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a b s t r a c t

Nonlocal conditions arise in mathematical models of various physical, chemical or bio-
logical processes. Therefore, interest in developing computational techniques for the
numerical solution of partial differential equations (PDEs) with various types of nonlocal
conditions has been growing fast. We construct and analyse a weighted splitting finite-
difference scheme for a two-dimensional parabolic equation with nonlocal integral
conditions. The main attention is paid to the stability of the method. We apply the stability
analysis technique which is based on the investigation of the spectral structure of the
transition matrix of a finite-difference scheme. We demonstrate that depending on the
parameters of the finite-difference scheme and nonlocal conditions the proposed method
can be stable or unstable. The results of numerical experiments with several test problems
are also presented and they validate theoretical results.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the two-dimensional parabolic equation

∂u
∂t

=
∂2u
∂x2

+
∂2u
∂y2

+ f (x, y, t), 0 < x < Lx, 0 < y < Ly, 0 < t 6 T , (1)

subject to nonlocal integral conditions

u(0, y, t) = γ1

 Lx

0
α(x)u(x, y, t)dx + µ1(y, t), (2)

u(Lx, y, t) = γ2

 Lx

0
β(x)u(x, y, t)dx + µ2(y, t), 0 < y < Ly, 0 < t 6 T , (3)

boundary conditions

u(x, 0, t) = µ3(x, t), u(x, Ly, t) = µ4(x, t), 0 < x < Lx, 0 < t 6 T , (4)
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and initial condition
u(x, y, 0) = ϕ(x, y), 0 6 x 6 Lx, 0 6 y 6 Ly, (5)

where f (x, y, t), µ1(y, t), µ2(y, t), µ3(x, t), µ4(x, t), α(x), β(x), ϕ(x, y) are given functions, γ1, γ2 are given parameters, and
function u(x, y, t) is unknown. We assume that for all t , 0 < t 6 T , nonlocal integral conditions (2), (3) and boundary
conditions (4) are compatible, i.e., the following compatibility conditions are satisfied:

γ1

 Lx

0
α(x)µ3(x, t)dx + µ1(0, t) = µ3(0, t),

γ1

 Lx

0
α(x)µ4(x, t)dx + µ1(Ly, t) = µ4(0, t),

γ2

 Lx

0
β(x)µ3(x, t)dx + µ2(0, t) = µ3(Lx, t),

γ2

 Lx

0
β(x)µ4(x, t)dx + µ2(Ly, t) = µ4(Lx, t).

Nonlocal integral conditions of type (2), (3) often arise inmathematical models of various physical, chemical or biological
processes. For example, we can mention the mathematical model of the quasi-static flexure of a thermoelastic rod [1–4]. It
is proved that the entropy is the solution of a certain parabolic equation subject to initial condition and nonlocal integral
conditions with special types of weight functions α(x) and β(x).

Various differential problems with nonlocal integral conditions are investigated both in theoretical (see, e.g., [1–7])
and numerical (see, e.g., [8–12] and some of below mentioned references) aspects. The review of results related with the
numerical solution of one-dimensional parabolic equation subject to various type of nonlocal integral specifications as well
as the examples of the applications of such problems are presented in paper [13].

The present paper is devoted to the finite-difference scheme for the two-dimensional differential problem (1)–(5). We
construct the weighted finite-difference scheme and analyse its stability. The proposed method is based on the splitting of
the two-dimensional differential problem into two finite-difference subproblems. With particular values of the weights of
the scheme we have so-called locally one-dimensional (LOD), alternating direction implicit (ADI) or fully-explicit splitting
finite-difference schemes.

The stability of implicit and explicit finite-difference schemes for the corresponding one-dimensional parabolic problems
with nonlocal integral conditions similar to conditions (2), (3) has been investigated by many authors (see, e.g., [14–17]). In
paper [17], the differential problem (1)–(5) is formulated as an example of a problem for the possible extension of the pro-
posed stability analysis technique. Paper [18] is devoted to the stability of implicit, explicit and Crank–Nicolson (symmetric)
finite-difference schemes for one- and two-dimensional parabolic equations with a special case of Bitsadze–Samarskii type
nonlocal conditions. Various LOD andADImethods for two-dimensional parabolic problemswith nonlocal integral condition
(the specification of mass/energy) have been investigated by M. Dehghan (see, e.g., [19–21]).

Paper [22] deals with the ADI method for the two-dimensional parabolic Eq. (1) with Bitsadze–Samarskii type nonlocal
boundary condition. We use a similar technique and argument in order to construct the weighted splitting finite-difference
scheme for the two-dimensional differential problem (1)–(5) and to investigate the stability of that method.

The paper is organised as follows. In Section 2, the notation is introduced and the details of the finite-difference scheme
are described. In the same section, the stability analysis technique based on the spectral structure of the transition matrix
of a finite-difference scheme is applied in order to analyse the stability of the proposed method. The results of numerical
experiments with several test problems are presented in Section 3. Some remarks in Section 4 conclude the paper.

