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A classical issue in many applied \elds is to obtain an approximating surface to a given set of data points. Yis problem arises
in Computer-Aided Design and Manufacturing (CAD/CAM), virtual reality, medical imaging, computer graphics, computer
animation, and many others. Very o_en, the preferred approximating surface is polynomial, usually described in parametric form.
Yis leads to the problem of determining suitable parametric values for the data points, the so-called surface parameterization.
In real-world settings, data points are generally irregularly sampled and subjected to measurement noise, leading to a very
diacult nonlinear continuous optimization problem, unsolvable with standard optimization techniques. Yis paper solves
the parameterization problem for polynomial Bézier surfaces by applying the \redy algorithm, a powerful nature-inspired
metaheuristic algorithm introduced recently to address diacult optimization problems. Ye method has been successfully applied
to some illustrative examples of open and closed surfaces, including shapes with singularities. Our results show that the method
performs very well, being able to yield the best approximating surface with a high degree of accuracy.

1. Introduction

Obtaining a curve or surface that approximates a given cloud
of data points is a classical problem in several scienti\c
and technological domains such as computer-aided design
and manufacturing (CAD/CAM), virtual reality, medical
imaging, computer graphics, computer animation, and many
others. In real-world settings, data points come from real
measurements of an existing geometric entity, as it typically
happens in the construction of car bodies, ship hulls, airplane
fuselage, and other free-form objects [1–8]. Yis process is
also applied in the shoes industry, in archeology (recon-
struction of archeological assets), in medicine (computed
tomography), and in many other \elds. Ye primary goal is
to convert the real data from a physical object into a fully
usable digital model, a process called reverse engineering.
Such digital models are usually easier and cheaper to modify
than their real counterparts, leading to a signi\cant reduction
of the costs associatedwith the processing andmanufacturing

time of the real goods they represent. Furthermore, due to
their inherent digital nature, they become available anytime
and anywhere, a very valuable feature in our current digital-
world era.

Data points in reverse engineering are usually acquired
through laser scanning and other digitizing methods (light
digitizers, coordinate measuring machines, CT scanners, and
tactile scanners) and are, therefore, subjected to measure-
ment noise, irregular sampling, and other artifacts [7, 9].
Consequently, a good \tting of data is generally based on
approximation schemes (where the curve/surface is expected
to pass near the data points) rather than on interpolation
(where the curve/surface is constrained to pass through all
input data points). Because this is the typical case in many
real-world industrial problems, in this paper we focus on the
approximation scheme to a given set of irregularly sampled
noisy data points.

Yere are two key components for a good approximation
of data points: a proper choice of the approximating function
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and a suitable parameter tuning. Ye usual models for data
\tting in CAD/CAM and other industrial \elds are free-form
parametric entities, such as Bézier, B-spline, and NURBS, as
they have a great dexibility and can represent well any smooth
shape with only a few parameters, thus leading to substantial
savings in terms of computer memory and storage capacity
[10–17].

In this paper we focus particularly on the case of polyno-
mial Bézier surfaces, a kind of free-form splines very popular
in \elds such as CAD/CAM and computer graphics. Bézier
splines were developed independently in the early 60s by
Paul de Casteljau and Pierre Bézier for the CAD systems
of the French automotive companies Citröen and Renault,
respectively. Mathematically, they are based on the Bernstein
polynomials (see Section 4 for details), developed as early
as 1912 but whose applicability to engineering design was
unknownuntil the 60s. ABézier curve is a linear combination
of the Bernstein polynomials and vector coeacients called
control points. Ye curve follows approximately the shape of
its control polygon (the collection of segments joining the
control points), and hence, it reacts to the movement of its
control points by following a push-pull eoect. Yis powerful
feature was fundamental for the popularization of free-form
curves and surfaces for interactive design.Ye generalization
of this idea to surfaces leads to the Bézier surfaces, which
are linear combinations of the control points (now arranged
in a three-dimensional net) and the so-called tensor-product
basis functions (given by the products of all possible com-
binations of univariate Bernstein polynomials in surface
parameters ! and V, resp.).

