
Simulating the Behaviour of the
Human Brain on NVIDIA GPU:

cuHinesBatch & cuThomasBatch implementations

Author:
Ivan Mart́ınez Pérez

Master in Innovation and Research in Informatics
High Performance Computing specialization

15 de Enero de 2018

Director:
Pedro Valero-Lara

Co-Director:
Antonio Peña

Facultad de Informática de Barcelona
Universidad Politécnica de Cataluña (UPC) - BarcelonaTech

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/158801534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Resumen

Abstract

Being able to understand the behavior of the Human Brain is one of the most important
challenge of this decade. In this work we are going to present a small step towards this
objective.

This work presents a novel advances in order to compute more efficiently the Hines
algorithm on GPU, being this algorithm one of the most time consuming step in brain
simulation. Moreover, all the work done bring us the opportunity to develop a more
general tridiagonal solver, based on Thomas algorithm, which is presented in this work
too.

This work is structured as follows. Section 2 briefly introduces what a GPU is and
the different methodologies to deal with the problem at hand, that is the simulation
of the behavior of the Human Brain. In Section 3 we present the advances proposed
for the resolution of Thomas and Hines algorithms . Section 4 shows the performance
achieved and finally the conclusions are outlined in Section 5.

1

Contents

Resumen 1

Prefacio 5

1 Introduction 6
1.1 Human Brain Project . 6

1.1.1 Arbor Simulator . 7
1.1.2 Hines Method . 8

1.2 Motivation and Objectives . 9

2 State of the art 10
2.1 Graphics Processing Unit (GPU) . 10

2.1.1 cuSPARSE . 11
2.2 Tridiagonal Linear Systems . 12

2.2.1 Hines Algorithm . 14

3 Design and Development 17
3.1 Implementation of cuThomasBatch . 17
3.2 Implementation of cuHinesBatch . 19

3.2.1 Implementation based on Shared Memory 20
3.3 Variable Batch . 20

4 Performance Evaluation 22
4.1 Evaluation Environment . 22

4.1.1 CTE-POWER . 22
4.1.2 Minotauro . 23

4.2 cuThomasBatch Performance Analysis 23
4.2.1 Scalability . 24
4.2.2 Numerical Accuracy . 26
4.2.3 Memory Occupancy . 26

4.3 cuThomasVBatch . 27
4.4 cuHinesBatch Performance Analysis . 28
4.5 cuHinesVBatch . 32

5 Conclusions and Future Work 33

6 Contributions 34

Acknowledgements 36

2

List of Figures

1.1 Arbor main behavior . 8
1.2 Arbor simulation pipeline . 8

2.1 GPU architecture (top) and grid of CUDA blocks (bottom). 11
2.2 Access pattern of the CR algorithm. 13
2.3 Access pattern of the PCR algorithm. 14
2.4 Access pattern of the CR-PCR algorithm. 15
2.5 Example of a neuron morphology and its numbering (left-top and bot-

tom) and sparsity pattern corresponding to the numbering followed (top-
right). 16

3.1 Example of the Flat data layout. 17
3.2 Example of the Full-Interleaved data layout. 18
3.3 Example of the Unified-Vector data layout. 18
3.4 Coarse (top) and fine (bottom) CUDA thread mapping. 19
3.5 Example of Block-Interleaved data layout with a BS equal to 2, for 4

Hines systems of three elements each. Point-line represents the jumps in
memory carried out by the first thread/system. 20

3.6 Example of the Full-Interleaved data layout for Variable Batch (Padding). 21

4.1 Speedup (execution time of each of the approaches divided by the execu-
tion time of the sequential CPU code) of Multicore(Multi), cuThomas-
Batch, gtsvStridedBatch and cuThomasBatch-UnifiedVector(UV) using
single precision operations for computing multiple, 256-256,000 tridi-
agonal systems using different sizes: 64 (left-top), 128 (right-top), 256
(left-bottom) and 512 (right-bottom). 24

