57 research outputs found

    GuavaNet: A deep neural network architecture for automatic sensory evaluation to predict degree of acceptability for Guava by a consumer

    Get PDF
    This thesis is divided into two parts:Part I: Analysis of Fruits, Vegetables, Cheese and Fish based on Image Processing using Computer Vision and Deep Learning: A Review. It consists of a comprehensive review of image processing, computer vision and deep learning techniques applied to carry out analysis of fruits, vegetables, cheese and fish.This part also serves as a literature review for Part II.Part II: GuavaNet: A deep neural network architecture for automatic sensory evaluation to predict degree of acceptability for Guava by a consumer. This part introduces to an end-to-end deep neural network architecture that can predict the degree of acceptability by the consumer for a guava based on sensory evaluation

    Measurement model of brass plated tyre steel cord based on wave feature extraction

    Get PDF
    In the production of Truck and Bus Radial (TBR) vehicle tyres, one of the essential components is the wire that supports the tyre. There are several types of tyre wire, one of which is Brass Plated Tyre Steel Cord (BPTSC), produced by Bekaert Indonesia Company. BPTSC object has a micro-size with a diameter of 0.230 mm and has a wave shape. In checking the quality of steel straps, brass-coated tyres are usually measured manually by experienced experts by measuring instruments to measure the diameter using a micrometre, wave amount, and wavelength using a profile projector. The manual measurement process results in inaccuracy due to fatigue in employees' eyes and low lighting and must be repeated, thus, consuming more time. Technological developments that use computer vision are increasingly widespread. Moreover, from the results of studies in various literature, it is proposed to combine the models obtained to find new models to solve this problem. The objectives of this study were to implement and evaluate an automatic segmentation method for obtaining regions of interest, to propose a BPTSC diameter, wave amount, and wavelength measurement model based on its edge, and to evaluate the proposed model by comparing the results with standard and industrial measurement results. The technique to prepare the brass plated tyre steel cord was done in two ways: image acquisition techniques with enhanced image quality, noise removal, and edge detection. Secondly, ground truth techniques were utilised to find the truth about the stages of the image acquisition process. Finally, sensitivity testing was conducted to find the similarity between the acquired images and the ground truth data using Jaccard, Dice, and Cosine similarity method. From 148 wire samples, the average similarity value was 93% by Jaccard, 96% by Dice, and 91% by the Cosine method. Thus, it can be concluded that the acquisition stage of the brass-coated steel tyre cable with image processing techniques can be carried out. For the subsequent process, the pixel distance and the sliding windows model applied can correctly detect the diameter of the BPTSC properly. The wave amount and wavelength of BPTSC objects in the form of waves were measured using several local minima and maxima approaches. This included maxima of local minima maxima distance, the average of local minima maxima distance, and perpendicular shape to centre distance for measuring wave amounts. While for wavelength measurements, the midpoint of local maxima minima distance and the intersection of local maxima minima with a central line were used. Measurement results were evaluated to determine the accuracy and efficiency of the measurement process compared to standard production values using the accuracy, precision, recall, and Root Mean Square Error (RMSE) test. From the evaluation results of the two methods, the accuracy rate of diameter measurement is 97%, wave rate measurement is 95%, and wavelength measurement is 90%. A new model was formed from the evaluation results that could solve these problems and provide scientific and beneficial contributions to society in general and the companies related to this industry

    Computer Vision System for Non-Destructive and Contactless Evaluation of Quality Traits in Fresh Rocket Leaves (Diplotaxis Tenuifolia L.)