Although nowadays Bézier splines have been overtaken
by the B-splines (developed during the 70s and of which the
Bézier splines are a particular case), they played a key role in
the current development of computer design. In addition to
their historical value, they are still widely used today for dif-
ferent purposes, such as computer fonts (e.g., TrueType fonts,
PostScript), computer animation (for simple movements of
objects in programs such as Adobe Flash), and computer
design (Adobe Photoshop, Corel Draw, Adobe illustrator).
Ye reader is referred to [18–20] for further details about the
subject. See also [21] for a nice historical approach written by
some of the most prominent \gures in the \eld.

Best approximation methods make commonly use of
least-squares techniques [1, 8, 10, 13, 14, 22–28], where the goal
is to obtain the relevant parameters of the polynomial approx-
imating surface that \ts the data points better in the least-
squares sense. Yis problem is far from being trivial: because
the surface is parametric, we are confrontedwith the problem
of obtaining a suitable parameterization of the data points
[18, 20]. As remarked in [29], the selection of an appropriate
parameterization is essential for a good \tting. Unfortunately,
it also becomes a very hard problem, specially for the cases of
irregularly sampled noisy data points. In fact, it is well known
that it leads to a very diacult overdetermined continuous
nonlinear optimization problem. It is also multivariate, as it
typically involves a large number of unknown variables for a
large number of data points, a case that happens very o_en
in real-world examples. Finally, it is usually a multimodal

problem as well, because of the potential existence of several
(global or local) optima of the objective function.

In this context, the present paper describes a newmethod
to solve this challenging parameterization problem for free-
form polynomial Bézier surfaces. Our method applies a pow-
erful nature-inspired metaheuristic algorithm, called \redy
algorithm, introduced recently by Professor Yang (Cam-
bridge University) to solve diacult optimization problems.
Ye trademark of the \redy algorithm is its search mecha-
nism, inspired by the social behavior of the swarms of \redies
and the phenomenon of bioluminescent communication.Ye
paper shows that this approach can be eoectively applied to
obtain an optimal approximating Bézier surface to a given set
of noisy data points, provided that an adequate representation
of the problem and a proper selection of the parameters
are carried out. To check the performance of our approach,
it has been applied to some illustrative examples of open
and closed surfaces, including shapes with singularities. Our
results show that the method performs very well, being able
to yield the best approximating surface with a high degree of
accuracy.

Ye structure of this paper is as follows: in Section 2
the previous work in the \eld is briedy reported. Yen,
the fundamentals and main ideas of the \redy algorithm,
the method used in this paper, are briedy explained in
Section 3. Our proposed \redy-based method for data \tting
with Bézier surfaces is described in Section 4. Ye section
begins with the description of the problem to be solved.Yen,
the application of the \redy algorithm to solve it is explained
in detail. Some illustrative examples of its application to
open and closed surfaces, including shapes with singularities,
along with some implementation details are reported in
Section 5. Ye paper closes with the main conclusions of this
contribution and our plans for future work in the \eld.

2. Previous Work

Ye problem of data \tting through free-form parametric
surfaces has been the subject of research for many years
[1, 20, 30–35]. One of themost important problems regarding
this issue is the surface parameterization, that is, the com-
putation of suitable parametric values for the \tting surface
to data points. In many practical situations, it is advisable
to obtain a parameterization as similar as possible to the
arc-length parameterization. Ye ultimate reason for this is
that a constant step on the parametric domain automatically
translates into a constant distance along an arc-length param-
eterized curve on the surface. In other words, for constant
parameter intervals, the curve on the surface exhibits a
point spacing that is as uniform as possible. Yerefore, this
parameterization is very convenient for surface interrogation
issues, such as surface intersections or measuring distances
on a surface [36, 37]. For instance, it has been traditionally
applied inmetrology for design andmanufacturing, to collect
measurement data from industrial parts of the designed and
manufactured products. Many other industrial operations
also require a uniform parameterization. For example, in
computer controlled milling operations, the curve path fol-
lowed by the milling machine must be parameterized such
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that the cutter neither speeds up nor slows down along the
path [9]. Yis property is only guaranteed when the curve
path is parameterized with the arc-length parameterization.
Consequently, this has been the preferred and most classical
choice for surface parameterization.

