamWorks to program machine code for milling. Finally, a set of physical test models is 

milled and measured to state the final deviation of reconstructed medical RP models.  

Virtual model 
(3D CAD)

Physical modelRapid Prototyping 
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As depicted in Figure 5-5, the test model is measured during the presented sequence in two 

measurements. The first measurement states the deviation that occurs during the milling 

process and uses a coordinate measurement machine (CMM) that takes into account the 

measuring points (see Fig. 5-4). In terms ensuring final accuracy, the CMM measures 23 

points and makes six iterations per measurement (Table 5-3), to increase accuracy with a 

reasonable expenditure for measuring. The six measurement values for every point are used 

to calculate the arithmetic mean value (µ). Mean deviations of the 23 measuring points are 

then compared with the reference values of the original CAD model. The maximum outer 

dimensions of the test model are 100 mm in length, 18 mm in depth, and 38 mm in height. 

The wave contour is built on six different half-circles (D1…D6) positioned from 

axD1/ayD1,…, axD6/ayD6, as shown in Table 5-3:  

 

Table 5-3: Reference measures: test model accuracy analysis 

Aggregated measurement 
points  

Marking 
(Figure 5-4) 

Reference measures 
[mm] 

Centre of circles in x-direction (axDi) 

axD1  8 

axD2  26.65 

axD3  41.98 

axD4  51.78 

axD5  65.74 

axD6  82.86 

Centre of circles in y-direction (ayDi) 

ayD1  29.5 

ayD2  53 

ayD3  32 

ayD4  42 

ayD5  25 

ayD6  35.34 
Length (L) L 100 

Radiuses (Di) 

D1  16 

D2  44 

D3  8 

D4  20 

D5  24 

D6  16 

D7  30 

Angles (Wi) 
WL 90 

WR 90 

Thickness (T) T 18 

 

The second measurement records the deviation of the reconstructed RP model using the 

CMM to guarantee a valid result. Additionally, final mean deviations (µ) are aggregated with 

reference to the geometrical characteristics of the test model in order to detect which 

geometrical characteristic deviates more and which less (Table 5-3). The standard deviation 

(σ) is calculated to show the distribution of the six-times-measured mean values with a two-

sided 95 % confidence interval (DIN 1319-3).  
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5.2.1   Single-slice scanner study  

The measurement series shows a mean deviation of the original RP process of 0.063 mm. 

Results of the study shows a lowest mean deviation of 0.553 mm for case number 2, for 

which a slice increment of 1 mm and a slice thickness of 2.5 mm have been used for 

scanning. Considering the accuracy after 3D reconstruction at measurement two, it can be 

seen that slice increment has the most impact on accuracy (Table 5-4). In case 7, a deviation 

of 7.049 mm results, although typical clinical scan parameters have been used.  

 

Table 5-4: Measurement results single-slice scanner  study 

Number 
Test model 
(Model_"slice 

increment"/"slice 
thickness") 

1. Measurement               
(Milled reference model)           

mean [mm] 

2. Measurement                   
(Mille d reconstructed model)           

mean [mm] 

1 Model_Ref 0.063   

2 Model_1/2.5 0.553 

3 Model_1/3 0.728 

4 Model_2/2 1.025 

5 Model_2/4 0.545 

6 Model_3/3 1.041 

7 Model_5/5   7.049 

 Highest deviation 
Lowest deviation  

 

The source of deviations is given in Table 5-5. It can be seen that the radiuses are more 

deviated when a the higher slice increment and slice thickness are selected. Spread also 

increases when a higher slice increment and slice thickness are selected.  

  

Table 5-5: Results single-slice scanner study: aggr egated measurement points 

 

In case 7, a standard deviation of 23.472 mm is given for the radius measurement.  

Test models
Centre of circle x-

direction (ax Di) 
[mm]

Centre of circle y-
direction (ay Di) 

[mm]

Length (L) 
[mm]

Radius (D i) 
[mm]

Angle (W i) 
[°]

1 Mean (µ) reference model 0.021 0.061 0.125 0.039 0.064

Standard deviation  (σ 95,00 ±) 0.009 0.036 0.000 0.05 0.007

2 Mean (µ) model_1/2.5 0.861 0.256 1.035 0.506 0.107

Standard deviation  (σ 95,00 ±) 0.064 0.326 0.005 0.603 0.033

3 Mean (µ) model_1/3 0.163 0.814 0.379 1.928 0.355

Standard deviation  (σ 95,00 ±) 0.156 0.571 0.104 1.012 0.093

4 Mean (µ) model_2/2 1.773 0.312 1.975 0.951 0.113

Standard deviation  (σ 95,00 ±) 0.126 0.381 0.050 0.710 0.088

5 Mean (µ) model_2/4 0.857 0.491 0.022 1.270 0.086

Standard deviation  (σ 95,00 ±) 0.106 0.231 0.102 1.188 0.106

6 Mean (µ) model_3/3 0.239 0.811 0.920 3.151 0.086

Standard deviation  (σ 95,00 ±) 0.222 1.323 0.045 1.768 0.062

7 Mean (µ) model_5/5 3.139 9.602 4.809 17.597 0.098

Standard deviation  (σ 95,00 ±) 1.716 9.602 0.019 23.472 0.049

Highest deviation

Lowest deviation
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A visual comparison (Fig. 5-6) of the best case (Test model 2, see Table 5-5) and worst case 

(Test model 7, see Table 5-5) supports the results of Table 5-5.  

 
Figure 5-6: Models single-slice scanner study  

 

The CT image of the worst case scenario show unclear boundaries. In contrast, the radii in 

particular are much better represented in the best case (2). 

 

 

 

5.2.2   Multi-slice scanner study 

The result of measurement case two shows a lowest mean deviation of 0.380 mm for case 

number 2, for which a slice increment of 0.6 mm and a slice thickness of 0.1 mm have been 

used for scanning. Considering the accuracy after 3D reconstruction at measurement two, it 

can be seen that slice increment has the most impact on accuracy (Table 5-6). In case 7, 

scanning direction has been changed to transverse. As a consequence, accuracy is much 

better than for the same parameters, whereby scanning direction is normally orientated in the 

longitudinal direction (6). A comparison of cases 6 and 7 shows an improvement of 0.27 mm, 

which is created simply by a change in scanning direction. The analysis of cases 10 and 11 
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shows the same effect with an improvement of 2.36 mm. In case 12, the highest mean 

deviation of 3.251 mm is found. 

 

Table 5-6: Measurement results multislice scanner s tudy 

Number 
Test model 
(Model_"slice 

increment"/"slice 
thickness") 

1. Measurement               
(Milled reference model)           

mean [mm] 

2. Measurement                   
(Milled reconstructed model)           

mean [mm] 

1 Reference model 0.063   
2 Model_0.6/0.1 0.380 

3 Model_0.6/0.4 0.426 

4 Model_0.6/0.6 0.440 

5 Model_0.6/1 0.553 

6 Model_1/1 0.544 

7 Model_1/1 (transverse) 0.274 

8 Model_2/2 (transverse) 0.393 

9 Model_3/1  0.527 

10 Model_3/3 2.656 

11 Model_3/3 (transverse) 0.293 

12 Model_3/5 3.251 

13 Model_4/2 2.460 

14 Model_4/4 2.431 

15 Model_5/5    1.873 

  
Highest deviation 

 Lowest deviation 
 

The reasons why the deviations occurred are shown in Table 5-7 can be seen that a higher 

slice increment causes a higher level of contour approximation. The larger the distance that 

is selected between each slice, the less information the MC algorithm has for producing an 

accurate meshing. The radii are most influenced by larger slice increments, as 

demonstrated, for example, by case 12, in which standard deviation amounts to 18.294 mm.  

Again, accuracy is much better if the model is scanned in the transverse direction. A 

comparison of cases 10 and 11 shows an improvement of 4.29 mm if the model is scanned 

in the transverse direction. But, one must note that model thickness deviates concurrently 

when the model is scanned in the transverse direction. Measurement results of case 11 

demonstrate this observation. Although values of centre points in the x-direction, lengths, 

and radii show the best results, thickness is worst with a value of 2.521 mm. 
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Table 5-7: Measurement results multislice scanner s tudy: aggregated measurement points 

 
 

A visual comparison (Fig. 5-7) of best (2) and worst case (12) scenarios substantiates the 

results of Table 5-7. The CT images of the worst case (12) present washy boundaries. In 

particular, the radii are much better represented in the best case (2).  

 

Test models
Centre of circle x-

direction (ax Di) 
[mm]

Centre of circle y-
direction (ay Di) 

[mm]

Length (L) 
[mm]

Radius (D i) 
[mm]

Angle (W i) 
[°]

Thickness (T) 
[mm]

1 Mean (µ) reference model 0.021 0.061 0.125 0.039 0.064 0. 046

Standard deviation  (σ 95,00 ±) 0.009 0.036 0.000 0.050 0.007 0.018

2 Mean (µ) model_0.6/0.1 0.142 0.254 0.199 0.736 0.567 0.51 5

Standard deviation  (σ 95,00 ±) 0.063 0.231 0.008 0.471 0.042 0.151

3 Mean (µ) model_0.6/0.4 0.443 0.280 0.715 0.639 0.051 0.47 1

Standard deviation  (σ 95,00 ±) 0.12 0.228 0.062 0.638 0.085 0.164

4 Mean (µ) model_0.6/0.6 0.466 0.244 0.942 0.518 0.032 0.42

Standard deviation  (σ 95,00 ±) 0.086 0.327 0.010 0.715 0.008 0.107

5 Mean (µ) model_0.6/1 0.861 0.256 1.035 0.506 0.107 0.429

Standard deviation  (σ 95,00 ±) 0.139 0.230 0.104 0.492 0.119 0.166

6 Mean (µ) model_1/1 0.634 0.322 0.904 0.817 0.044 0.572

Standard deviation (σ 95,00 ±) 0.083 0.282 0.004 0.683 0.051 0.109

7 Mean (µ) model_1/1 (transverse) 0.105 0.467 0.024 0.537 0.238 0.562

Standard deviation  (σ 95,00 ±) 0.081 0.251 0.053 0.534 0.068 0.066

8 Mean (µ) model_2/2 (transverse) 0.101 0.639 0.082 0.808 0.333 1.405

Standard deviation  (σ 95,00 ±) 0.100 0.277 0.005 0.542 0.031 0.092

9 Mean (µ) model_3/1 0.629 0.285 0.874 0.795 0.053 0.481

Standard deviation  (σ 95,00 ±) 0.072 0.353 0.034 0.603 0.04 0.138

10 Mean (µ) model_3/3 1.632 3.065 3.790 4.744 0.047 0.422

Standard deviation (σ 95,00 ±) 1.081 5.153 0.018 11.917 0.063 0.089

11 Mean (µ) model_3/3 (transverse) 0.052 0.614 0.059 0.447 0.291 2.521

Standard deviation  (σ 95,00 ±) 0.083 0.520 0.012 0.854 0.044 0.274

12 Mean (µ) model_3/5 2.070 1.239 4.670 8.159 0.118 0.364

Standard deviation  (σ 95,00 ±) 4.462 13.679 0.058 18.294 0.213 0.103

13 Mean (µ) model_4/2 1.705 5.445 1.818 3.247 0.087 0.336

Standard deviation  (σ 95,00 ±) 0.136 1.108 0.039 2.829 0.058 0.074

14 Mean (µ) model_4/4 2.561 1.540 3.760 4.223 0.069 0.431

Standard deviation  (σ 95,00 ±) 2.222 6.005 0.091 11.542 0.096 0.109

15 Mean (µ) model_5/5 0.519 1.515 4.863 2.43 0.036 0.615

Standard deviation  (σ 95,00 ±) 1.084 2.531 0.013 5.925 0.032 0.186

Lowest deviation

Highest deviation
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Figure 5-7: Models multislice  scanner study  
 

When comparing both measurement studies, it is obvious that the multislice scanner study 

uncovered more detailed findings about the influence of scanning parameters on accuracy. 