    Get PDF
    La tesi di dottorato è incentrata sull'analisi di tecnologie non distruttive per il controllo della qualità dei prodotti agroalimentari, lungo l'intera filiera agroalimentare. In particolare, la tesi riguarda l'applicazione del sistema di visione artificiale per valutare la qualità delle foglie di rucola fresh-cut. La tesi è strutturata in tre parti (introduzione, applicazioni sperimentali e conclusioni) e in cinque capitoli, rispettivamente il primo e il secondo incentrati sulle tecnologie non distruttive e in particolare sui sistemi di computer vision per il monitoraggio della qualità dei prodotti agroalimentari. Il terzo, quarto e quinto capitolo mirano a valutare le foglie di rucola sulla base della stima di parametri qualitativi, considerando diversi aspetti: (i) la variabilità dovuta alle diverse pratiche agricole, (ii) la senescenza dei prodotti confezionati e non, e (iii) lo sviluppo e sfruttamento dei vantaggi di nuovi modelli più semplici rispetto al machine learning utilizzato negli esperimenti precedenti. Il lavoro di ricerca di questa tesi di dottorato è stato svolto dall'Università di Foggia, dall'Istituto di Scienze delle Produzioni Alimentari (ISPA) e dall'Istituto di Tecnologie e Sistemi Industriali Intelligenti per le Manifatture Avanzate (STIIMA) del Consiglio Nazionale delle Ricerche (CNR). L’attività di ricerca è stata condotta nell'ambito del Progetto SUS&LOW (Sustaining Low-impact Practices in Horticulture through Non-destructive Approach to Provide More Information on Fresh Produce History & Quality), finanziato dal MUR-PRIN 2017, e volto a sostenere la qualità della produzione e dell'ambiente utilizzando pratiche agricole a basso input e la valutazione non distruttiva della qualità di prodotti ortofrutticoli.The doctoral thesis focused on the analysis of non-destructive technologies available for the control quality of agri-food products, along the whole supply chain. In particular, the thesis concerns the application of computer vision system to evaluate the quality of fresh rocket leaves. The thesis is structured in three parts (introduction, experimental applications and conclusions) and in 5 chapters, the first and second focused on non-destructive technologies and in particular on computer vision systems for monitoring the quality of agri-food products, respectively. The third, quarter, and fifth chapters aim to assess the rocket leaves based on the estimation of quality aspects, considering different aspects: (i) the variability due to the different agricultural practices, (ii) the senescence of packed and unpacked products, and (iii) development and exploitation of the advantages of new models simpler than the machine learning used in the previous experiments. The research work of this doctoral thesis was carried out by the University of Foggia, the Institute of Science of Food Production (ISPA) and the Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA) of National Research Council (CNR). It was conducted within the Project SUS&LOW (Sustaining Low-impact Practices in Horticulture through Non-destructive Approach to Provide More Information on Fresh Produce History & Quality), funded by MUR- PRIN 2017, and aimed at sustaining quality of production and of the environment using low input agricultural practices and non-destructive quality evaluation

    Fruit sizing using AI: A review of methods and challenges

    Get PDF
    Fruit size at harvest is an economically important variable for high-quality table fruit production in orchards and vineyards. In addition, knowing the number and size of the fruit on the tree is essential in the framework of precise production, harvest, and postharvest management. A prerequisite for analysis of fruit in a real-world environment is the detection and segmentation from background signal. In the last five years, deep learning convolutional neural network have become the standard method for automatic fruit detection, achieving F1-scores higher than 90 %, as well as real-time processing speeds. At the same time, different methods have been developed for, mainly, fruit size and, more rarely, fruit maturity estimation from 2D images and 3D point clouds. These sizing methods are focused on a few species like grape, apple, citrus, and mango, resulting in mean absolute error values of less than 4 mm in apple fruit. This review provides an overview of the most recent methodologies developed for in-field fruit detection/counting and sizing as well as few upcoming examples of maturity estimation. Challenges, such as sensor fusion, highly varying lighting conditions, occlusions in the canopy, shortage of public fruit datasets, and opportunities for research transfer, are discussed.This work was partly funded by the Department of Research and Universities of the Generalitat de Catalunya (grants 2017 SGR 646 and 2021 LLAV 00088) and by the Spanish Ministry of Science and Innovation / AEI/10.13039/501100011033 / FEDER (grants RTI2018-094222-B-I00 [PAgFRUIT project] and PID2021-126648OB-I00 [PAgPROTECT project]). The Secretariat of Universities and Research of the Department of Business and Knowledge of the Generalitat de Catalunya and European Social Fund (ESF) are also thanked for financing Juan Carlos Miranda’s pre-doctoral fellowship (2020 FI_B 00586). The work of Jordi Gené-Mola was supported by the Spanish Ministry of Universities through a Margarita Salas postdoctoral grant funded by the European Union - NextGenerationEU.info:eu-repo/semantics/publishedVersio

