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CONSTRUCTING SOFTWARE FOR ANALYSIS
OF NEURON, GLIAL AND ENDOTHELIAL CELL
NUMBERS AND DENSITY IN HISTOLOGICAL
NISSL-STAINED RODENT BRAIN TISSUE

Cell number, density and volume of white and gray matter in brain structures are not constant val-
ues. Cellular alterations in brain areas might coincide with neurological and psychiatric pathologies as
well as with changes in brain functionality during selection experiments, pharmacological treatment or
aging. Several softwares were created to facilitate quantitative analysis of brain tissues, however results
obtained from these softwares require multiple manual settings making the computing process complex
and time-consuming. This study attempts to establish half automated software for fast, ergonomic and
an accurate analysis of cellular density, cell number and cellular surface in morphologically different
brain areas: cerebral cortex, pond and cerebellum. Images of brain sections of bank voles stained with
standard cresyl-violet technique (Nissl staining), were analyzed in designed software. Results were
compared with other commercially available tools regarding number of steps to be done by user and
number of parameters possible to measure.

1. INTRODUCTION

The cellular composition of nervous tissue basically consists of three types of cells: neurons,
glia and endothelial cells (Fig. 1). Neurons have euchromatin in the nucleus, a clearly visible
nucleolus with surrounding cytoplasm. Glial cells have heterochromatin in the nucleus and no
cytoplasm. Endothelial cells have a curved shape or are located around blood vessels. With
the exception of endothelial cells, the number, density, volume and morphology of these cell
populations occurring in pathologies such as schizophrenia or autism, have been extensively
discussed during the last years [22], [1], [2], [4], [11], [19], [23], [8], [6]. Post-mortem studies
still retain the best method to get information about neuroanatomy of nervous system. Observed
morphological changes correlate with changes in brain function. Example, schizophrenia is
associated with lower volume of brain structures in cortical regions reflected in lower glial cell
number [9], [25], without a change in neuron number [19], [29]. Recent study revealed that
neurons of autistic people are much more branched and contain more synapses [28]. Moreover,
brain neuroanatomy can be changed after pharmacological treatment. Chronic exposure to

! Institute of Environmental Sciences, Jagiellonian University.
2 Department of Geoinfomatics and Applied Computer Science, AGH University of Science and Technology, A. Mickiewicza
30 Av., 30-059 Cracow, Poland, {mladniak,pioro} @agh.edu.pl.



IMAGE PROCESSING

antipsychotic medications like olanzapine and haloperidol results in a significant reduction of
brain weight and volume in makaque monkeys [5].

Volumetric measurement of brain structure on brain images is regarded as a gold standard,
yet is very time consuming. The simple linear and cross-sectional area measurements are rapid
(20 min versus 5 h for volumetric); highly accurate for test-object measurement versus true
size; have excellent intraobserver reliability; and, for most brain structures, the simple measures
correlated highly significantly with volumetric measures. The simple measures are in general
highly reproducible, the difference (as a percentage of the area or width of a region) between the
two raters being around 10%, range 0.1% -14.1%, (similar to inter-rater variability in previous
studies of volume measurements). The simple linear and area measures are reproducible and
correlate well with the measured volumes, and there is a considerable time saving with the
former. In circumstances where a large volume of work precludes detailed volume measurement,
simple methods are reliable and can be used instead [31].

Cell counting by hand and eye is not practical, if there are many cells per image or many
images to process. Counting can be automated, although depending on image, this can get to
be complicated process, especially for multi-color images, counts from histology or brightfield
image, counting cells within a region, etc. Cell counting via image processing is a common
method used in life science labs [7], [24], [20], [26], [14], [27]. Several softwares are comer-
cially available to count cell number, like TIMWIN downloadable from Garbo, SIGMASCAN
downloadable from SYSTAT, Image-Pro Plus downloadable from MediaCybernetics, Scion
Image from ScionCorp, NIH-Image from NIH, Object Image from Uni Amsterdam, DucoCell
Analysis Software from Cellix, DA Cell Counter from Yamato, and Fiji [21]. A free open
access software, ImageJ [30], which has possibility to develop a custom counting routine or
macro is probably the most widely used for image processing.

Since the results obtained from available softwares require multiple manual settings making
the computing process complex and time-consuming, we attempted to establish half automated
software for fast, ergonomic and accurate analysis of cellular density, cell number and cellular
surface in morphologically different brain areas: cerebral cortex, pond and cerebellum.
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Fig. 1. Morphological criteria for distinguishing neurons, glial and epithelial cells in the nervous tissue stained with standard
Nissl staining in the rodent brain.
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2. MATERIALS AND METHODS
2.1. ANIMALS

Bank voles (Myodes glaerolus), were taken from the experimental colony of bank voles
located in the Institute of Experimental Sciences at the Jagiellonian University. All experimental
procedures were compliant with the European Communities Council Directive (2010/63/EU)
and were approved by the Animal Care and Use Committee of the Jagiellonian University.

