7 research outputs found

    Constructing software for analysis of neuron, glial and endothelial cell numbers and density in histological Nissl-stained rodent brain tissue

    Get PDF
    Cell number, density and volume of white and gray matter in brain structures are not constant values. Cellular alterations in brain areas might coincide with neurological and psychiatric pathologies as well as with changes in brain functionality during selection experiments, pharmacological treatment or aging. Several softwares were created to facilitate quantitative analysis of brain tissues, however results obtained from these softwares require multiple manual settings making the computing process complex and time-consuming. This study attempts to establish half automated software for fast, ergonomic and an accurate analysis of cellular density, cell number and cellular surface in morphologically different brain areas: cerebral cortex, pond and cerebellum. Images of brain sections of bank voles stained with standard cresyl-violet technique (Nissl staining), were analyzed in designed software. Results were compared with other commercially available tools regarding number of steps to be done by user and number of parameters possible to measure

    Part decomposition of 3D surfaces

    Get PDF
    This dissertation describes a general algorithm that automatically decomposes realworld scenes and objects into visual parts. The input to the algorithm is a 3 D triangle mesh that approximates the surfaces of a scene or object. This geometric mesh completely specifies the shape of interest. The output of the algorithm is a set of boundary contours that dissect the mesh into parts where these parts agree with human perception. In this algorithm, shape alone defines the location of a bom1dary contour for a part. The algorithm leverages a human vision theory known as the minima rule that states that human visual perception tends to decompose shapes into parts along lines of negative curvature minima. Specifically, the minima rule governs the location of part boundaries, and as a result the algorithm is known as the Minima Rule Algorithm. Previous computer vision methods have attempted to implement this rule but have used pseudo measures of surface curvature. Thus, these prior methods are not true implementations of the rule. The Minima Rule Algorithm is a three step process that consists of curvature estimation, mesh segmentation, and quality evaluation. These steps have led to three novel algorithms known as Normal Vector Voting, Fast Marching Watersheds, and Part Saliency Metric, respectively. For each algorithm, this dissertation presents both the supporting theory and experimental results. The results demonstrate the effectiveness of the algorithm using both synthetic and real data and include comparisons with previous methods from the research literature. Finally, the dissertation concludes with a summary of the contributions to the state of the art

    Calibração anemométrica de Aeronaves usando processamento de imagens digitais.

    Get PDF
    Este trabalho trata da aplicação de técnicas de inteligência artificial nos ensaios em voo de calibração anemométrica de aeronaves. A primeira campanha de ensaios em voo realizada em uma aeronave experimental é a calibração anemométrica. Nesta campanha, as medidas de altitude e velocidade são providas pelo sistema anemométrico da aeronave e são informações primordiais para a segurança do voo. As medições dessas informações podem conter determinados erros que corrompem as medidas do sistema anemométrico, necessitando-se de um processo de medição independente que sirva para estimar a aferição do sistema. Para esta medição, um aplicativo foi desenvolvido usando técnicas de processamento de imagens e câmeras digitais comerciais. A avaliação deste aplicativo foi realizada com ensaios reais em aeronaves completamente instrumentadas de asas fixas e asas rotativas. Os resultados foram satisfatórios ao serem comparados com o método atual que usa instrumentação de ensaios, telemetria e sistema de navegação global por satélites

    Computer Vision and Mathematical Morphology

    No full text
    Mathematical morphology is a theory of set mappings, modeling binary image transformations, which are invariant under the group of Euclidean translations. This framework turns out to be too restricted for many applications, in particular for computer vision where group theoretical considerations such as behavior under perspective transformations and invariant object recognition play an essential role. So far, symmetry properties have been incorporated by assuming that the allowed image transformations are invariant under a certain commutative group. This can be generalized by dropping the assumption that the invariance group is commutative. To this end we consider an arbitrary homogeneous space (the plane with the Euclidean translation group is one example, the sphere with the rotation group another), i.e. a set X on which a transitive but not necessarily commutative transformation group Γ is defined. As our object space we then take the Boolean algebra P(X) of all subsets of this homogeneous space. Generalizations of dilations, erosions, openings and closings are defined and several representation theorems can be proved. We outline some of the limitations of mathematical morphology in its present form for computer vision and discuss the relevance of the generalizations discussed here

    An algebraic framework for out-of-core hierarchical segmentation algorithms

    No full text
    International audienceBinary partition hierarchies and minimum spanning trees are key structures for numerous hierarchical analysis methods, as those involved in computer vision and mathematical morphology. In this article, we consider the problem of their computation in an out-of-core manner, i.e., by minimizing the size of the data structures that are simultaneously needed at the different computation steps. Out-of-core algorithms are necessary when the data are too large to fit entirely in the main memory of the computer, which can be the case with very large images in 2-, 3-, or higher dimension space. We propose a new algebraic framework composed of four main operations on hierarchies: edge-addition, select, insert, and join. Based on this framework, we propose and establish the correctness of an out-of-core calculus for binary partition hierarchies and for minimum spanning trees. First applications to image processing suggest the practical efficiency of this calculus
    corecore