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ABSTRACT OF THE THESIS

Kinematic and Dynamic Analyses of General Robots

by Applying C-B Notation - RaMIP (Robot and

Mechanism Integrated Program)

by

Bernardo Donoso

Florida International University, 1992

Miami, Florida
Professor Ta Chung Yih, Major Professor

In this thesis, a new symbolic representation based on 4x4 homogeneous matrices, C-B

(Cylindrical Coordinates - Bryant Angles) notation, has been applied to the kinematic and

dynamic analyses of general robots, and a computer algorithm named RaMIP (Robot and

Mechanism _Integrated Program) has been developed on a Sun workstation for the design

and analysis of robots and mechanisms. RaMIP can be used to model most industrial

robots currently in use. It performs three-dimensional kinematic and dynamic analyses and

takes advantage of the computational efficiency of C-B notation. The C-B notation

allows the user to model an arbitrary mechanism consisting of any combination of

revolute, prismatic and spherical joints. RaMIP has the capability of presenting results in

the form of two- and three-dimensional plots of colored contours, as well as tables of

numerical data. The algorithm is examined and tested by analyzing several commercial

robots. Kinematic and dynamic results are computed and presented in two- and three-

dimensional graphs and compared with known data to probe the validity and accuracy of

RaMIP. It should be noticed that the efforts completed in this thesis present only the first

step towards the implementation of a general purpose computer algorithm -RaMIP- for

the automated design and analysis of open- and closed-chain mechanisms utilizing C-B

notation.



FLORIDA INTERNATIONAL UNIVERSITY
Miami, Florida

Kinematic and Dynamic Analyses of General Robots

by Applying the C-B Notation - RaMIP (Robot and

Mechanism _Integrated Program)

A thesis submitted in partial satisfaction of the

requirements for the degree of Master of Science

in Mechanical Engineering

by

Bernardo Donoso

1992



To Professors:

Dr. M. A. Ebadian

Dr. C. Levy

Dr. L N. Tansel

Dr. T. C. Yih

This thesis, having been approved in respect to form and mechanical execution, is referred

to you for judgement upon its substantial merit.

Dr. Gordon Hopkins
College of Engineering and Design

The thesis of Bernardo Donoso is Approved.

Dr. M. A. Ebadian (chairperson)

Dr. C. Levy

Dr. I. N. Tansel

Dr. T. C. Yih (Major Professor)

Date of Examination: April 9t 1992

Richard L Campbell
Division of Graduate Studies

Florida International University, 1992

ii



To my wife Margarita, to my children to be, and to my father and mother.

iii



ACKNOWLEDGEMENTS

It is a great pleasure for me to have the opportunity to thank everyone who helped

me during my graduate studies and this thesis work.

I would like to thank the members of the thesis committee, Dr. Cesar Levy, Dr.

Ian Tansel, and Dr. M. A. Ebadian, for their support and help in reviewing the original

manuscript. Special thanks to Dr. Ian Tansel for his interest in the present work, and to

Dr. Cesar Levy for his dedication to the correction of this thesis.

I am deeply thankful to Dr. Ta Chung Yih for his invaluable support and guidance

throughout the master's program. I would like to thank him for opening the doors to

graduate studies for me, for the numerous opportunities for professional development he

has given me, for providing the topic of this thesis and the central ideas for many other

research projects, and for orchestrating the financial support necessary for my studies. His

influence has redirected my engineering career. I am fortunate for having come in contact

with Dr. T.C. Yih, and I look forward to collaborating with him in future research work.

I would like to express my sincere appreciation to the Department of Mechanical

Engineering, Florida International University.

I owe a debt of gratitude to my wife Margarita, for her continuous encouragement,

patience, and love.

iv



TABLE OF CONTENTS

CHAPTER 1 ................................................. 1

1.1 Introduction ........................ ......... ....... . 1

1.2 Background ................................ ...... . 1

1.3 Objectives and Significance ......... ... . . ............ 5

CHAPTER 2 ............................................... 7

COMPUTER MODELING AND KINEMATIC ANALYSIS .......... 7

2.1 Introduction .......... . . . . . .. . . . . ........ . . ... ... 7

2.2 Review of C-B notation .................... . ..... .... . 8

2.2.1 Cylindrical Coordinates and Bryant Angles Transformations .. 8

2.2.2 C-B Notation . .................... ........... . 9

A) Reference Frame ............... ........... . 10

B) Principal Joint Parameters ............. .. . :. . 11

C) Characteristic Matrices of Kinematic Pairs .......... 12

i) Revolute Pair (R) . ....... ............. 13

ii) Prismatic Pair (P) ...... ...... . .. . . 13

iii) Spherical Pair () ..... . . . ........... 13

2.3 Kinematics .............. .. ..... .... .. . . . .:. 15

2.3.1 Position Analysis . . . ..... . .... ....... . . . 16

2.3.2 Separation of Variables in Matrix ... ........... . . 16

2.3.3 Velocity Analysis ........... ...... .... .. .. 18

2.3.4 Acceleration Analysis ........... ..... . . . . 19

2.4 Kinematic Spaces . ..... . .. .... 21

2.4.1 Graphic Representation ........... ........ .. . . 21

2.4.2 Numerical Examples ............................ 22

v



Example 2.1 - Cincinnati Milacron T3 robot (RRR/RRR) . 23

Example 2.2 - Bendix AA/CNC Industrial Robot

(RR /R R) ... .... .... .... .... .... .... . 29

Example 2.3 - Unimate 2000 Spherical Robot ......... 36

Example 2.4 - IBM 7576 SCARA Robot (RRPR) ....... 41

Example 2.5 - Space Shuttle RMS (Remote Manipulator

Systern) .. .. .. .. . ... .. .. .. .. .. . . . . .. . 47

2.4.3 Verification of Results ..... ................. 53

CHAPTER 3 ... . . . . ... . . ..... . .. 4..... 4

DYNAMIC ANALYSIS .. ... 54

3.1 Introduction ... .. ... . . . . ... . ... . 4

3.2 Static Analysis . . . .. . 56

3.2.1 Relative Joint Vectors ... ... ..... ,.. 57

3.3 Dynamic Analysis ........ .. . ..... .. . . 59

3.3.1 Newton-Euler Formulation ........................ 60

A Revolute Pair .. . .. . .... . . ,. . 61

B) Prismatic Pair ................ ...... 62

C) Spherical Pair ............................. 63

3.3.2 General Matrix Notation ... . ................ 63

3.3.3 Numerical Examples . . .......... ......... 66

Example 3.1 - Cincinnati Milacron T3 Robot (RRR/RRR) . 66

Example 3.2 - Bendix AA/CNC Industrial Robot

( R / R ) ................... ......... 71

Example 3.3 - Unimnate 2000 Spherical Robot (SP/RRR) .. 76

Example 3.4 - IBM 7576 SCARA Robot (RRPR) ...... 81

Example 3.5 - Space Shuttle RMS Manipulator

vi



(RRRR ............. 86

3.3.4 Discussion of Results ............................ 91

C APTER 4 ................................................ 93

RaMIP (Robot and Mechanism Integrated Program) ............... 93

4.1 Introduction .. . ... .. .. . . .. ..... . .. . .. . ... .. .. . ... ... 93

4.2 General Computational Procedures ......................... 94

4.2.1 Input Data .. .. .. .. . . .. .. . . .. .. . . . . .. .. ... 94

A) Kinematic Input Data .. ....... .. ... 94

B) Dynamic Input Data ............ . ........ .. 95

C Data Structures and Subroutines . ............... 95

4.2.2 Algorithm Organization and Solution Procedures .. .. . 101

4.2.3 Output of Results ............................. 108

CAPTER 5..................................... ...... ... 109

CONCLUSIONS AND FUTURE PERSPEC TIV. ............. 109

R FERENCES ... . .. ... .. .. .. . ... .. .. .. .. .. .. . . . .. .. . .. .. 112

A PENDIX .... . . . .. .... . .. . ... . . . . .. .... . . ... . --. 119

ROBOT KINEMATIC AND DYNAMIC DATA .............. . 119

vii



LIST OF FIGURES

Figure 2.1 C-B (Cylindrical coordinates-Bryant angles) notation ............ 10

Figure 2.2 Revolute Pair (R) ..................................... 12

Figure 2.3 Prismatic Pair (P) ..................................... 14

Figure 2.4 Spherical joint parameters ......................... . . 15

Figure 2.5a Cincinnati Milacron T3, XZ Workspace Projection ............. 24

Figure 2.5b Cincinnati Milacron T3, YZ Workspace Projection .... . ..... 25

Figure 2.6a Cincinnati Milacron T3, XZ Velocity Space Projection .. 25

Figure 2.6b Cincinnati Milacron T3, YZ Velocity Space Projection . ..... . 26

Figure 2.7a Cincinnati Milacron T3, XZ Acceleration Space Projection ...... 26

Figure 2.7b Cincinnati Milacron T3, YZ Acceleration Space Projection ....... 27

Figure 2.8 Cincinnati Milacron T3 Workspace, (viewp. (2,-.5,0.3), sect. 30*120) . . .. 27

Figure 2.9 Cincinnati Milacron T3 Workspace, (viewp. (3,0.5,0) sect. 300-120) ...... 28

Figure 2.10 Cincinnati Milacron T3 Average Vel. Shaded Workspace, (viewp. (2,-

0.75,0)) ... . .... .. . .. .. . .. ... .. . .. . .... .. .. .. . ... ..... 28

Figure 2.11 Cincinnati Milacron T3 Acceleration Space, (viewp. (1,1,0.3) section 30 to

Figure 2.12a Bendix AA/CNC, XZ Workspace Projection ................ 30

Figure 2.12b Bendix AA/CNC, YZ Workspace Projection ................ 31

Figure 2.13a Bendix AA/CNC, XZ Velocity Space Projection ............ 31

Figure 2.13b Bendix AA/CNC, YZ Velocity Space Projection .......... .... 32

Figure 2.14a Bendix AA/CNC, XZ Acceleration Space Projection ........... 32

Figure 2.14b Bendix AA/CNC, YZ Acceleration Space Projection ........... 33

Figure 2.15 Bendix AA/CNC Workspace (viewpt. (.75,.75,.3) sect. 0*-95 ) . , .,,.. 33

Figure 2.16 Bendix AA/CNC Velocity Space (viewpt. (.75,.75,.3) sect. 0-95 deg. .... . 34

viii



Figure 2.17 Bendix AA/CNC Vz Shaded Workspace (viewpt. (75,.75,.3) sect 0*-

950) ... ........ ........ ................ .... .. .. ... . ... 34

Figure 2.18 Bendix AA/CNC Acceleration Space (viewpt. (.75,.75,.3) sect. 0-95 deg. .. 35

Figure 2.19 Bendix AA/CNC Ay Shaded Workspace (viewpt. (.75,.75,.3) sect. 0Q-

950) ... .... ................ .... .... .... .... .... . ... . .. 35

Figure 2.20a Unimate 2000, XZ Workspace Projection . ..... . ......... 37

Figure 2.2Gb Unimate 2000, YZ Workspace Projection .................. 37

Figure 2.21a Unimate 2000, XZ Velocity Space Projection ... ... ........ 38

Figure 2.21b Unimate 2000, YZ Velocity Space Projection ....... . ... 38

Figure 2.22a Unimate 2000, XZ Acceleration Space Projection ............. 39

Figure 2.22b Unimate 2000, YZ Acceleration Space Projection ............. 39

Figure 2.23 Unimate 2000, Workspace (viewp. (1,-1,0.3) sect. 0*-104*) ... . . ... 40

Figure 2.24 Unimate 2000, Vy Shaded Workspace (viewp. (0.75,-1,04) sect. 0 -

104*) .. .. . ... .. .. .. .. . .. ... .. .. .. . . . . . .. .. . .. .. .. .. 40

Figure 2.25 Unimate 2000, Acceleration Space (viewp. (1,-2,0.5) sect 0*-1040) 41

Figure 2.26 IBM 7576 Robot Workspace Plane Projections. a) XZ, b) YZ, c) XY

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 43

Figure 2.27a IBM 7576 Robot XZ Velocity Space Projection ............. 44

Figure 2.27b IBM 7576 Robot YZ Velocity Space Projection . ........ . 44

Figure 2.28a IBM 7576 Robot XZ Acceleration Space Projection ........ . 45

Figure 2.28b IBM 7576 Robot YZ Acceleration Space Projection .... ..... 45

Figure 2.29 IBM 7576 Robot Workspace (viewp. (-1,-1,0.5) section 0%

120) ........................................... ...... 46

Figure 2.30 IBM 7576 Robot y, Shaded Workspace (viewp. (-1,-1,0.5) sect. 0-

Figure 2.31 IBM 7576 Rot AShaded Worksace (viwp. (-l,-1,0.5) sect.

