89,511 research outputs found

    The relevance of outsourcing and leagile strategies in performance optimization of an integrated process planning and scheduling

    Get PDF
    Over the past few years growing global competition has forced the manufacturing industries to upgrade their old production strategies with the modern day approaches. As a result, recent interest has been developed towards finding an appropriate policy that could enable them to compete with others, and facilitate them to emerge as a market winner. Keeping in mind the abovementioned facts, in this paper the authors have proposed an integrated process planning and scheduling model inheriting the salient features of outsourcing, and leagile principles to compete in the existing market scenario. The paper also proposes a model based on leagile principles, where the integrated planning management has been practiced. In the present work a scheduling problem has been considered and overall minimization of makespan has been aimed. The paper shows the relevance of both the strategies in performance enhancement of the industries, in terms of their reduced makespan. The authors have also proposed a new hybrid Enhanced Swift Converging Simulated Annealing (ESCSA) algorithm, to solve the complex real-time scheduling problems. The proposed algorithm inherits the prominent features of the Genetic Algorithm (GA), Simulated Annealing (SA), and the Fuzzy Logic Controller (FLC). The ESCSA algorithm reduces the makespan significantly in less computational time and number of iterations. The efficacy of the proposed algorithm has been shown by comparing the results with GA, SA, Tabu, and hybrid Tabu-SA optimization methods

    Assembly line balancing by using axiomatic design principles: An application from cooler manufacturing industry