 

 

 

5.2.3   Conclusion 

The success of the 3D reconstruction process depends on how easy it is to eliminate 

inaccuracies caused by nonoptimally chosen scan parameters. The measurement studies 

have shown how a higher slice increment causes a larger distance between each slice. The 

consequence is that possible deviations are great, and results are thus distant from original 

measurements. Slice images converted to a 3D model cannot represent exact geometry in 

the case of nonoptimal resolution in the z-direction. This can be overcome and optimized by 

taking small slice increments.  

CNC milling fulfills needs of manufacturing medical models by allowing inaccuracies of ± 1 

mm (Klein and Broeckel, 2005) with a resulting mean deviation of 0.380 mm. This is 

accomplished by using scan parameters of 0.1 mm for slice increment and 0.6 mm for slice 

thickness for scanning the test model in the longitudinal direction. The RP process has a 
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mean deviation of 0.063 mm, largely due to the 3D reconstruction process. The smallest 

selected scan parameters of a slice thickness of 0.6 mm and a slice increment of 0.1 mm 

lead to a reconstruction error of 0.31 mm. This failure cannot be eliminated by a more 

suitable manufacturing method but can be by a better scanning procedure. The transverse-

scanned test model in the multislice scanner study (case 7) shows a lowest mean deviation 

of 0.274 mm. This measured deviation represents an increase of 0.72 mm when compared 

to the optimum demanded by Klein and Broeckel (2005). Compared to the study of Choi et 

al. (2002) in which they produced a thus far unachieved result by generating a skull RP 

model with only 0.62 mm mean deviation, the present result is an improvement of 0.34 mm 

(54 %). A comparison of both measurement studies shows an optimization in the multislice 

scanner study series of 0.17 mm using a slice increment of 0.6 mm and slice thickness of 0.1 

mm instead the a slice increment of 1 mm and slice thickness of 2.5 mm.  

In case 2 of the second multislice scanner study, the angle measurement shows the highest 

mean deviation of 0.567 mm compared to other cases of the second measurement study 

although a slice increment of 0.6 mm and a slice thickness of 0.1 mm is selected. The reason 

for this is demonstrated by false color images shown in Figure 5-8. 

 
Figure 5-8: False color image measurement study 2, case 2  

 

As demonstrated by Figure 5-8, the outer edge of the side surface is not captured in full. The 

reason for this is the form of the thin slice profile (Chapter 2.1.2.2). Although the position of 

the test model is calibrated using the laser positioning system of the CT scanner, the side 

surface deviates by a fraction of a degree. In case 2, the slice thickness is only 0.1 mm so 

that one reason might be that a small deviation of the test model’s longitudinal position 

cannot capture the complete outer slice. A second reason can be attributed to the fact that in 

the other cases shown, higher slice thickness might lead to the situation where the profile 

slice error is less influencing (Chapter 2.1.2.2); thus, the rounding of the slice profile 

influences the longitudinal side surface deviation to an extent. This is based on the 

unavoidable spiral movement of the tomographic scanning unit. In consequence, the slice 

thickness should be set ≤0.4 mm (Table 5-7). Finally, there is evidence that the shape of the 
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slice profile is relevant to accurate model generation. It is noteworthy that no previous study 

found the influence of the slice profile form on RP model accuracy.  

Nevertheless, slice spacing is critical for 3D model reconstruction and determines spatial 

accuracy. Accuracy in the third dimension (z-axis) is determined by the slice increment and 

should be set at a minimum, i.e., less than the size of the smallest feature intended for 

reconstruction. In general, slice increment should be as small as possible, from a technical 

point of view, to provide the MC algorithm with as much information as possible for 

generating the surface mesh. The more information that is scanned, the more vertices the 

MC algorithm can set. A high number of vertices lead to small distances between the 

vertices. Short distances between the vertices permit shorter edges to be generated and the 

original contour can be reconstructed much better. Taking into account the present results, it 

can be stated that the RP process alone does not lead to inaccuracy, but that scanning 

parameters are the basic cause. In a study by Mallepree & Bergers (2008), it was shown that 

the accuracy of medical RP models is determined by the medical imaging system. 

However, the results of the RP process shown cannot be applied to every medical case. Still, 

it can be stated that the 3D reconstruction parameters of slice thickness and slice increment 

should be considered carefully when generating medical models with sufficient accuracy. As 

demonstrated by the medical prototyping accuracy matrix (Fig. 5-9), accuracy, the ratio of 

slice thickness and slice increment (pitch), and the selected medical prototyping application, 

are all interdependent.  

 
Figure 5-9: Medical prototyping accuracy matrix 

 

A pitch >1 should be selected if the medical application necessitates concept models only, 

both for VP and RP. If however, there is a need for functional models, accuracy is optimized 

with a pitch <1, both for VP and RP. 
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The present findings are followed by an investigation of mesh enhancement during 3D 

reconstruction. This is done to improve virtual (.STL) model accuracy even though the basic 

source of error is the scan process. 

 

 

 

5.3   Surface mesh analysis 

A generated surface mesh is a necessary precondition when transferring scanned image 

data from 3D reconstruction to post-processing applications such as VP and RP. The 3D 

reconstruction process allows defining the final surface mesh quality, which relates to model 

accuracy.  

When generating a triangulated surface mesh (the following investigations on surface mesh 

quality refer to the .STL data format (Chapter 2.2.3), the objective is to balance accuracy and 

computing time, which is dependent on file size. This is realized by setting a permissible 

deviation between the original model’s surface and the approximated triangular mesh, when 

generating the mesh with the MC algorithm (Chapter 2.1.4.1). When processing medical 

models, the original model surface is the surface that is built on all available gray values. 

Therefore, all available gray values should be used to obtain an .STL model with highest 

resolution to avoid an unnecessary loss of information. A generated surface mesh can 

contain defects that can influence a model’s final accuracy. Typical errors are incorrect 

normal vectors or gaps between triangles. Software tools are available that can efficiently 

repair possible defects in automatic operation mode (e.g., 3-Matic). Therefore, possible 

defects are not focused upon in the present thesis but rather actual mesh building; this refers 

to applied mesh-editing parameters of triangle reduction and smoothing discussed in Chapter 

2.1.6 (Table 2-2). The objective herein, is to determine decisive parameters for generating a 

surface mesh representative of a medical model that is most similar to an original model, 

whereby the original model is built of gray values only. Thus, all available gray values must 

be processed and an optimum range of surface smoothing found, due to the reconstructed 

angular structures caused by the MC algorithm. Otherwise, the degree of model accuracy 

decreases.  
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Figure 5-10: Smoothing of angular mesh structures    

 

As depicted in Figure 5-10, angular and brick-shaped mesh structures often appear after 3D 

reconstruction. These specific structures have a technical and not a native origin. Therefore, 

smoothing is required to optimize the mesh. Only in cases where file sizes are larger than 35 

MB (2Ghz Dual-core, 4GB RAM, 32 bit Windows PC), does file size need to be reduced. 

Especially, in running post-processing applications (e.g., model slicing), models larger than 

35 MB overload a computer’s processing system. In this case, smoothing combined with 

triangle reduction need to be conducted.  

 

A primitive model measurement begins with an evaluation of the influential mesh editing 

parameters of triangle reduction and smoothing, respectively (Fig. 5-13). The primitive 

models (cube, tetrahedron, cylinder, sphere) are generated in the 3D CAD system 

SolidWorks 2009 and derived as reference .STL files. Possible deviations between the 

reference primitive models and edited (triangle reduction, smoothing) primitive models are 

investigated. Then, an analysis of aggregated mesh editing parameters is conducted, based 

on the results from the individual parameter analysis.  

A medical model measurement uses three reference medical models (i.e., femur, hip, nose) 

to verify the extracted aggregated parameters from the first measurement of the primitive 

models (Fig. 5-11). 
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Figure 5-11: STL Editing test sequence  

 

Possible differences between the reference medical models, which are generated by means 

of the MC algorithm and the edited medical models, are again analyzed. The medical models 

used are reconstructed from CT images, which result from predefined clinical data sets 

provided from the Alfried Krupp von Bohlen und Halbach Hospital (Radiology, Dr. M. Montag) 

(Table 5-9). 

 

Table 5-9: Scan parameters: medical models meshing a nalysis 

Parameter Femur Hip Nose 
Scanner Siemens SENSATION 16 Philips Brilliance 16 Siemens SENSATION OPEN 

Reconstruction filter B30f D H50s 

Slice increment 1 [mm] 2 [mm] 0.5 [mm] 

Slice thickness 2 mm [mm] 2 mm [mm] 0.5 mm [mm] 

Resolution 512×512 [pixel] 512×512 [pixel] 512×512 [pixel] 

Pixel size 0.576 [mm] 0.729 [mm] 0.342 [mm] 

Field of view 29.5 [cm²] 37.3 [cm²] 17.5 [cm²] 

 

Three different types of CT scanners, different slice increments, and slice thicknesses have 

been used to create three typical scenarios found daily in clinical routine. 

