64 research outputs found

    Firefly algorithm for polynomial Bézier surface parameterization

    Get PDF
    A classical issue in many applied fields is to obtain an approximating surface to a given set of data points. This problem arises in Computer-Aided Design and Manufacturing (CAD/CAM), virtual reality, medical imaging, computer graphics, computer animation, and many others. Very often, the preferred approximating surface is polynomial, usually described in parametric form. This leads to the problem of determining suitable parametric values for the data points, the so-called surface parameterization. In real-world settings, data points are generally irregularly sampled and subjected to measurement noise, leading to a very difficult nonlinear continuous optimization problem, unsolvable with standard optimization techniques. This paper solves the parameterization problem for polynomial Bézier surfaces by applying the firefly algorithm, a powerful nature-inspired metaheuristic algorithm introduced recently to address difficult optimization problems. The method has been successfully applied to some illustrative examples of open and closed surfaces, including shapes with singularities. Our results show that the method performs very well, being able to yield the best approximating surface with a high degree of accuracy

    Simulating the behavior of the human brain on GPUS

    Get PDF
    The simulation of the behavior of the Human Brain is one of the most important challenges in computing today. The main problem consists of finding efficient ways to manipulate and compute the huge volume of data that this kind of simulations need, using the current technology. In this sense, this work is focused on one of the main steps of such simulation, which consists of computing the Voltage on neurons’ morphology. This is carried out using the Hines Algorithm and, although this algorithm is the optimum method in terms of number of operations, it is in need of non-trivial modifications to be efficiently parallelized on GPUs. We proposed several optimizations to accelerate this algorithm on GPU-based architectures, exploring the limitations of both, method and architecture, to be able to solve efficiently a high number of Hines systems (neurons). Each of the optimizations are deeply analyzed and described. Two different approaches are studied, one for mono-morphology simulations (batch of neurons with the same shape) and one for multi-morphology simulations (batch of neurons where every neuron has a different shape). In mono-morphology simulations we obtain a good performance using just a single kernel to compute all the neurons. However this turns out to be inefficient on multi-morphology simulations. Unlike the previous scenario, in multi-morphology simulations a much more complex implementation is necessary to obtain a good performance. In this case, we must execute more than one single GPU kernel. In every execution (kernel call) one specific part of the batch of the neurons is solved. These parts can be seen as multiple and independent tridiagonal systems. Although the present paper is focused on the simulation of the behavior of the Human Brain, some of these techniques, in particular those related to the solving of tridiagonal systems, can be also used for multiple oil and gas simulations. Our studies have proven that the optimizations proposed in the present work can achieve high performance on those computations with a high number of neurons, being our GPU implementations about 4× and 8× faster than the OpenMP multicore implementation (16 cores), using one and two NVIDIA K80 GPUs respectively. Also, it is important to highlight that these optimizations can continue scaling, even when dealing with a very high number of neurons.This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 720270 (HBP SGA1), from the Spanish Ministry of Economy and Competitiveness under the project Computación de Altas Prestaciones VII (TIN2015-65316-P), the Departament d’Innovació, Universitats i Empresa de la Generalitat de Catalunya, under project MPEXPAR: Models de Programació i Entorns d’Execució Parallels (2014-SGR-1051). We thank the support of NVIDIA through the BSC/UPC NVIDIA GPU Center of Excellence, and the European Union’s Horizon 2020 Research and Innovation Program under the Marie Sklodowska-Curie Grant Agreement No. 749516.Peer ReviewedPostprint (published version

    Towards Combining Individual and Collaborative Work Spaces under a Unified E-Portfolio

