613 research outputs found

    MR görüntüleri ve MR spektroskopi verileri ile yapay öğrenme tabanlı beyin tümörü tespit yöntemi ve uygulaması

    Get PDF
    06.03.2018 tarihli ve 30352 sayılı Resmi Gazetede yayımlanan “Yükseköğretim Kanunu İle Bazı Kanun Ve Kanun Hükmünde Kararnamelerde Değişiklik Yapılması Hakkında Kanun” ile 18.06.2018 tarihli “Lisansüstü Tezlerin Elektronik Ortamda Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge” gereğince tam metin erişime açılmıştır.Beyinde büyüyen ve gelişen kötü huylu tümörler son zamanlarda insan ölümlerinin en önde gelen nedenlerinden birisi olmaya başlamıştır. Beyin tümörleri için en uygun tedavi yönteminin belirlenmesi hekim tarafından tümörün türünün ve evresinin belirlenmesine bağlıdır. Beyin tümörünün tecrübeli radyologlar tarafından tam olarak teşhis edilebilmesi, Manyetik Rezonans (MR görüntüleri), MR spektroskopi verileri ve patolojik değerlendirmeleri içerisine alan karmaşık bir süreçtir. Genel olarak bir radyolog bu süreçle ilgili olarak önemli doğruluk ve hassaslıkta karar verebiliyor olsa da, hataları en aza indirebilmek için sürekli yeni yöntemler araştırılmaktadır. Bu yüzden radyolog ya da hekimlerin beyin tümörlerinin ayrımını yüksek oranda yapabilecek Bilgisayar Destekli Teşhis (Computer-Aided Detection, CAD / BDT) sistemlerinden yararlanması oldukça önemlidir. Bu tez çalışmasında, hem MR görüntüleri ile hem de MR Spektroskopi (MRS) verileri kullanarak, radyologların karar verme aşamalarında yardımcı olabilecek, beyin tümörlerinin tespitini başarılı bir şekilde yapan yeni bilgisayar destekli yaklaşımlar önerilmiştir. Tez kapsamında geliştirilen ilk yöntem MR görüntüleri üzerinde çalışmakta ve beyin tümörlerinin iyi/kötü huylu ayrımlarını görüntü işleme ve örüntü tanıma teknikleri ile gerçekleştirmektedir. Bu işlemi gerçekleştirmek amacıyla MR görüntüleri üzerinde kafatası kısmını çıkarma için yeni bir görüntü ön-işleme tekniği önerilmiştir. Ayrıca, tümör ayrımlarında sınıflandırıcı etkisini görebilmek için farklı sınıflandırıcıların başarımları kıyaslanmıştır. 188 adet MR görüntüsü üzerinde yapılan detaylı deney sonuçlarına göre, önerilen yöntem ile %96.81 doğruluk oranı ile beyin tümörlerinin iyi / kötü huylu ayrımı gerçekleştirilebilmiştir. Tez kapsamında önerilen bir diğer yöntemde ise, MR spektroskopi sinyalleri üzerinde çalışan ve Yapay Bağışıklık Sistemi (YBS) tabanlı yeni bir BDT yaklaşımı geliştirilmiştir. Önerilen yöntem ile MRS verileri kullanılarak iyi huylu / kötü huylu tümör ayrımı, beyin tümörünün evrelemesi, normal beyin dokusu ile beyin tümörünün ayrımı, metastaz beyin tümörleri ile birincil beyin tümörlerinin ayrımı ve sahte tümörlerin belirlenmesi yüksek başarımla mümkün olmuştur. Çok uluslu ve merkezli bir proje kapsamında elde edilen geniş bir veri seti ile gerçekleştirilen deney sonuçlarına göre sırasıyla %96.97, %100, %100, %98.33 ve %98.44 başarım elde edilmiştir.Malignant tumors growing and developing in the brain have recently become one of the leading causes of death in humans. Determination of the most suitable treatment for brain tumors depends on accurate detection of malignancy, type and grade of the tumor by the physician. Diagnosis of brain tumors by radiologists is a complex process which includes MR images, MR spectroscopy data and pathological assessments. Generally, a radiologist makes a decision with reasonable accuracy and specifity rates. However new methods have been investigated by the researchers to minimize the diagnosis mistakes. Therefore, it is crucial for radiologists or physicians to use a Computer-Aided Diagnosis (CAD) system which will help detection of brain tumors with high success rates. In this thesis, novel computer aided methods, which use MR images and MR Spectroscopy data, have been proposed for the detection of brain tumors to support decision process of the radiologists. The first method developed in the thesis differentiates brain tumors as benign or malignant by image processing and pattern recognition techniques on MR images. To perform this operation, a new image pre-processing technique has been proposed to strip the skull region. Moreover, to evaluate the effect of classifier performance on tumor differentiation, different classifiers have been compared. According to detailed test results performed on 188 MR images, benign or malignant differentiation of brain tumors can be detected with 96.81% accuracy rate by proposed method. In the second method, a novel Artificial Immune System (AIS) based computer-aided diagnosis system has been proposed. This system utilizes MR Spectroscopy signals to make a decision about brain tumors. The system can perform differentiation of benign / malign, metastatic / primary, pseudo / normal tumors and grading of brain tumors with high accuracy rates. According to the experimental results performed on large dataset obtained from an international and multi-center project, the detection performance has been achieved 96.97%, 100%, 100%, 98.33% and 98.44% success rates respectively