ix



120 ) ... .... .... .... .... ........ .... .... .... ... . .... .. 47

Figure 2.32a RMS Manipulator XZ Workspace Projection ................ 48

Figure 2.32b RMS Manipulator YZ Workspace Projection ................ 49

Figure 2.33a RMS Manipulator XZ Velocity Space Projection ............. 49

Figure 2.33b RMS Manipulator YZ Velocity Space Projection . . . ....... 50

Figure 2.34a RMS Manipulator XZ Acceleration Space Projection .... ...... 50

Figure 2.34b RMS Manipulator YZ Acceleration Space Projection .... ..... 51

Figure 2.35 RMS Manipulator Workspace (viewp. (1,-1,0.2) sect. 00-180*) .. ...... 51

Figure 2.36 RMS Manipulator Velocity Space (viewp. (1,1,0.6) sect. 0 -1800) ....... 52

Figure 2.37 RMS Manipulator Acceleration Space (viewp. (1,-O.3,0.5) sect. 00-1800 . 52

Figure 2.38 RMS Manipulator A, Shaded Workspace (viewp. (1,-0.3,0.5) sect. %

90*) .. ....... ................ ....... ..... ... .... ..- .. 53

Figure 3.1 Relative position vectors on the i-th link ............. ..... 58

Figure 3.2 Static free-body diagram of the i-th link ..... ............. 58

Figure 3.4a Cincinnati Milacron T3 robot, joint force x-component versus elbow joint 03

angle ................................................ 67

Figure 3.4b Cincinnati Milacron T3 robot, joint force y-component versus elbow joint 03

Figure 3.4c Cincinnati Milacron T3 robot, joint force z-component versus elbow

joint 03 angle ........................ ................ . 68

Figure 3.4d Cincinnati Milacron T3 robot, joint resultant force (Fr) versus elbow

joint angle 03 angle ...................................... 68

Figure 3.5a Cincinnati Milacron T3 robot, joint moment x-component versus

elbow joint 03 angle .................................. . 69

Figure 3.5b Cincinnati Milacron T3 robot, joint moment y-component versus

elbow joint 03 angle ...................................... 69

x



Figure 3.5c Cincinnati Milacron T3 robot, joint moment z-component versus

elbow joint 03 angle ...................................... . 70

Figure 3.5d Cincinnati Milacron T3 robot, joint resultant (M.) moment versus elbow

joint 03 angle .......................................... 70

Figure 3.6a Bendix AA/CNC robot, joint force x-component versus elbow joint

h3  position ............................................ 72

Figure 3.6b Bendix AA/CNC robot, joint force y-component versus elbow joint

h3  position ............................................ 72

Figure .6c Bendix AA/CNC robot, joint force z-component versus elbow joint h3

position .............................................. 73

Figure 3.6d Bendix AA/CNC robot, joint resultant force (F,) versus elbow joint

h3  position ............................................ 73

Figure 3.7a Bendix AA/CNC robot, joint moment x-component versus elbow joint

h3  position ........ . . ............... . .......... 74

Figure 3.7b Bendix AA/CNC robot, joint moment y-component versus elbow joint

h3  position ............................................ 74

Figure 3.7c Bendix AA/CNC robot, joint moment z-component versus elbow joint

h3  position ........................................... 75

Figure 3.7d Bendix AA/CNC robot, joint resultant moment (M r) versus elbow

joint h3  position ...................................... . 75

Figure 3.8a Unimate 2000 spherical robot, joint force x-component versus base

joint $, angle .......................................... 77

Figure 3.8b Unimate 2000 spherical robot, joint force y-com-ponent versus base

joint $1 angle ...... ............................... ... 77

Figure 3.8c Unimate 2000 spherical robot, joint force z-component versus base

joint $2 angle ... ...................... .. ........ .. 78

xi



Figure 3.8d Unimate 2000 spherical robot, joint resultant force (F,) versus base

joint $t angle ......................................... . 78

Figure 3.9a Unimate 2000 spherical robot, joint moment x-component versus base

joint $, angle .......................................... 79

Figure 3.9b Unimate 2000 spherical robot, joint moment y-component versus base

joint $, angle .......................................... 79

Figure 3.9c Unimate 2000 spherical robot, joint moment z-component versus base

joint $1 angle ...................................... . . 80

Figure 3.9d Unimate 2000 spherical robot, joint resultant moment (M.) versus

base joint $1 angle ............... . . ................... 80

Figure 3.10a IBM 7576 SCARA robot, joint force x-component versus shoulder

joint 02 angle .......................................... 82

Figure 3.10b IBM 7576 SCARA robot, joint force y-component versus shoulder

joint 02 angle ..................................... 82

Figure 3.10c IBM 7576 SCARA robot, joint force z-component versus shoulder

joint 02 angle ........................................ . . 83

Figure 3.10d IBM 7576 SCARA robot, joint resultant force (Fr) versus shoulder

joint 02 angle .......................................... 83

Figure 3.1 la IBM 7576 SCARA robot, joint moment -component versus shoulder

joint 02 angle . *......................... ........... . 84

Figure 3.11b IBM 7576 SCARA robot, joint moment y-component versus

shoulder joint 02 angle . ..... .. .. ................... ... 84

Figure 3.11c IBM 7576 SCARA robot, joint moment z-component versus shoulder

joint 62 angle ... .. . ... ... . .. .. .. .. .. . ... .. .. .. .. . .... 85

Figure 3.lld IBM 7576 SCARA robot, joint resultant moment (M.) versus

shoulder joint 02angle .. .... 85

xii



Figure 3.12a Space Shuttle RMS robot, joint force x-component versus shoulder

joint 62angle ... .. . .. .... .. .. .. . .. . ... .. .. .. . ... .. . .. .. 87

Figure 3.12b Space Shuttle RMS robot, joint force y-component versus shoulder

joint 02 angle .......................................... 87

Figure 3.12c Space Shuttle RMS robot, joint force z-component versus shoulder

joint 02 angle ................................ 88

Figure 3.12d Space Shuttle RMS robot, joint resultant force (Fre) versus shoulder

joint 62angle ... .. .. .. . ... . ... . .. ... .. .. .. . ... .. . ... . .. 88

Figure 3.13a Space Shuttle RMS robot, joint moment x-component versus

shoulder joint 02 angle ................................... 89

Figure 3.13b Space Shuttle RMS robot, joint moment y-component versus

shoulder joint 02 angle .................................... 89

Figure 3.13c Space Shuttle RMS robot, joint moment z-component versus

shoulder joint 02 angle .................................... 90

Figure 3.13d Space Shuttle RMS robot, joint resultant moment (Mr) versus

shoulder joint 02 angle ................................ .... 90

M ain menu of RaMIP ........................................ 102

Kinematics main menu ...... .... .. . . ..... .. .. . 103

2-D graphics display ....... .... ....... . ...... ........ ... 104

3-D graphics display ... .. . ..... ... . ... .. 105

Dynamic Analysis . . ... . ... ... .. ... . . . . . ... 106

Graphics display of dynamic data ....... ........ ....... . . . .. 107

xiii



LIST OF TABLES

Table 2.1 Comparisons among D-H, S-U, and C-B notations .......... 8

Table 2.2. Cincinnati Milacron T3 Curve Parameters .................... 24

Table 2.3 Bendix AA/CNC Curve Parameters ......................... 30

Table 2.4 Unimate 2000 Curve Parameters ........................... 36

Table 2.5 IBM 7576 SCARA Robot Curve Parameters ..... ............ 42

Table 2.6 RMS Robot Curve Parameters .......................... 48

Table 4.1 Algorithm Data Structures .................. .. . 96

Table A.1a Kinematic Parameters for Cincinnati Milacron T3 Robot ........ 119

Table A.1b Dynamic Parameters for Cincinnati Milacron T3 Robot ......... 119

Table A.2a Kinematic Parameters for Bendix AA/CNC Robot ........... 120

Table A.2b Dynamic Parameters for Bendix AA/CNC Robot ............. 120

Table A.3a Kinematic Parameters for Unimate 2000 Spherical Robot ....... 121

Table A.3b Dynamic Parameters for Unimate 2000 Spherical Robot ........ 121

Table A.4a Kinematic Parameters for IBM 7576 (SCARA) Robot ....... 122

Table A.4b Dynamic Parameters for IBM 7576 (SCARA) Robot .... . ... 122

Table A.5a Kinematic Parameters for Space Shuttle (RMS) Robot .......... 122

Table A.5b Dynamic Parameters for Space Shuttle (RMS) Robot .......... 123

xiv



CHAPTER 1

1.1 Introduction

With the increasing needs for higher productivity, improved product quality, and

lower cost, industry is turning toward computer-based automation. Unlike conventional

manufacturing systems (fixed automation), characterized by mass production of non-

changing products during the years after World War II, modern manufacturing systems

require flexibility in order to meet frequent changes in product models and schedules.

Contemporary industrial robots are the flexible reprogrammable machines that have come

to fulfill such need. The first industrial robots were developed during the 50's, but it was

not until the 60's, that industrial robotic automation took place. The first robots were

developed for repetitive and tedious tasks such as pick and place, spot/arc welding, spray

painting, and so on. Since then, robots have been adopted into the industrial mainstream

by most industrial countries in the world. According to estimates by Kafrissen and

Stephans (1984), in 1982, there was on the order of 6,000 robots and robotic devices in

use in the American industry, 5,000 in Europe, and 30,000 in Japan. By 1985, the number

of robots in the U. S. will increase to 20,000. By 1995, the U. S. automated manufacturer

and the plastic processors will use around 200,000 industrial robots and robotic devices.

1.2 Background

As a consequence of the proliferation of computers and the need for improved,

more efficient manufacturing processes, and faster and more powerful analytical methods,

CAD/CAM (Computer Aided Design/Computer Aided Manufacturing), CAE (Computer

Assisted Engineering), computer simulation and modeling, and other computer

techniques, have become indispensable tools in industry as well as in all fields of
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science. In the field of mechanisms and robotics, the development of computer software

packages capable of solving kinematic and/or dynamic problems of mechanical systems

were started since 1950. Among them are, ADAMS (Automated Dynamic Analysis of

Mechanical Systems) by Orlandea and Chace (1977), DADS (Dynamic Analysis and

Design System) by Wehage and Haug (1982), IMP (Integrated Mechanisms Program) by

Sheth and Uicker (1972), DRAM (Dynamic Response of Articulated Machinery) by

Chace and Smith (1971), LINCAGES (LINkages Computer Analysis, and Graphically

Enhanced Synthesis), DYMES (DYnamics of MEchanical Systems), DYNAPAC by

Algor, and others. Besides these mechanisms programs, many FEA (finite Elements

Analysis) codes such as ANSYS, MSC/NASTRAN, SDRC-IDEAS, have dynamic and

modal analysis capabilities.

Kinematics is the science of motion which treats motion without regard to the

forces which cause it. It is the fundamental science within which one studies the position,

velocity, acceleration, and all higher order derivatives of the position variables.

Kinematics is divided into direct and inverse kinematics. Direct kinematics studies the

relative motions among the body segments (links) of the system. Basically, its final goal

is to determine position, velocity, and acceleration, based on prescribed geometric

specifications of the system. Inverse kinematics on the other hand, has as its objectives,

to determine the system geometric parameters given function, trajectory, velocity, etc.

Research on the open-chain mechanism has been emphasized during the last 10

years due to its role in automated manufacturing. Roth (1975) first defined the

performance evaluation of manipulators by the term "workspace". He studied the motion

of manipulators in terms of points and sets of axes. Roth and Shimano (1977) applied an

iterative method to describe the reachable workspace, and concluded that the normal

distance between any two axes is maximized when the common normal between the them

2



simultaneously intersects each of the intermediate axis of rotation. Tsai an oni (1981)

solved the accessible region for planar two link robot arms in terms of equivalent area,

and developed an algorithm to observe the workspace for n-R robots. Lee and Yang

(1983) presented an analytical investigation of the characteristics and shape of workspace,

and the existence of holes and voids in workspace. They also introduced the manipulator

performance index, and found that for a given manipulator structure, the ratio of the

volume of the workspace to the cube of its total link length is a constant. Kohli and

Spanos (1985) developed a new method for the investigation of a manipulator workspace

based on polynomial discriminants.