    Get PDF
    Proceedings of: 11th International Conference on Computational Science and Applications (ICCSA 2011). Santander, Spain, June 20-23, 2011E-portfolios in learning environments have been attributed numerous benefits and their presence has been steadily increasing. And so has the variety of environments in which a student participates. Collaborative learning requires communication and resource sharing among team members. Students may participate in multiple teams throughout a long period of time, sometimes even simultaneously. Conventional eportfolios are oriented toward showcasing individual achievements, but they need to also equally reflect collaborative achievements. The approach described in this paper has the objective of offering students an e-portfolio as a local folder their personal computer containing a combined view of their individual and collaborative work spaces. The content of this folder can be synchronized with a remote server thus achieving resource sharing and publication of a clearly identified set of resources.Work partially funded by the Learn3 project, “Plan Nacional de I+D+I TIN2008- 05163/TSI”, the Consejo Social - Universidad Carlos III de Madrid, the Acción Integrada Ref. DE2009-0051, and the “Emadrid: Investigación y desarrollo de tecnologías para el e-learning en la Comunidad de Madrid” project (S2009/TIC-1650).Publicad

    Smart Planning & Smart Cities

    Get PDF
    In the light of a comprehensive social and technological change, spatial planning is confronted with major changes in its basic conditions. It is faced with an increasing ubiquity of spatial relevant information of which the potentials and risks need to be discussed in the use for planning purposes. Besides the increasing pervasion of sensors in everyday life and the use of mobile communication devices, the networking and communication possibilities will play a major role in the conception of a connected and “smart” city. In addition to the above mentioned aspects and social networking capabilities, it seems that committed citizens appear increasingly as active stakeholders for planning purposes via inductive processes. Based on the mentioned technological possibilities, topics such as Smart Cities are increasingly being discussed in the public debate in recent times. It is unclear if the term “Smart City” is based more on a scientific foundation or on marketing ideas. And what can planners do, to make the city more smart and especially to make it a better place for people to live? This paper embraces an examination of the various technologies an methodological approaches in relation to planning-relevant information and knowledge creation. Besides the proclaimed potential of making a city more efficient, there will also be a critical consideration of the problems of having a city, where all urban data is connected

    Stability of the weighted splitting finite-difference scheme for a two-dimensional parabolic equation with two nonlocal integral conditions

    Get PDF
    AbstractNonlocal conditions arise in mathematical models of various physical, chemical or biological processes. Therefore, interest in developing computational techniques for the numerical solution of partial differential equations (PDEs) with various types of nonlocal conditions has been growing fast. We construct and analyse a weighted splitting finite-difference scheme for a two-dimensional parabolic equation with nonlocal integral conditions. The main attention is paid to the stability of the method. We apply the stability analysis technique which is based on the investigation of the spectral structure of the transition matrix of a finite-difference scheme. We demonstrate that depending on the parameters of the finite-difference scheme and nonlocal conditions the proposed method can be stable or unstable. The results of numerical experiments with several test problems are also presented and they validate theoretical results

    Simulating the Behaviour of the Human Brain on NVIDIA GPU: cuHinesBatch & cuThomasBatch implementations

    Get PDF
    Understand the human brain is one of the century challenges. On this work we are going to achieve a small step towards this objective presenting a novel data layout in order to compute more efficiently the Hines algorithm on GPU. A more general tridiagonal solver is going to be presented too

    Semantic model for mining e-learning usage with ontology and meaningful learning characteristics

    Get PDF
    The use of e-learning in higher education institutions is a necessity in the learning process. E-learning accumulates vast amount of usage data which could produce a new knowledge and useful for educators. The demand to gain knowledge from e-learning usage data requires a correct mechanism to extract exact information. Current models for mining e-learning usage have focused on the activities usage but ignored the actions usage. In addition, the models lack the ability to incorporate learning pedagogy, leading to a semantic gap to annotate mining data towards education domain. The other issue raised is the absence of usage recommendation that refers to result of data mining task. This research proposes a semantic model for mining e-learning usage with ontology and meaningful learning characteristics. The model starts by preparing data including activity and action hits. The next step is to calculate meaningful hits which categorized into five namely active, cooperative, constructive, authentic, and intentional. The process continues to apply K-means clustering analysis to group usage data into three clusters. Lastly, the usage data is mapped into ontology and the ontology manager generates the meaningful usage cluster and usage recommendation. The model was experimented with three datasets of distinct courses and evaluated by mapping against the student learning outcomes of the courses. The results showed that there is a positive relationship between meaningful hits and learning outcomes, and there is a positive relationship between meaningful usage cluster and learning outcomes. It can be concluded that the proposed semantic model is valid with 95% of confidence level. This model is capable to mine and gain insight into e-learning usage data and to provide usage recommendation