2. Finite-difference scheme and its stability

2.1. Notation

To solve the two-dimensional differential problem (1)–(5) numerically, we apply the finite-difference technique [23]. Let
us define discrete grids with uniform steps,

ωh1 = {xi = ih1, i = 1, 2, . . . ,N1 − 1,N1h1 = Lx}, ωh1 = ωh1 ∪ {x0 = 0, xN1 = Lx},
ωh2 = {yj = jh2, j = 1, 2, . . . ,N2 − 1,N2h2 = Ly}, ωh2 = ωh2 ∪ {y0 = 0, yN2 = Ly},
ω = ωh1 × ωh2 , ω = ωh1 × ωh2 ,

ωτ
= {tk = kτ , k = 1, 2, . . . ,M,Mτ = T }, ωτ

= ωτ
∪ {t0 = 0}.

We use the notation Uk
ij = U(xi, yj, tk) for functions defined on the grid ω × ωτ or its parts, and the notation Uk+1/2

ij =

U(xi, yj, tk + 0.5τ) (some of the indices can be omitted). We define one-dimensional discrete operators

Λ1Uij =
Ui−1,j − 2Uij + Ui+1,j

h2
1

, Λ2Uij =
Ui,j−1 − 2Uij + Ui,j+1

h2
2

.
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In order to approximate nonlocal integral conditions (2), (3), we will use the trapezoidal rule. For functions U and V defined
on the grid ωh1 we introduce the notation

(U, V ) = h1


U0V0 + UN1VN1

2
+

N1−1
i=1

UiVi


.

Let EN be the identity matrix of order N and A ⊗ B denotes the Kronecker (tensor) product of matrices A and B. We denote
the eigenvalues of matrix A by λ(A). The spectral radius of matrix A is denoted by ρ(A), i.e.,

ρ(A) = max
λ(A)

|λ(A)|.

2.2. Development of the finite-difference scheme

We explain the main steps of the method for the numerical solution of problem (1)–(5).
First of all, we replace the initial condition (5) by equations

U0
ij = ϕij, (xi, yj) ∈ ω. (6)

Then, for any k, 0 6 k < M − 1, the transition from the kth layer of time to the (k+ 1)th layer can be carried out by splitting
it into two stages and solving one-dimensional finite-difference subproblems in each of them. By evaluating the derivative
with respect to x explicitly and the derivative with respect to y implicitly, we get the first one-dimensional subproblem,
i.e., the set of linear algebraic equations systems for i = 1, 2, . . . ,N1 − 1:

Uk+1/2
ij − Uk

ij

τ
= (1 − σ1)Λ1Uk

ij + σ2Λ2U
k+1/2
ij + σ2f

k+1/2
ij , yj ∈ ωh2 , (7)

Uk+1/2
i0 = (µ3)i, (8)

Uk+1/2
iN2

= (µ4)i, (9)

where σ1 and σ2 are the weights of the finite-difference scheme,µ3 = σ2(µ3)
k+1

+ (1 − σ2)(µ3)
k
− τσ1σ2Λ1(µ3)

k+1
+ τ(1 − σ1)(1 − σ2)Λ1(µ3)

k,µ4 = σ2(µ4)
k+1

+ (1 − σ2)(µ4)
k
− τσ1σ2Λ1(µ4)

k+1
+ τ(1 − σ1)(1 − σ2)Λ1(µ4)

k.

The second subproblem (the set of linear algebraic equations systems for j = 1, 2, . . . ,N2 − 1) is implicit with respect to x
and explicit with respect to y:

Uk+1
ij − Uk+1/2

ij

τ
= σ1Λ1Uk+1

ij + (1 − σ2)Λ2U
k+1/2
ij + (1 − σ2)f k+1

ij , xi ∈ ωh1 , (10)

Uk+1
0j = γ1


α,U

k+1
j + (µ1)

k+1
j , (11)

Uk+1
N1j

= γ2

β,U

k+1
j + (µ2)

k+1
j . (12)

Every transition is finished by computing

Uk+1
i0 = (µ3)

k+1
i , Uk+1

iN2
= (µ4)

k+1
i , xi ∈ ωh1 . (13)