 

Differences between reference models that are generated in full resolution and those that are 

edited .STL models are analytically measured (3-Matic) two-fold.  

First, dimensional accuracy and file size is compared between edited primitive models and 

their original reference models (Fig. 5-12). The four primitive reference models are generated 

analytically by means of a 3D CAD system (SolidWorks 2009).  
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Figure 5-12: Primitive model measurement 

 

The primitive model measurement aims to compare the deviation of the edited mesh of the 

manipulated virtual .STL model to the original mesh of the appropriate reference model (Fig. 

5-12). 

 

Secondly, the dimensional accuracy and file size between three reconstructed and edited 

medical models is compared to their original reference in full resolution. 

 
Figure 5-13: Medical model measurement 

 

The medical model measurement states the deviation of the edited surface of the medical 

models to the original mesh, from the reference medical models. As demonstrated in Figures 

5-12 and 5-13, both primitive reference models and medical reference models are 

reconstructed without manipulating the surface mesh (original mesh). The resulting mesh is 

the original mesh generated by means of the MC algorithm (Chapter 2.1.4.1). A modification 

is not applied on this resulting mesh. The measurement result reveals the influence of how 

different mesh editing parameters contribute to 3D model reconstruction. In order to compare 
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possible deviations between the original and edited meshes, the four primitive reference 

models are transferred into a 3D reconstruction environment (Mimics) first. The analytically 

built primitive models consist of surface meshes generated by means of the 3D CAD system 

SolidWorks 2009. To obtain models with surface meshes that are generated by means of the 

MC algorithm, the primitive models need to be processed in the 3D reconstruction system 

Mimics. The reconstruction settings are given in Table 5-8. 

 

Table 5-8: Parameter settings reconstruction environ ment  

Parameter Value 
Scanner Siemens SENSATION OPEN 

Reconstruction filter H50s 

Slice increment 0.5 [mm] 

Slice thickness 0.5 mm [mm] 

Resolution 512×512 [pixel] 

Pixel size 0.342 [mm] 

Field of view 17.5 [cm²] 

 

In the following, a set of parameters for meshing in prototyping will be determined as settings 

for typical 3D reconstruction cases of medical models  

 

 

 

5.3.1   Primitive model measurement 

The primitive model measurement shows that both tolerance and edge angle can be 

selected as minimum values (Table 5-10). A tolerance of 0.1 mm and an edge angle of 1° 

allows a reduction in file size while maintaining an acceptable mean error rate. For instance, 

the mean error of the cylinder is 0.0002 mm with a tolerance of 0.1 mm, edge angle of 1° and 

10 iterations. If an edge angle of 15° is selected,  the tolerance value of 0.1 mm leads to 

sufficient results as depicted by Figure 5-14. 
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Figure 5-14: Primitive model measurement (individual  parameter analysis): tolerance  

 

The effects of edge angle manipulation are linked to tolerance. When varying the edge angle 

with a tolerance < 0.1 mm, no dimensional deviations can be detected. If a tolerance factor of 

>0.1 mm is selected, edge angle does influence model accuracy. 

 

Table 5-10: Primitive model measurement: individual parameters 

Parameter Range of values Result 
Triangle reduction     

Tolerance 0.01 - 0.2 [mm] 
0.1 mm is ideally suited → Higher 
values increase mean error 

Edge Angle 1 - 30 [°] 1° is ideally suited → Higher values 
increase mean error 

Iterations  1 – 20  
5 iterations are ideally suited → Higher 
values increase mean error; file size is 
not reduced further 

Mode Point, Edge, Advanced 
Edge 

Advance Edge is ideally suited → 
Other modes increase mean error and 
reduce file size less 

Smoothing 
  

Iterations  1 – 20  

5 - 10 are ideally suited → Lower 
values than 5 reduce noise not enough 
even though high factors are used; 
values higher than 10 increase mean 
error 

Factor 0.01 – 1 
0.5 is ideally suited → Lower values  
reduce noise not enough; higher 
values increase mean error 

 

- Primitive model measurement (individual parameter analysis): Triangle reduction -
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When conducting tolerance and edge angle editing, the variation of possible iterations 

reveals that five iterations are ideally suited. Higher values increase the mean error and do 

not reduce file size. 

 

Smoothing influences model accuracy as well. The comparative test of use of the different 

smoothing factors with five iterations reveals that the higher the smoothing factor is selected, 

the more the models are influenced by smoothing (Fig. 5-15). A factor of 0.5 is ideally suited 

for smoothing. Factors higher than 0.5 lead to an increase of mean error. Lower values do 

not reduce noise sufficiently. 

 
Figure 5-15: Primitive model measurement (individual  parameter analysis): smoothing  

 

As Figure 5-15 depicts, higher smoothing factors (e.g., 0.75) improve the optical impression. 

However, higher deviations result.  

The combined use of triangle reduction and smoothing reveals that the standard 

reconstruction algorithm (advanced edge) used within Mimics leads to improvable results. 

The most appropriate mode is the point algorithm. The point algorithm eliminates points 

(vertices) and not edges, whereas the edge algorithm eliminates edges in order to simplify 

the resulting surface mesh.  
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Figure 5-16: Primitive model measurement (aggregated  parameter analysis): mode  

 

As shown in Figure 5-16, the advanced edge mode can lead to mean errors of >1 mm. 

Although, for the cube the point mode shows a small negative deviation, and is most 

appropriate because surface noise is a slightly reduced compared to the edge algorithm, 

which is even better than advanced edge. 

The triangle reduction parameter tolerance shows the lowest mean error when a value of 

0.01 mm is selected.  

 

Table 5-11: Primitive model measurement: aggregated parameters 

Parameter Range of values Result 
Triangle reduction     

Tolerance 0.01 - 0.2 [mm] 0.01 mm is ideally suited → Higher 
values increase mean error  

Edge Angle 1 - 30 [°] 
1° is ideally suited →Higher values 
increase mean error 

Iterations  1 – 20  
5 iterations are ideally suited → no 
difference to individual parameter 
analysis 

Mode Point, Edge, Advanced 
Edge 

Point is ideally suited → Other modes 
increase mean error and reduce less 
noise 

Smoothing 
  

Iterations  1 – 20  
10 are ideally suited → Lower values 
reduce less noise; values higher than 
10 increase mean error 
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Factor 0.01 – 1 
0.5 is ideally suited → Lower values  
reduce noise not enough; higher 
values increase mean error 

 

The remaining triangle reduction and smoothing parameters show results similar to those 

when they are used separately (Table 5-11).  

 

 

 

5.3.2   Medical model measurement 

The second measurement shows that both triangle reduction and smoothing parameters 

produce similar results even if medical models are used (Table 4-12). One again, it can be 

seen that small values for tolerance and edge angle lead to sufficient results.  

 

Table 5-12: Medical model measurement: aggregated p arameters 

Parameter Range of values Result 
Triangle reduction     

Tolerance 0.01 - 0.2 [mm] 
0,01 mm is ideally suited →  no 
difference to measurement 1 

Edge Angle 1 - 30 [°] 
1° is ideally suited →   no difference to 
measurement 1 

Iterations  1 – 20  
5 iterations are ideally suited →   no 
difference to measurement 1 

Mode Point, Edge, Advanced 
Edge 

Point is ideally suited → Other modes 
increase mean error and reduce less 
noise 

Smoothing 
  

Iterations  1 – 20  
10 are ideally suited →  Lower values 
reduce less noise; values higher than 
10 increase mean error 

Factor 0.01 – 1 
0.2–0.5 is ideally suited →  Lower 
values  reduce noise not enough; 
higher values increase mean error 

 

When setting small factors for tolerance and edge angle in combination with a smoothing 

factor of 0.5 with 10 iterations, the deviation of vertices in the nose model can be reduced 

(Fig. 5-17). For instance, a tolerance of 0.01 mm and edge angle of 1° results in a 45 % 

deviation of nose model vertices (>0.05 mm). A higher tolerance of 0.1 mm and edge angle 

of 5° leads to 59 % deviated vertices (>0.05 mm). A  deviation of 3 % of all vertices (>0.3 mm) 

occurs when a tolerance of 0.7 mm and an edge angle of 5° are selected.  
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Figure 5-17: Medical model measurement: aggregated parameter analysis 

 

If only smoothing is selected, 5 % of all vertices deviate with an error >0.15 mm, 11 % 

deviate for >0.01 mm, and 21 % deviate for >0.05 mm. As shown by the red circles in Figure 

5-17, smoothing without triangle reduction smoothes the surface mesh in a way that 

unwanted facets appear to have vanished. The same effects are seen when processing 

femur and the hip models.  

The smoothing factors show the most impact on the meshing behavior (Mallepree & Bergers, 

2009a). In comparison to measurement 1, the second measurement reveals that a factor 

range between 0.2 and 0.5 is ideally suited to improve the edges from 3D reconstruction 

(Fig. 5-18). The benefit of selecting the appropriate factor of 0.2 for smoothing the surface is 

shown in Figure 5-18. Here, a factor of up to 0.5 is best suited for the femur and nose model. 

For the nose model, a smoothing factor of 0.5 yields a 0.0122 mm difference relative to the 

reference model. The best generation of the hip model occurs with a smoothing factor of 0.2, 

and produces a mean error of 0.0186 mm. 
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Figure 5-18: Medical model measurement: smoothing a nalysis without triangle reduction 

 

Therefore, a smoothing factor of 0.2 for the hip and 0.5 for the femur and nose model, are 

suggested. A comparison of all three medical models studied reveals that a smoothing factor 

of ≤0.5 with a maximal mean deviation of 0.3 mm. 

 

  

 

5.3.3   Conclusion  

In conclusion, it has been shown that smoothing should not be used in combination with 

triangle reduction parameters as long as the .STL model incurs a file size limit of 35 MB, 

when standard computers are used in post applications. Otherwise, an avoidable loss of 

accuracy is the consequence. When smoothing alone is used, the MC algorithm’s 

disadvantage of brick-shaped mesh structures can be balanced. A smoothing factor between 

0.2 and 0.5 seems to be most appropriate for eliminating the brick-shaped mesh structures. 

The use of triangle reduction operations should be avoided. If triangle reduction is used, the 

density of the vertices will be reduced, which leads to a higher degree of approximation. The 

original model surface, which is built on all available gray values, is forced to deviate. Gray 

values that already exist are no longer used as information for building the model surface. 

Thus, actual available accuracy is reduced.  