Algorithms for determining extreme distances between reference point and end

effector of a robot arm were developed by Kumar and Waldron (1981), and by Duffy and

Sugimoto (1981). Kumar and Waldron developed their algorithm by applying a wrench

of zero pitch about an axis through the base point in the end effector. Sugimoto and

Duffy developed an algorithm with a series of revolute or turning pairs, based on the

theorem that all intermediate joint axes of a robot arm with an arbitrary number of joints,

intersect an extreme distance line between an arbitrary base point and the center point of

the hand. Recently, dexterity of robot manipulators were studied by Waldron (1985),

Yang (1985), and Hunt and Davidson (1988). Analysis of parallel robots were also studied

by Hunt (1983), Sugimoto (1986, 1989), and by Sugimoto and Hara (1989).

Dynamics is a field devoted to studying the forces required to cause motion. The

dynamic analysis , also known as the kinetic analysis, is concerned with the position ,

velocity, and acceleration resulting from applied external forces and moments. The inverse

dynamic analysis, usually referred to as the dynamic analysis in solid mechanics, has as

its aim to determine the forces and moments required to produce a given set of positions,

velocities, and accelerations. Essentially, dynamic equations are needed for the dynamic
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control of manipulators. The objective of dynamic control to maintain a proper dynamic

response of a computer-based manipulator, so that the response is in accord with the

prescribed objectives or goals (positions, speeds, etc) in what is basically a feedback

process There are essentially three approaches available to arrive at a set of governing

coupled severely nonlinear differential equations describing the dynamic behavior of a

manipulator: a) Bond Graph (Shahninpoor, 1987), b) Newton-Euler (Orin, McGhee,

Vukobratovic, and Hartock, 1979, Townsend and Gupta, 1989), and c) Lagrange-Euler

dynamic modeling (Li, 1988). In addition to these techniques, two recursive techniques

have been developed. One is the Newton-Euler recursive approach, and the other is the

Lagrangian recursive approach. These two techniques have the advantage of reducing

drastically the number of computations, by the use of recurrence relationships for the

velocities, accelerations, and generalized forces.

The already mentioned methods are also subdivided into two approaches. In the

approach utilized by Orlandea (1977), and Wehage (1981), the configuration of the system

is identified using a set of Cartesian coordinates that describe the positions and

orientations of the bodies in the system. This approach essentially assumes rigid body

links. The method has the advantages of its easier formulation of dynamic equations of

motion, allowing easy additions of constraint equations and force functions, and only six

degrees of freedom are needed to uniquely describe the body configuration. A second

approach utilized to model multi-body systems with elastic links (Shabana and Wehage,

1983, Chang and Shabana 1990) presents more complications. Two sets of coordinate

systems are used. A Cartesian coordinate system defines the position and orientation of

a body reference, and a second coordinate system describe the elastic deformation of the

body with respect to the first coordinate system. This approach is more complex in its

formulation, and the relative coordinates and their time derivatives are not easily
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available.

Luh, Walker, and Paul (1980), pointed out the importance of the inverse dynamics

in control applications. By utilizing the Newton-Euler recursive formulation, the link

velocities and accelerations were solved from the base to the end link by kinematic

analysis, and then these were utilized to solve joint torques from the end link to the base

of the manipulator recursively. A similar recursive approach using the Lagrangian

formulation was used by Hollerbach (1980) in which 3 x 3 matrices instead of 4 x 4

homogeneous transformation matrices (Uicker, 1965) were used to increase computational

efficiency. The Lagrangian recursive approach was utilized by Book (1984) to formulate

the equations of motion of a flexible multilink manipulator. He used a mixed set of

relative joint variables and the modal elastic degrees of freedom (d.o.t) to define the

system configuration space.

1.3 Oectves and Significance

An open-chain mechanism, commonly known as a "robot" or "manipulator", is a

mechanical system which consists of nearly rigid links interconnected with joints that

allow relative motion of neighboring links. Link and joint geometry and relationships

determine the way the mechanism behaves. The relationships and behavior of links and

joints can be modeled by a symbolic notation such as C-B notation.

C-B notation (Yih, 1991) is an advanced 4x4 homogeneous matrix method

developed to model and analyze spatial robots and mechanisms. This matrix notation was

developed by applying _ylindrical coordinates and Bryant angles transformation matrices,

thus, referred to as C-B notation. One of its advantages is that C-B notation defines

absolute (with respect to a global coordinate system) robot joint positions, unlike the most

commonly used D-H notation formulated by Denavit and Hartenberg (1955), which
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provides only relative positions if two joint axes are not parallel or perpendicular to each

other. A similar argument can be put forth against S-U notation formulated by Sheth and

Uicker.

The objectives of this thesis are; first, utilize C-B (Cylindrical Coordinates -

Bryant Angles) notation for the modeling and kinematic analysis of general open-chain

mechanisms-robots. Second, combine the C-B notation and Newton-Euler formulation,

into a matrix solution for the dynamic analysis of general open-chain mechanisms.

Finally, develop a computer algorithm (RaMIP - Robot and Mechanism Integrated

Program) capable of doing automated design and analysis of general mechanisms.



CHAPTER 2

COMPUTER MODELING AND KINEMATIC ANALYSIS

2.1 Introduction

Industrial robots generally consist of a mechanical unit (body, arm,wrist) to which

an end effector (gripper, spot welder, drill) is fixed, a power source (hydraulic, electric,

pneumatic), and a control unit to provide logical directions. The mechanical unit (body,

arm, wrist) in a robot is what is usually called "robot" or "manipulator" which consists

of a series of links and joints interconnected in a specific order to produce controlled

movements in various directions. Computer modeling of a robot is accomplished by using

a symbolic notation.

A symbolic notation permits a shorthand representation of a mechanical system,

and contains the essential parameters for a complete description of the system. Based on

the generalized notation, transformation matrices are developed to model link shapes and

constraint motions of joints. The first symbolic notation and systematic approach for the

modeling and analysis of mechanical systems was attempted by Denavit and Hartenberg

(1955). They employed only four parameters (a, a, s, s) to describe the shape and joint

characteristics of each link. The resulting D-H notation has been used extensively in the

analysis of robot manipulators, as well as mechanisms. Due to its basic formulation, D-H

notation only defined relative joint positions for certain mechanism geometries, thus

introducing some complications to the analysis. A modified symbolism called S-U

notation, was developed by Sheth and Uicker (1972). Its purpose was to improve and

extend the use of D-H notation, and to determine the exact joint positions in space. S-U

notation introduced six constant joint parameters (a, b, c, a, I, y) plus a variable part that

contains the same number of parameters as the degrees of freedom of the joint.
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2.2 Review of C-B notation

Developed by Yih (1991), C-B notation is formulated based on homogeneous

cylindrical coordinates and Bryant angles transformation matrices, and thus termed "C-B

notation". Unlike D-H notation, C-B notation permits determination of exact joint

positions in space. Also, it uses 5 parameters (0, h, r, a, p) to describe the link shape and

joint behavior, instead of six plus the joint degrees of freedom employed by S-U notation.

As a consequence, mathematical complexity in computer modeling has been reduced and

computational efficiency has been improved as well. A comparison among the D-H, S-U

and C-B notations is listed in Table 2.1.

Table 2.1 Comparisons among D-H S-U, and C-B notations

Notation D-H U -

Means of transformations Cartesian Cartesian Cylindrical +

Bryant angles

4 6+ 5

Number of parameters (a, s, a, p) (a, b, c, a, P, (, h, r, a, )
y+joint d.o.f.)

Reference frame defined unique non-unique unique

Definition of joint position
for concurrent (parallel or exact (6)* exact (?) exact (6)*

normal) joint axes

Definition of joint position relative exact (30+) exact (22)
for non-concurrent (3-D)

joint axes

* Number of mathematical operations (+ & *) in shape matrix

2.2.1 Cylindrical Coordinates and Bryant Angles Transformations

The homogeneous cylindrical coordinate transformation matrix T,(0, h, r) is



derived as

cO -sO 0 rcO

sO cO 0 rsO (2.1)
Tc(0,h,r)=T,(Z,O)T,(Z,h)T,(X,r)=

T,(Z, 6), T,(Z, l), and T,(X,r) are transformation matrices representing a rotation 0 about

the Z axis, a translation h along the Z axis, and a translation r along the X axis. Also, sO

= sinO and cO = cosO.

The Bryant angles convention considers rotations counterclockwise, in sequence,

about the X, Y, and Z axes through angles a, I, and y, respectively. Its homogeneous

matrix Tb(c, I, y) is thus

cpcy -cssy sP 0

T(ay )() y casy +sascy cac -sassy -sac 0
=c }( sasy -casp cy sacy +caspsy cc

0 0 0 1

where T,(X, a), T,(Y, ), and T(Z, y) represent rotations about the X, Y, and Z axes

respectively.

2.2.2 C-B Notation

The geometrical shape of a spatial linkage (Fig 2.1) can be described using the
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transform notations of cylindrical coordinates and Bryant angles.

To transform the joint reference frame from X,-Y -Z; to X+i-Y-i-i, first, X-Yi-Z

system is transformed to e^-e)^-ey in the sequence (O, h, r,), which corresponds to the

cylindrical coordinates transformations. Second, e -z is transformed to the resultant

X+I-Yir-Z;+ through Bryant angles (a, i, y), with y = O*.

The joint reference frame (X"-Y -Z) and principal joint parameters (0, h1, r, as, p)

for the i-th joint J are defined as follows.

Z X

X..

Figure 2.1 C-B (Cylindrical coordinates-Bryant angles) notation.

A) Reference Frame

The local origin of the i-th reference frame is chosen at the physical joint center of J,

and:
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Zi -along the ith joint axis in the designated direction.

X; -normal to Z. in the plane Z;-X b. As Z; is parallel to X;_, X. and XM_ are perpendicular

to each other. Usually, X; is chosen to be in the same direction as XM.

Y; -in the direction to form the right handed cartesian coordinate system.

B) Principal Joint Parameters

O -rotation angle of the ith joint, measured about Zi, as the angle between planes Z-Xa1

and Z;-X;.

h -distance between joints J; and Ji1, measured along Z,.

r; -distance between Z; and J+.

a -twist angle between planes e -8z and e -Z ; 1, measured about e^. It is noticed that

X+1 is on plane e -Zi+.

R -deviation angle from 64 to Zji 1, measured about Y

The shape matrix T of the i-th link, formulated by C-B notation is, therefore,

T/(O,,h,,r,it, ) = T(O ,hyr)Tb,t,,O,) =

czcW-sscxp -sO cc. ca s1+sscta c , r.cO ,
(.3)

s~acf3,+c0 cts. c6,ca. ssW -c6 scs ; rsO (23

-ca sf3 sa. cacs3 h.

0 0 0 1
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in which the orientation and position of X+-Y ;+ i+1, relative to X,-Y -Z;, can be

expressed by the direction cosine matrix D; and position vector P, as

C) Characteristic Matrices of Kinematic Pairs

A characteristic matrix describes not only the shape of the link, but also its behavior

constrained by kinematic pairs. The three kinematic pairs that have been implemented in

the algorithm are: R (revolute), P (prismatic), and S (spherical) joints.

z+
_ a1

z

Figure 2.2 Revolute Pair (R)
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i) Revolute Pair (R)

A revolute pair (Fig 2.2) is characterized by its axial rotation Oi, whose characteristic

matrix has the same expression as equation 2.3.

D(O), P(O)i (2.5)

where O, is the only design variable.

ii) Prismatic Pair (P)

A prismatic pair allows linear motion along only one axis (Fig 2.3). Thus, its

characteristic matrix is

D. P( h). 26

where h; is the design variable, and 6i is constant.

iii) Spherical Pair (S)

The schematic modeling of a spherical joint is presented in Figure 2.4. Since a

spherical joint is free to move in all directions, definitions of the joint axis can be infinite.

To uniquely define the reference frame X,-Yi-Z in C-B notation, X,-Y1-Z is chosen to be

parallel to the preceding XI-Y ie-Zbl coordinates. In such case, a-, and $i1 are equal to

zero.