Thus, the procedure of numerical solution can be stated as follows:

procedure The Weighted Splitting Finite-Difference Scheme
begin

Compute U0
ij (i = 0, 1, . . . ,N1, j = 0, 1, . . . ,N2) from Eqs. (6) ;

for k = 0, 1, . . . ,M − 1
for i = 1, 2, . . . ,N1 − 1

Solve system (7)–(9) and compute Uk+1/2
ij (j = 0, 1, . . . ,N2);

end for
for j = 1, 2, . . . ,N2 − 1

Solve system (10)–(12) and compute Uk+1
ij (i = 0, 1, . . . ,N1);

end for
Compute Uk+1

i0 and Uk+1
iN2

(i = 0, 1, . . . ,N1) from Eqs. (13) ;
end for

end
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If σ1 = σ2 = 1 or σ1 = σ2 = 1/2, we have LOD or ADI methods, respectively. The splitting finite-difference scheme
is fully-explicit for σ1 = σ2 = 0. The finite-difference subproblems which appear when executing the transition from the
kth layer of time to the (k + 1)th layer in case of LOD method are fully-implicit. In case of ADI method these subproblems
are semi-implicit. The LOD method approximates the differential problem (1)–(5) with error O(τ + h2

1 + h2
2) while the

approximation errors of ADI and fully-explicit methods are O(τ 2
+ h2

1 + h2
2) and O(τ + h1 + h2), respectively [23].

If one or the both of the finite-difference subproblems (7)–(9), (10)–(12) are fully-explicit (i.e., σ1 = 0 and/or σ2 = 0),
then the corresponding subproblem(-s) can be solved explicitly. However, if the finite-difference subproblem (7)–(9) is not
fully-explicit (σ2 ≠ 0), then it is noteworthy thatwe can use thewell-knownThomas algorithmand efficiently solve systems
(7)–(9) because of the tridiagonality of their matrices. In order to solve the implicit finite-difference subproblem (10)–(12)
(σ1 ≠ 0), themodification of the general algorithm for solving linear equations systemswith quasi-tridiagonalmatrices [24]
can be used.

Now let us transform the finite-difference scheme (7)–(12) to the matrix form. From Eqs. (11) and (12) we obtain

Uk+1
0j = γ1h1

N1−1
i=1

aiUk+1
ij + (µ1)

k+1
j ,

Uk+1
N1j

= γ2h1

N1−1
i=1

biUk+1
ij + (µ2)

k+1
j ,

where

ai =
1
D


αi −

γ2h1αiβN1

2
+

γ2h1αN1βi

2


,

bi =
1
D


βi +

γ1h1αiβ0

2
−

γ1h1α0βi

2


,

(µ1)
k+1
j =

1
D


(µ1)

k+1
j −

γ2h1βN1

2
(µ1)

k+1
j +

γ1h1αN1

2
(µ2)

k+1
j


,

(µ2)
k+1
j =

1
D


(µ2)

k+1
j +

γ2h1β0

2
(µ1)

k+1
j −

γ1h1α0

2
(µ2)

k+1
j


,

D =


1 −

γ1h1α0

2


1 −

γ2h1βN1

2


−

γ1h1αN1

2
·
γ2h1β0

2
.

We assume that the grid step h1 is chosen so that D > 0.
Let us introduce (N1 − 1) × (N1 − 1) and (N2 − 1) × (N2 − 1) matrices

Λ1 = h−2
1



−2 + δ
(1)
1 1 + δ

(2)
1 δ

(3)
1 · · · δ

(N1−3)
1 δ

(N1−2)
1 δ

(N1−1)
1

1 −2 1 · · · 0 0 0

0 1 −2
. . . 0 0 0

...
...

. . .
. . .

. . .
...

...

0 0 0
. . . −2 1 0

0 0 0 · · · 1 −2 1
δ

(1)
2 δ

(2)
2 δ

(3)
2 · · · δ

(N1−3)
2 1 + δ

(N1−2)
2 −2 + δ

(N1−1)
2


and

Λ2 = h−2
2



−2 1 0 · · · 0 0 0
1 −2 1 · · · 0 0 0

0 1 −2
. . . 0 0 0

...
...

. . .
. . .

. . .
...

...

0 0 0
. . . −2 1 0

0 0 0 · · · 1 −2 1
0 0 0 · · · 0 1 −2


,

where

δ
(i)
1 = γ1h1ai, δ

(i)
2 = γ2h1bi, xi ∈ ωh1 .

Now we define matrices of order (N1 − 1) · (N2 − 1),

A1 = −EN2−1 ⊗ Λ1, A2 = −Λ2 ⊗ EN1−1.
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We can directly verify that A1 and A2 are commutative matrices, i.e.,

A1A2 = A2A1 = Λ2 ⊗ Λ1.