Some recent papers have shown that the application
of Arti\cial Intelligence techniques can achieve remarkable
results regarding this parameterization problem [2, 5, 6, 38–
40]. Most of these methods rely on some kind of neural
networks, either standard neural networks [38], Kohonen’s
SOM (Self-Organizing Maps) nets [29, 39], or the Bernstein
Basis Function (BBF) network [40]. In the case of surfaces,
the network is used exclusively to order the data and create a
grid of control vertices with quadrilateral topology [39]. A_er
this preprocessing step, any standard surface reconstruction
method (such as those referenced in the bibliography) has to
be applied. In some other cases, the neural network approach
is combined with partial dioerential equations [29] or other
approaches. Ye generalization to functional networks (an
extension of neural networks where the weights are replaced
by functions) is also analyzed in [2, 5, 6, 41].

Due to their good behavior for complex optimization
problems involving ambiguous and noisy data, there has
recently been an increasing interest in applying nature-
inspired optimization techniques (such asmetaheuristics and
evolutionary methods) to this problem. However, there are
still few works reported in the literature. A previous paper
in [42] describes the application of genetic algorithms and
functional networks yielding pretty good results for both
curves and surfaces. Other approaches are based on the
application of metaheuristic techniques, which have been
intensively applied to solve diacult optimization problems
that cannot be tackled through traditional optimization algo-
rithms. Recent schemes in this area are described in [4, 10] for
particle swarm optimization (PSO), [3, 27, 28, 43] for genetic
algorithms (GA), [44, 45] for arti\cial immune systems, [46]
for estimation of distribution algorithms, and [11] for hybrid
GA-PSO techniques. Ye method used in this paper also
belongs to this category, as described in next section.

3. The Firefly Algorithm

Ye \redy algorithm is a nature-inspired metaheuristic algo-
rithm introduced in 2008 by Yang to solve optimization prob-
lems [47, 48] (see also [49] for a recent modi\ed version of
this algorithm). Ye algorithm is based on the social dashing
behavior of \redies in nature. Ye key ingredients of the
method are the variation of light intensity and formulation of
attractiveness. In general, the attractiveness of an individual
is assumed to be proportional to their brightness, which in
turn is associated with the encoded objective function. Ye
reader is kindly referred to [50] for a comprehensive review of
the \redy algorithm and other nature-inspired metaheuristic
approaches. See also [51] for a gentle introduction to meta-
heuristic applications in engineering optimization.

In the \redy algorithm, there are three particular ideal-
ized rules, which are based on some of the major dashing
characteristics of real \redies [47]. Yey are

(1) all \redies are unisex, so that one \redy will be att-
racted to other \redies regardless of their sex;

(2) the degree of attractiveness of a \redy is proportional
to its brightness, which decreases as the distance from
the other \redy increases due to the fact that the air
absorbs light. For any two dashing \redies, the less
brighter one will move towards the brighter one. If
there is not a brighter or more attractive \redy than
a particular one, it will then move randomly;

(3) the brightness or light intensity of a \redy is deter-
mined by the value of the objective function of a given
problem. For instance, for maximization problems,
the light intensity can simply be proportional to the
value of the objective function.

Ye distance between any two \redies " and #, at positions
X! and X", respectively, can be de\ned as a Cartesian or
Euclidean distance as follows:

$!" = %%%%%X! − X"%%%%% = √ #∑
$=1
(*!,$ − *",$)2, (1)

where *!,$ is the --th component of the spatial coordinate X!
of the "-th \redy and. is the number of dimensions.