    Computer vision based classification of fruits and vegetables for self-checkout at supermarkets

    Get PDF
    The field of machine learning, and, in particular, methods to improve the capability of machines to perform a wider variety of generalised tasks are among the most rapidly growing research areas in today’s world. The current applications of machine learning and artificial intelligence can be divided into many significant fields namely computer vision, data sciences, real time analytics and Natural Language Processing (NLP). All these applications are being used to help computer based systems to operate more usefully in everyday contexts. Computer vision research is currently active in a wide range of areas such as the development of autonomous vehicles, object recognition, Content Based Image Retrieval (CBIR), image segmentation and terrestrial analysis from space (i.e. crop estimation). Despite significant prior research, the area of object recognition still has many topics to be explored. This PhD thesis focuses on using advanced machine learning approaches to enable the automated recognition of fresh produce (i.e. fruits and vegetables) at supermarket self-checkouts. This type of complex classification task is one of the most recently emerging applications of advanced computer vision approaches and is a productive research topic in this field due to the limited means of representing the features and machine learning techniques for classification. Fruits and vegetables offer significant inter and intra class variance in weight, shape, size, colour and texture which makes the classification challenging. The applications of effective fruit and vegetable classification have significant importance in daily life e.g. crop estimation, fruit classification, robotic harvesting, fruit quality assessment, etc. One potential application for this fruit and vegetable classification capability is for supermarket self-checkouts. Increasingly, supermarkets are introducing self-checkouts in stores to make the checkout process easier and faster. However, there are a number of challenges with this as all goods cannot readily be sold with packaging and barcodes, for instance loose fresh items (e.g. fruits and vegetables). Adding barcodes to these types of items individually is impractical and pre-packaging limits the freedom of choice when selecting fruits and vegetables and creates additional waste, hence reducing customer satisfaction. The current situation, which relies on customers correctly identifying produce themselves leaves open the potential for incorrect billing either due to inadvertent error, or due to intentional fraudulent misclassification resulting in financial losses for the store. To address this identified problem, the main goals of this PhD work are: (a) exploring the types of visual and non-visual sensors that could be incorporated into a self-checkout system for classification of fruits and vegetables, (b) determining a suitable feature representation method for fresh produce items available at supermarkets, (c) identifying optimal machine learning techniques for classification within this context and (d) evaluating our work relative to the state-of-the-art object classification results presented in the literature. An in-depth analysis of related computer vision literature and techniques is performed to identify and implement the possible solutions. A progressive process distribution approach is used for this project where the task of computer vision based fruit and vegetables classification is divided into pre-processing and classification techniques. Different classification techniques have been implemented and evaluated as possible solution for this problem. Both visual and non-visual features of fruit and vegetables are exploited to perform the classification. Novel classification techniques have been carefully developed to deal with the complex and highly variant physical features of fruit and vegetables while taking advantages of both visual and non-visual features. The capability of classification techniques is tested in individual and ensemble manner to achieved the higher effectiveness. Significant results have been obtained where it can be concluded that the fruit and vegetables classification is complex task with many challenges involved. It is also observed that a larger dataset can better comprehend the complex variant features of fruit and vegetables. Complex multidimensional features can be extracted from the larger datasets to generalise on higher number of classes. However, development of a larger multiclass dataset is an expensive and time consuming process. The effectiveness of classification techniques can be significantly improved by subtracting the background occlusions and complexities. It is also worth mentioning that ensemble of simple and less complicated classification techniques can achieve effective results even if applied to less number of features for smaller number of classes. The combination of visual and nonvisual features can reduce the struggle of a classification technique to deal with higher number of classes with similar physical features. Classification of fruit and vegetables with similar physical features (i.e. colour and texture) needs careful estimation and hyper-dimensional embedding of visual features. Implementing rigorous classification penalties as loss function can achieve this goal at the cost of time and computational requirements. There is a significant need to develop larger datasets for different fruit and vegetables related computer vision applications. Considering more sophisticated loss function penalties and discriminative hyper-dimensional features embedding techniques can significantly improve the effectiveness of the classification techniques for the fruit and vegetables applications

    Nondestructive Multivariate Classification of Codling Moth Infested Apples Using Machine Learning and Sensor Fusion

