1,287 research outputs found

    An intelligent, free-flying robot

    Get PDF
    The ground based demonstration of the extensive extravehicular activity (EVA) Retriever, a voice-supervised, intelligent, free flying robot, is designed to evaluate the capability to retrieve objects (astronauts, equipment, and tools) which have accidentally separated from the Space Station. The major objective of the EVA Retriever Project is to design, develop, and evaluate an integrated robotic hardware and on-board software system which autonomously: (1) performs system activation and check-out; (2) searches for and acquires the target; (3) plans and executes a rendezvous while continuously tracking the target; (4) avoids stationary and moving obstacles; (5) reaches for and grapples the target; (6) returns to transfer the object; and (7) returns to base

    Manipulation strategies for massive space payloads

    Get PDF
    Control for the bracing strategy is being examined. It was concluded earlier that trajectory planning must be improved to best achieve the bracing motion. Very interesting results were achieved which enable the inverse dynamics of flexible arms to be calculated for linearized motion in a more efficient manner than previously published. The desired motion of the end point beginning at t=0 and ending at t=t sub f is used to calculate the required torque at the joint. The solution is separated into a causal function that is zero for t is less than 0 and an accusal function which is zero for t is greater than t sub f. A number of alternative end point trajectories were explored in terms of the peak torque required, the amount of anticipatory action, and other issues. The single link case is the immediate subject and an experimental verification of that case is being performed. Modeling with experimental verification of closed chain dynamics continues. Modeling effort has pointed out inaccuracies that result from the choice of numerical techniques used to incorporate the closed chain constraints when modeling our experimental prototype RALF (Robotic Arm Large and Flexible). Results were compared to TREETOPS, a multi body code. The experimental verification work is suggesting new ways to make comparisons with systems having structural linearity and joint and geometric nonlinearity. The generation of inertial forces was studied with a small arm that will damp the large arm's vibration

    Kinematic and dynamic analyses of general robots by applying the C-B notation-RaMIP (Robot and Mechanism Integrated Program)

    Get PDF
    In this thesis, a new symbolic representation based on 4x4 homogeneous matrices, C-B (Cylindrical Coordinates - Bryant Angles) notation, has been applied to the kinematic and dynamic analyses of general robots, and a computer algorithm named RaMIP (Robot and Mechanism Integrated Program) has been developed on a Sun workstation for the design and analysis of robots and mechanisms. RaMIP can be used to model most industrial robots currently in use. It performs three-dimensional kinematic and dynamic analyses and takes advantage of the computational efficiency of C-B notation. The C-B notation allows the user to model an arbitrary mechanism consisting of any combination of revolute, prismatic and spherical joints. RaMIP has the capability of presenting results in the form of two- and three-dimensional plots of colored contours, as well as tables of numerical data. The algorithm is examined and tested by analyzing several commercial robots. Kinematic and dynamic results are computed and presented in two- and three-dimensional graphs and compared with known data to probe the validity and accuracy of RaMIP. It should be noticed that the efforts completed in this thesis present only the first step towards the implementation of a general purpose computer algorithm -RaMIP- for the automated design and analysis of open- and closed-chain mechanisms utilizing C-B notation

    Robotic prototyping environment (Progress report)

    Get PDF
    Journal ArticlePrototyping is an important activity in engineering. Prototype development is a good test for checking the viability of a proposed system. Prototypes can also help in determining system parameters, ranges, or in designing better systems. The interaction between several modules (e.g., S/W, VLSI, CAD, CAM, Robotics, and Control) illustrates an interdisciplinary prototyping environment that includes radically different types of information, combined in a coordinated way. Developing an environment that enables optimal and flexible design of robot manipulators using reconfigurable links, joints, actuators, and sensors is an essential step for efficient robot design and prototyping. Such an environment should have the right "mix" of software and hardware components for designing the physical parts and the controllers, and for the algorithmic control of the robot modules (kinematics, inverse kinematics, dynamics, trajectory planning, analog control and digital computer control). Specifying object-based communications and catalog mechanisms between the software modules, controllers, physical parts, CAD designs, and actuator and sensor components is a necessary step in the prototyping activities. We propose a flexible prototyping environment for robot manipulators with the required sub-systems and interfaces between the different components of this environment

    Prototyping environment for robot manipulators

    Get PDF
    Journal ArticlePrototyping is an important activity in engineering. Prototype development is a good test for checking the viability of a proposed system. Prototypes can also help in determining system parameters, ranges, or in designing better systems. We are proposing a prototyping environment for electro-mechanical systems, and we chosen a 3-link robot manipulator as an example. In Designing a robot manipulator, the interaction between several modules (S/W, VLSI, CAD, CAM, Robotics, and Control) illustrates an interdisciplinary prototyping environment that includes different types of information that are radically different but combined in a coordinated way. This environment will enable optimal and flexible design using reconfigurable links, joints, actuators, and sensors. Such an environment should have the right "mix" of software and hardware components for designing the physical parts and the controllers, and for the algorithmic control for the robot modules (kinematics, inverse kinematics, dynamics, trajectory planning, analog control and computer (digital) control). Specifying object-based communications and catalog mechanisms between the software modules, controllers, physical parts, CAD designs, and actuator and sensor components is a necessary step in the prototyping activities. In this report a framework for flexible prototyping environment for robot manipulators is proposed along with the required sub-systems and interfaces between the different components of this environment

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Performance of modified jatropha oil in combination with hexagonal boron nitride particles as a bio-based lubricant for green machining

    Get PDF
    This study evaluates the machining performance of newly developed modified jatropha oils (MJO1, MJO3 and MJO5), both with and without hexagonal boron nitride (hBN) particles (ranging between 0.05 and 0.5 wt%) during turning of AISI 1045 using minimum quantity lubrication (MQL). The experimental results indicated that, viscosity improved with the increase in MJOs molar ratio and hBN concentration. Excellent tribological behaviours is found to correlated with a better machining performance were achieved by MJO5a with 0.05 wt%. The MJO5a sample showed the lowest values of cutting force, cutting temperature and surface roughness, with a prolonged tool life and less tool wear, qualifying itself to be a potential alternative to the synthetic ester, with regard to the environmental concern

    Controlled motion in an elastic world. Research project: Manipulation strategies for massive space payloads

    Get PDF
    The flexibility of the drives and structures of controlled motion systems are presented as an obstacle to be overcome in the design of high performance motion systems, particularly manipulator arms. The task and the measure of performance to be applied determine the technology appropriate to overcome this obstacle. Included in the technologies proposed are control algorithms (feedback and feed forward), passive damping enhancement, operational strategies, and structural design. Modeling of the distributed, nonlinear system is difficult, and alternative approaches are discussed. The author presents personal perspectives on the history, status, and future directions in this area
    • …
    corecore