In summary, medical prototyping mesh editing cannot be performed similar to other 

prototyping applications in which models are generated by means of a 3D CAD system and 

not by a tomographic scanning machine. 
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5.4   Surface quality of physical model  

The first step of manufacturing an RP model is defining required quality. The quality of an RP 

model used for medical applications can be directly referred to its geometric accuracy. An 

additional quality demand frequently called for is the transparency of a manufactured model. 

A field of research is the use of medical models for flow analysis. Such functional models 

have to be transparent in order to enable experimental flow analysis (e.g., PIV-method). One 

possibility to manufacture accurate transparent models for medical applications is the quasi-

additive RP procedure of CNC milling. Additive RP procedures (e.g., Stereolithography) are 

not able to generate transparent anatomical models that are acceptable for accurate flow 

analysis. Appropriate milling parameters for milling transparent anatomical RP models are 

determined using test models for finding standardized CAM parameters (Chapter 2.2.2). 

In terms of extrapolating results to complex free-form shaped anatomical models, the study 

design for obtaining appropriate parameters for milling anatomical formed models is based 

on three test models. The morphology should represent increasing complexity from model to 

model as depicted in Figure 5-19. 

 
Figure 5-19: Test models 1–3: milling 

 

The raw model is 53-mm long in the y-direction, 43-mm high in the z-direction and 20-mm 

thick in the x-direction, and is composed of PMMA.  
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Test model 1 consists of a 1-dimensionally twisted surface. This form permits milling a plane 

surface with one undercut created by twisting the surface (Fig. 5-19). The second test model 

consists additionally of a radius along the model’s y-plane. The final test model demonstrates 

the typical scenario, which is often found with anatomical-shaped surfaces. Anatomical 

surfaces are twisted in all directions, creating morphology without rules. Thus, the third test 

model is designed in this context and has two undercuts. The situation of undercuts is 

overcome in milling by turning the test model’s milling to the opposite side.  

The quality of milled surfaces is measured using a roughness measuring device to obtain 

statistical data about possible deviations related to the original measure.  

 

 

 

5.4.1   Test series 1 

Test model 1 tests parameter combinations to determine those parameters influencing 

milling of anatomical-shaped free-form surfaces (Fig. 5-19). The first parameter test (1) tests 

the influence of different angles between tool and workpiece, to evaluate the impact of 

different strategies, and to determine the difference of tool radius of shank cutter and radius 

cutter (Table 5-13). This evaluation is based on the use of fixed parameters for tool diameter, 

feed for roughing and smoothing, z-infeed for smoothing, lateral off-set for smoothing, 

surface tolerance, and chord error. 

 

Table 5-13: Parameters test series 1 

 
 
The use of a radius cutter and a strategy of linear 0° (row) in test series 1.6, influences the 

surface quality more than other proposed parameters. The geometry is milled without surface 

damage and translucency is superior to other tested models.  

Test series 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
tool diameter 
tool
tool radius
feed roughing
feed smoothing
r.p.m.
infeed roughing
infeed smoothing
lateral off-set smoothing
surface tolerance
chord error

strategy
linear 0° 

columns/forward
& backward

linear 90° rows / 
forward& 
backward

linear 0° 
columns/forward

& backward

linear 90° rows / 
forward& 
backward

linear 90° rows / 
forward& 
backward

angle between tool & workpiece
Test series 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

0.1 mm

20°10°

0.005

500
900
9000
1 mm

0.1 mm

6 mm
shank cutter radius cutter

0 mm 3 mm

0.0075

linear 0° columns / forward
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Figure 5-20: Milling result: test series 1 

 

As Figure 5-20 shows, test series model 1.6 consists of much higher qualitative surfaces 

than the test series model from 1.3, although tool radius and the cutting direction are the only 

different parameters. 

Comparing the results of the conducted survey with roughness measurements reveals that 

choosing milling parameters of test series 1.6 are best for producing accurate and 

transparent surfaces (Fig. 5-21).  

 
Figure 5-21: Evaluated results: test series 1 

 

Moreover, the evaluation reveals that a smoothing strategy < 90° is suboptimal. A column-by-

column strategy <0° seems to create a better surfac e that the use of a row strategy in milling 

a twisted surface. Test series 1 shows that a radius cutter with an edge radius that meets 

half of the tool radius shows a better result than using a shank cutter with an identical 

diameter. The measurement results (Fig. 5-21) testify that test model 1.6 (Fig. 5-20), which is 

milled with a radius cutter, features the best transparency. An additional result of these tests 

is that a variation of cutting direction leads to different levels of transparency. Test models 
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1.3 and 1.6 feature different surface qualities (Fig. 5-20) although only the parameter cutting 

direction is varied. Thus, different cutting directions should be tested again in test series 2 

using a double-twisted model (Fig. 5-19). 

 

 

 

5.4.2   Test series 2  

The second test model is a modification of test model 1: it uses a double-twisted surface. 

First, the model is roughed and then finished in order to mill the contour. For test series 2.1–

2.4, the parameters found in test case 1.6 will be applied, varying only the cutting direction. 

Test series 1 shows that various cutting directions lead to differing surface quality. Here, the 

objective is to determine the optimal cutting direction.  

 

Table 5-14: Parameters: test series 2 

 

 

As Table 5-14 shows, the feed for smoothing is varied as an admeasure for roughing and 

positioning of the tool.  

The resultant models 2.1–2.4 show no differences and feature the same partial damages of 

identical position and size, as demonstrated by Figure 5-22.  

 

 

 

 

 

 

 

 
 
 

Figure 5-22: Damages test series 2 
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A variation of the cutting direction along smoothing has impact on surface transparency. Test 

series 2 shows that a variation of cutting direction mainly influences manufacturing time. It 

can be seen that transparency is best in cases 2.1 and 2.4, but the manufacturing times are 

very different. The manufacturing time of test model 2.1 is 72 minutes while test model 2.4 is 

127 minutes (56 % more). Visible tool paths cannot be avoided by an adjustment of 

parameters along roughing. That leads to the suggestion that visible tool paths are caused 

along smoothing. An additional finding is that damages in the border area of the surface can 

be reduced by a change of the tool end position without influencing surface transparency. To 

improve the transparency found in test series 1, feed is also varied. Test models 2.7 and 2.8 

are manufactured using the same parameters as model 2.6 but feed is varied (Fig. 5-23).  

 
Figure 5-23: Models: test series 2 

 

Test models 2.6, 2.7 and 2.8 have the best surface transparency as shown by Figure 5-24. 

The metrological analysis shows only very low deviations of resultant surface roughness.  

 

 
Figure 5-24: Evaluated results: test series 2 
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All measurement results are between 0.44 µm and 0.91 µm. Analyzing resulting surfaces, it 

can be stated that transparency is best if a feed >900 mm/min is used.  

As analyzed in test series 1, feed can influence transparency of plane surfaces. A transfer to 

twisted surfaces cannot be made so far. An additional analysis is carried out in the following 

chapter to find the optimal parameters for milling multi-twisted surfaces. 

 

 

 

5.4.3   Test series 3 

Test model 3 has a 3D-twisted surface, a free-form-shaped curvature that is additionally 

twisted in two more directions. As demonstrated the parameters of test series 2.6 are 

useable for milling surfaces with good transparency. However, the final parameters in 

transparent surfaces of more complex morphologies remain unclear. Moreover, the optimal 

feed for smoothing has to be determined. In test series 3, various feed rates are analyzed 

(Table 5-15). An additional point to analyze is the blade angle: the angle between tool and 

workpiece, in order to determine optimal blade angle. 

 

Table 5-15: Parameters: test series 3 

 

 

The analysis demonstrates that the optimal blade angle in the present case is 28.5 °. Other 

angles lead to surface damage.  

The metrological analysis reveals that for measurement series 3 that test models 3.4, 3.5, 

and 3.6 have the best surface quality.  
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Figure 5-25: Evaluated results: test series 3 

 

The roughness of models 3.4–3.6 is between 0.36 µm und 0.62 µm (Fig. 5-25). Moreover, 

Figure 5-26 shows that model 3.6 has the best transparency. 

 

 
Figure 5-26: Models: test series 3 

 

Both of models 3.4 and 3.5 have smooth surfaces but are not as transparent as the surface 

of model 3.6.  

 

 

 

5.4.4   Conclusion 

The test series determining optimal parameters for generating transparent, anatomical-

shaped free-form surfaces by CNC milling, revealed that parameters exist that permit the 
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generation of complex-shaped and transparent surfaces. One possible limitation however is 

that final parameters have to be adjusted, mainly in the case of using a different material, 

machine, and operator. In summary, the following constraints should be taken into account: 

Selection of an appropriate tool has to be made; if possible, as short as possible. Tool 

diameter should be as large as possible in relation to the work piece morphology (pockets, 

etc.). If there are bevels and undercuts to mill, the blade angle has to be adjusted to the 

operated surface. In cases in which the surface cannot be milled by the front face of the tool, 

a radius cutter should be used. The radius cutter’s diameter should not be set <3 mm. 

Otherwise, revolution speed has to be increased to >9000 r.p.m. to generate transparent 

surfaces. If the use of a radius cutter is unavoidable, a very small increment has to be 

chosen in combination with highest possible revolution speed and adjusted smoothing feed. 

If triangulated volume models are used, fault tolerance should always be 150 % of the value 

of chord error in combination with data models of highest mesh quality. 

The present investigation reveals that a cutting speed (Vc) of 84.8 m/min is optimal (formula 

II-5, Chapter 2.2.2) in relation to a feed rate for smoothing of 250 mm/min. This result is 

contrary to results of Domininghaus (2007) and Michaeli (1999), who both recommend a 

cutting speed of up to 1000 m/min or more for thermoplastics and PMMA, respectively. In 

this respect a loss of transparency is the consequence. In particular, when milling medical 

models, complex geometries have to be machined and this necessitate radius cutters of 

small diameters to operate small bevels and gaps. The present result reveals that the 

generation of transparent surfaces depends not on high revolution speeds, which lead to 

high cutting speeds, only. The optimal interplay of cutting speed and feed rate enables 

machining transparent surfaces of medical models under the conditions presented in Table 

5-15. Thus far absent in the literature, the process of milling has to be developed more into a 

process of polishing than of chipping. By operating with these presettings, the tools cut the 

material slower and surface roughness (Ra) is reduced. 