4.2 Speedup (execution time of each of the approaches divided by the execu-
tion time of the sequential CPU code) of Multicore(Multi), cuThomas-
Batch, gtsvStridedBatch and cuThomasBatch-UnifiedVector(UV) using
double precision operations for computing multiple, 256-256,000 tridi-
agonal systems using different sizes: 64 (left-top), 128 (right-top), 256
(left-bottom) and 512 (right-bottom). 25

4.3 Speedup (execution time of the cuThomasBatch by the execution time of
the gtsvStridedBatch) using both, single precision (left) and double preci-
sion operations (right), for computing multiple, 256-256,000 tridiagonal
systems using different sizes: 64, 128, 256 and 512. 26

4.4 Memory used by gtsvStridedBatch and cuThomasBatch to compute 256,000
tridiagonal systems using double precision. 27

4.5 Execution time for the two variants, No Computing Padding and Com-
puting Padding, of the cuThomasVBatch. 28

3

4.6 Performance (speedup over sequential execution) achieved by multicore
(16 cores, 2 sockets) and the GPU-based approaches, Flat and Full-
Interleaved (using different number of GPUs), using medium-high neurons. 29

4.7 (Left) Performance (speedup over sequential execution) achieved by the
Block-Interleaved approach for multiple BS (32, 64, 128, 256, 512) for a
CUDA Block size equal to 128. (Right) Performance (speedup over se-
quential execution) achieved by the Block-Shared implementation, Flat,
Full-Interleaved (Full-Inter) and Multicore (Multi) using 16 cores. The
test-case consisted of computing 256,000 medium-high neurons, using
one of the two logic GPUs in one K80 NVIDIA GPU. 30

4.8 Performance (speedup over sequential execution) achieved for computing
multiple (256, 2,560, 25,600, 256,000) neurons using different morpholo-
gies: small-low (top-left), small-high (top-right), medium-low (center-
left), medium-high (center-right), big-low (bottom-left) and big-high (bottom-
right). 31

4.9 Execution time for the two variants, No Computing Padding and Com-
puting Padding, of the cuHinesVBatch, for neurons with same morphol-
ogy(mono), different morphology(multi) and different size and morphol-
ogy(multi 600/700). 32

4

List of Tables

4.1 Summary of the neurons used. 28

5

Chapter 1

Introduction

1.1 Human Brain Project

The brain, with its billions of interconnected neurons, is without any doubt the most
complex organ in the body. With 500 scientists at more than 100 universities, teaching
hospitals, research centers across Europe and a total budged of 1 billion euros, The Hu-
man Brain Project, one of the Flagship European projects and the main frame where
this Master Thesis is developed, proposes a completely new approach.

The project integrates everything we know about the brain into computer models
and using these models to simulate the actual working of the brain. Ultimately, it will
attempt to simulate the complete human brain. The models built by the project will
cover all the different levels of brain organisation – from individual neurons through
to the complete cortex. The goal is to bring about a revolution in neuroscience and
medicine and to derive new information technologies directly from the architecture of
the brain.

The challenges facing the project are huge. Neuroscience alone produces more
than 60’ 000 scientific papers every year. From this enormous mass of information, the
project will have to select and harmonise the data it is going to use – ensuring that data
produced with different methods is fully comparable. The data feeding the project’s
simulation effort will come from the clinic and from neuroscience experiments. As we
try to fit all the information together, we will discover many of the brain’s fundamental
design secrets: the geometry and electrical behaviour of different classes of neurons, the
way they connect to form circuits, and the way new functions emerge as more and more
neurons connect. It is these principles, translated into mathematics that will drive the
project’s models and simulations.

Today, simulating a single neuron requires the full power of a laptop computer.
But the brain has 100 billions of neurons and simulating all them simultaneously is a
huge challenge. To get round this problem, the project will develop novel techniques
of multi-level simulation in which only groups of neurons that are highly active are
simulated in detail. But even in this way, simulating the complete human brain will
require a computer a thousand times more powerful than the most powerful machine
available today. That is the reason why Subproject 7 (High-Performance Analytics and
Computing Platform), formed by specialists in supercomputing, is one of the key parts
in the Human Brain Project. Their main task is to work with industry to provide the

6

CHAPTER 1. INTRODUCTION

project with the computing power it will need at each stage of its work.