    Advanced Computational Methods for Oncological Image Analysis

    Get PDF
    [Cancer is the second most common cause of death worldwide and encompasses highly variable clinical and biological scenarios. Some of the current clinical challenges are (i) early diagnosis of the disease and (ii) precision medicine, which allows for treatments targeted to specific clinical cases. The ultimate goal is to optimize the clinical workflow by combining accurate diagnosis with the most suitable therapies. Toward this, large-scale machine learning research can define associations among clinical, imaging, and multi-omics studies, making it possible to provide reliable diagnostic and prognostic biomarkers for precision oncology. Such reliable computer-assisted methods (i.e., artificial intelligence) together with clinicians’ unique knowledge can be used to properly handle typical issues in evaluation/quantification procedures (i.e., operator dependence and time-consuming tasks). These technical advances can significantly improve result repeatability in disease diagnosis and guide toward appropriate cancer care. Indeed, the need to apply machine learning and computational intelligence techniques has steadily increased to effectively perform image processing operations—such as segmentation, co-registration, classification, and dimensionality reduction—and multi-omics data integration.

    Automatic application watershed in early detection and classification masses in mammography image using machine learning methods

    Get PDF
    Mammogram images are used by radiologists for the diagnosis of breast cancer. However, the interpretation of these images remains difficult depending on the type of breast, especially those of dense breasts, which are difficult to read, as they may contain abnormal structures similar to normal breast tissue and could lead to a high rate of false positives and false negatives. In this paper, we present an efficient computer-aided diagnostic system for the detection and classification of breast masses. After removing noise and artefacts from the images using 2D median filtering, mathematical morphology and pectoral muscle removal by Hough's algorithm, the resulting image is used for breast mass segmentation using the watershed algorithm. Thus, after the segmentation, the help system extracts several data by the wavelet transform and the co-occurrence matrix (GLCM) to finally lead to a classification in terms of malignant and benign mass via the Support Vector Machine (SVM) classifier. This method was applied on 48 MLO images from the image base (mini-MIAS) and the results obtained from this proposed system is 93,75% in terms of classification rate, 88% in terms of sensitivity and a specificity of 94%

    Brain Tumor Diagnosis Support System: A decision Fusion Framework

    Get PDF
    An important factor in providing effective and efficient therapy for brain tumors is early and accurate detection, which can increase survival rates. Current image-based tumor detection and diagnosis techniques are heavily dependent on interpretation by neuro-specialists and/or radiologists, making the evaluation process time-consuming and prone to human error and subjectivity. Besides, widespread use of MR spectroscopy requires specialized processing and assessment of the data and obvious and fast show of the results as photos or maps for routine medical interpretative of an exam. Automatic brain tumor detection and classification have the potential to offer greater efficiency and predictions that are more accurate. However, the performance accuracy of automatic detection and classification techniques tends to be dependent on the specific image modality and is well known to vary from technique to technique. For this reason, it would be prudent to examine the variations in the execution of these methods to obtain consistently high levels of achievement accuracy. Designing, implementing, and evaluating categorization software is the goal of the suggested framework for discerning various brain tumor types on magnetic resonance imaging (MRI) using textural features. This thesis introduces a brain tumor detection support system that involves the use of a variety of tumor classifiers. The system is designed as a decision fusion framework that enables these multi-classifier to analyze medical images, such as those obtained from magnetic resonance imaging (MRI). The fusion procedure is ground on the Dempster-Shafer evidence fusion theory. Numerous experimental scenarios have been implemented to validate the efficiency of the proposed framework. Compared with alternative approaches, the outcomes show that the methodology developed in this thesis demonstrates higher accuracy and higher computational efficiency

    Multivariate feature selection of image descriptors data for breast cancer with computer-assisted diagnosis