Referring to Figure 2.4, the relative link length a1, between J, and J;11 remains

constant at all times. However, parameters hi and ri vary with angle $, measured from Z

13
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Yi+ 1

ht

rY

x. x

Figure 2.4 Spherical joint geometric parameters

$- c1 (c c ) (2.9)

The resulting characteristic matrix for the spherical joint can then be written as

T(,, hi, r1, a~, pi) = T1(03, a~~ ais$~ a, p) =a ac

- D(0), a,s$Os [ D(O), P(O () $)1 (2.10)
a~c$4 [ 0 0 1 J

0 00 1

23Kinematic~s

Kinematics is the science of mnotion which treats motion without regard to the forces

which cause it. Kinematics is divided into direct and inverse kinematics. Direct kinematics

studies the relative motions among the body segments (links) of the system. Basically, its
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final goal is to determine position, velocity, and acceleration, based on prescribed

geometric specifications of the system. Inverse kinematics, on the other hand, has as its

objectives to determine the system geometric parameters with given function, trajectory,

velocity, etc. Direct kinematic analysis is the topic of the following sections, beginning

with the position equations.

2.3.1 Position Analysis

The general homogeneous characteristic matrix of a lower pair, Ti, was derived in

equation 2.3. The relative orientation and position of the n-th reference frame (joint

relative coordinate system), with respect to the universal coordinates, are obtained by a

sequence of matrix multiplications. For an n joint open-chain mechanical system, its

analytical position equation can be written as

HD= P(2.11)HA T.

where T is the characteristic matrix of the i-th joint. The resultant homogeneous matrix

H contains the direction cosine matrix D and the position vector P to specify the

orientation and position, respectively. These two components of H are the most essential

pieces of information for the control of the manipulator. Also, H is the resultant system

matrix for the position analysis of a specific reference point of the open-chain mechanical

system. The reference point may indicate the end-effector, the gripper center, or any other

point in the system.

2.3.2 Separation of Variables in Matrix

Prior to the velocity and acceleration analyses, a procedure named separation of
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variables in matrix must be performed. Referring to equations 2.1-3, Ti is composed of

elementary transformation matrices

T,( ,hr~ ,%)= T (O ,h1,r )Tb , ,O) (.2

- T,(ZO ;)T,(X,hi)T,(X,r )T,(X,a )T,(Y,3 i) (.2

One may regroup equation 2.12 so that each design variable in Ti is isolated into a single-

variable matrix V. For instance, there are two variables to be considered in the case of

a spherical joint. Assigning the number of variables q = 2 and z = Q3 2 = 2 i, and

rearranging Ti into variable matrices V1( 1 = O) and V2($2 = 4i), known h, = a;c and

r;= 1as ;,

T,( ,,hi,rg,cLp, .) = [T(Z,)] []T,(Z,a c ,)T(,as i)T,(Xc )T,(Yf ] (2.13)
-VI( 0) V2(0;)

the two design variables are individually isolated into the single-variable matrices V and

V 2'

Apparently, for a joint that has only one design variable, such as a revolute joint, Ti

= V ;(5), where q = 1 and =;.

Therefore, Ti can be rewritten in the form.

= H YV(5 ) (2.14)
i-1

where q is the total number of degrees of freedom of the ith joint, and Vj is the

corresponding j-th variable matrix which contains the variable j of the ith joint.
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Substituting equation 2.14 into equation 2.13 yields

~.11
H - l T -( (2.15)

i-1 i-1 J-1

Also, the total number of design variables in the system is the sum of variables in

each joint; let

n

(2.16)
i-1

then equation 2.15 becomes

M

H = flV($) (2.17)
i-i

where index i indicates the ith design variable of the system counted sequentially from

the first variable 1 in T, to the last in T,.

2.3.3 Velocity Analysis

The rate of change of joint variable 4 is

= dI/dt (2.18)

Differentiating equation 2.17

dHf d} (2.19)u Vi(;i)j = {VV..}
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Now, applying the chain rule,

ft d{ } d 1 _d{ } d 2 _d. {v 1} d f d{ } (220
1+ 2 ._ ....... ++ + -- + __ _ _ c[g (2.20)

1 dt d2 dt dm dt i.d

which yields,

S- $ M~i (2.21)
i-1 j-1

where

1;(,) if i i(2.22)
V =( - dV/% if i j

at i =j,

K,=HM~ (2.23)
j-1

equation 2.21 is then formulated as

$ - KL. (2.24)
i-1

2.3.4 Acceleration Analysis

The relative accelerations between joints with constant time differential dt are

expressed by,

H l d/dt (2.25)
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Substituting equation 2.24 into equation 2.25,

d M KKfdJK(2.26)
r.= =1 j-1 +At -. + K..-

dt dt t

which results in,

-1 K

x-1 dt -1 (2.27)

dKM+ M

- -i 1

Defining,

d K. M M (2.28)

1-1 ii-1 j-1 k-1 -1

where

k(k) if k=j i

N Vk(k) if k = i(k j)ork j(k i) (2.29)

Vkk) if k i and k j

Finally, equation 2.27 becomes,
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M

(k + , (2.30)

i-i

where the velocity 5 was previously obtained from the velocity analysis.

2.4 Kinematic Spaces

As mentioned in previous sections, kinematic analysis mainly consists of position

(displacement), velocity, and acceleration analyses. The most important of the three being

the position analysis. Roth and Shimano (1977) were first to describe the reachable space

or volume of a robot manipulator. This was then standardized as the "workspace" of a

manipulator.

The workspace of a robotic manipulator is defined as the set of all three-dimensional

points that can be reached by a reference point located on the robotic hand. A restricted

version of a robotic workspace is also defined as the set of all points that can be reached

by a fixed orientation of the robotic hand. The study of robotic workspaces is important

in arranging the associated flexible manufacturing cell of a robot, and assessing its

efficiency in a manufacturing line. In general, the boundary of a robotic workspace is a

complex surface composed of many surfaces, difficult to represent explicitly by

geometrical equations.

Velocity and acceleration spaces are accomplished by determining velocities and

accelerations over the surfaces which compose the workspace. Their applications are

essential for the velocity/acceleration control of a robot following a specific contour.

2.4.1 Graphic Representation

The 3-dimensional representations of the kinematic spaces are generated by rotating
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a planar projections of the corresponding kinematic space. The planar projections of the

workspace are obtained through an interactive process, by fixing and moving specific

joints. This procedure generates a collection of curves that describe the maximum and

minimum reachable positions, along with other curves to show the outmost boundary of

the workspace. All curves that determine the extreme positions are selected and all others

discarded. To illustrate the 3-dimensional workspace (volume) this set of planar curves

is then rotated about the joint axis of the base of the manipulator.

Once the planar workspace has been obtained, the velocity and acceleration spaces

are obtained by determining velocities and accelerations along the curves which envelop

the workspace. This procedure generates a set of 3-dimensional (non-planar) curves which

is rotated about the joint axis of the base of the manipulator, generating the 3-dimensional

velocity and acceleration spaces.

2.4.2 Numerical Examples

The RaMIP algorithm is utilized to analyze several robots. The following examples

are selected for industrial robots with revolute, prismatic, and spherical joints. As

mentioned earlier, each kinematic space is composed of a group of curves which represent

the trajectory of the end-effector at its outmost reachable positions. Each curve is

numbered so that they can be identified in each plot. The joint motion parameters used

to describe each curve are listed in the tables presented with each example. The 3-

dimensional kinematic spaces obtained are viewed from several different viewpoints for

better clarity. In some cases, velocity and acceleration data are used to shade workspace

sections for better clarity and identification, and a scale is shown next to the plot for

reference. It is noted that the quality and clarity of the plots presented here are inferior

in comparison with the original color plots shown on the computer screen.
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Example 2.1 - Cincinnati Milacron T3 robot (RRR/RRR)

This robot is composed of six electric revolute joints, three for the base, shoulder,

and elbow, and three for the wrist and hand. This robot was designed to bring the

productivity of off-the-shelf robotic automation to simple tasks, such as machine tending

and medium-duty materials handling. Its kinematic specifications modeled in C-B notation

are listed Table A.1a in Appendix A. Figures 2.5-2.7 show the 2-dimensional workspace,

velocity space, and acceleration space projected on the XZ and YZ planes, respectively.

The kinematic curve parameters are given in Table 2.2. Figs. 2.8 and 2.9 show a sectional

view, from 30 to 120 deg base rotation, of the 3-dimensional workspace from viewpoints

located at (3,0.5,0.0), and at (2,-0.5,0.3), respectively. Fig. 2.10 shows the workspace

shaded using resultant velocity values, by associating a color scale (or gray scale) to the

resultant velocity data obtained. The advantage of this data displaying technique is based

on the fact that a fourth quantity may be displayed in a 3-dimensional plot. This technique

is often utilized (for instance in finite element software) to display temperature, pressure,

stress distributions, and others over a certain computer generated model, or object. In the

particular case of Fig. 2.10, it is possible to display the resultant velocity at the location

in 3-d space to which it corresponds. Fig 2.11 on the other hand, shows the 3-dimensional

acceleration space using acceleration coordinates. In Figure 2.11, no information about

the location associated to each acceleration value is available or may be deduced by any

means. This technique is also utilized in the examples that follow.
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Table 2.2. Cincinnati Milacron T3 Curve Parameters

Base rotation 01= 30* ; = 0*; 6 =any angle

curve 1 2 3 4 5 6 7 8

0 0/90 0 0 0/90 90 90 90 90

030 0 -150/0 -150 -150 -150/0 0 -150/0 -150

040 0 0 -90/0 -90 90 0/90 90 -90/90

Z (n

4

31

1 -0.5 0 0.5 1 1.5 2 2.5

Figure 2.5a Cincinnati Milacron T3, XZ Workspace Projection.
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Figure 2.6b Cincinnati Milacron T3 YZ Velocity Space Projection.
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Table 2.3 Bendix AA/CNC Curve Parameters

Base rotation 1 = 60* ; 4 = 0* ; 6 = any angle

curve 1 2 3 4 5 6 7

0 -45/225 -45/225 -45 -45 225 225 225

h3 m 0.61 0 0 0/0.61 0 0/0.61 0.61

05 0 -20 200 -20/200 -20 90/200 90 -20/90

3
2 I

21

5 3

0

-2 -1 0 1 2

Figure 2.12a Bendix AA/CNC, XZ Workspace Projection

30



Zim

3
1

2

1

0

7Y

-2 -1 1 2

Figure 2.12b Bendix AA/CNC, YZ Workspace Projection

2

1 2
1

0 43

6

7

-3 -2 -1 0 1 2 3

Figure 2. 13a Bendix AA/CNC, XZ Velocity Space Projection

31



2

1
11

220-1
A~A [jul82]66

77

-3 -2 -1 0123

Figure .13b B ix A / , YZcceleratiy pac Projection

244
23



2l

5 7

i Ay $2l

-4 -2 0 2 4 6

Figure .l ix Acceleration ace Projection

C1 

T 3

t i t
7 N

3

e 01
G

fx

Y

j

x

4

u 1 2

Figure 2.15 e ix AA/CNC Workspace (viewpto (35,.75,.3) sect, - 5")

33



z

. _ . 12

y

R

AS,
Fjf

S 

mSa4"f+ 

\,

o 
s

?i s r' f
3

za Y 
>. 

r 

i

n ?. -

+ a5

x 'tom N

_ 5 
cY

a a 0 21
Y u

+

%
L m sa. 4 t

~ i," ;

4 P

W~ 

2 S Z 

a

Ems[ - y.,

LNI

E 3

Figure 2.17 Bend ix C ' Shaded Workspace (V v, p_ (.75,.75,:,) FA.. -95")

34



1

L

z }

2

Owl

F

-41

V'

,h

cE

Figure 2.1 lg ,/ Y CI cele tin Space 'ke'pt. (,75,75 431) =t. 9 .

S

2

per,

S

"1 12 6
,

P {fix ; m

a F ,r 1S

Z

FvS 

d

Figure .1 nd AA/CNC Ay ha Works ac s4icwpt. (75,.75,3) W C1. '-95")

5



Example 2.3 - Unimate 2000 Spherical Robot (SP/RRR)

The Unimate 2000 industrial robots are among the most widely used in the world.