Introducing the matrices A1 and A2 allow us to rewrite the finite-difference scheme (7)–(12) in the following form:
E + σ2τA2


Uk+1/2

=

E − (1 − σ1)τA1


Uk

+ σ2τF k+1/2, (14)
E + σ1τA1


Uk+1

=

E − (1 − σ2)τA2


Uk+1/2

+ (1 − σ2)τF k+1, (15)

where E is the identity matrix of order (N1 − 1) · (N2 − 1),

U = (U1,U2, . . . ,Uj, . . . ,UN2−1)
T , Uj = (U1j,U2j, . . . ,Uij, . . . ,UN1−1,j)

T ,

and

F k+1/2
=


F k+1/2
1 , F k+1/2

2 , . . . , F k+1/2
j , . . . , F k+1/2

N2−1

T
,

F k+1/2
1 =


(µ3)1

h2
2

+ f k+1/2
11 ,

(µ3)2

h2
2

+ f k+1/2
21 , . . . ,

(µ3)N1−1

h2
2

+ f k+1/2
N1−1,1

T

,

F k+1/2
j =


f k+1/2
1j , f k+1/2

2j , . . . , f k+1/2
ij , . . . , f k+1/2

N1−1,j

T
, j = 2, 3, . . . ,N2 − 2,

F k+1/2
N2−1 =


(µ4)1

h2
2

+ f k+1/2
1,N2−1,

(µ4)2

h2
2

+ f k+1/2
2,N2−1, . . . ,

(µ4)N1−1

h2
2

+ f k+1/2
N1−1,N2−1

T

,

F k+1
=


F k+1
1 , F k+1

2 , . . . , F k+1
j , . . . , F k+1

N2−1

T
,

F k+1
j =


(µ1)

k+1
j

h2
1

+ f k+1
1j , f k+1

2j , . . . , f k+1
N1−2,j,

(µ2)
k+1
j

h2
1

+ f k+1
N1−1,j

T

, j = 1, 2, . . . ,N2 − 1.

From Eqs. (14) and (15) it follows that

Uk+1
= SUk

+ F
k
, (16)

where

S =

E + σ1τA1

−1
E − (1 − σ2)τA2


E + σ2τA2

−1
E − (1 − σ1)τA1


,

F
k
= τ


E + σ1τA1

−1

σ2


E − (1 − σ2)τA2


E + σ2τA2

−1
F k+1/2

+ (1 − σ2)F k+1

.

We assume that the existence of the matrices

E + σ1τA1

−1
and


E + σ2τA2

−1
is ensured by the formulation of the

considered two-dimensional differential problem and the proposed finite-difference scheme.

2.3. Spectral structure of the matrix S

The spectral structure of finite-difference and differential operators with nonlocal conditions are investigated by many
authors (see, e.g., [25–29] and references therein). Papers [17,30,31] deal with the eigenvalue problem for thematrix (−Λ1)
in general or special cases of functions α(x) and β(x). Depending on the values of parameters γ1, γ2 and the expressions of
functions α(x), β(x), the eigenvalues of the matrix (−Λ1) can be both positive or non-positive real numbers and complex
numbers with positive or non-positive real parts (see [17,30,31]).

It is well-known (see, e.g., [23]) that all the eigenvalues of the matrix (−Λ2) are real, positive and algebraically simple:

λj(−Λ2) =
4
h2
2
sin2 jπh2

2
, j = 1, 2, . . . ,N2 − 1. (17)

Hence, thematrix A2 is a simple-structuredmatrix (i.e., all the eigenvalues of thematrix are distinct) as a Kronecker product
of two simple-structured matrices, and its eigenvalues λ(A2) are real and positive numbers. Let us denote

∆2 = max
λ(A2)

λ(A2) = max
16j6N2−1

λj(−Λ2) = λN2−1(−Λ2) =
4
h2
2
sin2 (Lx − h2)π

2
.

IfA1 is a simple-structuredmatrix, then S is a simple-structuredmatrix, too. The eigenvalues of thematrix S can be expressed
by the formula

λ(S) =


1 − (1 − σ1)τλ(A1)


1 − (1 − σ2)τλ(A2)


1 + σ1τλ(A1)


1 + σ2τλ(A2)

 . (18)
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2.4. Analysis of the stability

Let us recall some facts related with the stability of the finite-difference schemes [17,23,32].
We know (see [23]) that a sufficient stability condition for the finite-difference scheme (16) can be written in the form

∥S∥ 6 1 + c0τ ,

where a non-negative constant c0 is independent on τ and h1, h2. Since in our case the matrix S is nonsymmetric (this
property is typical for problems with nonlocal conditions), the norm ∥S∥ can not be defined as spectral radius ρ(S).

Let us assume that S is a simple-structuredmatrix, i.e., all the eigenvectors of thematrix S are linearly independent. Then
it is possible to define the transformed matrix norm [17]

∥B∥∗ = ∥P−1BP∥∞,

which is compatible with the vector norm

∥V∥∗ = ∥P−1V∥∞,

where the columns of the matrix P are linearly independent eigenvectors of S,

∥B∥∞ = max
16i6m

m
j=1

|bij|, ∥V∥∞ = max
16i6m

|vi|,

m is the order of the matrix B = (bij)mi,j=1 and vector V = (v1, v2, . . . , vm)T . The matrix P−1SP is diagonal matrix and its
elements are eigenvalues of S. As a result, the norm ∥S∥∗ is equal to the spectral radius of S:

∥S∥∗ = ∥P−1SP∥∞ = ρ(S).