Finally, it was found that manufacturing time increases rapidly if high transparent surfaces 

are demanded. For example, if values for smoothing infeed and lateral off-set are increased 

from 0.1 mm to 0.2 mm, then manufacturing time become only one quarter of the normal 

time required. Thus, if manufacturing time has to be reduced, revolution speed should be 

increased (high-speed cutting).  

 

When conducting the quasi-additive RP process, contouring is followed by the step of joining 

(Chapter 2.2). In order to guarantee sufficient accuracy in joining a number of slices (e.g., 20 

slices) of a quasi-additive RP model containing an inner geometry, an appropriate clamping 

and joining principle is necessary as well as even model slices, highly accurate drill holes, 

and minimized contour deviations. 
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5.5   Slice joining accuracy 

Standard clamping procedures do not allow clamping and re-clamping a workpiece 

repeatedly. This possibility would ensure that all positions were identical to the previous 

clamping. A sufficient repeat accuracy is difficult to achieve. One solution is to combine 

positioning and joining in one process (Assmann, 2003) and is similar to the stratoconception 

process (Barlier and Gasser, 1995). In order to assure accuracy in joining a high number of 

slices, an optimized joining procedure is necessary. In the case of various model slices 

(X1…Xn), an additional model slice (Xn+1) is used as reference slice for positioning and 

clamping. First, this reference slice, as well as the remaining slices, needs through-holes. 

These through-holes are then drilled in a one-step sequence. Next, the reference slice is 

positioned and clamped by a screw on the machine table. In the following, the model slices 

(X1…Xn) are clamped on the reference slice by aligning pins. If necessary, a model slice can 

be machined from two sides by retaining the original position. The aligning pins allow an 

exact positioning of all slices that have to be machined. Figure 5-27 also shows that the 

aligning pins are used as fixture elements.  

 
Figure 5-27: Positioning and clamping (PC) principl e 

 

As Figure 5-27 demonstrates, a successive model slice can be positioned on the machine in 

exactly the same position as the previous slice. This principle allows adjusting the work piece 

coordinate system in one step so that additional model slices can be processed in exactly the 

same position, every time. In order to validate the PC principle (PCP) and to guarantee an 

exact joining of model slices, measurement series were carried out to evaluate evenness of 

model slices, drilling deviation, and contour deviations.  
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5.5.1   Measurement of evenness 

Model slices should be absolutely even to guarantee that no gaps exist after joining. Figure 

5-28 shows that a square block is used as a test model, which has a thickness of 16.666 mm 

as check size. The test model is composed of PMMA. An inserted-tooth face milling cutter is 

used for milling the surface and a CMM is used for taking 100 measurement points on the 

surface as demonstrated by Figure 5-28. 

 
Figure 5-28: CMM 

 

The lowest measure is 16.649 mm with a deviation of 0.0176 mm and the highest measure is 

16.670 mm with a lower deviation of 0.01234 mm. A mean deviation of 0.00176 mm is 

considered acceptable. In particular, a mean deviation of 0.0026 mm confirms the 

applicability of the procedure. 

 

 

 

5.5.2   Measurement of drilling deviation 

To verify accurate joining, the slices have to be brought exactly into position. For evaluating 

possible deviations, a measurement study is carried out by using six model slices of PMMA 

together forming a model thickness of 100 mm. The objective is to evaluate whether aligning 

pins of 10-mm diameter and 100-mm length can be used for joining the slices. A distance of 

17.5 mm between each through-hole is given (Fig. 5-29). 

                       
Figure 5-29: Drilling deviation
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The maximum deviation of hole position, from the top slice to the bottom slice, is 0.056 mm. 

The maximum deviation of the diameters measured is 0.032 mm. The mean deviation of OL 

is 10.0218 mm, of M 10.0083 mm, and of UR 10.0131 mm, by taking six measurements in 

each case. 

 

 

 

5.5.3   Measurement of contour deviation 

To determine possible deviation of the joined contours, the test model slices are brought into 

operation one after another. The medial diameter is milled out to 18.000 mm. The six slices 

(Fig. 5-30) are clamped using the introduced PCP (Chapter 4.2.5) by using the outer drill-

holes for clamping.  

 

 
Figure 5-30: Contour deviation 

 

First, the diameter of the drilled-out contours is measured six times. The mean diameter of 

M18 is 17.945 mm, of OL10 10.008 mm, and of UR10 10.011 mm. Secondly, the space 

between each contour drill-out is measured six times. The mean diameter for M_OL is 

17.482 mm, and for M_UR 17.577 mm.  

 

In conclusion, a quasi-additive fabricated RP model can be produced very accurately, 

although the final model is composed of joined slices. To guarantee high accuracy, the 

presented procedure is based on accuracy settings taken from state-of-the-art CNC 

controlling (e.g., Heidenhain).  

Thus, medical model composed of various model slices is of high accuracy and transparency 

if proposed principles and parameters for RP fabrication are taken into account.
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6. Example of use: The human nose 

Preparing a (3D) geometry of the human nose for digital processing allows the derivation of 

virtual and physical medical models for presurgery planning, including surgery intervention 

planning and fluid dynamic analyses. Such model-based planning procedures support the 

analysis of final surgery outcomes with respect to patient-specific CAS planning. To date, 

specific flow characteristics of the human nose are difficult to analyze experimentally 

because due to difficulties inherent in providing an accurate facsimiled model of the complex 

geometry of the human nose, for VP and RP. Here, the goal is to obtain knowledge about the 

physiology and pathophysiology of normal nasal breathing (Masing, 1966; Hess et al., 1992; 

Chung et al., 2006; Hörschler et al., 2005; Kelly et al., 2000; Kim et al., 2006). Nose surgery 

is among the most often performed surgical treatments in the western world because 

impaired nasal respiration is a common and widespread disease. To obtain knowledge about 

the flow characteristics of the human nose, models are needed that represent the human 

nose as accurately as possible. In the following, a discussion of medical background outlines 

the need for appropriate engineering tools in the given medical context. Finally, prototyping 

solutions are realized in order to demonstrate the appropriateness of MPP as a biomedical 

engineering application. 

 

 

 

6.1   Medical background 

The human nose is a sense organ and is a part of the vocal and respiratory system. 

Considering anatomy, the human nose consists of two parts: The outer part is skin-covered 

cartilaginous, osseous tissue. The inner part consists of two nasal cavities that are separated 

by the septum nasi. The nasal conchae ambilaterally divide the nasal cavities in canals 

(meatus). Behind the anterior part of the nasal cavity is the vestibulum nasi that ranges to the 

nasal valve (limen nasi). The limen nasi represents the tightest lateral cut (isthmus nasi, or 

ostium internum). After the isthmus nasi one finds the main nasal cavity (cavum), which 

extends to the choana and nasopharynx. The top is built by the nasal bone, the lamina 

cribrosa, and the body of sphenoid bone. The bottom is built of the hard palate (palatum 

durum). The lateral nasal septum is connected to the upper jaw, os lacrimale, palate bone, 

sphenoid bone, and nasal conchae. The concha nasalis superior and concha nasalis medius 

are connected with ethmoid bone, whereas the concha nasalis inferior is composed of its 

own bone. The nasopharynx is a part of the pharynx and can be viewed as the exit of the 

inner nose (Fig. 6-1). The inner nose is mostly lined with erectile soft tissues, and mucosa 

distributed with sensory cells.  
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The function of the human nose is diverse, ranging from respiration; warming, precleaning, 

and moistening of air; olfaction; to voice formation. 

 

 
 

Figure 6-1: Human nose anatomy, sagittal view (Till mann, 2009)  
 

The vegetative control of respiratory functions of the nose are the regulation of respiratory 

flow, the heating of breathable air to 32–34° C, hu midification, and cleaning of inhaled air. 

The control and heating of breathable air is realized by differential swelling of the mucosa of 

the septum and nasal conchae.  

 

The general functioning of the human nose is strongly related to respiratory flow behavior. 

Reasons for dysfunctional respiratory flow can be differentiated into congenital and accident-

related changes in nose anatomy, and problems based on soft-tissue swelling caused by, for 

example, chronic or allergic rhinitis.  

 

As stated by Kayser (Kayser, 1895) and Tonndorf (Tonndorf, 1938), detailed nasal flow 

analysis is needed to assist the restoration of defects. However, such investigations are 

rarely seen because of resources that are often missing (Eccles, 2001). Thus, due to the 

absence of both virtual and physical individual nose models, which allow representative flow 

analysis (Chapter 3), a need is identified. Although methods exist, such as rhinomanometry 
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for air resistance measurements, a detailed understanding of the interface between flow 

behavior and patient sensation is missing (Naito et al., 1988; Jones et al. 1989).  

First, to support this research, an installation process is needed for deriving geometric 

information for virtual models to carry out a surgery planning virtually and to provide models 

for numerical flow analysis. Second, physical RP models are needed for experimental 

investigation. In sum, there is established clinical value for the development of a procedure 

for processing medical models of the human nose. 

The main challenge in reconstructing the human nose is that the fine structures of the nose 

are visible only by conducting specific tomographic scans with specific scan parameters. 

Additionally, scanned medical images need a conversion step, in the successive case that a 

3D model is prepared for VP and RP processing. The designed MPP (Chapter 4) addresses 

the demands of feasibly processing complex anatomical models. 

 

 

 

6.2   Modeling the human nose 

The anatomical components needed for 3D reconstruction of the nasal anatomy include the 

following anatomical landmarks (Table 6-1). 

 

Table 6-1: Landmarks of the human nose 

 

 

The landmarks depicted in Table 6-1 are determined in CT images for segmentation (Fig. 6-

2). 

An Agger nasi
Ci Concha inferior
Cm Concha media
Cs Concha superior
Hsl Hiatus semilunaris
Ie Infundibulum ethmoidale
Mni Meatus nasi inferior
Mnm Meatus nasi medius
Mns Meatus nasi superior
Pu Processus uncinatus
Sn Septum nasi
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Figure 6-2: Views in height of Infundibulum ethmoid ale (adapted from Hofmann, 2005) 

 

Understanding the process of 3D reconstruction to derive 3D models implies that parameters 

are needed for scanning and data editing. This process of biomodeling consists of RE, 

segmentation, and mesh editing, as well as its subtasks (Chapter 4.1). 