    Get PDF
    Apple is the number one on the list of the most consumed fruits in the United States. The increasing market demand for high quality apples and the need for fast, and effective quality evaluation techniques have prompted research into the development of nondestructive evaluation methods. Codling moth (CM), Cydia pomonella L. (Lepidoptera: Tortricidae), is the most devastating pest of apples. Therefore, this dissertation is focused on the development of nondestructive methods for the detection and classification of CM-infested apples. The objective one in this study was aimed to identify and characterize the source of detectable vibro-acoustic signals coming from CM-infested apples. A novel approach was developed to correlate the larval activities to low-frequency vibro-acoustic signals, by capturing the larval activities using a digital camera while simultaneously registering the signal patterns observed in the contact piezoelectric sensors on apple surface. While the larva crawling was characterized by the low amplitude and higher frequency (around 4 Hz) signals, the chewing signals had greater amplitude and lower frequency (around 1 Hz). In objective two and three, vibro-acoustic and acoustic impulse methods were developed to classify CM-infested and healthy apples. In the first approach, the identified vibro-acoustic patterns from the infested apples were used for the classification of the CM-infested and healthy signal data. The classification accuracy was as high as 95.94% for 5 s signaling time. For the acoustic impulse method, a knocking test was performed to measure the vibration/acoustic response of the infested apple fruit to a pre-defined impulse in comparison to that of a healthy sample. The classification rate obtained was 99% for a short signaling time of 60-80 ms. In objective four, shortwave near infrared hyperspectral imaging (SWNIR HSI) in the wavelength range of 900-1700 nm was applied to detect CM infestation at the pixel level for the three apple cultivars reaching an accuracy of up to 97.4%. In objective five, the physicochemical characteristics of apples were predicted using HSI method. The results showed the correlation coefficients of prediction (Rp) up to 0.90, 0.93, 0.97, and 0.91 for SSC, firmness, pH and moisture content, respectively. Furthermore, the effect of long-term storage (20 weeks) at three different storage conditions (0 °C, 4 °C, and 10 °C) on CM infestation and the detectability of the infested apples was studied. At a constant storage temperature the detectability of infested samples remained the same for the first three months then improved in the fourth month followed by a decrease until the end of the storage. Finally, a sensor data fusion method was developed which showed an improvement in the classification performance compared to the individual methods. These findings indicated there is a high potential of acoustic and NIR HSI methods for detecting and classifying CM infestation in different apple cultivars

    Deep learning in food category recognition

    Get PDF
    Integrating artificial intelligence with food category recognition has been a field of interest for research for the past few decades. It is potentially one of the next steps in revolutionizing human interaction with food. The modern advent of big data and the development of data-oriented fields like deep learning have provided advancements in food category recognition. With increasing computational power and ever-larger food datasets, the approach’s potential has yet to be realized. This survey provides an overview of methods that can be applied to various food category recognition tasks, including detecting type, ingredients, quality, and quantity. We survey the core components for constructing a machine learning system for food category recognition, including datasets, data augmentation, hand-crafted feature extraction, and machine learning algorithms. We place a particular focus on the field of deep learning, including the utilization of convolutional neural networks, transfer learning, and semi-supervised learning. We provide an overview of relevant studies to promote further developments in food category recognition for research and industrial applicationsMRC (MC_PC_17171)Royal Society (RP202G0230)BHF (AA/18/3/34220)Hope Foundation for Cancer Research (RM60G0680)GCRF (P202PF11)Sino-UK Industrial Fund (RP202G0289)LIAS (P202ED10Data Science Enhancement Fund (P202RE237)Fight for Sight (24NN201);Sino-UK Education Fund (OP202006)BBSRC (RM32G0178B8

    Energy-Efficiency of Conveyor Belts in Raw Materials Industry

    Get PDF
    This book focuses on research related to the energy efficiency of conveyor transportation. The solutions presented in the Special Issue have an impact on optimizing, and thus reducing, the costs of energy consumption by belt conveyors. This is due, inter alia, to the use of better materials for conveyor belts, which reduce its rolling resistance and noise, and improve its ability to adsorb the impact energy from the material falling on the belt. The use of mobile robots designed to detect defects in the conveyor's components makes the conveyor operation safer, and means that the conveyor works for longer and there are no unplanned stops due to damage
    corecore