Such definition of transformedmatrix norm ∥ ·∥∗ was formerly used to analyse the stability of the finite-difference schemes
(see, e.g., [17,18,31]) and to investigate the convergence of iterative methods for solution of finite-difference schemes with
nonlocal conditions (see, e.g., [25]).

Therefore, wewill use the stability condition ρ(S) < 1 in the analysis of the stability of the finite-difference scheme (16).
This condition ensures the stepwise stability of the scheme [32]. We recall that the finite-difference scheme (16) is called
stepwise stable if for all fixed τ and h1, h2 there exists a constant C = C(τ , h1, h2) such that |Uk

ij | 6 C , i = 0, 1, . . . ,N1,
j = 0, 1, . . . ,N2, k = 0, 1, . . . .

Let us assume that A1 is a simple-structuredmatrix. Under this assumption we prove several statements related with the
stability of the finite-difference scheme (16).

Theorem 1. If all the eigenvalues of the matrix A1 are real and non-negative numbers, then the finite-difference scheme (16) is
stable under the constrains

σ1 > σ ∗

1 =
1
2

−
1

τρ(A1)
, σ2 > σ ∗

2 =
1
2

−
1

τ∆2
. (19)

Proof. From Eq. (18) it follows that

|λ(S)| =

1 − (1 − σ1)τλ(A1)

1 + σ1τλ(A1)

 ·

1 − (1 − σ2)τλ(A2)

1 + σ2τλ(A2)

 .
Thus, we conclude that ρ(S) < 1, if conditions (19) are fulfilled. �

Now let us assume that some of the eigenvalues of the matrix A1 are conjugate complex numbers and denote them by

λ(A1) = Reλ(A1) ± iImλ(A1).

Theorem 2. If Reλ(A1) > 0 for all the eigenvalues of the matrix A1, then the finite-difference scheme (16) is stable when

σ1 > σ ∗

1 =
1
2

−
1
τ
min
λ(A1)

Reλ(A1)

|λ(A1)|2
, σ2 > σ ∗

2 =
1
2

−
1

τ∆2
. (20)
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Proof. From Eq. (18) we have

|λ(S)|2 =

1 − (1 − σ1)τλ(A1)

1 + σ1τλ(A1)

2 ·

1 − (1 − σ2)τλ(A2)

1 + σ2τλ(A2)

2
=

1 − (1 − σ1)τ

Reλ(A1) ± iImλ(A1)


1 + σ1τ


Reλ(A1) ± iImλ(A1)

 
2

·

1 − (1 − σ2)τλ(A2)

1 + σ2τλ(A2)

2

=


1 − (1 − σ1)τReλ(A1)

2
+


(1 − σ1)τ Imλ(A1)

2
1 + σ1τReλ(A1)

2
+


σ1τ Imλ(A1)

2 ·

1 − (1 − σ2)τλ(A2)

1 + σ2τλ(A2)

2 .

Now we can conclude that ρ(S) < 1 under conditions (20). �

Corollary 1. If σ1 = σ2 = σ and all the eigenvalues of thematrix A1 are real and non-negative numbers, then the finite-difference
scheme (16) is stable when σ > σ ∗

= max{σ ∗

1 , σ ∗

2 }, i.e. when

σ > σ ∗
=

1
2

−
1
τ
min


1

ρ(A1)
,

1
∆2


. (21)

Corollary 2. If σ1 = σ2 = σ and Reλ(A1) > 0 for all the eigenvalues of the matrix A1, then the finite-difference scheme (16) is
stable when σ > σ ∗

= max{σ ∗

1 , σ ∗

2 }, i.e. when

σ > σ ∗
=

1
2

−
1
τ
min


min
λ(A1)

Reλ(A1)

|λ(A1)|2
,

1
∆2


. (22)

The following corollaries state the sufficient conditions for the stability of LOD (σ1 = σ2 = 1), ADI (σ1 = σ2 = 1/2) and
fully-explicit splitting (σ1 = σ2 = 0) finite-difference schemes.

Corollary 3. If all the eigenvalues of the matrix A1 are real and non-negative numbers, then for σ1 = σ2 = 1 or σ1 = σ2 = 1/2
the finite-difference scheme (16) is unconditionally stable and for σ1 = σ2 = 0 it is stable under condition

τ < τ ∗
= 2min


1

ρ(A1)
,

1
∆2


. (23)

Corollary 4. If Reλ(A1) > 0 for all the eigenvalues of thematrix A1, then for σ1 = σ2 = 1 or σ1 = σ2 = 1/2 the finite-difference
scheme (16) is unconditionally stable and for σ1 = σ2 = 0 it is stable under condition

τ < τ ∗
= 2min


min
λ(A1)

Reλ(A1)

|λ(A1)|2
,

1
∆2


. (24)

We note that if all the eigenvalues of the matrix A1 are real and non-negative numbers, then conditions (19), (21), (23)
coincide with conditions (20), (22), (24), respectively.