They are highly reliable and easy to use robots. They have been used successfully for spot

welding, die casting and investment casting, materials handling, and several other

applications. Their configuration, Table A.3a, consists of five joints, S (Spherical) for the

base and shoulder, P (Prismatic) for the elbow, R (Revolute) for the wrist, and R-R

(Revolute-Revolute) for the hand. Table 2.4 gives the spacial curve parameters for the

figures in the pages that follow. Figure 2.20a and 2.2Gb show the XZ and YZ projection

of the workspace. Similarly, figures 2.21a, 2.21b, 2.22a, and 2.22b display the XZ and

YZ velocity and acceleration space projections, respectively. Figure 2.23 presents a

sectional view of the 3-dimensional workspace for the Unimate 2000. Figure 2.24 displays

a sectional view of the workspace shaded using the values of the Y component of

velocity. Figure 2.25 shows a partial view of the acceleration space in acceleration

coordinates.

Table 2.4 Unimate 2000 Curve Parameters

Base rotation 1 = 100" ; 64 = 00 ; 6s = any angle

curve 1 2 3 4 5 6 7 8 9

0 * -26/30 -26/30 -26/30 30 -26 -26 30 30 -26

h2m 2.03 0.91 0.91 .91/2.03 91/2.03 2.03 2.03 0.91 0.91

03 0 -110 110 -88 88 0/88 -88/0 -110/110 -110/110
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Examnple 2.4 - IBM 7576 SCARA Robot (RRPR)

The IBM 7576 (SCARA) manufacturing systems are electric driven, programmable

manipulators suitable for a wide range of industrial applications such as electronic

component insertion, testing, packaging, and surface-mount device placement. This robot

presents a geometric configuration called SCARA (Selective Compliance Assembly Robot

Arm), in which all the joints have parallel vertical axes, making this robot especially

suitable for precision operations. The SCARA configuration of this robot, consists of four

joints, two R (Revolute) joints which define the position of the end-effector in a planar

workspace, a P (Prismatic) joint which locates the vertical position of the workspace, and

a fourth R (Revolute) joint which rotates the position of the end-effector. The kinematic

parameters for this robot are listed in Table A.4a in Appendix A. Table 2.4 gives the

kinematic data utilized to generate all kinematic space curves. Figures 2.26a, 2.26b, and
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2.26c show the XZ, YZ, and XY workspace projections for the IBM 7576 robot. Figures

2.27a, 2.27b, 2.28a, and 2.28b show the XZ and YZ velocity and acceleration space

projections, respectively. Figure 2.29 shows a sectional view of the workspace, and

figures 2.30 and 2.31 display a sectional view of the workspace, shaded using values of

the Y component of velocity and acceleration, respectively.

Table 2.5 IBM 7576 SCARA Robot Curve Parameters

Base rotation 01 = 300 ; 04 = any value

curve 1 2 3 4

02 -136/136 -136/136 136 -136

h3 m 0 0.25 0/0.25 0/0.25
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Figure 2.31 IBM 7576 Roo A _ hade orksace (viewp. (-l,-1,0.5) sect. w*-12

Example 2. - Space htl M Rmt aiuao ytm

Te RMS is the largest jointed manipulator structure ever bi t. It was designed to

handle amaximum payload of 65,000 lb in uter space. I the earth environment the

RMS cannot even move its own linkage mass (95lb). its total link length is more than

15 meters. The RMS bsic configuration consist of 6R (evolute) joints, three for th

base, shoulder n elbow, and three for the wrist pitch, yaw, roll motions. its kinematic

joint parameters are given in Table A. 5a in Appendix A. Table 2.5 below, gives the

parameter values for the generation of the kinematic space curves shown in the following

pages. Figure 2.32a and .2 display the X dYZplane workspace projections.

Figures 2.33a, 2.33b, 2.34, and 2.34b show the XZ and YZ plane velocityad

acceleration space projections, respectively. Figure 2.35 presents asectional view of th

3-dimensional workspace. Figure 2.36 shows aviewo h velocity space plotted in
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velocity coordinates. Figure 2.37 gives a representation of the acceleration space in

acceleration coordinates. Finally, Figure 2.38 presents a sectional view of the 3-

dimensional workspace shaded according to the values of the Y component of the

acceleration.

Table 2.6 RMS Robot Curve Parameters

Base rotation 0 = 30 5 ; 5 = 0* ; 6 = any angle

curve 1 2 3 4 5 6 7

02K211451 -2 -2 12/145 1145 11451145/125.4

2 * 0 -160/2 160 -160 -160/2 2 0

640 0 0 -120/0 -120 -120 120/0 2

Z
20

151

10

5

0

-5

-10 'Xamj
-15 -10 -5 0 5 10 15

Figure 2.32a RMS Manipulator XZ Workspace Projection
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CHAPTER 3

DYNAMIC ANALYSIS

3. Introduction

The dynamics of manipulators is categorized into two major fields: forward dynamics

and inverse dynamics. Forward dynamics is emphasized when the objective is the motion

simulation of the manipulator. Basically, through forward dynamics the motion

(accelerations and displacements) of the manipulator is determined based upon the known

information of forces and/or torques of the actuators. Solutions to forward dynamic

problems involve the formulation of an "inertia matrix" and the "bias vector" which

contains the terms of gravity, Coriolis and centripetal accelerations, and joint

displacements. Inverse dynamic analysis determines the joint forces and moments required

to produce the motions specified by a given set of positions, velocities, and accelerations.

If the inverse dynamics is modelled accurately, the position, velocity, and acceleration

information calculated or measured by sensors can be used to compute and control the

forces and torques of the joint actuator required for a robot to follow a certain trajectory

during acceleration and deceleration. There are three approaches available to arrive at a

set of governing differential equations describing the dynamic behavior of a manipulator:

1) Bond Graph method (Shahninpoor, 1987; Samanta, 1990), 2) Newton-Euler dynamic

approach (Orin, McGhee, Vukobratovic and Hartoch, 1979; Townsend and Gupta, 1989),

and 3) Lagrange-Euler (Li, 1988) dynamic modeling.

In addition to the above mentioned methods, two recursive techniques have been

developed. One is the Newton-Euler recursive approach (Luh, Walker and Paul, 1980;

Bae, Hwang and Haug, 1991), and the other is the Lagrangian recursive approach
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(Hollerbach, 1980; Book, 1984; Wang and Kohli, 1985). Silver (1980), and Unda, Garcia

de Jalon, Losantos and Enparantza, (1987) presented comparative studies of the

equivalence of Lagrangian and Newton-Euler dynamics. These two techniques have the

advantage of reducing the number of computations drastically, by the use of recurrent

relationships for the velocities, accelerations, and generalized forces. Luh, Walker and

Paul (1979) pointed out the importance of inverse dynamics in control applications

utilizing the Newton-Euler recursive formulation. In their approach, the link velocities and

accelerations were solved from the base to the end link by kinematic analysis, and then

utilized to solve joint torques from the end link to the base of the manipulator recursively.

A similar recursive approach using the Lagrangian formulation was developed by

Hollerbach (1980) in which 3x3 matrices instead of 4x4 homogeneous transformation

matrices (Uicker, 1965) were used to increase computational efficiency. Book (1984)

utilized the Lagrangian recursive approach to formulate the equations of motion of a

flexible multilink manipulator, mixing a set of relative joint variables and the modal

elastic degrees of freedom to define the system configuration space.

In this chapter, the matrix notation for the analysis of dynamic joint forces and

moments for an n-link open-chain manipulator is derived. The n-link manipulator can be

composed of any combination of the kinematic revolute, prismatic, and spherical joints.

This formulation is developed based on the Newton-Euler dynamic equations under the

quasi-static equilibrium condition; that is, the problem has been isolated from its time

dependency. In other words, the problem is treated and solved for one specific position

at a particular instant, and all the time dependent dynamic parameters needed for the

solution are obtained in advance either through direct input or kinematic analysis. Also,

link inertias are known, and displacements, velocities, and accelerations of each joint and

link center of gravity (C.G.) are pre-calculated kinematically.
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3.2 Static Analysis

In static analysis, the forces due to motion (inertia forces) are equal to zero since

there is no motion (accelerations). For a body under static equilibrium, the sum of all

forces and moments acting on any point in the body must be equal to zero. This condition

is expressed by,

(3.1)

2' -(3.2)

Equations (3.1) and (3.2) can be written in terms of X, Y, and Z components such

that

( ,= 0

(3.3)

, = 0 (3.4)

The above equations describe the general case of three dimensional static equilibrium.

For the case of a robotic manipulator, the manipulator arm can be analyzed link by link
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individually. Based on the free body diagram for link i shown in Fig. 3.2, given the

position vectors definition of Fig. 3.1, and writing vectors in terms of their components,

the conditions for static equilibrium are

x F - -F -0

=0 (3.5)

F -F -F -m. g=0

and,

M - M +F *r -F *r -F *r'+F r'-M 0
Yi~~ ~ ~ Y. Z . . X. t+ Yi~+F *r -F *r -F r'+F er'-M = 0 (3.6)

M = M +F *r -F *r -F *r'+F *r'-M = 0
Z. Z. X. X1 X, Z

The following section 3.2.1 contains the formulations explaining the relationships between

relative and absolute vectors.

3.2.1 Relative Joint Vectors

From Fig. 3.1, R vectors represent absolute position vectors, and Y vectors the

relative position vectors. Based on Fig. 3.1, the following relationships can be established

or,

, 5+1 +1
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Now, provided that the C.G. of the i-th link is on the line of joints i and i+1, the

parameter .(0 1) is defined such that,

and,

(3.8)

Therefore the relative position vector of the i-th link C.G. is given by,

r , ( - (3.9)

Following a similar argument for the velocity and acceleration, the following equations

are derived.

vii = pv8 - p(Y - i,
(3.10)

a - +1 - A1)

Analytical solutions for the joint forces and moments for a complete manipulator

structure may be calculated by solving sets of linear equations obtained from equations

(3.5) and (3.6), provided the required information is available (forces and moments at end

effector, position vectors, and so on).

3.3 Dynamic Analysis

The procedure for the dynamic analysis to be used here is based on the Newton and

Euler dynamic equations. This procedure is basically a recursive method, in which joint
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forces and moments are calculated recursively from the end-effector backward to the base

of the robotic manipulator. Initially, joint positions, velocities, and accelerations must be

calculated in order to determine the joint forces and torques required to cause such

motions. Based on D'Alembert principle, the dynamic equations are derived from the

static analysis.

3.3.1 Newton-Euler Formulation

Considering that a robot is composed of a series of rigid links connected by joints,

a center of mass for each link can be defined. For a rigid body system with such

characteristics, Newton's equation of motion states that the force r and acceleration a are

related by the total mass of the body

d m (3.11)

In a similar way, Euler's equation of motion describes the rotational motion and

acceleration of a rigid body. This relationship relates torque, angular velocity and

acceleration, and mass moment of inertia such that,

Cs - II cg cg g (3.12)

where cg is the moment of the body about its center of gravity, 07cg the angular velocity,

a g the angular acceleration, and IC the body mass moment of inertia. Subscript cg

denotes the center of gravity of the body in question.

For the i-th link, equation (3.11) can be written in terms of its x, y, and z components
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as,

F = ma

(3.13)

where a, , aY. , and as. represent the relative acceleration of the i-th link C.G. with
eg leg icg

respect to the i-th joint, and F , Fyi , and F are the components of the force (inertial)

about the C.G. of the i-th link relative to the i-th joint.

Similarly, Euler's equation (3.12) can be expanded into its components and the final

relationships are given by the expressions in (3.14). In these expressions, xi , y, and

M~. are the components of the moments about the i-th link C.G. relative to the i-th joint.

= =I a +co co (I -I )+I (wwo-cx)

( + co ) - I(o 2 - c 2)

M =I a +coo((I - )+ ((O - a)
yi"' yyi" Yi zi At c., t 3ir8 X1 i 2 f(3.14)

- I (a + (0 ) -I(o 3- .21

M =I + oo (I - I )+I(O O - c)

- I (c + o o) - I (o 2 
- o 2 )

where all angular velocity and acceleration components are relative to the i-th joint.

In the following, Newton-Euler equations for the kinematic revolute, prismatic, and

spherical pairs are derived from equations (3.13) and (3.14).