In the \redy algorithm, as attractiveness function of a
\redy # one should select any monotonically decreasing
function of the distance to the chosen \redy, for example, the
exponential function:

/ = /00−&'!"# (2 ≥ 1) , (2)

where $!" is the distance de\ned as in (1), /0 is the initial att-
ractiveness at $ = 0, and 7 is an absorption coeacient at the
source which controls the decrease of the light intensity.

Ye movement of a \redy " which is attracted by a more
attractive (i.e., brighter) \redy # is governed by the following
evolution equation:

X! = X! + /00−&'!"# (X" − X!) + 9 (; − 12) , (3)

where the \rst term on the right-hand side is the current
position of the \redy, the second term is used for considering
the attractiveness of the \redy to light intensity seen by
adjacent \redies, and the third term is used for the random
movement of a \redy in case there are not any brighter ones.
Ye coeacient 9 is a randomization parameter determined
by the problem of interest, while ; is a random number
generator uniformly distributed in the space [0, 1].

Ye method described in previous paragraphs corre-
sponds to the original version of the \redy algorithm (FFA),
as originally developed by its inventor. Since then, many
dioerent modi\cations and improvements on the original
version have been developed, including the discrete FFA,
multiobjective FFA, chaotic FFA, parallel FFA, elitist FFA,
Lagrangian FFA, andmany others, including its hybridization
with other techniques.Ye interested reader is referred to the
nice paper in [52] for a comprehensive, updated review and
taxonomic classi\cation of the \redy algorithms and all its
variants and applications.
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4. The Proposed Method

A free-form polynomial parametric surface is de\ned as [18,
19]:

S (!, V) = (∑
!=0

)∑
"=0

P!"A! (!) B" (V) , (4)

where {P!"}!," are vector coeacients in R
3 (usually referred

to as the control points as they roughly control the shape of
the surface), {A!(!)B"(V)}!," are the tensor-product functions
obtained from two sets of basis functions (or blending func-
tions) {A!(!)}!, and {B"(V)}", and (!, V) are the surface param-
eters, usually de\ned on a bounded rectangular domain[9*, /*] × [9V, /V] ⊂ R2. Note that in this paper vectors are
denoted in bold.

In this work we will focus on the particular case of free-
form polynomial Bézier surfaces. In this case, (4) becomes

S (!, V) = (∑
!=0

)∑
"=0

P!,"Ψ(! (!)Ψ)" (V) , (5)

where the blending functions Ψ+$ (F) are the Bernstein poly-
nomials of index - and degree G, given by

Ψ+$ (F) = (G-)F$(1 − F)+−$, (6)

where

(G-) = G!-! (G − -)! , (7)

and the surface parameters !, V are de\ned on the unit square[0, 1] × [0, 1]. Note that, by convention, 0! = 1.
Let us suppose now that we are given a set of data points{Q$,-}$=1,...,/;-=1,...,4 in an K-dimensional space (usually K = 2

or K = 3). Our goal is to obtain the free-form polynomial
Bézier surface S(!, V) that \ts the data points better in the
discrete least-squares sense. To do so, we have to compute the
control points {P!,"}!=0,...,(;"=0,...,) of the approximating surface
by minimizing the least-squares error, M, de\ned as the sum
of squares of the residuals:

M = /∑
$=1

4∑
-=1
(Q$,- − (∑

!=0

)∑
"=0

P!,"Ψ(! (!$) Ψ)" (V-))
2. (8)

In the case of irregularly sampled data points {Q'}'=1,...,5,
ourmethodwill work in a similar way by simply replacing the
previous expression (8) by

M = 5∑
'=1
(Q' − (∑

!=0

)∑
"=0

P!,"Ψ(! (!') Ψ)" (V'))
2. (9)

Ye least-squares minimization of either (8) or (9) leads
to the system of equations:

⟨Q⟩ = ⟨P⟩ ⋅ Ξ, (10)

where ⟨Q⟩ corresponds to the vectorization of the set of
data points {Q$,-}$=1,...,/;-=1,...,4 (alternatively, {Q'}'=1,...,5), ⟨P⟩
corresponds to the vectorization of the set of control points{P!,"}!=0,...,(;"=0,...,), and Ξ is a matrix given by Ξ!," = Ψ)(V") ⊙Ψ(0 (u), with Ψ+(F$) = (Ψ+0 (F$), . . . , Ψ+#(F$)), Ψ+$ (Θ) =(Ψ+$ (U1), . . . , Ψ+$ (U6)), for any Θ = (U1, . . . , U6), and ⊙
represents the tensor product of vectors. Ye indices in (10)
vary in the ranges of values indicated throughout the section.

