
Robotic Prototyping Environment

(Progress report)

Mohamed Dekhil, Tarek M. Sobh, Thomas C. Henderson, and Robert Mecklenburg 1

UUSC-94-004

Department of Computer Science

University of Utah

Salt Lake City, UT 84112 USA ‘

February 3, 1994

A b s t r a c t

Prototyping is an important activity in engineering. Prototype development is a good test for

checking the viability of a proposed system. Prototypes can also help in determining system param­

eters, ranges, or in designing better systems. The interaction between several modules (e.g., S/W,

VLSI, CAD, CAM, Robotics, and Control) illustrates an interdisciplinary prototyping environment

that includes radically different types of information, combined in a coordinated way. Developing

an environment that enables optimal and flexible design of robot manipulators using reconfigurable

links, joints, actuators, and sensors is an essential step for efficient robot design and prototyping.

Such an environment should have the right “mix” of software and hardware components for de­

signing the physical parts and the controllers, and for the algorithmic control of the robot modules

(kinematics, inverse kinematics, dynamics, trajectory planning, analog control and digital computer

control). Specifying object-based communications and catalog mechanisms between the software

modules, controllers, physical parts, CAD designs, and actuator and sensor components is a nec­

essary step in the prototyping activities. We propose a flexible prototyping environment for robot

manipulators with the required sub-systems and interfaces between the different components of this

environment.

1This work was supported in part by DARPA grant N00014-91-J-4123, NSF grant CDA 9024721, and a University

of Utah Research Committee grant. All opinions, findings, conclusions or recommendations expressed in this document

are those of the author and do not necessarily reflect the views of the sponsoring agencies.

1 Introduction 5

1.1 Objectives.. 6

2 Background and Related Work 6

2.1 Phases of Building a Robot 6

2.2 Robot Modules and Parameters 7

2.2.1 Forward Kinematics 7

2.2.2 Inverse Kinematics.. ... 7

2.2.3 Dynam ics.. 8

2.2.4 Trajectory Generation ... ' 9

2.3 Linear Feedback Control................. 10

2.3.1 Local PD Feedback Contro l.................10

2.3.2 Continuous vs. Discrete Time Control ... 12

2.3.3 Disturbance Rejection 13

2.4 Speed Considerations.. 13

2.4.1 Types of Inputs14

2.4.2 Desired Frequency of the Control System ... 14

2.4.3 Error Analysis ..15

2.5 Special Computer Architecture for Robotics..15

2.6 Optimal Design of Robot Manipulators ..16

2.7 Integration of Heterogeneous Systems ...17

3 Three-link Robot M anipulator 19

3.1 Analysis Stage19

3.2 One Link Manipulator.................... ..19

3.3 Sensor and Actuator Interface21

3.4 Controller Design21

3.5 Simulation22

3.6 Benchmarking23

3.7 PID Controller S im u la to r... 24

3.8 Building the R obo t.......................... ..24

4 The Prototyping Environment 27

4.1 Interaction Between Sub-systems... 30

4.2 The Interface Scheme31

4.3 Overall Design 33

4.3.1 Communication Protocols... 34

4.3.2 Design Cycles and Infinite Loops..38

4.3.3 Central Interface Design Options..38

4.4 Object-Oriented A na lys is 40

4.5 Prototyping Environment Database ...42

C o n t e n t s

1

4.5.1 Design Parameters......................

4.5.2 Database D e s ig n

4.5.3 The Design History

4.6 Constraints and Update Rules Compiler

4.6.1 Language Syn tax

4.6.2 The Generated Code

4.7 Implementation

4.7.1 The Central In te r face

4.7.2 The PE Control System

4.7.3 Initial Implementation of the SSIs

4.7.4 The Central Interface Monitor .

Testing and Results

5.1 One-link Robot ...

5.2 Simulator for 3-link R ob o t................... .

5.3 Software PID Contro ller.........................

5.4 The Prototyping Environment

5.5 Case Study ...

Conclusions

6.1 Possible Future Extensions

1 The interaction between the groups involved in the prototyping activity......................... 11

2 High-level block diagram of a robot control system. .. 11

3 Different types of damping in a second order control system..11

4 Block diagram of the controller of a robot manipulator...12

5 The relation between torque the voltage.. 20

6 Circuit diagram of the DC-motor used in the experiment ..20

7 Three different configurations of the robot manipulator...................................22

8 Performance comparison for different platforms........................... ..25

9 The interface window for the PID controller simulator..26

10 The physical three-link robot manipulator...27

11 Controlling the robot using different schemes...................... ... 28

12 Schematic view for the robot prototyping environment. 29

13 Three different methods for sub-system interface communication......................................32

14 Overall design of the prototyping environment. ... 34

15 Finite state machine representation for the change protocol. 35

16 Finite state machine representation for the data request protocol.....................................36

17 Possible scenario for the communication between the sub-systems....................................37

18 The main components of the robot prototyping environment. 40

19 Detailed analysis for the robot classes. ... 41

20 Sub-system notification table according to parameter changes. 44

21 Database design for the system.45

22 Schematic overview of the PECS...51

23 The main window for the PE control system...52

24 The current robot configuration window. 53

25 Updating the design constraints through the PECS...54

26 The user interface for the SSI. ..54

27 The user interface for the SSI...55

28 The behavior of the one-link robot for the first input sequence..57

29 The behavior of the one-link robot for the second input sequence.....................................58

30 The behavior of the one-link robot for the third input sequence.59

31 The difference between the actual and the desired behavior. 60

32 The output window of the simulation program for 3-link robot...61

33 The effect of changing the update rate on the position error..62

34 Desired and actual position for test case (1)..64

35 Desired and actual position for test case (2)..65

36 Desired and actual position for test case (3)..66

37 Desired and actual position for test case (4)..67

38 C l test case one, success case for data change...68

39 Cl test case two, negative acknowledgment case... 69

40 Cl test case three, non-satisfied constraints c a s e 70

List o f F i g u r e s

3

1 Number of calculations involved in the dynamics module

2 Configuration of the machines used in the benchmark.

3 Message types used in the communication protocols

List o f T a b l e s

In designing and building a robot manipulator, many tasks are required, starting with specifying the

tasks and performance requirements, determining the robot configuration and parameters that are

most suitable for the required tasks, ordering the parts and assembling the robot, developing the

necessary software and hardware components (controller, simulator, monitor), and finally, testing

the robot and measuring its performance.

Our goal is to build a framework for optimal and flexible design of robot manipulators with

software and hardware systems and modules which are independent of the design parameters and

which can be used for different configurations and varying parameters. This environment is composed

of several sub-systems. Some of these sub-systems are: .

• Design.

• Simulation.

• Control.

• Monitoring.

• Hardware selection.

• CAD/CAM modeling.

• Part Ordering.

• Physical assembly and testing.

Each sub-system has its own structure, data representation, and reasoning strategy. On the other

hand, much of the information is shared among these sub-systems. To maintain the consistency of

the whole system, an interface layer is proposed to facilitate the communication between these sub­

systems, and set the protocols that enable the interaction between the sub-systems to take place.

This project involved the interaction and cooperation of several different research groups. The

robotics group (Prof. Thomas Henderson, Prof. Tarek Sobh, Prof. Sam Drake and myself), was

involved in the design and analysis of the prototype robot, and also the implementation of the

necessary software systems for the prototyping environment and for controlling and simulating the

three-link robot. The Alpha-1 group, represented by Mircea Cormos was involved in designing the

CAD/CAM model for the robot using the Alpha-1 CAGD system. The VLSI group, represented

by Prof. Kent Smith and Anil Sabbavarapu, helped in the analysis stage, particularly, in making

the decision of using hardware vs. software solutions. Also this group was involved in the design

of the communication circuitry between the robot and the workstation. The Center of Software

Science (CSS), represented by Prof. Robert Mecklenburg, helped in the design and analysis of the

prototyping environment with the required communication protocols and database analysis. The

Center of Engineering Design (CED), represented by Prof. Sanford Meek, was involved in selecting

the electrical and electronic components and helping out in the overall design and testing procedures

1 I n t r o d u c t i o n

5

for the robot manipulator. Finally, the manufacturing group at the Advanced Manufacturing Lab

(AML), represented by Mircea Cormos, the AML manager, Prof. Sam Drake, and Prof Sanford

Meek, was involved in the manufacturing and assembly of the robot. Besides these groups, there was

cooperation between the departments of Computer Science and Mechanical Engineering in selecting

the required components for the robot. A cataloging system has been recently developed by Prof.

Don Brown and Prof. Robert Mecklenburg that automates the selection process for some of the parts,

and we would like to incorporate this system with the part-ordering sub-system in the prototyping

environment. Figure 1 shows the interaction between these groups during this project.

1.1 O b je c tive s

The objective of this research project is to explore the basis for a consistent software and hardware

environment, and a flexible framework that enables easy and fast modifications, and optimal design

of robot manipulator parameters, with online control, monitoring, and simulation for the chosen

manipulator parameters. This environment should provide a mechanism to define design objects

which describe aspects of design, and the relations between those objects.

Another goal is to build a prototype three-link robot manipulator. This will help determine the

required sub-systems and interfaces to build the prototyping environment, and will give us hands-on

experience for the real problems and difficulties that we would like to address and solve using this

environment.

The importance of this project arises from several points:

• This framework will facilitate and speed the design process of robots.

• The prototype robot will be used as an educational tool in the robotics and automatic control

classes.

• This project will facilitate the cooperation of several research groups in the department (VLSI

group, Robotics group), and the cooperation of the department with other departments (Me­

chanical and Electrical Engineering).

• This project will establish a basis and framework for design automation of robot manipulators.

This report starts with a brief background of robot design and modules is presented in Section 2

with the related work in this area. A detailed description of prototyping and simulating a 3-link robot

manipulator is presented in Section 3. Section 4 describes the prototyping environment components

such as the interface between the systems and the required representations to implement this interface

(e.g., knowledge base, object oriented scheme, rule-based reasoning, etc.). Section 5 shows some

examples and results of the implemented systems. Finally, conclusions from the work are presented

in Section 6 along with possible future extensions.

2 B a c k g r o u n d a n d R e l a t e d W o r k

2.1 Phases o f B u ild in g a R o b o t

W e can divide the process of building a robot into several phases as follows:

6

1. Design Phase: which includes the following tasks:

• Specify the required robot tasks.

• Choose the robot parameters.

• Set the control equation and the trajectory planning strategy.

• Study the singular points.

2. S im ulation Phase: test the behavior and the performance of the chosen manipulator.

3. P ro to typ ing and Testing Phase: test the behavior and performance, and compare it with

the simulated results. _

4. M anufacturing Phase: order the required parts and manufacture the actual robot.

2.2 R o b o t M o d u le s a n d P a ram e te rs

Controlling and simulating a robot is a process that involves a large number of mathematical equa­

tions. To be able to deal with the required amount of computation, it is better to divide them into

modules, where each module accomplishes a certain task. The most important modules, as described

in [6], are: kinematics, inverse kinematics, dynamics, trajectory generation, and linear feedback con­

trol. In the following sections, we will briefly describe each of these modules, and the parameters

involved in each.