 

 

 

6.2.1   Data acquisition  

The acquisition of medical image data by medical imaging scanners depends on defined 

scan protocol. Raw data are generated in the scanning machine for deriving .DICOM data 

that contain the scanned medical image slices. Here, the objective is to process .DICOM 

data by specific segmentation methods during a 3D modeling process. In finding the 

appropriate parameters for deriving 3D geometry data, the acquisition of useful data in the 

scan protocol must be ensured. The following parameters are set before the execution of 

scans: 

 

a) Determination of scanner 

b) Scan direction and position 

c) FOV 

d) X-ray dose (CT)  

e) Slice thickness 

f) Slice increment 

g) Filter algorithm 

h) Resolution 

i) Artifacts 
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The present examples employ the CT scanner Somatom Definition Open (Siemens), a state-

of-the-art multi-slice scanner capable of taking 40 slices per rotation (a). The direction for 

scanning the nose is axial (b) and the field of view is set by a boundary box as close as 

possible around the object of interest (c). The slice thickness (e) and the slice increment (f) 

are selected as small as possible in order to attain isotropic voxels along with overlapping 

slices. The slice thickness and slice increment are the most important parameters to set for 

3D reconstruction (Chapter 5.2.3). Nevertheless, two points of conflict must be attended to: 

First, X-ray dose (d) and second, image noise. The choice of too small parameters for slice 

thickness and slice increment, results in high X-ray doses, which should be avoided for the 

sake of patient health, and in noisy images. Noisy images lead to rough and sprinkled 

surfaces that are not acceptable (Chapter 4.2.1).  

In reconstructing the human nose, smooth surfaces are especially important to represent fine 

structures. Therefore, an optimal adjustment of scan parameters, X-ray dose, and 

appropriate filtering (g) are the principle objectives in reconstructing the nose in 3D. Image 

resolution is defined by a 512×512-image matrix (h) and sources of artifacts should be 

avoided, e.g., scanned dental fillings.  

Three cases are analyzed by using different scan protocols and shown in Figure 6-3. Three 

different scans were conducted to verify the best possible model quality. The quality of 

images in the image plane (x-y) is determined by the appropriate filter algorithm, which is 

given here as H50s (Siemens, München), a bone filter algorithm for scanning the head; 

hereby amelioration of the problems of sharp images with too much noise or images with low 

noise but smudged edges is achieved. Parameters are varied from 5-mm slice thickness and 

5-mm slice increment in case 1 to 1-mm slice thickness and 0.5-mm slice increment in case 

3. In case 3 a fine resolution is chosen to attain 0.5 mm-overlapped images. This selection 

depends on the fact that quality of 3D-reconstructed medical models depends not on setting 

high local resolution in the image plane but rather on the isotropy of voxels. 
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Figure 6-3: Acquisition parameters nose models 

 

The ideal situation is to derive isotropic (cubic)-shaped voxels and not volume elements that 

are more similar in shape to a stick than to a cube. To achieve the goal of obtaining cubic 

voxels, overlapping reconstruction processing generates 3D models with a minimum of 

artifacts, such as partial volume effects, staircase effects, etc.  

 

 

 

6.2.2   Segmentation and 3D reconstruction 

In CT image data, air appears with a mean intensity of approximately –1024 Hounsfield units 

(HU). Most tissue of the nasal cavity ranges from 20–130 HU, while cartilage and bone 

structures are much denser (well above 800 HU). Three exemplary regions of interest are 

presented in Figure 6-4 in order to demonstrate the selected threshold for each region,  
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based on the defined gray values. The combined processes of the curvature flow filter 

(Chapter 4.2.1) and threshold-based segmentation decrease unnecessary noise and 

intensify geometrical boundaries. 

The software Mimics (Chapter 2.1.6) is used for segmentation and 3D reconstruction. The 

segmentation of the human nose is based on manual thresholding, which is based on 

accurate gray value determination. For instance, gray value determination for segmenting the 

conchae nasalis inferior is carried out by setting a number of gray value markers from which 

an average gray value may be determined. This average value determines the boundary 

between mucosa and air. 

 

 
Figure 6-4: Threshold values human nose  

 

After the appropriate gray value is found, the threshold is set (e.g., for segmenting the nasal 

conchae inferior the threshold is –240 HU to –1024 HU (Fig. 6-4). As a result, the segmented 

region is obtained and this is used for 3D reconstruction. 
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Figure 6-5: Segmentation human nose 

 

To eliminate remaining errors in the segmented result the region-growing algorithm is 

applied. The region growing method is used additionally to separate regions of interests.    

For segmentation, case 3 (1-mm slice thickness and 0.5-mm slice increment; see Fig. 6-6) is 

the most suitable for determining the contours of the human nose. The defined contour for 

segmentation is a boundary that differentiates between mucosa and air.  

 

Figure 6-6 depicts the generated 3D models (cases 1–3), which are presented in 3D voxel 

view. It is obvious to see that the image segmentation and processing process directly 

influences modeling and design accuracy. 
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Figure 6-6: 3D reconstruction results  

 

It can be discerned that the 3D model in case 3 shows details that are not visible in cases 1 

and 2. Analyzing the results of case 1, it is possible to see that there are bridges connecting 

unrelated regions, here the concha inferior (circles 1-3), and geometry is thus distorted. In 

case 2, circles 4 and 5 show well-separated concha inferiors. Circle 6 depicts poorly 

reconstructed tissues. The reconstruction result in case 3 demonstrates that it is indeed 

possible to visualize all structures. Here, the concha nasalis and even finer structures are 

well-reconstructed (circle 7-9).  

The insufficient results of case 1 and 2 are influenced mainly by high interpolation failures 

caused by large slice thickness, large slice increment, and partial volume effects (Chapter 

2.1.4.2). The segmentation result of case 3 is an appropriate visualization of the human 

nose.  
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The 3D reconstruction quality of applied cases suggests that 1-mm slice thickness and 0.5-

mm slice increment are well suited parameters for reconstructing the human nose using 2D 

tomographic image slices for transference into a 3D volume model. After 3D reconstruction, it 

is obvious that models in cases 1 and 2 have larger slice increments and should not be 

selected for further processing. Otherwise, unacceptably shaped 3D models will result, due 

in part to geometry failures arising from too large contour distances. Therefore, parameters 

of the reconstructed model in case 3 are selected for further processing. 

 

 

 

6.2.3   Mesh editing 

To process an accurate 3D model, surface meshes are generated with the software Mimics 

to obtain a volume model. The MC algorithm is used for building a triangulated 3D model 

(Chapter 2.1.4.1). Triangle reduction and smoothing (STL editing) to reduce file size and 

improve the mesh of segmented elements are applied as formulated in Chapter 4.2.3.2.  

 

Applying the triangulation parameters determined in Chapter 4.2.3 to case 3, the triangles 

are reduced from 1,332,808 triangles to 536,328 triangles, which results in a file of 20.096 

MB. The result is an appropriate model of the human nose ready for post-processing.  

 

 

 

6.3   Medical VR application 

The success of a surgical treatment may depend on a reliable presurgical plan. To create a 

surgical plan for each individual patient, surgeons have to have image information available. 

In particular, complex anatomy is difficult to understand using 2D gray value images (Chapter 

4.1.1). The procedure of separating the nose in its component parts begins with setting up a 

segmentation mask to highlight all components to be segmented by thresholding and region 

growing. The reconstructed model of case 3 is edited using the suggested parameters for 

mesh editing (Table 5-12). 
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Figure 6-7: Components of 3D nose model 

 

The components, nasal conchae and nasal septum, are separated in a sagittal and coronal 

direction to realize a component-based animation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6-8: VR animation process (Mallepree & Berger s, 2009b) 
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The optimized model is imported as a .VRML file to CosmoWorlds (Silicon Graphics Inc.). 

After the setting of actors and frames, the software interpolates the frames occurring in 

between. After setting the sequence, the animation is defined directly by creating a 

JavaScript (Fig. 6-8). A script node is defined by at least one EventIn and one EventOut field. 

A necessary TouchSensor is linked by Route to Script (EventIn). Finally, this script is 

integrated by using an URL to control the .VRML file. 

The defined .VRML model is visualized in stereovision using the VR visualization software 

VRED (VREC GmbH, Darmstadt). Stereovision glasses are used to display the model in 3D.  

 

The generated nose model consists of 59,000 triangles and its file size is defined to 2,400 

Kbyte. The animation procedure generated allows interacting and exploring the 3D model 

from any geographical position.  

The representation of the applied procedure is depicted in Figure 6-9. Here, it is possible to 

convert 2D image slices into a component-based 3D animation in VR.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 6-9: Animated components (Mallepree & Bergers , 2009b) 
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Components that are difficult to visualize, such as the Sn, Ci, Cm, Cs, Mni, and Mnm, are 

displayed in an animated sequence (Table 6-2). 

 

Table 6-2: Animation sequence 

Sequence  Components Plane 

1 Complete nose Coronal  

2 
Setum nasi (Sn) Sagittal 

3 
 Meatus nasi: inferior (Mni), medius (Mnm) Coronal  

4 
Nasal cavitiy, nasal conchae Sagittal 

 

First, the animation procedure provides a coronal view of the nasal conchae. Second, after 

the inspection of the nasal conchae and Sn, a sagittal view is given to explore the nasal 

conchae in length. The user may change the given direction of view at any time during the 

animation, thus permitting individual exploration interactively. 

The complexity of 2D images is reduced by dynamic 3D animated component-based parts of 

the human nose. Here, the aim is to establish a process for the generation of animated 

anatomical models to provide surgeons with the best possible image information for 

presurgery planning. Moreover, the introduced procedure enables surgeons to communicate 

with each other, from different sites. This is made possible by analyzing the provided .VRML 

file in a standard internet browser that includes a .VRML plug-in. An additional field of use 

can be seen in both medical teaching and patient information. For example, medical students 

would be able to examine complex anatomical structures interactively. Guided by an 

animation, they would become familiar with specific sections, which are particularly difficult to 

find. Surgeons would be able to communicate with patients and family members, especially 

in situations where diseases and planned treatments, respectively, are difficult to explain 

using only 2D gray value images. Preoperative and postoperative situations could also be 

discussed more easily. Overall, due to the work of Hu (2005), 3D visualizations play a 

significant role in planning surgical intervention by reducing planning time (by approx. by 30 

%), compared to 2D images. With the work shown here, it can be concluded that the 

procedure has potential for use as both a virtual planning and research instrument to reduce 

the time for understanding the morphology and physiology of such complex parts as the 

human nose.  
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6.4   Medical RP application 

The generation of an RP model that represents the human nose follows the formulated 

demands of Chapter 3. The analyzes of Chapter 4 form the basis for the fabrication. In the 

following, the generation of an exemplary RP model is presented to demonstrate its general 

ability to produce complex geometries, such as the human nose. The complete fabrication 

process is based on the MPP shown in Chapter 4. The geometric information, which is 

derived as an .STL file, is used to set up tool paths for CNC milling. Then, a quasi-additive 

RP fabrication procedure is applied. Due to experimental setup restrictions, the complete 

model is derived at a scale of 3:1 and is separated in the coronal direction into 21 slices. The 

size of each slice is shown in Figure 6-10. 