    Get PDF
    Breast cancer is an important global health problem, and the most common type of cancer among women. Late diagnosis significantly decreases the survival rate of the patient; however, using mammography for early detection has been demonstrated to be a very important tool increasing the survival rate. The purpose of this paper is to obtain a multivariate model to classify benign and malignant tumor lesions using a computer-assisted diagnosis with a genetic algorithm in training and test datasets from mammography image features. A multivariate search was conducted to obtain predictive models with different approaches, in order to compare and validate results. The multivariate models were constructed using: Random Forest, Nearest centroid, and K-Nearest Neighbor (K-NN) strategies as cost function in a genetic algorithm applied to the features in the BCDR public databases. Results suggest that the two texture descriptor features obtained in the multivariate model have a similar or better prediction capability to classify the data outcome compared with the multivariate model composed of all the features, according to their fitness value. This model can help to reduce the workload of radiologists and present a second opinion in the classification of tumor lesions

    Multivariate feature selection of image descriptors data for breast cancer with computer-assisted diagnosis

    Get PDF
    Breast cancer is an important global health problem, and the most common type of cancer among women. Late diagnosis significantly decreases the survival rate of the patient; however, using mammography for early detection has been demonstrated to be a very important tool increasing the survival rate. The purpose of this paper is to obtain a multivariate model to classify benign and malignant tumor lesions using a computer-assisted diagnosis with a genetic algorithm in training and test datasets from mammography image features. A multivariate search was conducted to obtain predictive models with different approaches, in order to compare and validate results. The multivariate models were constructed using: Random Forest, Nearest centroid, and K-Nearest Neighbor (K-NN) strategies as cost function in a genetic algorithm applied to the features in the BCDR public databases. Results suggest that the two texture descriptor features obtained in the multivariate model have a similar or better prediction capability to classify the data outcome compared with the multivariate model composed of all the features, according to their fitness value. This model can help to reduce the workload of radiologists and present a second opinion in the classification of tumor lesions

    Quantification of tumour heterogenity in MRI

    Get PDF
    Cancer is the leading cause of death that touches us all, either directly or indirectly. It is estimated that the number of newly diagnosed cases in the Netherlands will increase to 123,000 by the year 2020. General Dutch statistics are similar to those in the UK, i.e. over the last ten years, the age-standardised incidence rate1 has stabilised at around 355 females and 415 males per 100,000. Figure 1 shows the cancer incidence per gender. In the UK, the rise in lifetime risk of cancer is more than one in three and depends on many factors, including age, lifestyle and genetic makeup

    A Hybrid Feature Extraction Method With Regularized Extreme Learning Machine for Brain Tumor Classification

    Get PDF
    Brain cancer classification is an important step that depends on the physician's knowledge and experience. An automated tumor classification system is very essential to support radiologists and physicians to identify brain tumors. However, the accuracy of current systems needs to be improved for suitable treatments. In this paper, we propose a hybrid feature extraction method with a regularized extreme learning machine (RELM) for developing an accurate brain tumor classification approach. The approach starts by preprocessing the brain images by using a min–max normalization rule to enhance the contrast of brain edges and regions. Then, the brain tumor features are extracted based on a hybrid method of feature extraction. Finally, a RELM is used for classifying the type of brain tumor. To evaluate and compare the proposed approach, a set of experiments is conducted on a new public dataset of brain images. The experimental results proved that the approach is more effective compared with the existing state-of-the-art approaches, and the performance in terms of classification accuracy improved from 91.51% to 94.233% for the experiment of the random holdout technique

    Anomaly Detection for imbalanced datasets with Deep Generative Models

    Get PDF
    Many important data analysis applications present with severely imbalanced datasets with respect to the target variable. A typical example is medical image analysis, where positive samples are scarce, while performance is commonly estimated against the correct detection of these positive examples. We approach this challenge by formulating the problem as anomaly detection with generative models. We train a generative model without supervision on the `negative' (common) datapoints and use this model to estimate the likelihood of unseen data. A successful model allows us to detect the `positive' case as low likelihood datapoints. In this position paper, we present the use of state-of-the-art deep generative models (GAN and VAE) for the estimation of a likelihood of the data. Our results show that on the one hand both GANs and VAEs are able to separate the `positive' and `negative' samples in the MNIST case. On the other hand, for the NLST case, neither GANs nor VAEs were able to capture the complexity of the data and discriminate anomalies at the level that this task requires. These results show that even though there are a number of successes presented in the literature for using generative models in similar applications, there remain further challenges for broad successful implementation.Comment: 15 pages, 13 figures, accepted by Benelearn 2018 conferenc
    corecore