2.2.1 Forward K inem atics

This module is used to describe the static position and orientation of the manipulator linkages. There

are two different ways to express the position of any link: using the Cartesian space, which consists

of position (x, y, z), and orientation, which can be represented by a 3 X 3 matrix called the rotation

matrix; or using the joint space, by representing the position by the angles of the manipulator’s links.

Forward kinematics is the transformation from joint space to Cartesian space.

This transformation depends on the configuration of the robot (i.e., link lengths, joint positions,

type of each joint, etc.). In order to describe the location of each link relative to its neighbor, a

frame is attached to each link, then we specify a set of parameters that characterizes this frame.

This representation is called Denavit-Hartenberg notation. See [6] for more details.

One approach to the problem of kinematics analysis is described in [41], which is suitable for

problems where there are one or more points of interest on every link. This method also generates

a systematic presentation of all equations required for position, velocity, and acceleration, as well as

angular velocity and angular acceleration for each link.

2.2.2 Inverse K inem atics

This module solves for the joint angles given the desired position and orientation in Cartesian space.

This is a more complex problem than forward kinematics. The complexity of this problem arises

from the nature of the transformation equations, which are nonlinear. There are two issues in solving

7

these equations: existence of solutions and multiple solutions. A solution can exist only if the given

position and orientation lies within the workspace of the manipulator’s end-effector. By workspace,

we mean all points in space that can be reached by the manipulator’s end-effector. On the other

hand, the problem of multiple solutions forces the designer to set a criterion for choosing one solution.

E.g., a good choice is the solution that minimizes the amount that each joint is required to move.

There are two methods for solving the inverse kinematics problem: closed form solutions and

numerical solutions. Numerical solutions are much slower than closed form solutions, but, for some

configurations it is too difficult to find a closed form solution. In our case, we will use closed form

solutions, since our models are three link manipulators with easy closed form formulas.

A software package called SRAST (Symbolic Robot Arm Solution Tool) that symbolically solves

the forward and inverse kinematics for n-degree of freedom manipulators has been developed by

Herrera-Bendezu, Mu, and Cain [16]. The input to this package is the Denavit-Hartenberg param­

eters, and the output is the direct and inverse kinematics solutions. Another method of finding

symbolic solutions for the inverse kinematics problem was proposed in [43]. Kelmar and Khosla

proposed a method for automatic generation of forward and inverse kinematics for a reconfigurable

manipulator system [20].

2.2.3 Dynam ics

Dynamics is the study of the torques required at each joint to cause the manipulator to move in

a certain manner. It is also concerned with the way in which a manipulator moves when certain

torques are applied to its joints. The serial chain nature of manipulators makes it easy to use simple

methods in dynamic analysis.

There are two problems related to the dynamics of a manipulator: controlling the manipulator,

and simulating the motion of the manipulator. In the first problem, we have a set of required

positions for each link, and we want to calculate the required torques to be applied at each joint.

This is called inverse dynamics. In the second problem, we are given a set of torques applied to each

link, and we wish to calculate the new position and the velocities during the motion of each link.

The latter is used to simulate a mathematical manipulator model before building the physical model,

which makes it possible to update and modify the design without the cost of changing or replacing

any physical parts.

The dynamics equations for any manipulator depend on the following parameters:

• The mass of each link.

• The mass distribution for each link, which is called the inertia tensor, which can be thought of

as a generalization of the scalar moment of inertia of an object.

• Length of each link.

• Joint type (revolute or prismatic).

• Manipulator configuration and joint locations.

To simulate the motion of a manipulator we must use the same model we have used in controlling

The dynamics module is the most time consuming part among the manipulator’s modules. That is

because of the tremendous amount of calculation involved in the dynamics equations. This fact makes

the dynamics module a good candidate for hardware implementation, to enhance the performance

There are some parallel algorithms to calculate the dynamics of a manipulator. One approach

described in [33], is to use multiple microprocessor systems, where each one is assigned to a manip­

ulator link. Using a method called branch-and-bound, a schedule of the subtasks of calculating the

input torque for each link is obtained. The problem with this method is that the scheduling algorithm

itself was the bottleneck, thus limiting the total performance. Several other approaches have been

suggested [25, 26, 40] based on a multiprocessor controller, and pipelined architectures to speed the

calculations. Hashimoto and Kimura [15] proposed a new algorithm called the resolved Newton-Euler

algorithm based on a new description of the Newton-Euler formulation for manipulator dynamics.

Another approach was proposed by Li, Hemami, and Sankar [31] to drive linearized dynamic models

about a nominal trajectory for the manipulator using a straightforward Lagrangian formulation. An

efficient structure for real-time computation of the manipulators dynamics was proposed by Izaguirre,

Hashimoto, Paul and Hayward [18]. The fundamental characteristic of this structure is the division

of the computation into a high-priority synchronous task and low-priority background tasks, possibly

sharing the resources of a conventional computing unit based on commercial microprocessors.

This module computes a multidimensional trajectory which describes the manipulator’s position,

velocity, and acceleration for each link. This module includes the human interface problem of de­

scribing the desired behavior of the manipulator. The complexity of this problem arises from the

wide meaning of manipulator’s behavior. In some applications we might only need to specify the

goal position, while in some other applications, we might need to specify the velocity with which the

end effector should move. Since trajectory generation occurs at run time on a digital computer, the

trajectory points are calculated at a certain rate, called the path update rate. We return to this issue

There are several strategies to calculate trajectory points which generate a smooth motion for

the manipulator. It is important to guarantee this smoothness of the motion due to physical con­

siderations such as: the required torque that causes this motion, the friction at the joints, and the

One of the simplest methods is cubic polynomials, which assumes a cubic function for the angle

of each link, by differentiating this equation the velocity and acceleration are computed (see [6]).

The dynamics model we are using to control the manipulator is in the form:

2.3 Linear Feedback Control

We will use a linear control system in our design, which is an approximation of the non-linear nature of

the dynamics equations of the system, which are more properly represented by non-linear differential

equations. This is a reasonable approximation, and it is used in current industrial practice.

We will assume that there are sensors at each joint to measure the joint angle and velocity, and

there is an actuator at each joint to apply a torque on the neighboring link. Our goal is to cause

the manipulator joints to follow a desired trajectory. The readings from the sensors will constitute

the feedback of the control system. By choosing appropriate gains we can control the behavior of

the output function representing the actual trajectory generated. Minimizing the error between the

desired and actual trajectories is our main concern. Figure 2 shows a high level block diagram of a

robot control system.

When we talk about control systems, we should consider several issues related to that field, such

as: stability, controllability, and observability. For any control system to be stable, its poles should

be negative, since the output equation contains terms of the form fc,ep‘ ; if pi is positive, the system

is said to be unstable. We can guarantee the stability of the system by choosing certain values for

the feedback gains.

We will assume a second order control system of the form:

m.0 bd kO.

Another desired property of the control system is that it be critically damped, which means

that the output will reach the desired position in minimum time without overshooting. This can

be accomplished by making b2 = 4mk. Figure 3 shows the three types of damping: underdamped,

critically damped, and overdamped.

Figure 4 shows a block diagram for the controller, and the role of each of the robot modules in

the system.

More about robot control can be found in [2, 30, 42].

2.3.1 Local P D Feedback Contro l

Most of the feedback algorithms used in the current control system are digital implementation of a

proportional plus derivative (PD) control. In industrial robots, a local PD feedback control law is

applied at each joint independently. The advantages of using a PD controller are the following:

• Very simple to implement.

• No need to identify the robot parameters.

• Suitable for real-time control since it has very few computations compared to the complicated

non-linear dynamic equations.

• The behavior of the system can be controlled by changing the feedback gains.

10

Feedback Control Dynamics

Figure 4: Block diagram of the controller of a robot manipulator

On the other hand, there are some disadvantages of using a PD controller instead of the dynamic

equations such as:

• Requires a high update rate to achieve reasonable accuracy.

• Dynamic equations should be used to simulate the robot manipulator behavior

• There is always trade-off between static accuracy and the overall system stability.

• Using local PD feedback law at each joint independently does not consider the couplings of

dynamics between robot links.

Some ideas have been suggested to enhance the usability of the local PD feedback law for tra­

jectory tracking. One idea is to add a lag-lead compensator using frequency response analysis [4].

Another method is to build an inner loop stabilizing controller using a multi-variable PD controller,

and an outer loop tracking controller using a multi-variable PID (proportional, integral, and deriva­

tive) controller [49].

In general, using a local PD feedback controller with high update rates can give an acceptable

accuracy for trajectory tracking applications. It was proved that using a linear PD feedback law is

useful for positioning and trajectory tracking [19].

2.3.2 Continuous vs. D iscrete T im e Contro l

In computer-controlled systems, the calculated actuator forces are not continuous functions in time

any more. This is because of the time needed by the computer to perform the required calculations.

In this case, we can study the system using digital control theory which takes the calculation time

into account when analyzing the system. To be able to use the continuous model, we must use high

update rates (i.e., reduce the computation time). This can be achieved by using a faster computer,

and/or using parallel architectures and using some parallel algorithm to calculate the complicated

parts in the computations (usually the dynamics of the system). The effect of choosing the update

rate on the system performance and stability is discussed in Section 2.4

12

Another method is to use a mixture of continuous and discrete control for the system. This can

be done by using the computer to generate the required trajectory and the torques for the actuators

in discrete time, and an analog PID controller in the interval between the computer samples. This

will enable us to assume a continuous control law and will minimize the error during the computation

In any real-time control system, there is always some amount of external noise fdist(t), and usually

this noise is stochastic in nature. The distribution and magnitude of this noise depends on the

working environment, and sometimes it is too difficult to prevent the noise from happening, but we

can modify the control model to reduce the effect of such noise to an acceptable degree. This noise

can be modeled using statistical measures and some assumptions about its nature. To deal with this

noise we must assume that it is bounded, that is, there is a constant a such that:

This maintains the property of a stable linear system known as bounded-input bounded-output (BIBO)

As a simple case, let’s assume that fdist is a constant. In this case, the steady state error can be

calculated by analyzing the system at rest (i.e., set all derivatives to zero) as follows:

The value of e here represents the steady state error of the system. From the last equation, it is

clear the increasing kp will decrease the steady state error. On the other hand, there is a limit on

Another way to reduce (and sometimes eliminate) the steady state error, is by adding an integral

term to the control low. That is what is known as the PID controller, which stands for Proportional,

Integral, Derivative controller. By adding this term, the steady state error can be calculated as

So, the addition of this integral element can eliminate constant disturbances.

There are several factors which affect the desired speed (frequency of calculations), the maximum

speed we can attain using software solutions, and the required hardware we need to build if we are

to use a hardware solution. The desired frequency of calculation depends on the type and frequency

of input, the noise in the system, and the required output accuracy. In the following sections we will

discuss some of these points in more detail.