Ye algebraic solution of (10) is given by, P = Ξ+ ⋅ Q,
where Ξ+ denotes the Moore-Penrose pseudoinverse of Ξ.
Due to the fact that the blending functions are nonlinear
in ! and V, the least-squares minimization of the errors
is a strongly nonlinear problem, with a large number of
unknowns for large sets of data points. Our strategy for
solving the problem consists of applying the \redy algorithm
to determine suitable parameter values for the least-squares
minimization of functional M according to either (8) or (9).
However, in order to do it, some previous steps must be
carefully carried out.

(1) First of all, we need an adequate representation of
the unknowns of the problem. Because of the tensor-
product structure of the free-form Bézier surfaces,
the \redies in our method can be encoded as either
strings of two sorted real-coded vectors on the inter-
val [0, 1] of length V and W, respectively, for organized
data points, or as sorted real-coded vectors of lengthX for the case of irregularly sampled data points.
All \redies are initialized with sorted uniformly
distributed random numbers on the coordinate para-
metric domain.

(2) Ye objective function corresponds to the evaluation
of the least-squares function given by either (8) or
(9). Since this error function does not consider the
number of data points, we also compute the RMSE
(root-mean squared error), given by

RMSE

= √∑/$=1∑4-=1 (Q$,- − ∑(!=0∑)"=0 P!,"Ψ(! (!$) Ψ)" (V-))2V ⋅ W ,
(11)

for (8) or, alternatively by:

RMSE = √∑5'=1 (Q' − ∑(!=0∑)"=0 P!,"Ψ(! (!') Ψ)" (V'))2X ,
(12)

for (9) and report our results by using these error
criteria.

(3) We also need to choose the degree of the approximat-
ing surface, which in turn depends on the number
of control points. Yis value is chosen according
to the complexity of the shape of the underlying
function of data. In general, a small amount of control
points is needed for simple, smooth shapes, while
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a large number of control points must be selected
for complicated, twisted, or irregular shapes. Since
this number is unknown a priori, it is advisable to
start with a low number of control points for each
parametric coordinate and increase it until the error
reaches values below a prescribed threshold, which
generally depends on both the underlying surface and
the application domain.

(4) Regarding the \redy algorithm, some control param-
eters should be set up. As usual when working
with metaheuristic techniques, the choice of suitable
control parameters is very important as it determines
the performance of the method at large extent. It
is also challenging, because it is strongly problem
dependent. In this paper, our choice is based on a
large collection of empirical results. Yese control
parameters are

(a) the number of \redies, Z8: this value is set up toZ8 = 100 \redies in all examples of this paper.
We also tried larger populations of \redies (up
to 1000 individuals) but found that our results
do not change signi\cantly. Since larger popu-
lations mean larger computation times with no
remarkable improvement at all, we found this
value to be appropriate in our simulations;

(b) the number of iterations, Ziter: this number is
another parameter of the method that has to be
determined in order to run the algorithm until
the convergence of theminimization of the error
is achieved. In general, the \redy algorithmdoes
not need a large number of iterations to reach
the global optima.Yis also happens in this case.
In all our simulations, we found that Ziter = 10 is a
suitable value, as larger values for this parameter
does not improve our results;

(c) the initial attractiveness, /0: some theoretical
results suggest that /0 = 1 is a good choice for
many optimization problems. We also take this
value in this paper, with very good results, as it
will be discussed in next section;

(d) the absorption coeacient, 7: it is set up to 7 =0.5 in this paper, as this value provides a quick
convergence of the algorithm to the optimal
solution;