    Full text link
    [EN] The philosophy of production without waste is the fundamental belief behind lean manufacturing that should be adopted by enterprises. One of the waste elimination methods is assembly line balancing for lean manufacturing, i.e. Yamazumi. The assembly line balancing is to assign tasks to the workstations by minimizing the number of workstations to the required values. There should be no workstation with the excessively high or low workload, and all workstations must ideally work with balanced workloads. Accordingly, in this study, the axiomatic design method is applied for assembly line balancing in order to achieve maximum output with the installed capacity. In order to achieve this aim, all improvement opportunities are defined and utilized as an output of the study. Computational results indicate that the proposed method is effective to reduce operators’ idle time by 12%, imbalance workload between workstations by 38%, and the total number of workers by 12%. As a result of these improYilmaz, ÖF.; Demirel, ÖF.; Zaim, S.; Sevim, S. (2020). Assembly line balancing by using axiomatic design principles: An application from cooler manufacturing industry. International Journal of Production Management and Engineering. 8(1):31-43. https://doi.org/10.4995/ijpme.2020.11953OJS314381Ağpak, K , Gökçen, H , Saray, N , Özel, S . (2013). Stokastik Görev Zamanlı Tek Modelli U Tipi Montaj Hattı Dengeleme Problemleri İçin Bir Sezgisel. Gazi Üniversitesi MĂŒhendislik Mimarlık FakĂŒltesi Dergisi , 17 (4). Retrieved from https://dergipark.org.tr/en/pub/gazimmfd/issue/6654/89311Alcorta, L. (1999). Flexible automation and location of production in developing countries. The European Journal of Development Research, 11(1), 147-175. https://doi.org/10.1080/09578819908426731Babic, B. (1999). Axiomatic design of flexible manufacturing systems. International Journal of Production Research, 37(5), 1159-1173. https://doi.org/10.1080/002075499191454Black, J. T., Schroer, B. J. (1988). Decouplers in integrated cellular manufacturing systems. Journal of Engineering for Industry, 110(1), 77-85. https://doi.org/10.1115/1.3187846Cakir, B. (2006). A simulation Annealing Algoirthm for Stochastic Process Time based Assembly Line Balancing, M.S. Thesis, Gazi University.Celek, O. E., Yurdakul, M., Ic, T. (2019). Axiomatic Design of a Reconfigurable Assembly System for Aircraft Fuselages (No. 2019-01-1359). SAE Technical Paper. https://doi.org/10.4271/2019-01-1359Cevikcan, E., Durmusoglu, M. B. (2011). Minimising utility work and utility worker transfers for a mixed-model assembly line. International Journal of Production Research, 49(24), 7293-7314. https://doi.org/10.1080/00207543.2010.537385Chen, S. J. G., Chen, L. C., Lin, L. (2001). Knowledge-based support for simulation analysis of manufacturing cells. Computers in Industry, 44(1), 33-49. https://doi.org/10.1016/S0166-3615(00)00071-3Chakraborty, K., Mondal, S., Mukherjee, K. (2017). Analysis of product design characteristics for remanufacturing using Fuzzy AHP and Axiomatic Design. Journal of Engineering Design, 28(5), 338-368. https://doi.org/10.1080/09544828.2017.1316014Cochran, D. S., Eversheim, W., Kubin, G., Sesterhenn, M. L. (2000). The application of axiomatic design and lean management principles in the scope of production system segmentation. International Journal of Production Research,38(6), 1377-1396. https://doi.org/10.1080/002075400188906Dolgui, A., Ihnatsenka, I. (2009). Branch and bound algorithm for a transfer line design problem: Stations with sequentially activated multi-spindle heads.European Journal of Operational Research, 197(3), 1119-1132. https://doi.org/10.1016/j.ejor.2008.03.028Durmusoglu, M. B., Satoglu, S. I. (2011). Axiomatic design of hybrid manufacturing systems in erratic demand conditions. International Journal of Production Research, 49(17), 5231-5261. https://doi.org/10.1080/00207543.2010.510487Ertay, T., Satoğlu, S. I. (2012). System parameter selection with information axiom for the new product introduction to the hybrid manufacturing systems under dual-resource constraint. International Journal of Production Research, 50(7), 1825-1839. https://doi.org/10.1080/00207543.2011.560205Ghosh, S., Gagnon, R. J. (1989). A comprehensive literature review and analysis of the design, balancing and scheduling of assembly systems. The International Journal of Production Research, 27(4), 637-670. https://doi.org/10.1080/00207548908942574Graves, S. C., Lamar, B. W. (1983). An integer programming procedure for assembly system design problems. Operations Research, 31(3), 522-545. https://doi.org/10.1287/opre.31.3.522Gunasekera, J. S., Ali, A. F. (1995). A three-step approach to designing a metal-forming process. JOM, 47(6), 22-25. https://doi.org/10.1007/BF03221198Guschinskaya, O., Dolgui, A., Guschinsky, N., Levin, G. (2008). A heuristic multi-start decomposition approach for optimal design of serial machining lines. European Journal of Operational Research, 189(3), 902-913. https://doi.org/10.1016/j.ejor.2006.03.072Hager, T., Wafik, H., Faouzi, M. (2017). Manufacturing system design based on axiomatic design: Case of assembly line. Journal of Industrial Engineering and Management, 10(1), 111-139. https://doi.org/10.3926/jiem.728Han, W. M., Zhao, J. L., Chen, Y. (2013). A Virtual Cellular Manufacturing System Design Model Based on Axiomatic Design Theory. In Applied Mechanics and Materials (Vol. 271, pp. 1478-1484). Trans Tech Publications. https://doi.org/10.4028/www.scientific.net/AMM.271-272.1478Holzner, P., Rauch, E., Spena, P. R., Matt, D. T. (2015). Systematic Design of SME Manufacturing and Assembly Systems Based on Axiomatic Design.Procedia CIRP, 34, 81-86. https://doi.org/10.1016/j.procir.2015.07.010Houshmand, M., Jamshidnezhad, B. (2002). Conceptual design of lean production systems through an axiomatic approach. In Proceedings of ICAD2002 Second International Conference on Axiomatic Design.Houshmand, M., Jamshidnezhad, B. (2004). A lean manufacturing roadmap for an automotive body assembly line within axiomatic design framework. International Journal of Engineering Transactions, 17(1), 51-72.Houshmand, M., Jamshidnezhad, B. (2006). An extended model of design process of lean production systems by means of process variables. Robotics and Computer-Integrated Manufacturing, 22(1), 1-16. https://doi.org/10.1016/j.rcim.2005.01.004Khandekar, A. V., Chakraborty, S. (2016). Application of fuzzy axiomatic design principles for selection of non-traditional machining processes. The International Journal of Advanced Manufacturing Technology, 83(1-4), 529-543.Kulak, O., Durmusoglu, M. B., Tufekci, S. (2005). A complete cellular manufacturing system design methodology based on axiomatic design principles. Computers & Industrial Engineering, 48(4), 765-787. https://doi.org/10.1016/j.cie.2004.12.006Lipson, H., Suh, N. P. (2000). Towards a universal knowledge database for design automation. In Proceeding of ICAD2000, First International Conference on Axiomatic Design, pg (Vol. 250258, pp. 21-23).Matt, D. T. (2008). Template based production system design. Journal of Manufacturing Technology Management, 19(7), 783-797. https://doi.org/10.1108/17410380810898741Matt, D. T. (2012). Application of Axiomatic Design principles to control complexity dynamics in a mixed-model assembly system: a case analysis.International Journal of Production Research, 50(7), 1850-1861. https://doi.org/10.1080/00207543.2011.565086Matt, D. T. (2013). Design of a scalable assembly system for product variety: a case study. Assembly Automation, 33(2), 117-126. https://doi.org/10.1108/01445151311306627McMullen, P. R., Frazier, G. V. (1998). Using simulated annealing to solve a multiobjective assembly line balancing problem with parallel workstations. International Journal of Production Research, 36(10), 2717-2741. https://doi.org/10.1080/002075498192454Nakao, M., Kobayashi, N., Hamada, K., Totsuka, T., Yamada, S. (2007). Decoupling executions in navigating manufacturing processes for shortening lead time and its implementation to an unmanned machine shop. CIRP Annals-Manufacturing Technology, 56(1), 171-174. https://doi.org/10.1016/j.cirp.2007.05.041Nordlund, M., Tate, D., Suh, N. P. (1996). Growth of axiomatic design through industrial practice. In 3rd CIRP Workshop on Design and the Implementation of Intelligent Manufacturing Systems, Tokyo, Japan (Vol. 6, pp. 77-84).Rauch, E., Spena, P. R., Matt, D. T. (2019). Axiomatic design guidelines for the design of flexible and agile manufacturing and assembly systems for SMEs. International Journal on Interactive Design and Manufacturing (IJIDeM), 13(1), 1-22. https://doi.org/10.1007/s12008-018-0460-1Reynal, V. A., Cochran, D. S. (1996). Understanding lean manufacturing according to axiomatic design principles.Suh, N. P. (1990). The principles of design (Vol. 990). New York: Oxford University Press.Suh, N. P. (1995). Designing-in of quality through axiomatic design. IEEE Transactions on Reliability, 44(2), 256-264. https://doi.org/10.1109/24.387380Suh, N. P. (1997). Design of systems. CIRP Annals-Manufacturing Technology,46(1), 75-80. https://doi.org/10.1016/S0007-8506(07)60779-3Suh, N. P. (2001). Axiomatic Design: Advances and Applications (The Oxford Series on Advanced Manufacturing).Vinodh, S., Aravindraj, S. (2012). Axiomatic modeling of lean manufacturing system. Journal of Engineering, Design and Technology, 10(2), 199-216. https://doi.org/10.1108/17260531211241185Yilmaz, O. F., Cevikcan, E., Durmusoglu, M. B. (2016). Scheduling batches in multi hybrid cell manufacturing system considering worker resources: A case study from pipeline industry. Advances in Production Engineering & Management, 11(3). https://doi.org/10.14743/apem2016.3.22