A) Revolute Pair

A revolute joint has only one degree of freedom. This single degree of freedom is

the relative rotation of the i-th joint with respect to the (i-1)th joint about the local z-axis.
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Consequently, , toy,, a., and ay equal to zero, and the Newton-Euler equations become,

F m~a (3.15)

F m a

x. ~y .. Z z 1 Z

M I I I > 2  (3.16)

B) Prismatic Pair

A prismatic joint is constrained to a linear motion along its joint axis, say z-axis. It

has no rotational degrees of freedom, therefore all relative angular velocities and

accelerations are equal to zero. The Newton and Euler equations can be simplified as

F - mta

F - m~ay (3.17)

acg ,cg

where ax, , ay, , and az, represent the three components of linear acceleration of the i-th
eg cg cg

link C.G. relative to the i-th joint. Also,

M -0

M = 0 (3.18)

M 0

62



C) Spherical Pair

A spherical pair has three degrees of freedom, each rotates about one cartesian

coordinate axis indicated by Y,, z ). Based on the C-B notation (Yih, 1991), design

variable , is equivalent to 6i. Also, parameters 9, and , are initially implied by design

variables h; and ry, which in turn are defined as functions of $; solely. As a result, the

original three degrees of freedom ($,, p,, z.) are reduced to only two (0j, j;). Based on

the above mentioned concepts, angular velocities and accelerations about the x- and y-

axes are replaced by , and j. Then, the Newton and Euler dynamic equations become,

F = m a

= m a (3.19)

F - m a

and,

- w (I~ +1 I )

M I + e + I - , (I +IM S Y k 1 9 c L' -r( 1

3.3.2 General Matri3 Notation

Consider the position vectors of the i-th link shown in Fig. 3.1, and the free body

diagram shown in Fig. 3.2. Based on D'Alembert principle, the following dynamic

equilibrium equations can be formulated
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F F-F - a (3.21)
F - F -F -m - m

and,

S-F *r +F *r +M +F *r'-F *r'-M

M - F *r -F *r +M -F *r'+F *r '-M (3.22)
yi i Zi Zi xi y, x z zi xi y

M* -F r+F *r +M+F *r'-F *r'-M
Xi y yi i y y X

where F., Fy, , and F, are given in equations (3.15), (3.17) and (3.19), and M ,cg cg cg cg

Myi, and M i are expressed by equations (3.16), (3.18) and (3.20) for a revolute,

prismatic, and spherical pair, respectively.

Furthermore, equations (3.21) and (3.22) can be rearranged into a general matrix form

for any n-link robot manipulator. The resulting matrix expression is given in equation

(3.24). The left hand side of the resulting expressions are grouped into a column vector

[b] of length 6n, containing the relative forces and moments about the C.G. of each link.

Terms MxL, MyL, and M are the components of the moment due to the external load.

The right hand side of the equation is a relative displacement coefficient matrix [A] of

order 6nx6n, and the unknown joint forces and moments column vector [x] of length 6n.

Once Newton-Euler forces and moments column vector [b] and displacement

coefficient matrix [A] are formed, the dynamic solutions for joint forces and moments can

be calculated by the product of A' and [b],

[x] - [A]~'[b] (3.23)
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3.3.3 Numerical Examples

In this section, the general matrix method explained previously is applied to

determine the joint forces and moments needed to move the manipulator's arm according

to specific (relative) joint position, velocity and acceleration. Five robots are analyzed

utilizing the developed RaMIP (Robot and Mechanism Integrated Program). For each one

of these robots, joint forces and moments are calculated at several positions during the

motion of one of the joints. That is, the robot is actuated by the motion of one joint while

all others remain fixed. The results are presented in terms of forces and moment

components versus the moving joint variable.

Example 3.1 - Cincinnati Milacron T3 Robot (RRR/RRR)

The kinematic and dynamic data of this robot is presented in Tables A.1a and A.1b.

Figures 3.4a - 3.5d presented next, resulted from the dynamic analysis of the six-jointed

Cincinnati Milacron T-3 robot. Joint forces and moments are calculated at several points

in the motion of elbow joint 3, while all others remain fixed at specific positions (see

section C.1 in appendix C). In this example, the manipulator carries a 25 Kg payload at

its end effector. From the figures, it is noticed that the forces and moments at joints 4,

5, and 6 are smaller when compared to the same quantities at joints 1, 2, and 3. This

result is expected, as forces and moments tend to add up towards the base of the

manipulator arm.
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Figure 3.4a Cincinnati Milacron T3 robot, joint force x-component
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Figure 3.4b Cincinnati Milacron T3 robot, joint force y-component
versus elbow joint 03 angle
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Figure 3.4c Cincinnati Milacron T3 robot, joint force z-component
versus elbow joint 03 angle
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Figure 3.4d Cincinnati Milacron T3 robot, joint resultant force (Fre)
versus elbow joint angle 03
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Figure 3.5a Cincinnati Milacron T3 robot, joint moment
x-component versus elbow joint 03 angle
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Figure 3.Sb Cincinnati Milacron T3 robot, joint moment
y-component versus elbow joint 03 angle

69



J1, J250-

150

J

1001 
50-

J4

is0- s

3 [deg]

-160 _1 160 -75 -80 - 5 6

Figure c Cincinnati Milacron 3 robot, joint moment
z-co onent versus elbow jn' t l

res [Nm]

600-- 
J2

400 t J1

J3

200-

J4

J

01- J

3[- ]

-150 -125 -100 -75 -50 -25 0

Figure a '' t Milacron robot, joint resultant s

moment versus elbow joint 03 angle

70



Example 3.2 - Bendix AA/CNC Industrial Robot (RRP/RRR)

The geometry of this manipulator consists of one prismatic and five revolute joints.

All the kinematic and dynamic data for this robot are included in Tables A.2a and A.2b

in Appendix A. In this example the robot carries a 25 Kg load at its end effector. In order

to show the generality of the matrix method, prismatic elbow joint 3 is allowed to move

throughout its entire motion span. In Figs. 3.6a - 3.7d, the output obtained characterizes

the dynamic response resulting from the motion of a prismatic joint. The linear motion

of this prismatic joint generates a nearly linear variation of joint forces and moments.
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Figure 3.6c Bendix AA/CNC robot, joint force z-component
versus elbow joint h3 angle
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Figure 3.6d Bendix AA/CNC robot, joint resultant force (Frs)
versus elbow joint h3 position
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Figure 3.7a Bendix AA/CNC robot, joint moment x-component
versus elbow joint h3 angle
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Figure 3.7b Bendix AA/CNC robot, joint moment y-component
versus elbow joint h3 position
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Figure 3.7d Bendix AA/CNC robot, joint moment z-componnent
versus elbow joint h3 position
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Figure 3.7d Bendix AA/CNC robot, joint resultant moment (Mres)
versus elbow joint h3 position
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Example 3.3 - Unimate 2000 Spherical Robot (SPIRRR)

The Unimate 2000 geometry involves a spherical joint at the base of the robot. The

kinematic and dynamic data for the Unimate 2000 is given in Tables A.3a and A.3b in

Appendix A. In the previous examples, the analysis was carried out allowing the motion

of either a revolute or a prismatic joint. In this example, the robot manipulates a 25 Kg

payload, and spherical joint 1 (base joint) is selected as the moveable joint. Comparing

the shapes of the dynamic response curves (Figures 3.8a - 3.9d) to those in example 3.1

for Cincinnati Milacron T3 robot, the response of a spherical joint is basically similar to

that obtained from a revolute joint, since both types of joints have similar types of motion

(rotational motion).
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Figure 3.8a Unimate 2000 spherical robot, joint force x-component
versus base joint $i angle
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Figure 3.8b Unimate 2000 spherical robot, joint force y-component
versus base joint t1 angle
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Figure 3.8c Unimate 2000 spherical robot, joint force z-component
versus base joint 41 angle
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Figure 3.8d Unimate 2000 spherical robot, joint resultant force (Fres)
versus base joint 01 angle
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Figure 3.9a Unimate 2000 spherical robot, joint moment x-component
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Figure 3.9b Unimate 2000 spherical robot, joint moment y-component
versus base joint $1 angle
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Figure 3.9c Unimate 2000 spherical robot, joint moment z-component
versus base joint $u angle
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Figure 3.94 Unimate 2000 spherical robot, joint resultant
moment (Mres) versus base joint $1 angle
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Example 3.4 - IBM 7576 SCARA Robot (RRPR)

The SCARA configuration has four vertical joint axes. The kinematic and dynamic

data for this robot are given in Tables A.a and Ab in appendix A. This configuration

consists of three revolute joints and one prismatic joint. Because of the orientation of the

joint axes of motion, some peculiar results can be expected from the dynamic analysis.

The following figures display the joint forces and moments resulted from the motion of

revolute shoulder joint 02 (i.e. curve 1 in Figures 2.26 a, b, and c). Due to the SCARA

configuration, the x and y components of the joint forces are due to inertia effects only,

and the z component results mostly from static forces (weight) and in a minimal part by

the acceleration of prismatic joint 3. Also, the x and y components of the joint moment

are mostly generated by the weight, and the z component of joint moment is due mainly

to the inertia x and y components of force.
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Figure 3.10a IBM 7576 SCARA robot, joint force x-component

versus shoulder joint 02 angle
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Figure 3.10b IBM 7576 SCARA robot, joint force y-component
versus shoulder joint 02 angle
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Figure 3.l0c IBM 7576 SCARA robot, joint force z-component
versus shoulder joint 02 angle
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Figure 3.l0d IBM 7576 SCARA robot, joint resultant force (Fres)
versus shoulder joint 02 angle
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Figure 3.11a IBM 7576 SCARA robot, joint moment x-component
versus shoulder joint 02 angle
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Figure 3.11b IBM 7576 SCARA robot, joint moment y-component
versus shoulder joint 02 angle
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Figure 3.lc IBM 7576 SCARA robot, joint moment z-component
versus shoulder joint 02 angle
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Figure 3.11d IBM 7576 SCARA robot, joint resultant moment (Mres)
versus shoulder joint 02 angle
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Example 3.5 - Space Shuttle RMS Manipulator (RRR/RRR)

All kinematic and dynamic data for the RMS manipulator are included in Tables A.5a

and A.5b in Appendix A. In this example, the acceleration of gravity was set to zero,

since this manipulator was originally designed to work in outer space. As a result of this,

only inertia joint forces and moments result from the motion. Because of the large

dimensions of the links of this robot, even small joint angular velocities and accelerations

will cause large velocities and accelerations, and therefore large inertia forces and

moments develop. In the analysis, revolute shoulder joint 02 is allowed to move

throughout its entire range of motion. The manipulator carries a 100 Kg mass at its end

effector. This manipulator is basically similar to the Cincinnati Milacron T-3 robot, except

for its weight and link dimensions, and its working environment conditions. The figures

shown display curves of similar shapes as the curves obtained from the Cincinnati

Milacron T3 robot.
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versus shoulder joint 02 angle
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3.3.4 Discussion of Results

The results presented for the Cincinnati Milacron T3, Bendix AA/CNC, and Unimate

2000 were compared to those obtained by Yih (1987), and by Chang and Shabana (1990).

Also, all dynamic results obtained for all five robots were analyzed and verified by hand

calculations assuming static (zero joint velocities and accelerations) and dynamic

equilibrium conditions.

Dynamic joint forces and moments were determined under a condition of quasi-static

equilibrium. These joint forces and moments are the required input forces and moments

necessary to drive the manipulator's links given the prescribed kinematic conditions (joint

positions, velocities, and accelerations). Robotic links were assumed to be rigid. The

following conclusions are drawn based on these considerations.

In general, the magnitude of the joint forces and moments appear to be larger towards

the base joint of the robot. This is expected, as the forces and moments add up towards

the base joint, which is responsible for supporting the whole linkage system. Therefore,

an obvious conclusion is that; larger joint actuators are required near the base joint.

The joint force and moment curves display special features depending on the type of

joint which generates the motion. For the case of a revolute joint, the joint driving forces

and moments vary non-linearly against the motion of the joint. This means that the joint

driving forces and moments must be controlled in a similar fashion (non-linearly) in order

to produce such motion. The motion of a prismatic joint is generated by an almost linear

variation of joint force and moment according to Figs. 3.6a - 3.7d. Also this type of

motion results in a nearly linear force and moment response on the non-moving joints.