Since the eigenvalues of the matrix A1 coincide with the eigenvalues of the matrix (−Λ1) and they are multiple, the
main point of the analysis of the stability of the finite-difference scheme (16) is to investigate the spectrum of the matrix
(−Λ1) and to verify whether (−Λ1) is a simple-structuredmatrix and λi(−Λ1) > 0 or Reλi(−Λ1) > 0, i = 1, 2, . . . ,N1−1.
Togetherwith satisfaction of some of constraints (19)–(24), the non-negativity of the eigenvalues λi(−Λ1) or their real parts
Reλi(−Λ1) ensures the stability of the finite-difference scheme (16), but, as noted in [22], the scheme can be stable even if
the matrix (−Λ1) has a negative eigenvalue or a complex eigenvalue with a negative real part.

3. Numerical experiments

3.1. Technical details

In order to demonstrate the efficiency of the considered numerical method and practically justify the stability analysis
technique, several test problems with different types of weight functions α(x) and β(x) were solved. Functions f (x, y, t),
µ1(y, t), µ2(y, t), µ3(x, t), µ4(x, t) and ϕ(x, y) were chosen so that particular functions u(x, y, t) would be solutions to the
differential problem (1)–(5). We also used results related with the structure of the spectrum of the matrix (−Λ1) which
were obtained in papers [17,30], where the corresponding one-dimensional problems have been investigated.
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Fig. 1. The dependence of log10 ∥ε∥Ch on the values of parameter γ2 in cases of (a) LOD method and (b) ADI method (Example 1). The dash-dot and solid
vertical straight lines denote the lines γ2 = γ2 and γ2 = γ ∗

2 , respectively.

Fig. 2. The dependence of log10 ∥ε∥Ch on the values of parameters γ1 and γ2 in cases of (a) LOD method and (b) ADI method (Example 2). The dash-dot
and solid straight lines denote the lines γ1 + γ2 = 2 and γ1 + γ2 = γ ∗ , respectively.

In this paper, we present the results of the numerical analysis of three test examples with different expressions of
functions α(x) and β(x). In all the examples, functions f (x, y, t),µ1(y, t),µ2(y, t),µ3(x, t),µ4(x, t) and ϕ(x, y)were chosen
so that the function

u(x, y, t) = x3 + y3 + t3

would be the solution of the differential problem (1)–(5) formulated in a unit square (Lx = Ly = 1), i.e.,

f (x, y, t) = −3(2x + 2y − t2),

µ1(y, t) = y3 + t3 − γ1

 1

0
α(x)(x3 + y3 + t3)dx,

µ2(y, t) = 1 + y3 + t3 − γ2

 1

0
β(x)(x3 + y3 + t3)dx,

µ3(x, t) = x3 + t3, µ4(x, t) = x3 + 1 + t3,
ϕ(x, y) = x3 + y3.

All numerical experiments were performed with τ = 10−4, h1 = h2 = 10−2, T = 2.0 and with different values of
parameters γ1, γ2, if it is not mentioned otherwise. To estimate the accuracy of the numerical solution, we calculated the
maximum norm of computational error,

∥ε∥Ch = max
06k6M

max
06i6N1
06j6N2

|Uk
ij − u(xi, yj, tk)|.
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Fig. 3. The dependence of log10 ∥ε∥Ch on the values of parameters γ1 and γ2 in cases of LODmethod (left) and ADI method (right) (Example 2): (a) γ1 = 0,
(b) γ2 = 0, (c) γ1 = γ2 = γ . The dash-dot and solid vertical straight lines denote the lines (a) γ2 = 2 and γ2 = γ ∗ , (b) γ1 = 2 and γ1 = γ ∗ or (c) γ = 1
and γ = γ ∗/2, respectively.

Note that

min
06t6T

min
06x6Lx
06y6Ly

u(x, y, t) = u(0, 0, 0) = 0, max
06t6T

max
06x6Lx
06y6Ly

u(x, y, t) = u(Lx, Ly, T ) = 10.

The finite-difference schemewas implemented in a stand-alone C application [33]. Numerical experiments were performed
using the technologies of grid computing [34].
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Fig. 4. The dependence of log10 ∥ε∥Ch on the values of parameters γ1 and γ2 in cases of (a) LOD method and (b) ADI method (Example 3). The dash-dot
curves denote the branches of the hyperbola (25).

Similar as in paper [26], for the numerical analysis of the spectrum of the matrix S, MATLAB (The MathWorks, Inc.)
software package [35] was used. The eigenvalues of the matrix (−Λ1) were calculated numerically. Then all different
eigenvalues of the matrix S were calculated using expressions (17) and formula (18).

In next subsections we will consider three test examples with different functions α(x), β(x) and investigate the stability
of LOD andADImethods for the corresponding two-dimensional differential problems. The influence of conditions (19)–(24)
will be considered in a separate subsection.