2.2. HISTOLOGY AND IMAGING

Animals were anesthetized with xylazine and ketamine. After transcardial perfusion with 4%
PFA (paraformaldehyde in 0.1M phosphate buffer-PB), vole’s brains were dissected and fixed
overnight in RT (room temperature 21°C’). Brains were washed in 0.IM PB, dehydrated in
ethanol and mounted in parafine. 8 micrometre-thick sagittal sections of brain tissues were cut
on the Leica microtome and stained with cresyl violet. Images of the brain structures, cerebral
cortex, cerebellum and pond were obtained using Zeiss microscope under 40x objective and
saved using ZEN software.

2.3. SOFTWARE SPECIFICATION

2.3.1. DETERMINING PARAMETERS OF GRAINS

Determination of cell size requires application of advanced algorithms of computer vision
and mathematical morphology. Four types of brain tissues were taken into account: molecular
layer and white matter of cerebellum (granular layer of this brain structure is too densely
packed with cells for accurate image processing), pond and cerebral cortex (Fig. 2 A-D).

Automatic measurements for image analysis require accurate segmentation. In other words,
cells have to be clearly distinguishable from the background [20], [26], what can be obtained by
processing transformations of the input image. The application of such operations is presented
schematically in the proposed algorithm below (Fig. 3).

2.3.2. PREPROCESSING METHOD - NOISE REDUCTION AND CONTRAST SETTING

The segmentation process started with noise reduction and selection the best sharpened
version of the revised input image in RGB colour space. The smallest objects, which did not
indicate any cellular voids were removed. The object elimination criterion was established on
the basis of the specified magnification of microscopic measurements. The isolated small areas
(few pixels in size), were removed by application of 2-D median filtering to simultaneously
reduce “salt and pepper” noise (Fig. 4). Each output pixel contained the median value in
the m-by-n neighborhood around the corresponding pixel in the input image. To remove
measuring noise, morphological filtering ”opening and closing” was also performed, with the
flat structuring element (SE),which is the 2D matrix on size-dependent noise (about 9x9 pixels)
[24], [20].

Since the algorithm presented on Fig.3. suggests using the image consisting of one colour
layer, a one-dimensional grayscale conversion of the image in three-dimensional RGB colour
space was performed with pixels located in a numerical range 0-255 according to the conversion
formula (Formula I, Tab. 1) [10], [12]. The conversion results are shown in Table 1. In the brain
tissue each colour layer carries a different amount of information. The specificity of the test
material suggests, that this approach may not be sufficiently effective because of the existence
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(a) The sagittal section of the molecular layer (b) The sagittal section of the cerebellum.
in cerebellum of bank vole’s brain. Left corner ~ Bright area designates the white matter. Mag-
of the image reveals a fragment of the granular  nification 200x.
layer with large Purkinje neurons, which won’t
be considered in cell counting analysis. Magni-
fication 200x.

(d) The sagittal section of the cerebral cortex.

(c) The sagittal section of the pond. Magnifica-
tion 200x. Magnification 200x.

Fig. 2. The materials used for research.
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Fig. 3. The detailed algorithm used in application.
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Fig. 4. Sample results of using the preprocessing methods.
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Table 1. The coefficient of pixels’ statistical dispersion and the result of imaging.
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Variance 745.2103 316.1703 1049.4165

RGB Formula (id) | Gray= 0.299*R+0.587*G+0.144*B (I) | 0.212*R+0.353*G+0.435*B (II) | Gray=0.00*R+1.00*G+0.00*B (III)

of strongly dominated value. Blue layer has a constant level, which increases the influence of a
given feature on the other ones in the process of analysing particular components. To reduce this
problem, the Formula I’ weight was modified by optimizing proportion of the respective layers
to get the greatest output result. Color to greyscale conversion is also relevant in view of futher
binarization, color image quality assessment [15] as well as texture similarity estimation [16]
affecting the final results.

The image conversion to grayscale was computed with choosing the greatest variance of
pixel data. In this inference, the dependent variable was the pixel value for each of the layers
of colour and the independent variable was considered as a measure of the variance of the
distribution histogram of the image spreading. On this basis of the choice (the best set of
colour weights), it the coefficient of statistical dispersion was maximized to obtain a contrasted
picture, useful in further analysis (Fig.5(b)).

(a) Original input image. (b) Input image after preprocessing.

Fig. 5. The image data after preprocessing methods.

2.3.3. PROCESSING METHODS

The next step was to distinguish cells from the background. After verifying the suitability of
many algorithms for filtering the images, like accomplished by means of convolution between
a convolution mask and an image, we performed top-hat filtering on an intensity image using a
structural element. Top-hat operation in this case was the equivalent of subtracting the result of
performing a morphological opening operation on the reversed image from the input image. The
flat SE was the 2D square-shaped matrix, where the location of 1’s defines the neighbourhood
for the morphological operation. The size of the SE was determined the size of the grains in
the microscopic image. The analyzed cortex images contain grain size in about 70 pixels, so
this size was considered.