2.4.1 Types o f Inpu ts

The user interface to the system should allow the user to specify the desired motion of the manipulator

in different ways depending on the nature of the job the manipulator is designed to do. The following

are some of the possible input types the user can use: -

• Move from point xq, yo, zq to point xj, Vd> in Cartesian space.

• Move in a pre-defined position trajectory [xi,yi,zi\. This is called position planning.

• Move in a pre-defined velocity trajectory [i,-, y,-, i,-]. This is called velocity planning.

• Move in a pre-defined acceleration trajectory y;,5t-]. This is called force control.

This will affect the placement of the inverse kinematics module: outside the update loop, as in

the first case, or inside the update loop, as in the last three cases. For the last three cases we have

two possible solutions; we can include the inverse kinematics module in the main update loop as

we mentioned before, or we can plan ahead in the joint space before we start the update loop. We

should calculate the time required for each case plus the time required to make a decision.

2.4.2 Desired Frequency o f the C on tro l System

We must decide on the required frequency of the system. In this system we have four frequencies to

be considered:

• Input frequency, which represents the frequency of changes to the manipulator status (position,

velocity, and acceleration).

• Update frequency, representing the speed of calculations involved.

® Sensing frequency, which depends on the A /D converters that feed the control system with the

actual positions and velocities of the manipulator links.

• Noise frequency: since we are dealing with a real-time control system, we must consider different

types of noise affecting the system such as: input noise, system noise, and output noise (from

the sensors).

14

The error is the difference between the desired and actual behavior of the manipulator. In any

physical real-time control system, there is always a certain amount of error resulting from modeling

error or different types of noise. One of the design parameters is the maximum allowable error. This

depends on the nature of the tasks the manipulator is designed to accomplish. For example, in the

medical field the amount of error allowed is much less than in a simple laboratory manipulator. The

update frequency is the most dominant factor in minimizing the error. I t ’s clear that increasing the

update frequency results in decreasing the error. But the update frequency is limited by the speed

of the machine used to run the system. Khosla performed some experiments to study the effect of

changing the control sampling rate on the performance of the manipulator behavior [22] and showed

that increasing the update rate decreases the error.

2.5 S pec ia l C o m p u te r A rch ite c tu re fo r R o b o tic s

When we design real time systems that involve a huge number of floating point calculations, speed

becomes an important issue. In such situations, a hardware solution might be used to achieve the

desired speed. Graham [14] provides an overview of specially designed computer architectures which

enhance the computational capabilities to meet the needs of real-time control and simulation of

robotic systems. Leung and Shanblatt [28] have addressed two important issues in this field: the

decision on how specific an architecture should be and which architecture styles should be chosen

for particular applications. They also devised a hierarchy for the computational needs in robotics

applications which is composed of: management, reasoning, and device interaction.

The concept of the ASIC (Application-Specific Integrated Circuit) has created great opportunities

for implementing robotic control algorithms on VLSI chips. In [29] a description is given of a

conceptual framework for designing robotic computational hardware using ASIC technology. The

advantages of ASIC for robotic applications include:

• Better performance.

• Smaller size.

• Higher reliability.

• Lower non-recurring cost.

• Faster turnaround time.

• Tighter design security.

There are other approaches and applications for using the ASIC technology in robotic applica­

tions. Some of them can be found in [1, 23, 32, 44].

A VLSI architecture designed to compute the direct kinematic solution (DKS) on a single chip

is described in [27], It uses fixed-point operations and on-chip generation of trigonometric functions.

2.4.3 Error Analysis

15

One of the latest advances in this area is the design of a 2400-MFLOPS reconfigurable parallel VLSI

processor for robotic control. The speed of the chip is about 60 times faster than that of a parallel

processor approach using conventional DSPs [13]. There are other approaches and applications for

using the ASIC technology in robotic applications

2.6 O p t im a l D es ign o f R o b o t M a n ip u la to r s

It is important to choose the parameters of a robot manipulator (configuration, dimension, motors,

etc.) that are most suitable for the required robot tasks. Considerable research has been done in this

area. Depkovich and Stoughton [10] proposed a general approach for the specification, design and

validation of manipulators. The concept of Reconfigurable Modular Manipulator System (RMMS)

was proposed by Khosla, Kanade, Hoffman, Schmitz, and Delouis [21] at Carnegie Mellon University.

There goal is to create a complete manipulator system, including mechanical and control hardware,

and control algorithms that are automatically and easily reconfigured.

Designing an optimal manipulator is not yet well defined, and it depends on the definition and

criterion of optimality. There are several techniques and methodologies to formalize this optimization

problem by creating some objective functions that satisfy certain criteria, and solving these functions

with the existence of some constraints.

One criterion that is used is a kinematic criterion for the design evaluation of manipulators by

establishing quantitative kinematic distinction among a set of designs [5, 36, 37]. Another criterion

is to achieve optimal dynamic performance; that is to select the link lengths and actuator sizes for

minimum time motions along specified trajectory [34, 45].

TOCARD (Total Computer-Aided Design System of Robot Manipulators) is a system designed

by Takano, Masaki, and Sasaki [48] to design both fundamental structure (degrees of freedom, arm

length, etc.), and inner structure (arm size, motor allocation, motor power, etc). They describe the

problem as follows: there is a set of design parameters, a set of objective functions, and a set of

Gavin data (constraints). The design parameters are:

• Degrees of freedom.

• Joint type and its sequence.

• Arm length and offset.

• Arm cross-sectional dimensions.

• Motor allocations.

• Joint mechanisms and transmission mechanisms.

• Reduction gears.

• Motors.

The objective functions for the design of robot arm are as follows:

16

• Manipulability.

• Total motor power consumption.

• Arm weight.

• Total weight of robot.

• Cost.

• Workspace.

• Joint displacement limit.

• Maximum joint velocity and acceleration.

• Deflection.

• Natural frequency.

• Position accuracy.

The constraints can be:

• Workpiece and degrees of freedom of orientation.

• Maximum velocity and acceleration of workpiece.

• Position accuracy.

• Weight, gravity center and moment of inertia of workpiece.

• Dimensional data of hand and grasping manner of workpiece.

Hollerbach proposed an optimum kinematic design for a seven-degree of freedom manipula­

tor [17].

2.7 In te g ra t io n o f H e te rogeneous System s

To integrate the work among different teams and sites working in such a large project, there must

be some kind of synchronization to facilitate the communication and cooperation between them. A

concurrent engineering infrastructure that encompasses multiple sites and sub-systems, called Pallo

Alto Collaborative Testbed (PACT), was proposed in [7]. The issues discussed in that work were:

• Cooperative development of interfaces, protocols, and architecture.

• Sharing of knowledge among heterogeneous systems.

• Computer-aided support for negotiation and decision-making.

17

An execution environment for heterogeneous systems called “InterBase” was proposed in [3].

It integrates preexisting systems over a distributed, autonomous, and heterogeneous environment

via a tool-based interface. In this environment each system is associated with a Remote System

Interface (RSI) that enables the transition from the local heterogeneity of each system to a uniform

system-level interface.

Object orientation and its applications to integrate heterogeneous, autonomous, and distributed

systems is discussed in [39]. The argument in this work is that object-oriented distributed comput­

ing is a natural step forward from the client-server systems of today. A least-common-denominator

approach to object-orientation as a key strategy for flexibly coordinating and integrating networked

information processing resources is also discussed. An automated, flexible and intelligent manufac­

turing based on object-oriented design and analysis techniques is discussed in [35], and a system for

design, process planning and inspection is presented.

Several important themes in concurrent software engineering are examined in [11]. Some of these

themes are:

Tools: Specific tools that support concurrent software engineering.

Concepts: Tool-independent concepts are required to support concurrent software engineering.

Life cycle: Increase the concurrency of the various phases in the software life cycle.

In tegration : Combining concepts and tools to form an integrated software engineering task.

Sharing: Defining multiple levels of sharing is necessary.

A management system for the generation and control of documentation flow throughout a whole

manufacturing process is presented in [12]. The method of quality assurance is used to develop this

system which covers cooperative work between different departments for documentation manipula­

tion.

A computer-based architecture program called the Distributed and Integrated Environment for

Computer-Aided Engineering (Dice) which address the coordination and communication problems

in engineering, was developed at the MIT Intelligent Engineering Systems Laboratory [47]. In their

project they address several research issues such as, frameworks, representation, organization, design

methods, visualization techniques, interfaces, and communication protocols.

Some important topics in software engineering can be found in [24], such as, the lifetime of a

software system, Analysis and design, module interfaces and implementation, and system testing

and verification. Also, a report about integrated tools for product, and process design can be found

in [50].

In the environment we are proposing, several sub-systems are communicating through a central

interface layer (Cl), and each sub-system has a subsystem interface (SSI) responsible for data trans­

formation between the sub-system and the CI. The flexibility of this design arises from the following

points:

18

• Adding new sub-system can be achieved by writing an SSI for this new sub-system, adding it

to the list of the sub-systems in the CL There are no changes required to the other SSIs.

• Removing a sub-system only requires removing its name from the sub-systems list in the Cl.

• Any changes in one of the sub-systems require changing the corresponding SSI to maintain

correct data transformation to and from this sub-system.

More about this design is discussed in Section 4.

3 T h r e e - l i n k R o b o t M a n i p u l a t o r

To explore the basis of building a flexible environment for robot manipulators, we started with the

design of a 3-link robot. This enabled us to determine the required sub-systems and interfaces for

such an environment. This prototype robot will be used as an educational tool in control and robotics

classes.

3.1 A na ly s is S tage

We started this project with the study of a set of robot configurations and analyzed the type and

amount of calculation involved in each of the robot controller modules (kinematics, inverse kinemat­

ics, dynamics, trajectory planning, feed-back control, and simulation). We accomplished this phase

by working through a generic example for a 3-link robot to compute symbolically the kinematics,

inverse kinematics, dynamics, and trajectory planning; these were linked to a generic motor model

and its control algorithm. This study enabled us to determine the specifications of the robot for

performing various tasks, it also helped us decide which parts (algorithms) should be hardwired to

achieve specific mechanical performances, and also how to supply the control signals efficiently and

at what rates.

3.2 O ne L in k M a n ip u la to r

Controlling a one-link robot in a real-time manner is not difficult, but on the other hand it is not

a trivial task. This is the basis of controlling multi-link manipulators, and it gives an indication

of the type of problems and difficulties that arise in a larger environment. The idea is to establish

a complete model for controlling and simulating a one-link robot, starting from the analysis and

design, through the simulation and error analysis.

We used a motor from the Mechanical Engineering lab, that is controlled by a PID controller.

We also used an analog I/O card, named PC-30D, connected to a Hewlett Packard PC. This card

has sixteen 12-bit A /D input channels, two 12-bit D /A output channels. There are also the card

interface drivers with a Quick BASIC program that uses the card drivers to control the DC motor.