 
Figure 6-10: Generation of RP nose model  

 

In modeling the human nose, a steady triangulated inner surface is of major importance. The 

inner surface represents a functional surface. When testing the nasal flow experimentally, the 

flow behavior should not be influenced by the model itself. The inner surface of the model 

should represent the original surface structure as truly as possible, with respect to accuracy 

and smoothness. Once the surface is triangulated and transferred from the 3D reconstruction 

process to succeeding processes for editing (e.g., cutting, triangle reduction) the surface is 
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re-triangulated. Re-triangulation leads to another step of approximation. In the present 

process, the inner surfaces are triangulated once in the step of 3D reconstruction. To 

achieve the highest possible accuracy, the parameters evaluated in Table 5-12 are used and 

the inner surface is triangulated once. 

To provide a functional model that is reversibly joined, a modular modeling concept is 

developed. Such a concept requires that the complete model is built of joined slices to realize 

a preoperative and postoperative situation (Fig. 6-11). The test analyzes shown in Chapter 

5.5 demonstrated that all slices can be joined without loss of accuracy.  

The procedure applied for rebuilding the human nose should enable an analysis of variances 

related to pre- and postoperative situations by a model, rapidly and without the necessity of 

rebuilding a complete model. The modular concept permits mounting measuring instruments 

for flow analysis directly on slices, which are representative of a specific anatomic situation of 

interest (pressure, speed, etc.). In cases in which a postoperative situation should be 

represented by a model, new CT scans have to be made, a 3D model reconstructed, and 

considered regions need to be exchanged. Running this concept is only possible if the 

postoperative model fits exactly into the original model. This requirement is related to both 

the virtual .STL model as well as the physical slices that need to be fabricated in the milling 

process; a process providing exact repeat accuracy is needed for this. Repeat accuracy is 

determined by the evaluated parameters for scanning, triangulation, and milling.  

 
Figure 6-11: Modular RP concept 

 

As depicted in Figure 6-11, a model is built for example using S0… S5 slices in a preoperative 

loop, prior to surgery. A postoperative loop will be conducted if a treatment has been done by 
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means of exchanging only the focused slice s3. Hence, only one slice has to be rebuilt and 

not the complete model.  

As shown additionally in Figure 6-11, the model is fabricated successfully meeting the 

requirements for experimental inspections. In terms fulfilling transparency requirements, the 

model is built using the evaluated milling parameters shown in Chapter 5.4.3 (Table 5-15). 

 

An experimental set-up passes water through the RP nose model to verify its suitability for 

nasal flow experiments.  

 

 
Figure 6-12: Verification: RP nose model 

 

As demonstrated by Figure 6-12, flow-through with water is possible and leakages are not 

detected. 

 

 

 

6.5   Time analysis 

The applicability of a VP and RP process is strongly related to processing time. This is not 

limited to manufacturing time only. It is essential to consider overall processing time in 

generating medical models by RE and biomodeling processes. To date, a process design 

that uses as few process steps as possible to produce high-quality medical models in the 

shortest possible time span, is missing. Thus far, various approaches exist for medical model 

generation (Chapter 3). The MPP concept enable running an optimal sequence with few 
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process steps in order to generate medical models of highest quality in the shortest span of 

time.  

Here, the MPP is compared with a process design that produces triangulated 3D models 

without verified parameters (trial-and-error process). The MPP uses its verified parameters 

and can be executed in the two steps of biomodeling and application without backward steps 

for verification. Figure 6-13 shows the steps needed to produce a VR model of the nose. In 

the present case, typical anatomical features (five features as nasal conchae, nasal septum, 

are reconstructed; Chapter 6.3).  

 
Figure 6-13: Time analysis: VR nose model  

 

The time required for generating the VR nose model amounts to 243.45 minutes compared 

to 690.45 minutes required for the process that contains needed backward-steps. This is an 

improvement of 65 %, or saved time of  7.45 hours (Fig. 6-13). This acceleration is a result of 

avoiding loops that are normally necessary for finding the optimal modeling procedure. The 

best result for an improvement can be seen at the mesh editing process for generating the 

triangulated surface meshes (96%). When process parameters for modeling are known, the 

application can be started immediately.  

The generation of the RP nose model (Fig. 6-10) is also based on the MPP. As Figure 6-14 

demonstrates, the MPP is reduced to three main steps compared with trial-and-error 

processing.  
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Figure 6-14: Time analysis: RP nose model  

 

The complete processing time of a nose model with 20 model slices is 256 hours (15,360 

min.) compared to 512 hours (30,720 minutes) required for the process that contains needed 

backward-steps. Thus, processing time for the generation of the RP model can be reduced 

by 505 hours (65.7 %) compared with the processing time in which backward steps for 

verifications are needed. Specifically, the process of biomodeling could be reduced by 18.49 

hours (95 %) and the process of application by 486.85 hours (64 %). The main reason is due 

to the absence of backward steps that are required in the trial-and-error process. When 

running the procedure with backward steps, verifications are required to obtain the 

information as needed. This suggests that various models need to be analyzed, in order to 

find an optimal sequence.  

The MPP presented here permits evaluated parameters to be used in an evaluated software 

environment to realize a steady process flow. The time profit realized by the MPP implies 

that variants of a model can be generated even faster by the modular model building. If a 

variant is needed for the present case (e.g., concha nasalis) the specific slices can be 

exchanged (Fig. 6-11). A typical scenario evaluated is the exchange of five slices that 

represent the concha nasalis media. In this case, a second model needs to be reconstructed 

but only five slices need to be manufactured. Processing time is 122.4 h, which is a reduction 

of 140.6 hours (46.54 %) because it is not necessary to reproduce the complete model as is 

the case in a process including backward-steps.  
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7. Example of use: The human hip 

Worldwide, the rate of total hip arthroplasties is approx. 2.8 million (Diehl, 2003). Over the 

last 13 years, the rate of primary total hip arthroplasties in the United States per 100,000 

persons increased by approx. 50% (Kurtz et al., 2005). Approximately 200,000 total hip 

replacements, 100,000 partial hip replacements, and 36,000 revision hip replacements were 

performed in the United States in 2003 (Zhan et al., 2007). In Germany, 200,000 hip 

replacements are performed annually (Hüter-Becker and Dölken, 2005) and the number of 

reoperations is increasing each year.  

In orthopedic surgery, the success of an endoprosthetic reconstruction depends on the 

precise realization of the operative procedure. The final result is referred to an optimal fit of 

the prosthesis. Therefore, an exact preoperative planning is of major importance. In order to 

fulfill the requirements for hip replacement surgeries, a detail preoperative planning is 

necessary. While presurgery planning is time-consuming, the use of 3D models can 

decrease planning time in surgery by about 30 % (Hu et al., 2005). Therefore, the MPP 

presented herein is applied for generating 3D models of the human hip to support planning 

virtual and physical hip models.  

 

 

 

7.1   Medical background 

The hip bone is a large, irregularly shaped bone, positioned in the center of the human body. 

It forms the sides and anterior wall of the pelvic cavity. Figure 6-1 shows that the hip bone 

consists of three parts, the ilium, ischium, and pubis (Gray, 2000).  The union of the three 

parts takes place in and around a large cup-shaped articular cavity, the acetabulum, which is 

situated near the middle of the outer surface of the bone (Gray, 2000). The ilium extends 

upward from the acetabulum. The ischium is the lowest and strongest part of the bone; it is 

located downward from the acetabulum. The pubis extends medialward and downward from 

the acetabulum and articulates in the middle line with the bone of the opposite side; it forms 

the front of the pelvis (Gray, 2000). 
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Figure 7-1: Anatomy of the human hip (Gray, 2000) 

 

The thicker parts of the bone consist of cancellous tissue, enclosed between two layers of 

compact tissue; the thinner parts, at the bottom of the acetabulum and center of the iliac 

fossa, are usually semitransparent, and composed entirely of compact tissue. 

The hip joint is loaded mechanically bearing the weight of the upper body. During walking, 

running, and jumping nearly the complete body weight is borne by the hip joint.  

 

Due to the increasing number of hip surgeries conducted, the need for geometric information 

is increasing. On one hand, there is support needed for virtual surgery planning that is 

conducted using tomographic image data. Virtual 3D models support faster diagnosis and 

help the formulation of an operation plan. Physical 3D hip models facilitate presurgery 

planning realistically, in an experimental environment, for example, testing the mounting of 

different hip prostheses.  

The main challenge in reconstructing the human hip is to separate the hip bone from the 

femur and the pelvis. Moreover, there is a need for accurate reconstruction of the human hip 

in the shortest possible time, using model material that can withstand load distributions 

imposed during the testing of implants (Mallepree & Bergers, 2009d). Here, the MPP concept 

designed in Chapter 4.1 is applied to process virtual and physical 3D models of the hip for 

presurgery planning.  
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7.2   Modeling the human hip 

The anatomical components needed for 3D reconstruction of the hip anatomy include the 

identified anatomical landmarks shown in Figure 7-2.  

 

 
Figure 7-2: 3D Anatomy of the human hip bone (accor ding to Gray, 2000) 

 

Table 7-1: Anatomical elements of the human hip and  pelvis 

 

Understanding the anatomy enables generation of the required tomographic image slices. 

Identifier Element
1 Acetabulum

2 Os ischii

2.1 Corpus ossis ischii

2.2 Ramus ossis ischii

2.3 Spina ischiadica

2.4 Incisura ischiadica minor

2.5 Tuberositas ischiadica

2.6 Tuber ischiadicum

3 Os pubis

3.1 Corpus ossis pubis

3.2 Ramus superior ossis pubis

3.3 Ramus inferior ossis pubis

3.4 Sulcus obturatorius

3.5 Facies symphysialis

3.6 Crista pubica

3.7 Tuberculum pubicum

3.8 Linea pectinea

4 Os ilium

4.1 Corpus ossis ilium

4.2 Facies glutea

4.3 Crista iliaca

4.4 Tuberculum iliacum

4.5 Spina iliaca anterior superior

4.6 Spina iliaca anterior inferior

4.7 Spina iliaca posterior inferior

4.8 Fossa iliaca

4.9 Linea arcuata

4.10 Tuberositas iliaca

4.11 Spina iliaca posterior superior

4.12 Facies auricularis ossis ilium

4.13 Contact point ligaments

5 Y-gap

6 Foramen obturatum



124                                                                                                      Chapter 7  Example of use: The human hip          
 

7.2.1   Data acquisition  

Three different scans were conducted to verify the best possible model accuracy. The quality 

of images in the image plane (x-y) is determined by the appropriate filter algorithm, which is 

here B60f (Siemens), and FC30 (Toshiba) (Fig. 7-3). 