For the case of a spherical joint, the joint forces and moments response is similar (non-

linear) to that caused by the motion of a revolute joint. This may be explained by the fact
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that both type joints have a somewhat similar type of motion (revolving). The difference

being that one moves about one axis, while the other (spherical) rotates about three axes.

The IBM SCARA and the RMS manipulators present special dynamic joint force and

moment results. Due to the particular configuration of the SCARA robot (all joint axes

aligned vertically to the ground) the X and Y components of the joint forces result from

inertial effects alone. The Z component of the joint force is mostly due to static forces

(weight), and in a small part, it results from the motion (acceleration) of prismatic joint

3, therefore, it is almost constant as displayed in Fig 3.10. The X and Y components of

the joint moments for the IBM SCARA are mainly due to weight forces, and the Z

component results from the X and Y components of force (inertial). The RMS

manipulator was designed to work in a zero gravity environment, thus, the actuator forces

and moments required to drive the robot must work against the inertia of the robot and

payload mass. These are displayed in Figs. 3.12a - 3.13d.
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RaMIP (Robot and Mechanism Integrated Program)

4.1 Introduction

The application of C-B notation for the kinematic and dynamic analyses of open-

chain mechanisms has led to the development of a computer algorithm named RaMIP

(Robot and Mechanism Integrated Program). RaMIP is a general purpose computer

program written in C language and implemented to run on a SUN platform. It integrates

advanced 2- and 3-dimensional graphical capabilities for the presentation and analysis of

results. It permits modeling of robotic manipulators with any combination of revolute,

prismatic, and/or spherical joints (up to 30 d.o.f.). Currently, all procedures are organized

through the usage of selection menus and keyboard input. In the future, RaMIP will

include menu selection using mouse. Moreover, RaMIP is will be further expanded to

include kinematic and dynamic analyses of closed-chain mechanisms, Lagrangian

dynamics, and inverse kinematics as well.

Utilizing the multi-tasking feature of UNIX, RaMIP exchanges information with

Mathematica for the generation of graphic displays. The multi-tasking feature allows more

than one process (running program) to be processed at the same time. Utilizing this

feature, RaMIP makes calls to Mathematica from within itself, giving Mathematica the

necessary instructions (Mathematica graphics language files) for the generation of

graphics. In this manner all the 2- and 3-dimensional graphics capabilities of Mathematica

are utilized, without going into major programming complications (though substantial

programming effort is involved during the process).
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4.2 General Computational Procedures

The program is organized to allow the user to move from one step to another by the

use of menus. The menus provide complete mobility for the user to move either forward

or backward in the solution procedure. Figures 4.1 through 4.6 present the flow charts

which reveal the program's organization and analysis procedures. The first step in the

analysis involves the input of all kinematic and/or dynamic data pertaining the

manipulator under study. The second step contains the kinematic and/or dynamic solution

through an interactive procedure in which the desired solution is obtained from a series

of solution procedures. The third step consists of displaying, saving, and printing the

results based on the analytical data.

4.2.1 Input Data

The first step in the analysis involves the input of all necessary data pertaining the

open-chain mechanism to be analyzed. For this reason, it is suggested that all input data

needed for the analysis should be prepared in advance (see appendix A). The data may

be stored and read from a data file, or it may be entered using the keyboard. All input

data typed using the keyboard are written and stored automatically to a data file for later

use.

A) Kinematic Input Data

The data necessary for the kinematic analysis include:

a) number of joints,

b) type of each joint (R, P, or S),

c) joint and link parameters:
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-Revolute -(, ,h, r, ,O 6, 0  ,ntervadO/dt, d20/d?)

- Prismatic - (, c- , 8, r, h, h., hin , dh/dt, d2h/dt2)

- Spherical - (Cc, p, a, $4i, $, $in Ora , 0 Omrv d/vdt, d2 /dt 2, do/dt,

d20/dt2)

B) Dynamic Input Data

The data needed for the dynamic analysis include all kinematic data as explained

previously, along with the following data (in order):

a) Number of links of the manipulator

b) Acceleration of gravity (MKS or Ft-lb-sec)

c) Mass of each link

d) Parameter for each link (to locate the C.G. of the link)

e) Inertia tensor components for each link , Iyy, , I , I, ,I,)

1) Mass of Payload

Note: same as for the kinematic input, all data may be entered using the keyboard or by

reading a data file. If the data is entered through the keyboard, it is automatically saved

to a data file.

C) Data Structures and Subroutines

The data structures used by RaMIP include integer, single and double precision

floating point variables and arrays, character variables and strings (character arrays), and
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a set of fixed value parameters. Table 4.1 describes these parameters.

Table 4.1 Algorithm Data Structures

Parameter Type Description
A[6xn][6xn] float (g) Dynamics coefficient matrix A from Ax =

b
accelvalue[curve#][point#] float (g) Holds shading values for 3-D acceleration

graphics in floating point form
A_inv[6xn][6xn] float (g) A® matrix
analysistype int (g) Indicates type of analysis: displacement=O,

velocity=1,acceleration=2
aval[curve#][point#] it (g) Holds shading values for 3-D acceleration

shaded graphics in integer form
b[6xn] float (g) Dynamics column vector b from Ax = b,

holds forces and moments about the each
link C.G.

blue[level] int (g) Contains blue scale shading
brianmat[4] [4] float (g) Bryant angles matrix
brimat[4] [4] float (1) Bryant angles matrix
charma[joint#][4][4] float (g) Characteristic acceleration matrix
charmd[joint#][4][4] float (g) Characteristic displacement matrix
charmv[joint#][4][4] float (g) Characteristic velocity matrix
chma[joint#][4][4] float (1) Characteristic acceleration matrix
chmd[joint#][4][4] float (1) Characteristic displacement matrix
chmv[joint#][4][4] float (1) Characteristic velocity matrix
cgaccel[link#][3] float (g) Holds x, y, z acceleration of each link C.G
cgpos[link#][3] float (g) Holds x, y, z position of each link C.G.
cnumb int (g) Kinematic curve # index variable
defdynamicfile[80] char (1) Holds default name for dynamics input data

file
filedef[80] char (1) Holds default name for kinematic input data

file
gravity float (g) Acceleration of gravity
green[20] int (g) Contains green scale shading
i int (1) index variable

Sit (1) index variable

jointaccel[joint#][3] float (g) Holds x, y, z acceleration of each joint
jointdata[joint#][15] doub (g) Holds all basic kinematic information

96



jointpos joint#][3] float (g) Holds x, y, z position of each joint

jtype[joint#] char (g) Holds type of joint (R, P, S)

k int (g) index variable

kinefile[80] char (g) Holds default name for kinematic results
file

kinefilel[80] char (g) Holds user entered name for kinematic
results file

linkinfo[link#][8] float (g) Holds all link dynamic information
mass float (g) mass of payload

matres[9][4][4] float (g) matrix which holds resultant displacement,
velocity, and acceleration matrices

nj int (g) number of joints
nlinks int (g) number of links
options[400] char (g) Holds all options for the 2-D and 3-D

graphics
outfile[80] char (g) Holds default name for dynamic results file
outfilel[80] char (g) Holds user entered name for dynamic

results file
plane[2] char (g) Holds the plane to be displayed in 2-D (i.e.

xz, yz, xy,...)

plotpoints[curve#][9][point#] float (g) Holds position, velocity, and acceleration
values (end-effector) for all kinematic
curves

plotpoints1[curve#][9][point#] float (g) Holds intermediate values for position,
velocity, and acceleration of end-effector

plotpoints2[curve#][9][point#] float (g) Holds intermediate values for position,
velocity, and acceleration of end-effector

pnumb[curve#] int (g) number of points for each kinematic curve
pnumb1[curve#] int (1) number of points for each kinematic curve
red[20] int (g) Contains red scale shading

reljoaccel[joint#[2][3] float (g) Holds relative joint acceleration
(acceleration of joint i+1 w/r to joint i)

rejopos[joint#][2][3] float (g) Holds relative joint positions (position of
joint i+1 w/r to joint i)

scalearray[20] float (g) array which holds scaled values of velocity
or acceleration utilized for shading 3-D
graphics

strg[150] char (g) Arbitrary string array used to compose
strings
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varij[20] int (g) Contains a record of the joint # that has
moved

varj int (g) joint # which moves (moveable joint)
velvalue[curve#][point#] float (g) Holds shading values for 3-D velocity

shaded graphics in floating point form

vval[curve#][point#] int (g) Holds shading values for 3-D velocity
shaded graphics in integer form

X[point#][90] float (g) Resultant dynamic force and moment
column vector at different points.

x_coord[point#] float (g) Keeps track of values of moveable joint
parameter (i.e. 6, h, $)

- g: global ; 1: local

RaMIP consists of 54 functions including the main function (main program). Next,

a basic introduction of each of the functions is stated briefly.

- addmat() : adds the contents of one 3-D matrix to another 3-D matrix

- brian _angles mat : computes the bryant angles matrix of a given joint

- clean _graphics_ files() opens new data files in which mathematica graphics commands
will be written.

- constant data() lets the user input all the constant data for all non-moving joints
- curve_ analysis performs a dynamic analysis along the path generated by the motion
of one joint

- curve_calculation() combines several functions to calculate new 2-D curves

- delete _bad curves) lets user select the 3-D curves which are to be included in the
final graphics (i.e. for the workspace) and deletes the others.

- determax() determines maximum and minimum values of velocity and acceleration
for use in 3-D graphics shading

- dyna graphics() : writes dynamic results graphics files ready for mathematica 2-D
plotting

- dynamic_ analysis( this is the main dynamic function which organizes and combines
several functions to do all dynamic analyses and generate output graphics, etc...

- dynami_ info from file() : reads in all the necessary dynamic input information from
a file

- dynamicnfo _to _file writes all dynamic input data to a file for use later
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- dynaaresults: organizes several functions to generate, modify, and save dynamic
graphics and data results

- fixedjointpos_mat_multO multiplies position matrices around the moveable joint

- formatedoints_to_fileO : write 3-D kinematic curve points to a data file

- from_fileO : reads in all necessary kinematic input data from a file

- funchmata : computes the characteristic acceleration matrix

- funchmatdO : computes the characteristic displacement matrix

- funchmatv : computes the characteristic velocity matrix

- input data: lets user input all necessary robot kinematic information

- inputdynamic_dataO lets user input all necessary robot dynamic information

- input_forces_and moments matrix : generates the relative forces and moments
column vector b (Ax = b)

- input movejoint : lets user specify moveable joint and limit its range of motion

- kinematic analysis0 : this is the main kinematic function which organizes and
combines several functions to do all dynamic analyses and generate output graphics, etc...

- mainO : main program function. Organizes all kinematic, dynamic, graphics functions,
and so on...

