51 research outputs found

    A Node Formulation for Multistage Stochastic Programs with Endogenous Uncertainty

    Full text link
    This paper introduces a node formulation for multistage stochastic programs with endogenous (i.e., decision-dependent) uncertainty. Problems with such structure arise when the choices of the decision maker determine a change in the likelihood of future random events. The node formulation avoids an explicit statement of non-anticipativity constraints, and as such keeps the dimension of the model sizeable. An exact solution algorithm for a special case is introduced and tested on a case study. Results show that the algorithm outperforms a commercial solver as the size of the instances increases

    Towards near 100% renewable power systems: Improving the role of distributed energy resources using optimization models

    Get PDF
    The envisioned near 100 % renewable Power Systems, crucial in attaining the sustainability goals aspired by society, will call for the active and multifaceted participation of all the actors involved in the energy systems. Time-varying renewable energy systems (vRES), such as solar photovoltaic (PV) and wind, will play a decisive role in meeting the ambitious renewable targets. This is due to the large availability of natural resources and the rapid decrease in investment costs observed in the last two decades. In fact, most of the scenarios to achieve near 100% RES in Europe strongly rely on these two energy sources. However, the high temporal and spatial variability of the power generated by these technologies represents a challenge for preserving the high-security standards of supply, quality of service, and the robustness of current power systems, especially with the foreseen contributions from vRES. With an emphasis on the vital role these renewable technologies play in this process, this work aims to develop new methods and tools that may assist different players in different stages of this transition. The three leading contributions are: 1. A Multiyear Expansion-Planning Optimization Method (MEPOM) to be used in the planning processes carried out by system operators and governmental entities. 2. An Optimal Design and Sizing of Hybrid Power Plants (OptHy) decision-support tool to be used in accessing investment decisions and other managing actions led by renewable power plant owners and investors. 3. A Decision-aid Algorithm for Market Participation and Optimal Bidding Strategy (OptiBID) that market agents may adopt to operate and value their renewable energy assets in the electricity markets
    corecore