 

 
Figure 7-3: Acquisition parameters: hip models 

 

The scanning parameters are varied from 1-mm slice thickness and 1-mm slice increment in 

case 1 to 3-mm slice thickness and 2-mm slice increment in case 3.  

 

 

 

7.2.2   Segmentation and 3D reconstruction 

CT data are generated by parameters which satisfy the general demands on accuracy as 

stated in Chapter 4.2.2. In CT image data, air appears with a mean intensity of approximately 
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–1024 HU, most soft tissue is in the range of –200 to 130 HU, cartilage ranges from 800 to 

1000 HU, and bone structures are well above 1000 HU. In order to separate the hip bone 

from the femur the boundary between bone and cartilage (Fig. 7-4) is set by using the known 

HU from cartilage and bone.  

 

 
Figure 7-4: Segmentation: hip model 1 

 

By using a slice increment of 1 mm it is possible to define the contours in all three cases. 

Region growing is used additionally to separate the regions of interest.  

 

 

 

7.2.3   Mesh editing 

To process high-quality 3D models, threshold-based and region-orientated segmentation 

results require post processing (Chapter 4.1.1). Three different .STL and .VRML models are 

generated in order to start a VR and RP application by using the mesh editing parameters as 

presented in Chapter 4.2.3.2 (Table 5-12). 

 

 

 

7.3   Medical VR application 

A VR model of the hip enables surgeons to obtain detailed insight of hip anatomy during the 

planning of complex hip surgery. To provide optimum insight, an exemplary model (case 1) is 

used for demonstration (Fig. 7-5). The model presented in Figure 7-5, which is used for VR is 

a .VRML model derived from the editing parameters evaluated in Chapter 4.2.3.2 (Table 5-

12). 

 



126                                                                                                      Chapter 7  Example of use: The human hip          
 

 
Figure 7-5: VR Hip model 

 

The result is a .VRML file with 86,724 triangles, which results in a file of 4.235 MB. The VR 

presentation software VRED is applied for stereoscopic display using the generated .VRML 

file. The animation procedure introduced in Chapter 5.3 could thus be initiated if necessary.  

 

 

 

7.4   Medical RP application 

For running the quasi-additive RP fabrication procedure, the complete model is derived in 1:1 

scale and is separated in five slices as shown in Figure 7-6. The complete .STL file consists 

of 86,724 triangles, which results in a file size of 4.235 MB. 

 

 
Figure 7-6: RP Slices: hip model 

 

The .STL file slices are then used for running the quasi-additive RP procedure of CNC 

milling. The complete fabrication process is based on the MP process shown in Chapter 4. 

Geometric information in .STL file format is used to set up tool paths for CNC milling. In 

terms of meeting the requirements of accuracy, the model is milled using the evaluated 

milling parameters shown in Chapter 5.4.3 (Table 5-15). Typical model making material 

(Necuron) is used for producing the model. Joining is realized using an appropriate model 

adhesive.  
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Figure 7-7: RP Hip model 

 

As shown in Figure 7-7, the model is fabricated successfully meeting the requirements for 

experimental inspections. In clinical praxis various hip models have been used successfully 

for presurgery planning. 

 

 

 

7.5   Time analysis 

The generation of the hip model is based on the MPP. The total time for the VR hip modeling 

amounts to 82.95 minutes when conducting the MPP. However, neglecting MPP parameters 

leads to a modeling time of 710.95 minutes.  

 
Figure 7-8: Time analysis: VR hip model  
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This represents a 628 -minute time reduction (88.3%) for the generation of a hip VR model 

compared to processing without defined process parameters (Fig. 7-8). Compared to the 

mesh editing in the trial and error process, the mesh editing in the MPP was again, 98.3 % 

more rapid. The reason for this is the decreased complexity that allows faster modeling in 

general.  

The generation of the RP hip model can also be accelerated. As Figure 7-9 demonstrates the 

MPP is reduced to three main steps compared with trial-and-error processing.  

 
Figure 7-9: Time analysis: RP hip model  

 

The processing time using the MPP for generation of the RP model amounted to a total of 32 

hours (1898.59 min.). The trial-and-error process, on the other hand, resulted in a processing 

time of 37 hours (2246.1 min.). Thus, the MPP results in a reduction of 5.79 hours (15.5 %) 

compared with the processing time of a trial-and-error process in which backward steps for 

verifications are needed. Specifically, the process of biomodeling was reduced by 37.30 %. 

Truscott et al. (2007) reported a time of 48 hours required for the fabrication of a hip model. 

Comparing the performance (32 hours) achieved with results of fabricating RP hip models to 

those found in the report of Truscott et al. (2007), a total improvement of 33 % was found. 

The main reason for this is the absence of backward steps that are normally necessary in the 

trial-and-error process (Chapter 3). Running the trial-and-error procedure requires that 

verifications must be done to obtain information as needed. The derivation of various models 

is frequently required to find the optimal one.  
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8.   Conclusion and outlook 

An integrated prototyping process for the derivation of complex medical models is 

introduced. The use of medical models can support today’s medicine by improving diagnosis 

and surgical planning, teaching and patient information. To withstand the challenges of time 

and accuracy, a process for generating accurate virtual and physical medical models is 

needed. The introduced process offers the possibility to derive virtual and physical models 

for biomedical engineering applications. 

Reviewing the current situation of medical VP and RP applications, limitations were found 

related to the influential variables of data acquisition, data processing, VR use, and RP 

manufacturing. Moreover, a classification or framework for embedding VP and RP 

applications in medical applications is still missing.  

 

An integrated prototyping concept (MPP) is introduced for embedding VP and RP in 

biomedical applications. For the first time, a medical classification is set up that assigns VP 

and RP to possible applications in medicine, thus supporting the use of a needed prototyping 

application for a particular case of use. 

 

Data processing and 3D modeling of complex anatomical structures from CT image data 

were investigated and discussed in detail. Finally, parameter analyses were evaluated to 

derive optimal parameters needed for preparing 3D models for VP and RP processing in 

medicine. To obtain accurate volume models, careful attention must be given to selecting 

scan parameters. Considering the 3D reconstruction quality of the applied cases it was found 

that parameters of 1-mm slice thickness and 0.5-mm slice increment were well suited for 

reconstructing complex anatomies using 2D tomographic image slices for transference into a 

3D volume model when scanning in the longitudinal direction. Further, when scanning in the 

transverse direction, a slice thickness of 1 mm and a slice increment of 1 mm was found 

suitable. Anisotropic voxels, which mostly lead to reduced resolution in the z-direction, can 

thus be avoided. Generally, overlapping reconstruction processing helps generating isotropic 

voxels, which in turn produce 3D models without artifacts. The accuracy analysis performed 

reveals that optimal results in 3D reconstruction may be achieved if the slice increment is 

one half of the selected slice thickness, when a multi-detector CT scanner is used. This leads 

to an overlap of 50 %. Further, the shape of the slice profile was found to have an effect on 

model accuracy. There is evidence that the slice thickness should be set ≤0.4 mm. 

Summarizing from the accuracy analysis, the present investigation is the first to examine 

tomographic scanning as decisive factor for inaccuracy of medical RP models.  

The optimal selection of an appropriate segmentation filter (curvature flow) leads to less-

deviated models when noisy CT images need to be smoothed. Overall, scan parameters 
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determine a model’s final accuracy rather than the manufacturing procedure or the mesh 

editing used. In mesh editing, smoothing should be conducted carefully to improve the MC 

algorithm’s meshing result.  

 

To provide both a virtual planning instrument to reduce the time for understanding the 

anatomy of complex anatomies, a medical VR process is introduced. The process can be 

used for the generation of animated anatomical models to provide surgeons with the best 

possible image information for presurgery planning. 

 

For fabricating transparent medical models, which are characterized by anatomically shaped 

free-form surfaces, milling parameters were evaluated. An optimized interplay of cutting 

speed and feed rate during smoothing allows generation of transparent medical models, 

even when milling cutters with small diameters are used. 

 

The human nose is an example of a complex anatomical geometry, which has been an 

object of scientific research interest for several years. One of the applications introduced 

here uses the developed MPP concept as basis for a procedure that generates animated 

medical models in a VR environment. Although, attempts are being made to reconstruct the 

human nose as an experimental RP model, a process for accurate reconstruction as a 

transparent RP model is still missing. The MPP concept allows fabricating individual models 

of the human nose with a high level of accuracy and transparency. Thus, the concept is 

amenable to application in various experimental studies – the model is modularly built of 

exchangeable slices. Finally, temporal analysis revealed major time improvements in 

modeling complex anatomical models compared to approaches without optimized process 

sequences and approved parameters. The process time for displaying the human nose in a 

VR environment was reduced by 65%. The fabrication time of a transparent nose model was 

reduced by 65.7%.  

 

The prototyping of the human hip was the second example used. The results of this 

particular example emphasized the strengths of the medial prototyping process in preparing 

hip models for presurgery planning. Here, accuracy was enhanced considerably. In addition, 

the time required for virtual model display in a VR environment was reduced by 88.3% and 

time for fabrication reduced by 15,5% in comparison to the state-of-the-art. RP hip models 

can provide assistance as a surgical planning tool in complex cases, especially in improving 

surgical results and implant stability. 
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Thus, the accuracy and time of model generation is improved, thereby establishing a defined 

process for medical model generation. This is the first demonstration of a procedure for 

processing animated VR models and transparent RP models of the human nose using 

biomedical engineering. Tested parameters guaranteeing repeat accuracy were applied. 

Considering the novel findings of broad improvements in accuracy and time, a new field of 

research is emerging, serving both virtual surgery applications and physical implant 

generation. Further improvements of model accuracy will contribute to validity of results and 

thus serve medical applications in VP (e.g., CFD simulation) and RP (e.g., presurgery 

planning).  

The MPP developed in this work can be viewed as an initial approach for launching 

international standards of prototyping technologies in medicine. 
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