- mat multO : computes the product if A1*b = x, obtaining the joint forces and moments

- matmult230 multiplies a 2-D array matrix by a 3-D array matrix

- matmult330 : multiplies a 3-D array matrix by another 3-D array matrix

- matrix_inversion0 : computes matrix Ai by inverting matrix A

- mathematica_3dpoints_to_file : CREATES 3-D position, velocity, and acceleration
graphics files ready for input to mathematica

- move variableoint : moves the selected moveable joint in steps, and combines other
functions to make all kinematic calculations at each step

- out tableresultsO : saves formatted dynamic results to a user named data file

- p analysisjoint_location : lets user fix the position of each one of the robot's joints,
for the dynamic analysis at a specific robot location (not following a curve)

- plot 2D curvesO : combines several functions to generate 2-D kinematic graphic files
and interfaces with mathematica to generate and/or print the plots

- plotpoints toflleO: saves unformatted 3-D kinematic points to data file

- point analysisO : combines several functions to perform a dynamic analysis with the
robot fixed at a specific position (all joints fixed)

- pointdeterstoreO : the most complex function in the algorithm. It combines several
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functions to determine and store the end-effector position, velocity, and acceleration,
through a series a complicated matrix multiplications

- p_ accel calculations : similar to function pointdeterstoreO but it computes the
position and acceleration of each individual joint not just the end-effector's position and
acceleration

- print dynaplot() it allows the user to print dynamic results plots to a printer
(Postscript)

- relative_and_cgvectors : calculates all relative C.G. position and acceleration vectors
based on the joint positions and accelerations

- relos matrixA : generates coefficient matrix A based on the relative C.G. position
vectors

- rotate basejoint() : rotates all kinematic curves about the manipulators base axis to
generate the workspace, velocity, and acceleration space (this is done this way in order
to save cpu time)

- save_dynaplot() : saves dynamic results plots to a file in postscript or mathematica
graphics language

- save _3D graphics() saves kinematic 3-D graphics to a file in postscript or
mathematica graphics languages

- select_Show_options : lets the user select different options in order to customize
(modify) 2-D plots

- selectShow_3D optionsO lets the user select different options for the purpose of
customizing (modify) 3-D plots

- shading values : computes gray scale and color shading values for the 3-D velocity
and/or acceleration shaded graphics

- storepoints() : stores kinematic points in a three dimensional array (plotpoints) for
ploting, and others

- to_flle : save robot's kinematic data to a file for use later

- transform() : transforms (rotates) 3-D kinematic curve points about the base joint axis
and calls mathematica_3dpoints-to-file() which generates a mathematica 3-D graphics
file ready for 3-D ploting

- twoD_curves_to_file() generates mathematica graphics file ready for 2-D plotting

- _2Dgraphics : organizes several functions to generate, save, modify, and print 2-D
kinematic space plots

- _3Dgraphicso : similar to _2Dgraphics() function but for 3-D graphics

100



4.2.2 Algorithm Organization and Solution Procedures

Once all kinematic and/or dynamic initial data have been input into the program, the

user must provide the specific information pertaining to the type of analysis to be

accomplished. For the case of the kinematic analysis, the second step consists of an

interactive process by which the total solution is built part by part, by moving one joint

at a time and obtaining the results for that particular motion. For the dynamic analysis,

the solution is obtained in a single solution procedure. For both type of analyses, each run

consists of selecting one of the manipulator's joints as the moveable parameter (except

for the dynamic solution at a point), and then obtaining a solution for that motion. For

example, in the kinematic analysis one would obtain the trajectory, velocity, and

acceleration of the end-effector at several points through the selected joint motion. In the

dynamic analysis the solution would give the forces and moments at each one of the

robot's joints for each trajectory point (each point has an associated velocity and

acceleration used in this analysis). The final result for the kinematic analysis would be,

for instance, the collection of kinematic trajectory curves described by the manipulator's

end-effector which represent the robot's workspace, and for the dynamic analysis, the

forces and moments at each one of the joints at each point of the motion of the

manipulator's arm.
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Figure 4.1 Main program
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Figure 4.2 Kinematics main menu
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Figure 4.3 2-D kinematic graphics
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Figure 4.4 3-D kinematic graphics
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Figure 4.5 Dynamic solution procedure
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Figure 4.6 Dynamic results presentation
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4.2.3 Output of Results

The third step of the analysis procedure consists of displaying, saving, and printing

results. The algorithm is capable of displaying 2- and 3-dimensional graphics on the

computer's monitor, and also, it can generate hard copies of the graphics by sending them

to a postscript output device (such as a postscript printer). Also, the graphics may be

saved to a graphics file in postscript and/or mathematica graphics language for its

regeneration on the computer's screen and in hard copy form, Besides graphics, numerical

output is also available in both hard copy and data files form. All this output processes

have been integrated within the algorithm, without any need of external programs or

procedures.
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CONCLUSIONS AND FUTURE PERSPECTIVE

Systematic approaches in the form of symbolic notations for the analysis of spatial

linkage systems (mechanisms and robots) using 4x4 homogeneous matrices were

originally developed for the display of three dimensional computer images. A symbolic

notation provides a general shorthand representation of a mechanical system and contains

the essential parameters for the complete description of the system. In this thesis, a new

symbolic representation, C-B notation, was successfully utilized for the three dimensional

kinematic analysis of any n-link open-chain mechanism. Also, the C-B notation was

combined with the Newton-Euler formulation to derive a general matrix solution for the

dynamic analysis of open-chain mechanisms. A computer algorithm, RaMIP (Robot and

Mechanism Integrated Program), capable of designing and analyzing both open-chain and

close-chain mechanisms, was initiated utilizing the methods mentioned before. Finally,

several existing robots were analyzed using RaMIP and the corresponding kinematic and

dynamic results were presented and compared with known data.

First, the C-B notation was successfully applied to model any n-link open-chain

mechanism consisting of an arbitrary combination of revolute, prismatic, or spherical

joints. Five robots (Cincinnati Milacron T3, Bendix AA/CNC, Unimate 2000, IBM 7576

SCARA, Space Shuttle RMS) were modeled using the C-B notation, and the kinematic

analysis resulted in the determination of 3-dimensional positions, velocities, and

accelerations of each joint and link C.G. The corresponding kinematic spaces were
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generated graphically and displayed as 3-dimensional images. The results from the

kinematic analysis were employed later in the dynamic analysis.

In chapter 3, the general dynamics matrix notation for a rigid n-link open-chain

manipulator was derived. Dynamic joint forces and moments for any n-link robot were

calculated based on the Newton-Euler equations of motion under the consideration of

quasi-static equilibrium. The displacements, velocities, and accelerations of each joint and

link C.G. were pre-determined in kinematics, and the resultant external forces and

moments applied to the mass center were pre-calculated. Subsequently, the forces and

moments column vector [b], and displacement coefficient matrix [A] were formed, and

the dynamic solutions for joint forces and moments was obtained from the product of the

inverse of displacement coefficient matrix [A] ([A]-), and the forces and moments column

vector [b]. The derived matrix notation provides a simple means of performing dynamic

analysis for open-chain mechanisms. The resulting matrix notation was tested for five

robots, and the joint forces and moments produced by varying the geometry (joint

angle/position) of such robots was presented.

Chapter 4 describes RaMIP (Robot and Mechanism Integrated Program), the

algorithm which resulted from the work accomplished in this thesis, has proven to be

effective and versatile. Its analytical approach renders it general enough for the analysis

of many types of robotic manipulators with the most common geometries found in

industrial applications. Kinematic and dynamic solutions may be obtained in a matter of

a few seconds. Also, RaMIP includes special functions which allow shortening CPU time

for processes. For instance, 3 -dimensional graphics may take longer than just a few
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seconds for their generation on the computer screen. In order to shorten this time, RaMIP

allows changing the resolution of 3-dimensional graphics and also, the selection of partial

representations of 3-dimensional graphics.

RaMIP was developed to make it as user friendly as possible, using menus to move

forward and backward in the analysis procedures. With respect to this, its development

has not yet been finished. In the near future, a new mouse and menu graphical interface

will be developed to make the analytical task even simpler. At the present time, RaMIP

is capable of doing forward kinematic and inverse dynamic analyses. Further development

in this aspect is currently in the process to include manipulator inverse kinematics and

mechanism design. The next step planned involves the development of forward dynamics

modeling, and the inclusion of close-chain and combined open- and closed-chain

mechanism analysis.
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APPENDIX

ROBOT KINEMATIC AND DYNAMIC DATA

The following tables contain all kinematic joint parameters (in C-B notation convention)

for each one of the robots used as examples for kinematic and dynamic analysis.

Table Ada Kinematic Parameters for Cincinnati Milacron T3 Robot

Joint 0 h r f3 variable position

[deg] [in] [m] [deg] [deg] [deg]

1(R) -120/120 1.5 0 90 0 01 30

2(R) 0/90 0 1.067 0 0 02 45

3(R) -150/0 0 1.067 0 0 3 variable

4(R) -90/90 0 0.205 270 0 04 0

5(R) -90/90 0 0.369 0 90 0 0

6(R) -135/135 0 0 0 0 06 0

Table A.lb Dynamic Parameters for Cincinnati Milacron T3 Robot

Link mn II I I IYZ I
No. [Kg]

1 1.4 2.00 2.00 0.634 0.0 0.0 0.0

2 6.8 2.94 58.8 58.8 0.0 0.0 0.0

3 6.8 2.94 58.8 58.8 0.0 0.0 0.0

4 1.8 0.226 6.22 6.22 0.0 0.0 0.0

5 1.4 2.00 0.634 2.00 0.0 0.0 0.0

6 2.6 1.02 3.5 3.50 0.0 0.0 0.0

Joint velocities and accelerations are assigned unity. Payload 25 Kg.
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Table A.2a Kinematic Parameters for Bendix AA/CNC Robot

Joint 6 h r p variable position

[deg] [in] [in] [deg] [deg] [deg]

1(R) -95/95 1.067 0 90 0 0 60

2(R) -45/225 0 0.659 90 90 02 -45

3(P) 0 0/0.61 0 0 03 variable

4(R) -95/95 0.109 0 90 0 04 0

5(R) -20/200 0 0.146 90 90 05 -20

6(R) 0/360 0 0 0 0 6 arbitrary

Table A.2b Dynamic Parameters for Bendix AA/CNC Robot

Link No. in II yy I

[Kg]

1 12.0 1.00 1.00 1.00 0.0 0.0 0.0

2 10.0 1.00 1.00 1.00 0.0 0.0 0.0

3 9.0 1.00 1.00 1.00 0.0 0.0 0.0

4 6.0 1.00 1.00 1.00 0.0 0.0 0.0

5 5.0 1.00 1.00 1.00 0.0 0.0 0.0

6 2.5 1.00 1.00 1.00 0.0 0.0 0.0

Joint velocities and accelerations are assigned unity. Payload = 25 Kg.

I,, yy, and 4, are assigned unity for generality purposes
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Table A.3a Kinematic Parameters for Unimate 2000 Spherical Robot

Joint 0 h r f3 variable position

[deg] [in] [in] [deg] [deg] ____

1(S) -104/104 ** ** 0 90 01, $ 01=100

$ 1=var.

2(P) 90 0.91/2.03 0 0 270 2 2.03

3 -110/110 0 0.2 270 0 30

4(R) -100/100 0 0.2 0 90 04 0

5(R) 0/360 0 0 0 0 05 0
* h = acos and r = asin ; a = 0.121n and -26 $

Table A.3b Dynamic Parameters for Unimate 2000 Spherical Robot

Link in I IYY I Ix IY
No.

1 25.0 1.00 1.00 1.00 0,0 0.0 0.0

2 18.0 1.00 1.00 1.00 0.0 0.0 0.0

3 15.0 1.00 1.00 1.00 0.0 0.0 0.0

4 10.0 1.00 1.00 1.00 0.0 0.0 0.0

5 7.0 1.00 1,00 1.00 0.0 0. 0.0
Jont velocities an acce erations are assigne unity. Payload = 25 .

Ix, Iyy, and I, are assigned unity for generality purposes
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Table A.4a Kinematic Parameters for IBM 7576 (SCARA) Robot

Joint r(m) __ variable

1(R) -120/120 0.5 0.4 0 0 01

2(R) -136/136 0 0.4 0 0 02

3(P) 0 0/0.25 0 0 180 3

4(R) -3600/3600 0 0 0 0 04
olt 'v'octlesad acrel erations -are assigned unity. PayI5oa23Tg

Table A.4b Dynamic Parameters for IBM 7576 (SCARA) Robot

Link m I
No. [Kg]

1 21.0 1.00 1.00 1.00 0.0 0.0 0.0

2 18.0 1.00 1.00 1.00 0.0 0.0 0.0

3 2.0 1.00 1.00 1.00 0.0 0.0 0.0

4 2.0 1.00 1.00 1.00 0.0 0.0 0.0

IX IY, and I are assigned unity for generality purposes

Table A.Sa Kinematic Parameters for Space Shuttle (RMS) Robot

Joint 0 h(m) r(m) c variable

1(R) -2/145 1.0 0.10 90 0 01

2(R) -180/180 0 6.3767 0 0 2

3(R) -160/2 0 7.0599 0 0 03

4(R) -120/120 0 0.5 270 0 04

5(R) -120/120 0 0.5 0 90 05

6(R) -447/447 0 .8796 0 0 6
jontfvIeel'ties nid~ cce erations are .ign'ed unity. Payload =g.
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Tab Dynanuf ---eters for Space Shuttle (RMS) Robot

Link No. I I Ixy IYZ lxz

[Kgj

1 50. 1.00 1.00 1.00 0.0 0.0 0.0

14.0 1.00 1.00 1, . . .

3 11 .1 1.00 1.00 . , .

45. 1,fl 1.00 1.00 0.0 0.0 0.0

S 30. .00 1.00 1. 0. . .

6 25.0 1.00 1.00 1.00 3.0 0.0 0.0

y, an I are assigned unity for generality purposes
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