One of the problems we faced in this process was to establish the transfer function between

the torque and the voltage. We used the motor parameters to form this function by making some

simplifications, since some of the motor parameters have non-linear components which makes it too

19

Torque-Volt Relation
Torque-Volt

Figure 5: The relation between torque the voltage.

difficult to make an exact model. Figure 5 shows the relation between torque and voltage for a

certain input sequence, and Figure 6 shows the circuit diagram of the motor and its parameters.

In general, this experiment gave us an indication of the feasibility of our project, and good

practical insight. It also helped us determine some of the technical problems that we might face in

building and controlling the three-link robot. More details about this experiment can be found in

[8, 46],

motor

Figure 6: Circuit diagram of the DC-motor used in the experiment

20

3.3 Sensor a n d A c tu a to r In te rface

The sensor and actuator interface is an essential part of the project. It is concerned with the

communication between the manipulator and the workstation used to control it.1 Basically, we

have three digital to analog (D/A) lines that transmit the required torque (or voltage) from the

workstation to the manipulator’s three actuators, and we have three (analog to digital) A /D lines

that transmit the sensors readings at each joint to the workstation. These readings are used in the

controller for feedback information.

The problem requires interfacing a workstation with the motors and the sensors, such that a

resident program on the workstation can send voltage values that will drive the motor in a certain

direction (forward or backward), and read values from sensors placed on the motor that correspond

to velocity and position of the motor.

We used a micro-controller system (the MC68HC11EVBU — Universal Evaluation Board) which

has a micro-controller, an 8-channel A /D , an RS-232 compatible terminal I/O port, and some wire

wrap area for additional circuitry like the D /A unit. The MC68HC11E9 high-density complemen­

tary semiconductor (HCMOS) high-performance micro-controller unit(MCU) includes the following

features:

• 12 Kbytes of ROM

• 512 bytes of EEPROM

• 512 bytes of RAM

The MC68HC11E9 is a high-speed, low-power chip with a multiplexed bus capable of running at

up to 3 MHz. Its fully static design allows it to operate at very low frequencies. The chip has been

programmed to first start a continuous A /D conversion which keeps updating the result registers as

the data is ready. It then establishes communication with the workstation. Next the chip reads the

voltage to be sent to the motor, then transmits the sensor values from the A /D result register to

the workstation, and sends the voltage value to the DAC and goes back to getting the new voltage

value from the workstation. The chip does not wait for an A /D conversion but gets the last updated

value. The A /D conversion takes place rapidly in the background at a 2 MHz clock rate. For more

details about this chip see [38].

3.4 C o n tro lle r D es ign

The first step in the design of a controller for a robot manipulator is to solve for its kinematics, inverse

kinematics, dynamics, and the feedback control equation that will be used. Also the type of input

and the user interface should be determined at this stage. We should also know the parameters of the

robot, such as: link lengths, masses, inertia tensors, distances between joints, the configuration of

the robot, and the type of each link (revolute or prismatic). To make a modular and flexible design,

variable parameters are used that can be fed to the system at run-time, so that this controller can

be used for different configurations without any changes.

1This part has been done by Anil Sabbavarapu, a graduate student in the Computer Science Department.

21

Figure 7: Three different configurations of the robot manipulator.

Three different configurations have been chosen for development and study. The first configura­

tion is revolute-revolute-prismatic with the prismatic link in the same plane as the first and second

links. The second configuration is also revolute-revolute-prismatic with the prismatic link perpen­

dicular to the plane of the first and second links. The last configuration is three revolute joints (see

Figure 7).

The kinematics and the dynamics of the three models have been generated using some tools

in the department called genkin and gendyn that take the configuration of the manipulator in a

certain format and generate the corresponding kinematics and dynamics for that manipulator.2 One

problem with the resultant equations is that they are not simplified at all, therefore, we simplified

the results using the mathematical package Mathematica, which gives more simplified results, but

still, not totally factorized. The comparison between the number of calculations before and after

simplification will be discussed in the benchmarking section.

For the trajectory generation, we used the cubic polynomials method that was described above

in the trajectory generation section. This method is easy to implement and does not require much

computation. It generates a cubic function that describes the motion from a starting point to a goal

point in a certain time. Thus, this module will give us the desired trajectory to be followed, and this

trajectory will serve as the input to the control module.

The error in position and velocity is calculated using the readings of the actual position and

velocity from the sensors at each joint. Our control module simulated a PID controller to minimize

that error. The error depends on several factors such as: the frequency of update, the frequency

of reading from the sensors, and the desired trajectory (for example, if we want to move through a

angle in a very small time interval, the error will be large).

3.5 S im u la t io n

A simulation program has been implemented to study the performance of each manipulator and the

effect of varying the update frequency on the system. Also it helps to find approximate ranges for

2These tools were developed by Patrick Dalton.

Model (!) Model (2) Model (3)

the required torque and/or voltage, and to determine the maximum velocity to know the necessary

type of sensors and A /D . To make the benchmarks, as described in the next section, we did not use

a graphical interface to the simulator, since the drawing routines are time consuming, and thus give

misleading figures for the speed.

In this simulator, some reasonable parameters have been chosen for our manipulator. The user

can select the length of the simulation, and the update frequency. We used the third model for

testing and benchmarking because its dynamics are the most difficult and time consuming compared

to the other two models. Table 1 shows the number of calculations in the dynamics module for each

model.

3.6 B e n c h m a rk in g

One important decision that had to be made was: do we need to implement some or all of the

controller module in hardware? And if so which modules, or even parts of the modules, should

be hardwired? To answer these questions we chose approximate figures for the required speed to

achieve a certain performance, the available machines for the controller, the available hardware that

can be used to build such modules, and a time chart for each module in the system to determine the

bottlenecks. This also involved calculating the number of operations in each module giving a rough

estimate of the time taken by each module.

We used the simulator described in Section 3.5 to generate time charts for each module, and to

compare the execution time on different machines. The machines used in this benchmarking effort

include: SUN SPARCStation-2, Sun SPARCStation-10 model 30, Sun SPARCStation-10 model 41,

and HP-700. Table 2 shows the configurations of the machines used in this benchmark, with the

type, clock cycle rate, the MIPS and MFLOPS for each.

To generate time charts for the execution time of each module, we used a program called gprof

which produces an execution profile of C, Pascal, or Fortran77 programs. It gives the execution time

for each routine in the program, and the accumulated time for all the routines. Then we used xgraph

to draw charts showing these time profiles. We ran the simulation program with an update frequency

of 1000 Hz for 10 seconds, which means that each routine was called 10,000 times. From this output,

it was obvious that the bottleneck was the dynamics routine and usually it took between 25% to

50% of the total execution time on the different machines.

From these results we found that the HP-700 was the fastest of all, followed by the SPARC-10

machines. One thing we noticed was that: after simplification using Mathematica, the execution time

Additions Multiplications Divisions

Model 1 89 271 13

Model 2 85 307 0

Model 3 195 576 22

Table 1: Number of calculations involved in the dynamics module.

23

SPARC-2 SPARC-10 (30) SPARC-10 (41) HP-700

Clock Rate(MHz) 40.0 36.0 40.0 66.0

MIPS 28.5 101.6 109.5 76.0

MFLOPS 4.3 20.5 22.4 23.0

Table 2: Configuration of the machines used in the benchmark

increased, but that was because the results contained many different trigonometric functions, and it

seemed that these machines do not use lookup tables for such functions. So, we rewrote all non-basic

trigonometric functions, such as sin20 in terms of basic trigonometric functions as 2sinOcosO. Using

this conversion, the performance improved significantly. Figure 8 shows a speed comparison between

the machines. The graph represents the speed of each machine in terms of iterations per second. The

machines are SPARC-2, SPARC-10-30, SPARC-10-41, and HP-730, respectively. For each machine,

the first column is the speed before any simplification, the second column is the speed after using

Mathematica (notice the performance degradation here), and the third column after simplifying the

trigonometric functions.

These benchmarks helped us decide that a software solution on a machine like the Sun SPARC-10

would be enough for our models, and there was no need for a special hardware solutions. However,

for a greater number of links, the decision might be different.

3.7 P ID C o n tro lle r S im u la to r

As mentioned in Section 2.3.1, a simple linear feedback control law can be used to control the robot

manipulator for positioning and trajectory tracking. For this purpose, a PID controller simulator

was developed to enable testing and analyzing the robot behavior using this control strategy.

Using this control scheme helps us avoid the complex (and almost impossible) task of determining

the robot parameters for our 3-link prototype robot. One of the most complicated parameters is the

inertia tensor matrix for each link, especially when the links are non-uniform and have complicated

shapes.

This simulator has a user friendly interface that enables the user to change any of the feedback

coefficients and the forward gains on-line. It can also read a pre-defined position trajectory for the

robot to follow. It also serves as a monitoring system that provides several graphs and reports. The

system is implemented using a graphical user interface development kit called GD I.3 Figure 9 shows

the interface window of that simulator.

3.8 B u ild in g th e R o b o t

The assembly process of the mechanical and electrical parts was done in the Advanced Manufacturing

Lab (AML) with the help of Mircea Cormos and Prof. Stanford Meek. In this design the last link is

movable, so that we can set the robot in different configurations (see Figure 10).

3GDI was developed in the department of Computer Science, University of Utah, under supervision of Prof. Beat

Briiderlin.

24

Rate (il

18000

16000

14000

12000

10000

8000

6000

4000

2000

0
SPARC-2

No simplification MSB Simplification-1 Simplification-2

;ure 8: Performance comparison for different platfor

Figure 10: The physical three-link robot manipulator.

There are three different motors to drive the three links, and six sensors (three for position and

three for velocity), to read the current position and velocity for each link to be used in the feedback

control loop.

This robot can be controlled using analog control by interfacing it with an analog PID controller,

and monitoring its behavior with an oscilloscope. Digital control can also be used by interfacing the

robot with either a workstation (Sun, HP, etc.) or a PC via the standard RS232. This requires an

A /D and D /A chip to be connected to the workstation (or the PC) and an amplifier that provides

enough power to drive the motors. Figure 11 shows an overall view of the different interfaces and

platforms that can control the robot. A summary of this design can be found in [9].

4 T h e P r o t o t y p i n g E n v i r o n m e n t

The prototyping environment consists of several sub-systems such as:

• Design.

• Simulation.

• Control.

• Monitoring.

• Hardware selection.

• CAD/CAM modeling.

• Part Ordering.

27

Digital Control

Figure 11: Controlling the robot using different schemes.

• Physical assembly and testing.

Figure 12 shows a schematic view of the prototyping environment with its sub-systems and the

interface.

These sub-systems share many parameters and information. To maintain the integrity and consis­

tency of the whole system, a central interface (Cl) is proposed with the required rules and protocols

for passing information. This interface will be the layer between the robot prototype and the sub­

systems, and it will also serve as a communication channel between the different sub-systems.

The tasks of this interface include:

• Building relations between the parameters of the system, so that changes in any of the param­

eters will automatically perform a set of modifications to the related parameters on the same

system, and to the corresponding parameters in the other sub-systems.

• Maintaining a set of rules that governs the design and modeling of the robot.

• Handling the communication between the sub-systems using a specified protocol for each sys­

tem.