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: ‱ The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. ‱ The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. ‱ The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. ‱ The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    Post-industrial robotics: the new tendency of digital fabrication for exploring responsive forms and materials through performance

    Get PDF
    The contribution proposes the experimental results of research on robotics manufacturing issues for the realization of informed architectural organisms on a 1:1 scale. The pavilions Fusta Robotics and Digital Urban Orchard and the technological system In.Flux represent the results of tests in which material, environmental and structural performance inform the computational process and the consequent materialization. The two pavilions, both wooden, constitute the physical implementation of different functional programs realised through a collaboration with industrial partners. Fusta Robotics is the result of a collaboration between industry and universities for the tectonic experimentation derived from the use of local non-engineered material. Digital Urban Orchard is the formal expression of a complex functional program arising from the relationship amongst form (shape), function and context for a new concept of socialization space and food production within the agenda at the self-sufficiency in Barcelona. Finally, through the In.Flux prototype, we investigated the relationship among formal generation, structural analysis and robotic manufacturing for the realization of concrete free-form structures. The analysis of the prototypes opens the debate on the role of IT in the post-digital era when the design process manifest through the control and management of the flow of information affecting the digital computation and fabrication and the material behaviour. The resulting theoretical assumption considers the architectural form as the result of a diagram of forces where the achievement of the performance is the driving parameter for the formal geometric exploration. The continuous variation resulting therefrom is informed by performance parameters that define a new aesthetic which represents together the manifestation of objectively measurable performance parameters and the power of the tool through which the form is generated

    An integrated approach to the optimum design of actively controlled composite wings

    Get PDF
    The importance of interactions among the various disciplines in airplane wing design has been recognized for quite some time. With the introduction of high gain, high authority control systems and the design of thin, flexible, lightweight composite wings, the integrated treatment of control systems, flight mechanics and dynamic aeroelasticity became a necessity. A research program is underway now aimed at extending structural synthesis concepts and methods to the integrated synthesis of lifting surfaces, spanning the disciplines of structures, aerodynamics and control for both analysis and design. Mathematical modeling techniques are carefully selected to be accurate enough for preliminary design purposes of the complicated, built-up lifting surfaces of real aircraft with their multiple design criteria and tight constraints. The presentation opens with some observations on the multidisciplinary nature of wing design. A brief review of some available state of the art practical wing optimization programs and a brief review of current research effort in the field serve to illuminate the motivation and support the direction taken in our research. The goals of this research effort are presented, followed by a description of the analysis and behavior sensitivity techniques used. The presentation concludes with a status report and some forecast of upcoming progress

    Modelling and analyzing adaptive self-assembling strategies with Maude

    Get PDF
    Building adaptive systems with predictable emergent behavior is a challenging task and it is becoming a critical need. The research community has accepted the challenge by introducing approaches of various nature: from software architectures, to programming paradigms, to analysis techniques. We recently proposed a conceptual framework for adaptation centered around the role of control data. In this paper we show that it can be naturally realized in a reflective logical language like Maude by using the Reflective Russian Dolls model. Moreover, we exploit this model to specify, validate and analyse a prominent example of adaptive system: robot swarms equipped with self-assembly strategies. The analysis exploits the statistical model checker PVeStA
    • 

    corecore