(e) the potential coeacient, 2: although any posi-
tive value can be used for this parameter, the
light intensity varies according to the inverse
square law. Yerefore, we choose 2 = 2 accord-
ingly;

(f) the randomization parameter, 9. Yis param-
eter varies on the interval [0, 1] and allows
us to determine the degree of randomization
introduced in the algorithm. Yis stochastic
component is necessary in order to allow new
solutions appear and avoid getting stuck in a
local minimum. However, larger values intro-
duce large perturbations on the evolution of the

\redy and, therefore, delay convergence to the
global optima. Consequently, it is advisable to
select values in between. In this work, we take9 = 0.5.

A_er the selection of those parameters, the \redy algo-
rithm is performed iteratively for the given number of itera-
tions. To remove the stochastic eoects and avoid premature
convergence, 20 independent executions have been carried
out for each choice of the surface degree.Yen, the \redywith
the best (i.e., minimum) \tness value is selected as the best
solution to the problem.

5. Experimental Results

To check the performance of our method described previ-
ously, it has been tested with a large collection of examples
with excellent results in all cases. To keep the paper at
manageable size, in this section we consider only three
of them. Yey have been primarily chosen to redect the
diversity of situations to which the method can be applied.
Ye examples correspond to both open and closed surfaces,
including shapes with singularities. As the reader will see,
they clearly show the good performance of our approach.

Examples in this paper are shown in Figures 1, 2, and 3.
For each example, two dioerent pictures are displayed: on
the le_, we show the original cloud of input data points,
represented as small red points; on the right, the best approx-
imating Bézier surface, as obtained with our \redy-based
method, is displayed. Our input consists of sets of irregularly
sampled data points (this fact can readily be seen from simple
visual inspection of the point clouds on the le_), which
are also aoected by measurement noise of low to medium
intensity (signal-to-noise ratio of 15 : 1, 25 : 1, and 10 : 1, resp.).
In all examples, no information about the data points param-
eterization is available at all. In fact, no information about the
structure and properties of the underlying surface of data is
either assumed or known beyond the data points.

Table 1 summarizes the main results of our computer
simulations.Ye dioerent examples are arranged in rows. For
each example, the following data are arranged in columns:
number of data points, M error value (according to (8) and
(9)), the maximum of the M error (denoted by MaxM and
that provides a useful upper bound for that error), and RMSE
error value (according to (11) and (12)). Ye error values are
reported for each coordinate in all cases.

First observation is that, although our data points are
irregularly sampled and aoected by noise, the method yields
very good \tting results in all cases. Ye RMSE is of order10−3 in all cases, while the order of the least-squares M
error is within the range 10−3–10−2 and so is its maximum.
Furthermore, these very small \tting errors are obtained
for surfaces that are more complicated than it may seem
at \rst sight. For instance, the surfaces of the \rst and
third examples are apparently simple, dat, and height-map
surfaces. However, a careful observation reveals that they
oscillate several times, and hence, they exhibit a rich variety
of hills and valleys, which have been highlighted by using an
illumination model for the sake of clarity. On the other hand,
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Table 1: Number of data points and error values (for each coordinate) of the three examples discussed in this paper.

Example Number of data points Error (E) Error (MaxE) Error (RMSE)

Example 1 6572 *: 7.3652 × 10−2 *: 9.5144 × 10−2 *: 3.3476 × 10−3b: 7.4303 × 10−2 b: 9.8452 × 10−2 b: 3.3624 × 10−3d: 7.5126 × 10−2 d: 9.9673 × 10−2 d: 3.3811 × 10−3
Example 2 3378 *: 5.2958 × 10−3 *: 7.2446 × 10−3 *: 1.2521 × 10−3b: 5.1216 × 10−3 b: 7.0237 × 10−3 b: 1.2313 × 10−3d: 5.2909 × 10−3 d: 7.4532 × 10−3 d: 1.2515 × 10−3
Example 3 7312

*: 6.4191 × 10−2 *: 8.4377 × 10−2 *: 2.9629 × 10−3b: 6.3774 × 10−2 b: 8.3875 × 10−2 b: 2.9532 × 10−3d: 6.4746 × 10−2 d: 9.3271 × 10−2 d: 2.9756 × 10−3

(a) (b)

Figure 1: Applying the \redy algorithm to Bézier surface approximation of data points: (a) original data points; (b) best approximating Bézier
surface.