• Identifying the data format needed for each sub-system.

• Maintaining comments fields associated with some of the sub-systems to keep track of the

design reasoning and decisions.

The difficulty of building such an interface arises from the fact that it deals with different systems,

each with its own architecture, knowledge base, and reasoning mechanisms. In order to make these

systems cooperate to maintain the consistency of the whole system, we have to understand the nature

28

Optimal

Design

of the reasoning strategy for each sub-system, and the best way of transforming the information to

and from each of them.

In this environment the human role should be specified and a decision should be taken about

which systems can be fully automated and which should be interactive with the user. The following

example illustrates the mechanism of this interface and the way these systems can communicate to

maintain system consistency.

Assume that the designer wants to change the length of one of the links and wants to see what

the motor parameters should be that give the same performance requirements. The optimal design

sub-system is used to determine the new values for the motor parameters given the new length, then

it sends a request to the C l to look for the motor with the required specifications in the part-ordering

system. Here we have two cases: a motor with the required specifications is found in the catalogs,

or no motor is available with this specification. In the second case, this will be reported and another

motor with the closest specifications will be selected. Next, the motor specifications will be updated

in the database; then the CAD/CAM system is used to generate the new model and to check the

feasibility of the new design. For example, the new motor might have a very high rpm, which requires

gears with high reduction ratio. This might not be possible in some cases when the link length is

relatively small. In this case, this will be reported and the user will be notified of this problem and

will be asked to either change some of the parameters or the performance requirements and the loop

will start again. Once the parameters are determined, the monitoring program is used to give a

performance analysis and compare the results with the required performance. Finally, a report with

the results is produced.

4.1 In te ra c t io n B etw een Sub-system s

To be able to specify the protocols and data transformation between the sub-systems in the environ­

ment, the types of actions and dependencies among these sub-systems must be identified. Also, the

knowledge representation used in each sub-system should be determined.

The following are the different types of actions that can occur in the environment:

• Apply relations between parameters.

• Check constraints.

• Make decisions. (Usually, the user makes the decisions.)

• Search in tables or catalogs.

• Update data files.

• Deliver reports (text, graphs, tables, etc.).

There are several data representations and sources such as:

• Input from the user.

30

• Data files.

• Text files (documentation, reports, messages).

• Geometric representations (Alpha_l).

• Mathematical Formulae.

• Graphs.

• Catalogs and tables.

• Rules and constraints.

• Programs written in different languages (C, C++, Lisp, Prolog, etc.).

4.2 T he In te rface Schem e

There are several schemes that can be used for the interface layer. One possible scheme in which

each sub-system has a sub-system interface (SSI) which has the following tasks:

• Transfer data to and from the sub-system.

• Send requests from the sub-system to the other interfaces through the central interface.

• Receive requests from other sub-system interfaces and translate them to the local language.

These sub-system interfaces can communicate in three different ways (see Figure 13):

D irect connection: which means that all interfaces can talk to each other. The advantage of this

is that it has a high communication speed; however, it makes the design of such interfaces more

difficult, and the addition or modification of one of the interfaces requires the modification of

all other interfaces.

Message routing: in this scheme, any request or change in the data will generate a message on a

common bus, and each SSI is responsible for taking the relevant messages and translating then

to its sub-system. The problem with this scheme is that it makes the synchronization of the

sub-systems very difficult, and the design of the interface is more complicated.

Centralized control: in which all interfaces talk with one centralized interface that controls the

data and controls flow in the environment. The advantage of this scheme is that it makes it

much easier to synchronize between the sub-systems, and the addition or modification of any

of the SSIs will not affect the other SSIs.

31

(1) Direct Connection (2) Message Routing

(3) Centralized Control

Figure 13: Three different methods for sub-system interface communication.

32

4.3 Overall Design

The Prototyping Environment (PE) consists of a central interface (Cl) and sub-system interfaces

(SSI). The tasks of the central interface are to:

• Maintain a global database of all the information needed for the design process.

• Communicate with the sub-systems to update any changes in the system. This requires the

central interface to know which sub-systems need to know these changes and send messages to

these sub-systems informing them of the required changes.

• Receive messages and reports from the sub-systems when any changes are required, or when

any action has been taken (e.g., update complete). •

• Transfer data between the sub-systems upon request.

• Check constraints and apply some of the update rules.

• Maintain a design history containing the changes and actions that have been taken during each

design process with date and time stamps.

• Deliver reports to the user with the current status and any changes in the system.

The sub-system interfaces are the interface layers between the C l and the sub-systems. This

makes the design more flexible and enables us to change any of the sub-systems without much

change in the C l — only the corresponding SSI need to be changed. The role of the SSIs are:

• Report any changes to the Cl.

• Receive messages from the C l with required updates.

• Perform the necessary updates in the actual files of the sub-system.

• Send acknowledgments or error messages to the Cl.

The assumption is that there is a user at each sub-system (by a user here we mean one or more

skilled persons who understand this sub-system), and there is a user operating the central interface

as a general director and coordinator for the design process. In other words, the C l is to assist in the

coordination of the job and to help communicate with all sub-systems. Figure 14 shows an overall

view of the suggested design.

In the first phase of implementing the PE, the users have more work to do. The C l and SSIs

maintain the information routing between the sub-systems by sending messages to the corresponding

user at each sub-system, then the action itself (e.g., update a file) is accomplished by the user. Later

on, the system will be automated to perform most of these actions itself and the user will simply be

informed of the actions taken.

33

3. Constraints are satisfied: Notify the sub-systems with the changes and wait for acknowledg­

ments.

4. Acknowledgments received from all sub-systems: Send final acknowledgment to the sub-systems

and go to steady state.

5. Acknowledgments not Ok: Send a “change-back” command to the sub-systems and go to steady

state.

Figure 16 shows the protocol for the second event. The states in this FSM are:

1. Steady state: Do nothing.

2. Request for S2 received from SI. Send the request to S2.

3. Required data found at S2. Send data to SI and go to steady state.

4. Required data not found at S2. Send report to SI and go to steady state.

The suggested protocol can be described in algorithmic notation as follows:

do while true

if change reported then

lock messages

apply relations

check constraints

if constraint satisfied then

Figure 15: Finite state machine representation for the change protocol.

report changes to sub-systems

wait for sub-systems acknowledgment

if all acknowledgments ok

update database

report the new status

else

send a change-back message to sub-systems

report failure to sender

else

report non-satisfied constraints to sender

send final acknowledgment to sub-systems

else if data-request reported then

send request to the appropriate sub-system

if data received then

send data to sender

else

send negative acknowledgment to sender.

Figure 17 shows a possible scenario when applying this protocol. In this algorithm we assume

that all system constraints are located in the Cl; however, any sub-system may reject the proposed

values by other sub-systems due to some unmodeled constraints. This can happen either because

there are some “new” constraints that are not reported to the Cl, or because some constraints are

too hard to be easily represented in the constraint format in the Cl.

Figure 16: Finite state machine representation for the data request protocol.

4.3.2 Design Cycles and Infinite Loops

One problem that arises in our PE is that, in some cases infinite design loops might occur due to
some conflict between the constraints in different sub-systems. For example, assume that the design
system changed the link length to some value, say from 3.0 to 2.0 inches, to satisfy some performance
requirements. This change would change the link mass as well, say from 1.5 to 1.0 lbs. According
to the mass change the gear ratio has to change or the motor should be replaced, but if there is
a constraint on the sprocket radius such that we can increase it, and there is no other motor with
lower rpm, then the mass should be changed again to be 1.5 lbs, which requires the length to be 3.0
inches again. If we let the system continue, the design system will change the link length again and
the loop will continue.

There are several solutions to this problem. One way is to make the user part of this loop so
that some of the performance requirements can be changed, or a solution can be selected even if
it does not meet some required criteria. This requires the user to be a skilled person who has the
knowledge and experience in the design process, and also to have the authority to change and select
solutions irrespective of the original requirements. Another solution is to put some limitations on the
sub-system regarding its ability to change some of the design parameters. These limitations should
guarantee infinite loop prevention in the system. A third solution is to put all the constraints in the
Cl. This allows the Cl to check the solution and detect any violation to any of the constraints; then it
may ask the user to decide on another solution or to change some of the performance requirements and
run the design sub-system again. The last solution has the user in the loop as well, but incorporating
all the constraints in the Cl reduces the inter-process communication and speeds up the checking
process. This last solution was chosen in our design.

4.3.3 Central Interface Design Options

There are several design choices for the CL The following is a description of these options along with
the advantages and disadvantages of each one.

• The Cl is responsible for any changes in the system and no other sub-system can perform any
changes, but they can make suggestions to the Cl. This means that, the design sub-system is
part of the CL The advantages of this are:

— More control on the design process.

— No infinite cycles can happen.

The disadvantages of this option are:

— More complicated user interface for the CL

— More data should be kept in the global database, such as, performance requirements,
objective functions, etc.

— It requires a highly skilled user who is able to perform both design and coordination at
the same time.

38

— An optimal design sub-system cannot be used in the system.

• The design sub-system gives initial values for some of the parameters and the Cl supplies the
rest of the parameters and also can override some of the parameters supplied by the optimal
design sub-system. The advantages are:

— Any optimization packedge can be used to obtain the initial values.

— Some quick changes can be done from the Cl directly.

The disadvantages are:

— The user interface for the Cl is complicated. '

— Skilled users are required at both the design sub-system and the Cl.

• No changes can be done by the Cl, and the Cl is only informed of any changes and reports
them to the other sub-systems. Also, the Cl is responsible for checking the constraints and
applying the update rules. The advantages are:

— The user of the Cl doesn’t need to know much about the design details and technicalities.
— Any design sub-system can be used by writing the required SSI for it and including it in

the system.

— The infinite design cycles are eliminated since the design constraints will be checked in
the CL

The disadvantages are:

— The Cl has no control on the design parameters and any required changes should be done
through one of the sub-systems.

— This scheme requires heavy use of inter-process communication which needs more sophis­
ticated protocols to maintain reliable data transmission.

We have chosen the last option for our design. Thus, the Cl will not change any of the parameters
directly, however some of the parameters will be changed by the Cl only when applying the update
rules. For example, the link mass is calculated as the link length times the link cross-sectional area
times the material density. So if any of the three parameters (length, area, density) is changed
(usually by the design sub-system), then the mass will change by the corresponding update rule.
The update rules should be cycle-free, i.e., any derived parameter must not change — either directly
or indirectly — any of the parameters that are used in its calculations.

39

Figure 19: Detailed analysis for the robot classes.