    Configuration Analysis for Large Scale Feature Models: Towards Speculative-Based Solutions

    Get PDF
    Los sistemas de alta variabilidad son sistemas de software en los que la gestión de la variabilidad es una actividad central. Algunos ejemplos actuales de sistemas de alta variabilidad son el sistema web de gesión de contenidos Drupal, el núcleo de Linux, y las distribuciones Debian de Linux. La configuración en sistemas de alta variabilidad es la selección de opciones de configuración según sus restricciones de configuración y los requerimientos de usuario. Los modelos de características son un estándar “de facto” para modelar las funcionalidades comunes y variables de sistemas de alta variabilidad. No obstante, el elevado número de componentes y configuraciones que un modelo de características puede contener hacen que el análisis manual de estos modelos sea una tarea muy costosa y propensa a errores. Así nace el análisis automatizado de modelos de características con mecanismos y herramientas asistidas por computadora para extraer información de estos modelos. Las soluciones tradicionales de análisis automatizado de modelos de características siguen un enfoque de computación secuencial para utilizar una unidad central de procesamiento y memoria. Estas soluciones son adecuadas para trabajar con sistemas de baja escala. Sin embargo, dichas soluciones demandan altos costos de computación para trabajar con sistemas de gran escala y alta variabilidad. Aunque existan recusos informáticos para mejorar el rendimiento de soluciones de computación, todas las soluciones con un enfoque de computación secuencial necesitan ser adaptadas para el uso eficiente de estos recursos y optimizar su rendimiento computacional. Ejemplos de estos recursos son la tecnología de múltiples núcleos para computación paralela y la tecnología de red para computación distribuida. Esta tesis explora la adaptación y escalabilidad de soluciones para el analisis automatizado de modelos de características de gran escala. En primer lugar, nosotros presentamos el uso de programación especulativa para la paralelización de soluciones. Además, nosotros apreciamos un problema de configuración desde otra perspectiva, para su solución mediante la adaptación y aplicación de una solución no tradicional. Más tarde, nosotros validamos la escalabilidad y mejoras de rendimiento computacional de estas soluciones para el análisis automatizado de modelos de características de gran escala. Concretamente, las principales contribuciones de esta tesis son: • Programación especulativa para la detección de un conflicto mínimo y 1 2 preferente. Los algoritmos de detección de conflictos mínimos determinan el conjunto mínimo de restricciones en conflicto que son responsables de comportamiento defectuoso en el modelo en análisis. Nosotros proponemos una solución para, mediante programación especulativa, ejecutar en paralelo y reducir el tiempo de ejecución de operaciones de alto costo computacional que determinan el flujo de acción en la detección de conflicto mínimo y preferente en modelos de características de gran escala. • Programación especulativa para un diagnóstico mínimo y preferente. Los algoritmos de diagnóstico mínimo determinan un conjunto mínimo de restricciones que, por una adecuada adaptación de su estado, permiten conseguir un modelo consistente o libre de conflictos. Este trabajo presenta una solución para el diagnóstico mínimo y preferente en modelos de características de gran escala mediante la ejecución especulativa y paralela de operaciones de alto costo computacional que determinan el flujo de acción, y entonces disminuir el tiempo de ejecución de la solución. • Completar de forma mínima y preferente una configuración de modelo por diagnóstico. Las soluciones para completar una configuración parcial determinan un conjunto no necesariamente mínimo ni preferente de opciones para obtener una completa configuración. Esta tesis soluciona el completar de forma mínima y preferente una configuración de modelo mediante técnicas previamente usadas en contexto de diagnóstico de modelos de características. Esta tesis evalua que todas nuestras soluciones preservan los valores de salida esperados, y también presentan mejoras de rendimiento en el análisis automatizado de modelos de características con modelos de gran escala en las operaciones descrita

    CULTURAL HERITAGE THROUGH TIME: A CASE STUDY AT HADRIAN’S WALL, UNITED KINGDOM

    Get PDF
    corecore