4,928 research outputs found

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    Assistive technologies : short overview and trends

    Get PDF
    This paper gives a brief overview of currently existing assistive technologies for different kinds of disabilities. An elaborate discussion of all types of assistive technologies is beyond the scope of this paper. Assistive technologies have evolved dramatically in recent years and will continue to be further developed thanks to major progress in artificial intelligence, machine learning, robotics, and other areas. Previously, assistive technologies were highly specialized and were often difficult or expensive to acquire. Today, however, many assistive technologies are included in mainstream products and services. An introduction and state of the art of assistive technologies are presented first. These are followed by an overview of technological trends in assistive technologies and a conclusion

    Human-centred design methods : developing scenarios for robot assisted play informed by user panels and field trials

    Get PDF
    Original article can be found at: http://www.sciencedirect.com/ Copyright ElsevierThis article describes the user-centred development of play scenarios for robot assisted play, as part of the multidisciplinary IROMEC1 project that develops a novel robotic toy for children with special needs. The project investigates how robotic toys can become social mediators, encouraging children with special needs to discover a range of play styles, from solitary to collaborative play (with peers, carers/teachers, parents, etc.). This article explains the developmental process of constructing relevant play scenarios for children with different special needs. Results are presented from consultation with panel of experts (therapists, teachers, parents) who advised on the play needs for the various target user groups and who helped investigate how robotic toys could be used as a play tool to assist in the children’s development. Examples from experimental investigations are provided which have informed the development of scenarios throughout the design process. We conclude by pointing out the potential benefit of this work to a variety of research projects and applications involving human–robot interactions.Peer reviewe

    In-home and remote use of robotic body surrogates by people with profound motor deficits

    Get PDF
    By controlling robots comparable to the human body, people with profound motor deficits could potentially perform a variety of physical tasks for themselves, improving their quality of life. The extent to which this is achievable has been unclear due to the lack of suitable interfaces by which to control robotic body surrogates and a dearth of studies involving substantial numbers of people with profound motor deficits. We developed a novel, web-based augmented reality interface that enables people with profound motor deficits to remotely control a PR2 mobile manipulator from Willow Garage, which is a human-scale, wheeled robot with two arms. We then conducted two studies to investigate the use of robotic body surrogates. In the first study, 15 novice users with profound motor deficits from across the United States controlled a PR2 in Atlanta, GA to perform a modified Action Research Arm Test (ARAT) and a simulated self-care task. Participants achieved clinically meaningful improvements on the ARAT and 12 of 15 participants (80%) successfully completed the simulated self-care task. Participants agreed that the robotic system was easy to use, was useful, and would provide a meaningful improvement in their lives. In the second study, one expert user with profound motor deficits had free use of a PR2 in his home for seven days. He performed a variety of self-care and household tasks, and also used the robot in novel ways. Taking both studies together, our results suggest that people with profound motor deficits can improve their quality of life using robotic body surrogates, and that they can gain benefit with only low-level robot autonomy and without invasive interfaces. However, methods to reduce the rate of errors and increase operational speed merit further investigation.Comment: 43 Pages, 13 Figure

    Empowering and assisting natural human mobility: The simbiosis walker

    Get PDF
    This paper presents the complete development of the Simbiosis Smart Walker. The device is equipped with a set of sensor subsystems to acquire user-machine interaction forces and the temporal evolution of user's feet during gait. The authors present an adaptive filtering technique used for the identification and separation of different components found on the human-machine interaction forces. This technique allowed isolating the components related with the navigational commands and developing a Fuzzy logic controller to guide the device. The Smart Walker was clinically validated at the Spinal Cord Injury Hospital of Toledo - Spain, presenting great acceptability by spinal chord injury patients and clinical staf

    Mobile Interface for a Smart Wheelchair

    Get PDF
    Smart wheelchairs are designed for severely motor impaired people that have difficulties to drive standard -manual or electric poweredwheelchairs. Their goal is to automate driving tasks as much as possible in order to minimize user intervention. Nevertheless, human involvement is still necessary to maintain high level task control. Therefore in the interface design it is necessary to take into account the restrictions imposed by the system (mobile and small), by the type of users (people with severe motor restrictions) and by the task (to select a destination among a number of choices in a structured environment). This paper describes the structure of an adaptive mobile interface for smart wheelchairs that is driven by the context.Comisión Interministerial de Ciencia y Tecnología TER96-2056-C02-0

    Talk your way round: a speech interface to a virtual museum

    Get PDF
    Purpose: To explore the development of a speech interface to a Virtual World and to consider its relevance for disabled users. Method: The system was developed using mainly software that is available at minimal cost. How well the system functioned was assessed by measuring the number of times a group of users with a range of voices had to repeat commands in order for them to be successfully recognised. During an initial session, these users were asked to use the system with no instruction to see how easy this was. Results: Most of the spoken commands had to be repeated less than twice on average for successful recognition. For a set of ‘teleportation’ commands this figure was higher (2.4), but it was clear why this was so and could easily be rectified. The system was easy to use without instruction. Comments on the system were generally positive. Conclusions: While the system has some limitations, a Virtual World with a reasonably reliable speech interface has been developed almost entirely from software which is available at minimal cost. Improvements and further testing are considered. Such a system would clearly improve access to Virtual Reality technologies for those without the skills or physical ability to use a standard keyboard and mouse. It is an example of both Assistive Technology and Universal Design
    corecore