3.2. Example 1: α(x) = 0, β(x) = x

This example corresponds to the differential problemwith classical boundary conditions (2), (4) and one nonlocal integral
condition (3). In this case, all the eigenvalues of the matrix (−Λ1) are real, non-negative and algebraically simple when
γ2 6 γ2 = 3 − 3h2

1/(2 + h2
1) (γ2 ≈ 2.99985, when h1 = 10−2), and there exists only one negative eigenvalue when

γ2 > γ2 [17]. The numerical analysis of the spectrum of the matrix S shown that all the eigenvalues of the matrix S hold
property |λ(S)| < 1 when γ2 6 γ ∗

2 ; where γ ∗

2 ≈ 4.58114 in the case of the LOD method and γ ∗

2 ≈ 4.58243 in the case of
the ADI method.

Fig. 1 presents the dependence of log10 ∥ε∥Ch on the values of parameter γ2. In cases of both the LOD and ADI methods,
the values of ∥ε∥Ch grow slowly when γ2 < γ2 6 γ ∗

2 and the growing becomes extremely fast when γ2 > γ ∗

2 . The case
of γ2 = 0 corresponds to the differential problem with classical boundary conditions and it is known [23] that the both
methods are stable in this case.

3.3. Example 2: α(x) = const, β(x) = const

Let us assume that α(x) ≡ 1 and β(x) ≡ 1. Preliminary results on the stability of ADI, LOD and fully-explicit splitting
finite-difference schemes for the differential problem (1)–(5) with α(x) ≡ 1 and β(x) ≡ 1 have been presented in
papers [36–38]. The eigenvalue problem for the correspondingmatrix (−Λ1) is investigated in paper [30].When γ1+γ2 6 2,
then all the eigenvalues of the matrix (−Λ1) are real and non-negative numbers. If γ1 + γ2 > 2, then there exists one and
only one negative eigenvalue of thematrix (−Λ1). From the results of the numerical analysis of the spectrum of thematrix S
it follows that absolute values of all the eigenvalues of the matrix S are less than 1 when γ1 +γ2 6 γ ∗, where γ ∗

≈ 3.42366
in the case of the LOD method and γ ∗

≈ 3.42489 in the case of the ADI method.
The dependence of log10 ∥ε∥Ch on the values of parameters γ1 and γ2 are depicted in Fig. 2. We see how the norm ∥ε∥Ch

grows when γ1 + γ2 becomes greater than γ ∗.
If γ1 = 0, γ2 ≠ 0 or γ1 ≠ 0, γ2 = 0, then conditions (2) or (3) become classical boundary conditions. From Fig. 3((a)

and (b)) we see that in these cases the norm ∥ε∥Ch starts to grow when 2 < γ2 6 γ ∗ or 2 < γ1 6 γ ∗, and the growing
becomes extremely fast when γ2 > γ ∗ or γ1 > γ ∗. The similar situations appear with γ1 = γ2 = γ , when 1 < γ 6 γ ∗/2
and γ > γ ∗/2 (see Fig. 3(c)).

3.4. Example 3: α(x) = 1 + x, β(x) = 1 − x

In this case, the spectrum of the matrix (−Λ1) has a more complicated structure than in previous examples. Indeed,
depending on the values of γ1 and γ2, both real and complex numbers can be the eigenvalues of the matrix (−Λ1) [17]. In



S. Sajavičius / Computers and Mathematics with Applications 64 (2012) 3485–3499 3495

Fig. 5. The dependence of log10 ∥ε∥Ch on the values of parameters γ1 and γ2 in cases of LODmethod (left) and ADI method (right) (Example 3): (a) γ1 = 0,
(b) γ2 = 0, (c) γ1 = γ2 = γ . The dash-dot vertical straight lines denote the lines (a) γ2 = γ2 , (b) γ1 = γ1 and (c) γ = γ and γ = 1.

paper [17] also it is noted that all real eigenvalues of the matrix (−Λ1) are non-negative when points (γ1, γ2) are located
anywhere between two branches of the hyperbola

γ1γ2(1 + 2h2
1) + γ1(4 − h2

1) + γ2(1 − h2
1) − 6 = 0 (25)

or belong to it. However, the existence of complex eigenvalues of the matrix (−Λ1) in this particular (α(x) = 1 + x,
β(x) = 1 − x) or in the general case still remains an open problem.



3496 S. Sajavičius / Computers and Mathematics with Applications 64 (2012) 3485–3499

Fig. 6. The dependence of log10 ∥ε∥Ch on the values of parameters σ1 and σ2 (γ1 = −γ2 = 1) in cases of (a) Example 1, (b) Example 2 and (c) Example 3.
The dashed straight lines denote the lines σ1 = σ ∗

1 and σ2 = σ ∗

2 .