A database for the system components and the design parameters is necessary to enable the Cl to
check the constraints, to apply the update rules, to identify the sub-systems that should be informed
when any change happens in the system, and to maintain a design history and supply the required

Now the problem is to maintain this database. One solution is to use a database management
system (DBMS) and integrate it in the prototyping environment. This requires writing an interface
to transform the data from and to this DBMS, and this interface might be quite complicated. The
other solution is to write our own DBMS. This sounds difficult, but we can make it very simple
since the amount of data we have is limited and does not need sophisticated mechanisms to handle
it. A relational database model is used in our design, and a user interface has been implemented to
maintain this database. For the current design, by making a one-to-one correspondence between the
classes and the files, reading and writing a file can be accomplished by adding member functions to
each class. In this case we do not even need a special DBMS and all operations can be performed

The design parameters are the most important data items in this environment. The main purpose
of this system is to keep track of these parameters and notify the sub-systems of any changes that
occur to any of these parameters. For the system to perform this task, it needs to know two things:

• Which sub-systems should be notified if a certain parameter is changed.

Figure 20 shows a list of the design parameters along with the sub-system that can change them
and the sub-systems that should be notified by a change in any of these parameters. Notice that
some of these parameters are changed by the Cl, this change is accomplished using the update
rules. In this figure note that one of the design parameters can be removed from this table, which is

“display rate,” this is because only one sub-system needs to know about this parameter and it is the
same sub-system that can change it. But we will keep it for possible future extensions or additions
of other sub-systems that might be interested in this parameter.

4.5.2 Database Design

A simple architecture for the database design is to make a one to one correspondence between classes
and files, i.e., each file represents a class in the object analysis. For example, the robot file represents
the robot class and same for the robot sub-classes, each of them having a corresponding file. This
design facilitates data transfer between the files and the system (the memory). On the other hand,
this strong coupling between the database design and the system classes violates the database design
rule of trying to make the design independent of the application; however, if the object analysis is
done independently of the application intended, then this coupling is not a problem.

Now, we need to determine the format to be used to represent the database contents and the
relations between the files in this database. Figure 21 shows the suggested data files that constitute
the database for the system, and the data items in each file. The figure also shows the relations
between the files. The single arrow arcs represent a one-to-one relation, while the double arrow arcs
represent a one-to-many relation.

4.5.3 The Design History

In this database design, a history of the design changes can be maintained to assist the designers
while developing the prototype robot. This history includes the following:

• Date of the design.

• Values of the design parameters.

• Constraints and update rules at that time.

• Robot configuration (links, motors, sensors, etc.)

• Platform used for this design.

• All messages between the systems during this design.

The design can be added to the design history upon the user request. This is accomplished by
adding new records to the database files with a version number specified by the user. For example, if
the user wants to add the current design status to the design history, this is accomplished by clicking
on the “history” button, and typing the version number (e.g., “design-dec-9-93”), then a copy of the
necessary records from the current design will be added to the files.

The retrieval of any design from the design history requires the user to input the version number,
and then the information about this design will be displayed. The file “history” shown in Figure 21
contains some information about the design such as the design number, the starting date, the finishing
date, and the platform used for that design.

43

Design Parameter Cl Design Control Simulation Monitor HW-Select CAD/CAM Ordering Assembly

robot model * ** * * * * *

link length * ** * * * * *

link mass ** * * * *

link density * ** * *

link cross area * ** * *

joint friction * ** * * * *

joint gear-ratio ** * *

update rate * ** * * * *

comm, rate * * * * **

motor rpm * ** *

motor range * ** He * * * *

sensor range He ** He * * * He He

PID parameters * ** * *

display rate * **

plateform * * ** He

* To be notified ** Make change

Figure 20: Sub-system notification table according to parameter changes.

A compiler is provided to generate C + + code for the constraints and the update rules. First, we
define the syntax of the language that is used to describe the constraints and the update rules.
Second, the generated code is determined.

Using a compiler instead of generic on-line evaluator for the constraints and the update rules has
the following advantages:

• All constraints are saved in one text file (likewise the update rules). This makes the data entry
very easy. We can add, update, and delete any constraint or update rule using any text editor.

• Complicated data structures are not required for evaluation. .

• The database is very simple, which facilitates maintaining the design history.

• Format changes, or changes in the generated code require only changes to the compiler, and
no changes in the system are required.

On the other hand, it has the following disadvantages:

• The generated code has to be included in the system and the whole system must be recompiled.

• A compiler needs to be implemented.

Notice that, the changes in the constraints or the update rules are not frequent, so recompiling
the system is not a big problem. Also, the syntax used is very simple, therefore the compiler for such
language is not difficult to implement.

4.6.1 Language Syntax

By analyzing the design constraints and the update rules, we constructed a simple description of
the language to be input to the compiler. There are two options in this design, either to have one
compiler for both the constraints and the rules, or to build two compilers, one for each. From the
analysis of the constraints and the rules we found that there are many similarities between them;
thus building one compiler for both is the logical option in this case.

The following is the language definition in Backus Naur Form (BNF):

4 .6 Constraints a n d U p d a t e R ules C o m p iler

<program> :: <constraint-prog> i <rule-prog>
<constraint-prog> :: begin-constraints

<constraint-sequence>
end-constraints

<rule-prog> :: begin-rules
<rule-sequence>

end-rules

46

<rule-sequence>
<constraint>

<rule>
<exp>

<term>

<factor>
<variable>
<constant>

<int>
<alphanum>

<constraint-sequence>

<alphabet>
<digit>

<comparison-op>

<constraint> ; <constraint-sequence> I
<constraint> ;
<rule> ; <rule-sequence> | <rule> ;
<exp> <comparison-op> <exp>
<variable> = <exp>
<exp> * <term> I <exp> / <term> I <term>
<term> + <factor> I <term> - <factor> I
<factor>
<variable> I <constant> I (<exp>)
<alphabet> <alphanum> 1 <alphabet>
<int>.<int> I - <int>.<int> I
<int> | - <int>
<digit> <int> I <digit>
<alphabet> <alphanum> I
<digit> <alphanum> !
<alphabet> I <digit>
a. . z | A..Z | .
0. .9
= I < I > i <= ! >= I <>

The following is an example of some constraints described using this syntax:

begin-constraints
linkl_length >1.2 ;
link2_length >1.5 ;
link3_length >0.8 ;
link2_length + link3_length < MAX_T0T_LEN ;
linkl_mass < 1.4 ;
link2_mass + link3_mass <4.0 ;
jointl_gear_ratio <5.0 ;

end-const raint s

Another example showing some update rules using the same syntax:

begin-rules
linkl_mass
link2_mass
link3_mass

linkl_length * linkl_density * linkl_cross_area ;
link2_length * link2_density * link2_cross_area ;
link3_length * link3_density * link3_cross_area ;

jointl_gear_ratio = motorl_speed / linkl_max_speed ;

end-rules

From these examples it is clear that adding arrays to this language can reduce the length of the
programs, but given the fact that these constraints and rules will be entered once at installation
time, then adding or changing these rules and constraints will not be so frequent, thus, we will not
complicate the compiler, at least in the first design phase. One more thing that can be added to this
compiler later is some error detection and recovery modules for syntax error handling.

4.6.2 The Generated Code

As mentioned before, this compiler generates C + + code which is integrated with the Cl system to
check the constraint or apply the update rule. Each variable in the input to the compiler corresponds
to one design parameter. For example, “linklJength” corresponds to the variable in the Cl system
that represents the length of link number one in the robot configuration. The code generator uses a
lookup table to find the corresponding variable name, and this table is part of the Cl database. A
simple flat file is used to store this table since the number of the design parameters is small.

The generated code for the constraints is the function “pe.check_constraints” that returns true
if all constraints are satisfied, else it returns false, and reports which constraints are not satisfied.
For the rules, the code generated is the function “pe.apply_rules” which calculates all corresponding
design variables according to the given rules. The following examples are the code generated for the
two examples shown in the previous section.

bool
ci::check_constraints()

bool status[no_of.constraints] ;
int i = 0 ;

status[i++]
status[i++]
status[i++]
status[i++]

status[i++]
status[i++]

status[i]

robot
robot
robot
robot
robot
robot
robot
robot
robot

. conf

configurati

length > 1.2
length > 1.5
length > 0 .8
length +
length < 3 .0
mass < 1.4 >

mass +
mass <: 4.<D

constraints,generate_report(status) ; // report the result

return (and_all(status)) ;

In the first example, the function generate.report reports the results of checking the constraints;
if all constraints are satisfied it reports that, otherwise, it will generate a list of the unsatisfied
constraints. The function and-all is obvious, it returns the result of ANDing the elements in the

In the second example, some of the design parameters are calculated given the values of some
other parameters. The compiler should not allow the change of any parameter that should not be
changed by the Cl system. This can be detected using the alter-flag in the design parameters table.

To update the constraints or the update rules the file containing the old definition will be displayed
and the user can add, delete, or update any of the old definitions. Then the new file will be compiled

In the following sub-sections we investigate some implementation issues, and describe the different

The central-interface (Cl) is the core program that handles the communication between the sub­
systems, and maintains a global database for the current design and a history of previous designs.

There are several types of messages used in the communication. Table 3 shows the different types of
messages with a brief description and the direction of each.

The Cl is the implementation of the communication protocols described in Section 4.3.1. There
are some features and enhancement to the protocols has been added to the Cl. For example, When
the Cl receives a change message from an SSI, it directly sends lock messages to the other sub-systems
so that no more changes can be sent from any SSI until they receive a steady message. This solves
the concurrency problem of more than one system send changes to the Cl at the same time. The
first message received by the Cl will be handled and the others will be ignored. If an SSI receives a
lock message after it sent a change message, that means its message was ignored. Another feature
added to the Cl is the ability to detected if an SSI is working or not by tracing the SSI-Start and
SSIStop messages. •

The Cl is managing a number of data files which contains information about the robot config­
uration, platforms, reports, design history, sub-systems, and some general information about the
project. The basic file operation was implemented by defining a file class, and by adding some mem­
ber functions to each class in the system which performs the required file management operations.
The file operations that are implemented in the system are:

open: open a file in one of three modes: input, output, or input-output mode.

close: close an open file.

top: go to the first record in the file.

end: go after the last record in the file.

next: go to next record.

prev: go to previous record.

read: read the current record.

write: write a record to the end of the file.

find: find a record that contains a certain key.

file_size: returns the number of records in the file.

Some of these operations are class-specific such as, read, write, and find, while the rest are general
operations that are implemented as member functions in the basic file class.

4.7.2 The PE Control System

The Cl as described above has no user interface. To be able to control and manage the coordination
between the sub-systems, we implemented the PE control system (PECS) with some functionalities
that enables the user to have some control over the Cl.

The PECS is on top of the simple DBMS and a simple compiler for the update rules and the
constraints. The user specifies the constraints and/or the update rules using a certain format (a

50

Prototyping Eayarwuasn? Ccnuol System
CPECS)

_________ i____ mm

Constraint:
and Rules
Compiler

Parser

I DBMS

Code Generator

t
II

C++ Code

i
Data Files

PECS

Figure 22: Schematic overview of the PECS.

language), then the compiler transforms this to C code that will be integrated with the system for
constraint checking, and for applying the update rules. The compiler consists of two parts, a parser
and a code generator. In the first phase we reduce the complexity of the compiler by making the user
language less sophisticated. Later on this can be easily replaced by a more complicated compiler with
an easier interface and more sophisticated error checking and optimization capabilities. A schematic
view of the PECS is shown in Figure 22. Figure 23 shows the user interface for the PECS.