(a) (b)

Figure 2: Applying the \redy algorithm to Bézier surface approximation of data points: (a) original data points; (b) best approximating Bézier
surface.
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(a) (b)

Figure 3: Applying the \redy algorithm to Bézier surface approximation of data points: (a) original data points; (b) best approximating Bézier
surface.

the second surface is a closed surface with a strong singularity
at its uppermost part, where many data points concentrate in
a very small volume.Yis is usually a very challenging feature
for free-form parametric surfaces, which typically tend to
distribute the control points by following a rectangular
topology. Clearly, such a distribution is not adequate for this
surface. To our delight, the proposed method identi\es this
situation automatically and rearranges the control points by
itself to adapt to the underlying structure of data points. In
opinion of the authors, this is a striking and very remarkable
feature of this method and shows its ability to capture the real
behavior of data points even under unfavorable conditions.

To summarize, a visual inspection of the three \gures
clearly shows that ourmethod yields a very good approximat-
ing surface to data points in all cases. Yis fact is validated
by the numerical results reported in Table 1, which con\rm
the good behavior of the method. From these examples and
many other not reported here for the sake of brevity, we
conclude that the presented method performs very well,
with remarkable capability to provide a satisfactory, accurate
solution to our parameterization problem with polynomial
Bézier surfaces.

Regarding the implementation issues, all computations
in this paper have been performed on a 2.9GHz. Intel Core
i7 processor with 8GB of RAM. Ye source code has been
implemented by the authors in the native programming
language of the popular scienti\c program Matlab, version
2010b for Windows 8 operating system.

6. Conclusions and Future Work

Yis paper introduces a new method to address the surface
parameterization problem, that is, to compute a suitable
parameterization of a set of data points in order to construct
the free-form parametric surface approximating such data
points better in the least-squares sense. Yis is a challenging
problem that appears recurrently in reverse engineering for
computer design and manufacturing and in many other
industrial \elds. Very o_en, data points in real-world settings
are irregularly sampled and subjected to measurement noise,

leading to a very diacult nonlinear continuous optimization
problem, which cannot be solved by using standard opti-
mization techniques. To overcome this limitation, this paper
proposes a new method based on a powerful nature-inspired
metaheuristic algorithm called \redy algorithm, introduced
recently to solve diacult optimization problems.Yemethod
has been successfully applied to solve the parameterization
problem for polynomial Bézier surfaces. Ye paper discusses
the main issues in this problem, such as the solution repre-
sentation and the selection of suitable control parameters. To
check the performance of our approach, it has been applied
to some illustrative examples of open and closed surfaces,
including shapes with singularities. Our results show that
the method performs very well, being able to yield the best
approximating surface with a high degree of accuracy.

As mentioned in Section 3, the original \redy algorithm
has been improved and modi\ed in many dioerent ways.
Some of its variants have shown to be more eacient than
the original version, meaning that the presented approach
can arguably be improved with new, optimized features for
better performance. An illustrative example is given by a very
recent version called memetic self-adaptive \redy algorithm
[53], whose new capabilities (the use of self-adaptation
strategies on the control parameters, a new populationmodel
based on elitism, and the hybridization with a local search
heuristics) improve the original \redy algorithm signi\cantly.
Ye application of many of these variants to our parameter-
ization problem along with a comparative analysis of their
performance is part of our future work.We are also interested
to extend this method to other families of surfaces, such as
the B-splines and NURBS, where the existence of additional
parameters (such as knots and weights) can modify our
procedure signi\cantly. Ye application of this method to
some interesting real-world problems in industrial settings is
also part of our plans for future work.
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