Without a comprehensive description of properties of the spectrum of the matrix (−Λ1) (see [17] for more details), in
Fig. 4 we present the values of log10 ∥ε∥Ch for different values of the parameters γ1 and γ2. We see that the finite-difference
scheme is stable when the parameters γ1 and γ2 belong to almost all the region between two branches of the hyperbola (25)
except the part near one of the half-branches (see quadrant in the southeast direction from the origin of coordinates in Fig. 4)
where the instability of the finite-difference scheme is observable. The finite-difference scheme also becomes unstablewhen
the parameters cross the hyperbola and get into one of two other regions outside the branches of the hyperbola.

The results of numerical analysis of the spectrumof thematrix (−Λ1) show thatwhen the parameters γ1 and γ2 belong to
the above mentioned region near one of the half-branches of the hyperbola (25), there exist conjugate complex eigenvalues
with negative real parts which transform into two negative or into one negative and one positive real eigenvalues as
parameters vary. The similar properties of the spectrumof a particular quasi-tridiagonalmatrixwere observed in paper [26].

Similarly as in the previous example, from Fig. 5((a) and (b)) we see that in case when only one of conditions (2) and (3)
are nonlocal (γ1 = 0 or γ2 = 0), the norm ∥ε∥Ch grows fast if γ2 > γ2 = 6/(1− h2

1) or γ1 > γ1 = 6/(4− h2
1) (γ1 ≈ 1.50038

and γ2 ≈ 6.00060, when h1 = 10−2). If γ1 = γ2 = γ , then the norm ∥ε∥Ch starts to grow when γ decreases in the region
γ < γ = −6/(1 + 2h2

1) (γ ≈ −5.99880, if h1 = 10−2) or γ increases in the region γ > 1 (see Fig. 5(c)).

3.5. Additional remarks

The influence of conditions (19)–(24) for the stability of the finite-difference scheme (16) was also investigated. We
present the numerical results obtained with γ1 = −γ2 = 1 and with various values of σ1, σ2 or τ (the values of other
parameters are the same as mentioned previously). When γ1 = −γ2 = 1, then all the eigenvalues of the matrix (−Λ1) are
real, non-negative and algebraically simple numbers in all three considered cases.

The values of ρ(A1), σ ∗

1 , σ
∗

2 , σ
∗, τ ∗ in all three examples are presented in Table 1. The values of σ ∗ and τ ∗ coincide in

cases of Example 2 and 3, since in these cases

min


1
ρ(A1)

,
1

∆2


= min


min
λ(A1)

Reλ(A1)

|λ(A1)|2
,

1
∆2


=

1
∆2

.
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Fig. 7. The dependence of log10 ∥ε∥Ch font the values of σ (σ1 = σ2 = σ , γ1 = −γ2 = 1) in cases of (a) Example 1, (b) Example 2 and (c) Example 3. The
vertical straight lines denote the lines σ = σ ∗ .

Table 1
The values of ρ(A1), σ ∗

1 , σ
∗

2 , σ
∗ , τ ∗ in cases of Examples 1–3 (γ1 = −γ2 = 1); ∆2 = 3.999013120731463 · 104 .

Example 1 Example 2 Example 3

ρ(A1) 3.999013170072345 · 104 3.999013120731456 · 104 3.999013022046018 · 104

σ ∗

1 2.499383079096213 · 10−1 2.499383048242935 · 10−1 2.499382986534089 · 10−1

σ ∗

2 2.499383048242940 · 10−1 2.499383048242940 · 10−1 2.499383048242940 · 10−1

σ ∗ 2.499383079096213 · 10−1 2.499383048242940 · 10−1 2.499383048242940 · 10−1

τ ∗ 5.001233841807574 · 10−5 5.001233903514120 · 10−5 5.001233903514120 · 10−5

From Figs. 6–8 we can see that in all three cases the norm ∥ε∥Ch is quite small when σ1 > σ ∗

1 , σ2 > σ ∗

2 , σ > σ ∗ or
τ < τ ∗. We note that the constraints (19)–(24) are quite precise.

4. Conclusions

We developed a weighted splitting finite-difference scheme for the two-dimensional parabolic equation with nonlocal
integral conditions. Applying quite a simple technique allows us to investigate the stability of the method. The technique is
based on the analysis of the spectrum of the transitionmatrix of a finite-difference scheme.We demonstrate that depending
on the parameters of the finite-difference scheme and nonlocal conditions the proposed method can be stable or unstable.
The results of numerical experiments with several test problems justify theoretical results.

The proposed weighted splitting finite-difference scheme can be generalised and the same stability analysis technique
can be applied in case of two-dimensional parabolic equation with more general integral or other type of nonlocal
conditions.
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Fig. 8. The dependence of log10 ∥ε∥Ch on the values of τ (σ1 = σ2 = 0, γ1 = −γ2 = 1) in cases of (a) Example 1, (b) Example 2 and (c) Example 3. The
vertical straight lines denote the lines τ = τ ∗ .
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