The PECS functions include:

Queries: which are some simple reports about the current robot configuration, previous config­
uration, general information about the system, the platforms, and the sub-systems of the
prototyping environment. Figure 24 shows a query for the current robot configuration.

Actions: these are the actual operations that control the Cl. these actions includes updating the
constraints and the update rules, compiling the Cl after including the new constraints and
update rules, activate, and terminate the Cl. Figure 25 shows one of these operations which is
updating the constraints.

Reports: these operations for managing the reports in the system, and sending and receiving reports
to and from the sub-systems. The report can be text, graph, figure, postscript, or data file.
Each report is saved with its type, date, sender, and the file that contains the report contents.

51

Type Description Direction

Change
Const_Not_Ok
Notify
Ack.
Neg_Ack.
Back
Steady
Request
Found
Not_Found
Lock
SSLStart
SSLS top
Terminate

Data change reported
Constraints not satisfied
Send changes to sub-systems
Positive acknowledgment
Negative acknowledgment
Change back
Final acknowledgment
Request for data
Data found
Data not found
lock messages
SSI is activated
SSI is terminated
Terminate the CI.

SSI — i
CI — >
CI — >
SSI —)
SSI —)
CI — >
CI — >
CI <— >■
CI <— »■
CI <— >■
CI — ►
SSI —)
SSI —)

PE control

■ CI
SSI

SSI

> CI
> CI
SSI

SSI

SSI

SSI

SSI

SSI

> CI
> CI

CI

Table 3: Message types used in the communication protocols.

Figure 23: The main window for the PE control system.

Robot Configuration
Version# 31 Dot* 1/16/1994 Platform SVN-SPARCSlatim-10-41 Updat*Rats 40

L i n k s

L*n&ft 23 5.4 4.1

Mass 6.09 7.938 4.4485

Density 1.75 1.75 1.75

S e m o r s

Brand SENS-23 SENS-38 SENs-28

73p* Position Position Position

Range -5,5 -5 ,5 -3 ,3

J o i n t s

Friction 2.49 2.11 1.38

GtarRaiio 5 4 2

M o t o r s
Brand NTX-303 NTX-304 NTX-304

TIP* DC DC DC

Spttd £00 600 600

Range -20,20 - 10, to -10,10

(m)
,V.V.V.V.'.V.V.-.V.V.V.V.'.W.‘.V/AVAV.'.VAV.V.V.V.V.V.'.V.V.V.-A'.V.VAV.V.V.V.V.V.V,VW/AV,

Figure 24: The current robot configuration window.

4.7.3 Initial Implementation of the SSIs

In the first phase of implementation, the SSIs serve as a simple interface layer between the Cl and
the user at each sub-system. They receive messages from the Cl and display them to the user who
takes any necessary actions. They also report any changes to the Cl, and this is done by sending a
message to the Cl with the changes. Figure 26 shows that user interface for one of the SSIs.

In the next implementation phase, some of the actions will be automated and the user at each
sub-system will be notified with any action taken. For example, updating a data file that is used by
the sub-system can be automatically done by the SSI, given that it has the necessary information
about the file format and the location of the changed data.

4.7.4 The Central Interface Monitor

The central interface monitor (CIM) enables the user to monitor the actions and the messages passing
between the Cl and the SSIs with a graphical interface. This interface shows the Cl in the middle
and the SSIs as small boxes surrounding the Cl. The CIM also has a small text window at near
the bottom. This text window displays a text describing the current action (See Figure 27). The
messages are represented by an arrow from the sender to the receiver. Some results of testing the Cl
and the SSIs are represented in Section 5.4 with sequences of the CIM window showing the activities
that took place in each experiment.

53

Central Interface Monitor

Figure 27: The user interface for the SSI.

In this Section, Several test cases are described along with the results obtained for the different
components of the system that has been implemented. Some experiments that were performed for
the 1-link and the 3-link robot are described, with the results shown graphically.

5.1 One-link Robot

Building the 3-link robot has passed through several stages until we reached the final version. As
mentioned before, we started by controlling a one-link robot.

Three input sequences have been used for the desired positions, and after applying the voltage
files to the motor using the I/O card, the actual positions and velocities are measured using a
potentiometer for the position, and a tachometer for the angular velocity. These measured values
are saved in other files, then we run a graphical simulation program to display the movement of the
link, the desired and actual positions, the desired and actual velocity, and the error in position and
velocity. Figures 28, 29, and 30 show the output windows displaying the link and graphs for the
position and the velocity. Figure 31 shows the graphs for the actual and desired position and velocity
for the three sequences.

5.2 Simulator for 3-link Robot

This simulator was used to give some rough estimates about the required design parameters such
as, link lengths, link masses, update rate, feedback gains, etc. It is also used in the benchmarking
described earlier. Figure 32 shows the simulated behavior of a 3-link robot. It shows the desired and
actual position and velocity for each link and the error for each of them. It also shows a line drawing
for the robot from two different view points.

This simulator uses an approximate dynamic model for the robot, and it allows any of the design
parameters to be changed. For example, the effect of changing the update rate on the position error
is shown in Figure 33. From this figure, it is clear that increasing the update rate decreases the
position error.

5.3 Software PID Controller

A software controller was implemented for the 3-link robot. This controller uses a simple local PID
control algorithm, and simulates three PID controllers; one for each link. Several experiments and
tests have been conducted using this software to examine the effects of changing some of the control
parameters on the performance of the robot.

The control parameters that can be changed in this program are:

• forward gain (kg)

• proportional gain (kp)

• differential gain (kv)

5 T e s t i n g a n d R e s u l t s *

56

Actual-Desired Position for Sequence (1)Actual'Desired Velodty for Sequence (1)
Velocity t I0"5

vell.dal

20000

-200X0

400.00

-30.00
-600.00 -55.00

-700.00

Actual-Desired Velodty for sequence (2) Actual-Desired Position for Sequence (2)

Actual-Desired Velodty for Sequence (3) Actual-Desired Position for Sequence (3)

-25.00

-45.00

-85.00
->0.00
-55.00

The difference between the actual and the desired behavior

61

Pos. Error
Position error, Update Frequency = 150 Hz.

Position error, Update Frequency = 1000 Hz.
Pos. Error

Figure 33: The effect of changing the update rate on the position error

In these experiments, we run the program on a Sun SPARCStation-10, and the A /D chip was
connected to the serial port of the workstation. One problem we encountered with this workstation
is the slow protocol for reading the sensor data, since it waits for an I/O buffer to be filled before
it returns control to the program. We tried to change the buffer size or the time-out value that is
used, but we had no success in that. This problem causes the update rate to be very low (about 30
times per second), and this affects the positional accuracy of the robot. We were able to solve this
problem on an HP-700 machine, and we reached an update rate of 200 times per second which was

Figures 34, 35, 36, and 37 show the desired and actual position for different test cases using

In this section, we will show several test cases for the prototyping environment. In the first test
(Figure” 38), the optimal design sub-system sent a data-change message to the CI. The CI in turn
sent lock messages to all other sub-systems notifying them that no changes will be accepted until
they receive a final acknowledgment message. Then, the CI applied the relations and checked the
design constrains. In this test case the constraints were satisfied, so it the CI sent these changes
to the sub-systems that needed to be notified. After that, the CI waited for acknowledgments from
the sub-systems. In this case it received positive acknowledgments from the specified sub-systems.
Finally, the CI updated the database and sent final acknowledgment messages to all sub-systems.

The second test case (Figure 39), was the same as the first case except that one of the sub-systems
(the CAD/CAM sub-system) has rejected the changes by sending negative acknowledgment message
to the CI. Thus, the CI sent a change-back message to the specified sub-systems, then it sent a final
acknowledgment messages to all sub-systems. No changes in the database took place in this case.

In the last test case (Figure 40), the design constraints were not satisfied. Therefore, the CI sent
a report about the non-satisfied constraints to the sender (the optimal design sub-system). Then
it sent final acknowledgment messages to all sub-systems. Again, in this case, no changes in the

So far we have been talking about the three-link robot and the prototyping environment (PE) as
separate subjects. In this section we will relate them by analyzing the problems that we have faced
while designing and building the three-link robot, and how some of these problems could have been
avoided if the prototyping environment was used in the design process. We will do that by addressing
some of the design problems and what facilities the PE offers to solve some of these problems. Also

Position accuracy w h e n Kp=4, Kg=0.5
Position

2.58 2.58 2.58

Figure 34: Desired and actual position for test case (1).

Position accuracy w h e n Kp=8, Kg=0.5

2.04 2.05 2.06 2.06 2.06

Figure 35: Desired and actual position for test case (2).

Position accuracy w h e n Kp=3, Kg=0.75
Position

1.15 1.16 1.16 1.17 1.17

Figure 36: Desired and actual position for test case (3).

Position accuracy w h e n Kp=5, Kg=1.0
Position

1.55 1.56 1.56 1.56

Figure 37: Desired and actual position for test case (4).

(1) Central Interface Monitor (?) Central Interface Monitor

(?) Central Interface Monitor Central Interface Monitor

(5) Central Interface Monitor (6) Central Interface Monitor

Figure 39: Cl test case two, negative acknowledgment case.

69

we will discuss some of the problems that the PE — with its current design — will not be able to
solve.

Most of the problems we had were due to the lake of communication between the different groups
involved in the design. This lake of communication resulted in data inconsistency among the different
groups. One of the problems was changing the mass of the links by the CAD/CAM group without
notifying the robotics group. The reason for this change was that the links were too heavy to be
driven by small motors. All simulations and benchmarking that were done by the robotics group
were based on the original design parameters, and they had to repeat all these test and simulations
after they knew about these changes. The PE can solve this problem since there is an SSI at each
sub-system. This SSI will report any changes in the design parameters to the CI, which in turn will
report these changes to all sub-systems that needs to know. •

Another problem was selecting the necessary motors to drive the robot links, and satisfies the
speed requirements specified by the robotics group. All motors available in the market that can drive
the robot links have high rpm. To reduce the speed, gears needed to be used at each joint. Adding
these gears caused increases in the weight of each link, and again, the other groups didn’t know
about this change until the assembly process was started. The part-ordering sub-system, suggested
in the PE design, can solve this problem by sending a request from the robotics or the CAD/CAM
groups to the part-ordering system asking for information about the available motors that satisfies
the design requirements. This information would have acknowledged the robotics and CAD/CAM
groups with the necessity of adding gears at each joint earlier in the design phase.

The major problem we have faced in this project was communicating the robot with the work­
station. The problem was that the communication rate was too low due to some protocol in the
operating system of the Sun Station which waits until some buffer is filled or timeout occurred be­
fore it accepts any readings through the serial port. We were able to solve this problem for the HP
machine by changing the buffer size to be one byte, but we were not able to do that for the Sun
machine. This problem caused the update rate to be as low as 30 Hz. Using The HP-720 we were
able to reach an update rate of 120 Hz. However, we used the Sun machine even with its low update
rate and we were able to control the three-link robot with an acceptable performance. The results
shown in Section 6.3 were generated using a Sun Station-10 model 41, with update rate of 33 Hz.