The result (Fig. 6(a)) was subjected to binarization with the threshold (Fig. 6(b)) , which can
be determined also in a manual or automatically - for instance adaptive methods or methods
with as dynamic selection ([18], min. entrophy or [17], [3]).

The next stage was morphological filtering - erosion with the SE structural element with
size 9. The size of the matrix was determined by the size of the remained after pre noise
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(a) Image (Fig. 5(b)) after Top- (b) Image (Fig. 6(a)) after tresh-
Hat transformation. old binarization.
Fig. 6. Sample results of using the processing methods (I).
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(a) Image (Fig. 6(b)) after ero- (b) Image (Fig. 7(a)) after water- (c) Image (Fig. 6(b)) after recon-
sion. shed. struction.
Fig. 7. Sample results of using the processing methods (II).

reduction. The resulting image contains objects combined into one after the transition. Since
this phenomenon is common and may lead to incorrect final analysis, we applied the method of
watersheds with 8-connected neighborhoods ([26]), which computes a label matrix identifying
the watershed regions (Fig. 7(b)) of the input image (Fig.6(b)). The elements labeled 0 mean
here the border of the watersheds.

The eroded image underwent reconstruction transformation (Fig. 7(c)) in the image before
erosion (Fig. 7(a)). The purpose of this step was to recreate the real size of large objects, which
have been reduced as a result of erosion. In order to obtain the final image (Fig. 8(b)), the
result of the reconstruction (Fig. 7(c)) was generated from watershed image (Fig. 6(b)). Output
image (Fig. 8(b)), was subjected to surgery component label, becoming a starting point for
further parameter measurements (Fig. 9).
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(a) The part of the original input (b) The part of the image after

image. subjection.

Fig. 8. The image data after processing methods.

3. RESULTS

The application of the proposed solution enabled database construction of selected number
of parameters. This can be used in the future in data analysis process, which converts data into
usable knowledge. The described measuring methodology was implemented for detection of
well contrasted grains in the specimens of nervous tissue in cerebellum, cerebrum and pond.
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Fig. 9. The image data after labeling method.

Table 2. Measurements of cell number, cell surface area and density.

proposed method ImageJ
Figure 2A 2B 2C 2D 2A 2B 2C 2D
cell number 338 385 528 485 558 451 560 1021
cell surface area | 311741 | 612239 | 480547 | 503304 | 202606 | 95050 | 220115 | 580304
cell density 0.0623 | 0.1224 | 0.0961 | 0.1006 | 0.0405 | 0.019 0.044 0.116

Three types of parameters were selected:

« cell number - a number of objects, where the counting process was carried out by using
the labelling algorithm consisting on viewing the binarized image line by line until a point
belonging to the object. A label and the values of preceding pixels were analyzed. The
labeled vertices were based on associativity to neighbour values - three higher and one
left neighbour (8-connected neighborhood);

« cell surface area - was calculated by summing all pixels within the object and optionally
it may be multiplying by the calibration factor for optimization for image sizes;

« cell density - understood as the cell surface area per total area of the image.

To verify accuracy of the system, the results of the presented method were compared to the
results of ImageJ. The authors tried to compare the results with the ITCN (Image-based Tool
for Counting Nuclei, ver. 1.6) [13] but there were three parameters, the choice of which was
a subjective: cells width, the minimum distance between cells and threshold.

In case of analysing particles in Imagel, it was very hard to include neurons with light violet
nuclei, especially on the Figure 2D, using colour threshold, because cells had their nuclei lighter
than the background. Additionally, cytoplasm and cell membranes were not easy to distinguish
from the background. The largest disadvantage to measure cells using ImageJ software was
small repeatability of threshold settings before binarization process.

4. DISCUSSION AND CONCLUSIONS

The aim of the paper was to present a semi-automatic method of extracting information from
digital images about the cell number, density and volume of white and gray matter in brain
structures, based on image processing, image analysis and mathematical morphology methods.
It was also described the characteristics of images to choose optimal segmentation algorithm.
Authors considered the advantages and possibilities of applying mixture weight model of
conversion formulas RGB, to obtain the best amount of information. The usefulness of applying
the classical algorithms processing and the analysis of digital images (eg. top-hat transformation,
watershed, labelling) for the presented data was presented. It was made a general comparison
of the proposed method with the popular tools used for semi-automatic statistical evaluation
of cells (such as Imagel). The results of the programs are relatively divergent, because of the
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great dependence on the parameters (in the case of an ITCN), which adopts them subjectively.
A proof that there is a strong need for methods that perform fully automated segmentation
of nerve cells and evaluate the parameters without user intervention. These parameters should
take into consideration, together with parameters like shape or anisotropy of different types of
cells in the nervous tissue: neurons, glial cells and epithelial cells. This became the subject of
further study.
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