This problem would not have been avoided even using the PE with its current design, since
the PE database does not include detailed information about the platforms. This can be solved by
adding more information about the platforms, or by calculating the actual update rate using each
platform and put this value as a field in the platforms data file.

Another problem was to select a power amplifier to amplify the signals from the D /A chip to the
motors. The power amplifier that we bought was not compatible with the motors we had, and we
ended up using some power amplifiers from the ME lab to make our testing. Also this problem can
be solved using the part-ordering sub-system to select a suitable power amplifier given the motor
parameters that we had.

The PE has some limitations with its current implementation. For example, there might be some
data inconsistency due to the non-automated SSIs. Currently, the SSI is just informing the user

71

of any change in the design parameters and the user makes the changes in the local files at each
sub-system. This process is subject to human errors and might yield a non-consistent situation. To
solve that, all SSIs need to be automated so that the changes in the local data files of each sub-system
is done automatically, and the user at each sub-system will be notified with this change.

The automation of the SSIs requires that the sub-systems used in the PE should be flexible
enough to enable the SSI to make the necessary changes. In other words, it is not possible to make
automatic changes if some of the design parameters are hard-wired in the code of the sub-system,
because this will require changing the source code (which might not be available), and re-compiling
the program each time we need to change any of the “hard-wired” parameters. For example, we can
not use a simulation sub-system which has a fixed update rate, since we will not be able to study
the behavior of the robot under different values for the update rate. ■

This puts limitations on the sub-systems that can be used in the PE. However, most of the
“general-purpose” software robotic systems provide an easy way to alter any of the design parameters.

6 Conclusions

A prototype 3-link robot manipulator was built to determine the required components for a flexible
prototyping environment for electro-mechanical systems in general, and for robot manipulators in
particular. A local linear PD feedback law was used for controlling the robot for positioning and
trajectory tracking. A graphical user interface was implemented for controlling and simulating the
robot. This robot is intended to be an educational tool, therefore it was designed to be easy to install
and manipulate. The design process of this robot helped us determine the necessary components for
building a prototyping environment for electro-mechanical systems.

The design bases for building a prototyping environment for robot manipulators was investigated
and the design options were explained. A simple implementation of a central interface was done
to demonstrate the functionality of the proposed environment. Also an initial model of an optimal
design sub-system was started and is still under development.

6.1 Possible Future Extensions

The following are some possible extensions and enhancements to the current design.

• Complete implementation for the central interface with more functionality and a user friendly
interface.

• Use a database query language to enable generating more sophisticated queries and to enhance
the report generating capabilities.

• Implement some of the sub-systems with their SSIs and increase the automation in these
interfaces.

72

• Extend this environment to deal with generic n-link robots by using automatic generation of
the kinematics and dynamics equations. Also this will require a robot description language to
specify the robot configuration and parameters.

• Implement the PC version of the controller to enable using any PC to control the robot.

• Use special hardware solution to implement some parts of the communication and the control.

73

R e f e r e n c e s

[1] A hmad, S., and Li , B. Optimal design of multiple arithmetic processor-based robot controllers.

[2] Asada, H ., and S lotin e , J. J. E. Robot Analysis and Control. J. Wiley and Sons, 1986.

[3] Bukhres, 0 . A., Chen, J ., Du, W ., and Elmagarmid, A. K. Interbase: An execution
environment for heterogeneous software systems. IE E E Computer Magazine (Aug. 1993), 57-69.

[4] Chen, Y. Frequency response of discrete-time robot systems - limitations of pd controllers and
improvements by lag-lead compensation. In IE E E Int. Conf. Robotics and Automation (1987),

[5] Chiu, S. L. Kinematic characterization of manipulators: An approach to defining optimality.

[7] C utkosky, M. R., E ngelm ore, R. S., Fikes, R. E., G enesereth , M. R., G ruber,
T. R., M ark, W. S., Tenenbaum, J. M., and W eber, J. C. PACT: An experiment in
integrating concurrent engineering systems. IE E E Computer Magazine (Jan. 1993), 28-37.

[8] D ekhil, M., Sobh, T. M., and H enderson, T. C. Prototyping environment for robot

[9] D ekhil, M., Sobh, T. M., and H enderson, T. C. URK: Utah Robot Kit - a 3-link robot
manipulator prototype. In IE E E Int. Conf. Robotics and Automation (May 1994).

[10] D epkovich, T. M., and S tou gh ton , R. M. A general approach for manipulator system
specification, design, and validation. In IE E E Int. Conf. Robotics and Automation (1989),

[11] D ewan, P., and Riedl, J. Toward computer-supported concurrent software engineering.

[12] D uhovnik, J., Tavcar , J., AND Koporec, J. Project manager with quality assurance.

[13] Fujioka, Y ., and Kameyama, M. 2400-mflops reconfigurable parallel VLSI processor for
robot control. In IE E E Int. C onf Robotics and Automation (1993), pp. 149-154.

[14] Graham, J. H. Special computer architectures for robotics: Tutorial and survey. IE E E Trans.

[15] H ashim oto, K., and Kimura, H. A new parallel algorithm for inverse dynamics. Int. J.

74

[16] H errera-B endezu, L. G., Mu, E., and Cain, J. T. Symbolic computation of robot ma­
nipulator kinematics. In IE E E Int. Conf. Robotics and Automation (1988), pp. 993-998.

[17] H o lle rb a ch , J. Optimum kinematic design for a seven degree of freedom manipulator. In
Robotics Research: 2nd Int. Symp. (1985), H. Hanafusa and H. Inous, Eds., MIT Press, pp. 215-

[18] Izaguirre, A ., H ashim oto, M., Paul, R. P., and Hayward, V. A new computational
structure for real-time dynamics. Int. J. Robotics Research 8, 1 (Feb. 1989), 346-361. .

[19] Kawamura, S., Miyazaki, F., and A rim oto , S. Is a local linear pd feedback control law
effictive for trajectory tracking of robot motion? In IE E E Int. Conf. Robotics and Automation

[20] K elm ar, L., and K hosla , P. K. Automatic generation of forward and inverse kinematics for
a reconfigurable manipulator system. Journal o f Robotic Systems 7, 4 (1990), 599-619.

[21] Khosla, P ., Kanade, T ., Hoffman, R., Schmitz, D., and Delouis, M. The Carnegie
Mellon reconfigurable modular manipulator system project. Tech. rep., Carnegie Mellon Uni-

[22] K hosla , P. K. Choosing sampling rates for robot control. In IE E E Int. Conf. Robotics and

[23] Kung, S., and Hwang, J. Neural network architectures for robot applications. IE E E Trans.

[24] La m b , D. A . Software Engineering; Planning for Change. Prentice Hall, 1988.

[25] Lathrop, R. H. Parallelism in manipulator dynamics. Int. J. Robotics Research 4, 2 (1985),

[26] Lee, C. S. G., and Chang, P. R. Efficient parallel algorithms for robot forward dynamics
computation. In IE E E Int. Conf. Robotics and Automation (1987), pp. 654-659.

[27] Leung, S. S., and S h an blatt, M. Real-time dks on a single chip. IE E E Journal of Robotics

[28] Leung, S. S., and S h an blatt, M. A. Computer architecture design for robotics. In IEEE

[29] Leung, S. S., and S h an blatt, M. A. A conceptual framework for designing robotic compu­
tational hardware with asic technology. In IE E E Int. Conf. Robotics and Automation (1988),

[30] Lewis, F. L., A b d a llah , C. T ., and Dawson, D. Control of Robot Manipulator. Macmillan,

75

[31] Li, C., Hemami, A., and Sankar, T. S. A new computational method for linearized dynamics
models for robot manipulators. Int. J. Robotics Research 9, 1 (Feb. 1990), 134-146.

[32] Ling, Y . L. C., Sadayappan, P., O lson , K. W ., and Orin, D. E. A VLSI robotics
vector processor for real-time control. In IE E E Int. Conf. Robotics and Automation (1988),

[33] Luh, J. Y. S., and Lin, C. S. Scheduling of parallel computation for a computer-controlled
mechanical manipulator. IE E E Trans. Systems Man and Cybernetics 12, 2 (1984), 214-234.

[34] Ma , O., and A ngeles, J. Optimum design of manipulators under dynamic isotropy conditions.

[35] M arefa t, M., M a lh orta , S., and Kashyap, R. L. Object-oriented intelligent computer-
integrated design, process planning, and inspection. IE E E Computer Magazine (Mar. 1993),

[36] M ayorga, R. V ., Ressa, B., and W ong, A. K. C. A kinematic criterion for the de­
sign optimization of robot manipulators. In IE E E Int. Conf. Robotics and Automation (1991),

[37] M ayorga , R. V ., Ressa, B., and W ong, A. K. C. A kinematic design optimization of
robot manipulators. In IE E E Int. Conf. Robotics and Automation (1992), pp. 396-401.

[38] M o t o r o la Inc. M C68H C11E9 H CM O S Microcontroller Unit, 1991.

[39] N ico l, J. R., W ilkes, C. T ., and M anola , F. A. Object orientation in heterogeneous
distributed computing systems. IEEE Computer Magazine (June 1993), 57-67.

[40] Nigam , R., and Lee, C. S. G. A multiprocessor-based controller for mechanical manipulators.

[41] Paul, B., and Rosa, J. Kinematics simulation of serial manipulators. Int. J. Robotics Research

[42] Paul, R. P. Robot Manipulators: Mathematics, Programming, and Control. The MIT Press,

[43] R ieseler, H., and W ahl, F. M. Fast symbolic computation of the inverse kinematics of
robots. In IE E E Int. Conf. Robotics and Automation (1990), pp. 462-467.

[44] Sadayappan, P., Ling, Y . C., and O lson , K. W. A restructable VLSI robotics vector
processor architecture for real-time control. IE E E Trans. Robotics and Automation 5, 5 (Oct.

[45] SHILLER, Z., and Sundar, S. Design of robot manipulators for optimal dynamic performance.

76

[46] Sobh, T . M., Dekhil, M., and Henderson, T . C. Prototyping a robot manipulator and
controller. Tech. Rep. UUCS-93-013, Univ. of Utah, June 1993.

[47] Sriram, D., and L ogch er, R. The MIT dice project. IE E E Computer Magazine (Jan. 1993),
64-71.

[48] Takano, M., Masaki, H., and Sasaki, K. Concept of total computer-aided design system
of robot manipulators. In Robotics Research: 3rd Int. Symp. (1986), pp. 289-296.

[49] Tarokh, M., and Seraji, H. A control scheme for trajectory tracking of robot manipulators.
In IE E E Int. Conf. Robotics and Automation (1988), pp. 1192-1197.

[50] W ill, P. Information technology and manufacturing. CSTB/NRC Preliminary Report 1,
National Academy Press, Nov. 1993.