The Human Brain Project will impact many different areas of society. Brain sim-
ulation will provide new insights into the basic causes of neurological diseases such as
autism, depression, Parkinson’s, and Alzheimer’s. It will give us new ways of testing
drugs and understanding the way they work. It will provide a test platform for new
drugs that directly target the causes of disease and that have fewer side effects than
current treatments. It will allow us to design prosthetic devices to help people with
disabilities. The benefits are potentially huge. As world populations grow older, more
than a third will be affected by some kind of brain disease. Brain simulation provides
us with a powerful new strategy to tackle this problem.The project also promises to
become a source of new Information Technologies. Unlike the computers of today, the
brain has the ability to repair itself, to take decisions, to learn, and to think creatively
- all while consuming no more energy than an electric light bulb. The Human Brain
Project will bring these capabilities to a new generation of neuromorphic computing
devices, with circuitry directly derived from the circuitry of the brain.

1.1.1 Arbor Simulator

Current simulators were designed for single core systems, with parallel implementations
added later. There are efforts to add many core support to existing codes, however they
are subject to the law of diminishing returns, this means that adding more cores could
even cause a fall in performance. A common example is adding more people to a job,
such as the assembly of a car on a factory floor. At some point, adding more work-
ers causes problems such as workers getting in each other’s way or frequently finding
themselves waiting for access to a part.

This presents an opportunity to start work on the next generation of simulators,
designed from the ground up to support diverse many core architectures. Led by ETH
Zürich, Arbor1, as one of the simulators born inside the philosophy of the Human Brain
project, aims to fill this gap.

The simulation itself is divided into two big tasks, communication and computa-
tion, exchange and update-cells respectively on Figure 1.1. On communication, each
simulated neuron sends the spikes generated on one simulation time step to the other
interconnected neurons, the way that we determined if a spike is generated or not is
through the computation phase. As we can see, the communication phase depends on
the results obtained by the computation phase, leading us to one of the key points of
Arbor implementation: each time step of the simulation is half step of the behavior
that we are simulating, allowing a temporal pipeline implementation (Figure 1.2).

Despite being a great optimization that enables a increment in the parallelism,
it is not the main focus of our thesis, that is the reason why we are going to shift
our attention into the computation phase, the one that is in charge of determining
the Voltage on neuron morphology and one of the most time consuming steps of the
simulation.

1https://github.com/eth-cscs/arbor

7

CHAPTER 1. INTRODUCTION

Figure 1.1: Arbor main behavior

Figure 1.2: Arbor simulation pipeline

1.1.2 Hines Method

The standard algorithm used to compute the Voltage on neurons’ morphology is the
Hines algorithm [7]. This algorithm is based on the Thomas algorithm [2], which solves
tridiagonal systems. Although the use of GPUs to compute the Thomas algorithm
has been deeply studied [17, 20, 5, 22, 3], the differences among these two algorithms,
Hines and Thomas, makes us impossible to use the last one as this can not deal with
the sparsity of the Hines matrix.

Previous works [1] have explored the use of other algorithms based on the Stone’s
method [11]. Unlike Thomas algorithm, this method is parallel. However, it is in need
of a higher number of operations (20n log 2n) with respect to the (8n) operations of the
Thomas algorithm to solve one single system of size n. Also, the use of parallel methods
present some additional drawbacks to be dealt with. For instance, it would be difficult
to compute those neurons that compromise a size bigger than the maximum number of
threads per CUDA block (1024) or shared memory (48KB in NVIDIA k80 and 64KB in
NVIDIA P100). Other problems are the computationally expensive operations such as
atomic accesses and synchronizations necessary to compute this method. Each neuron

8

CHAPTER 1. INTRODUCTION

presents a particular morphology and so a different scheduling (preprocessing) must be
applied to each of them which makes even more difficult its implementation.

Unlike the work presented in [1], where a relatively low number of neurons (128)
is computed using single precision operations, in this work we are able to execute a
very high number of neurons (up to hundreds of thousands) using double precision
operations. We have used the Hines algorithm, which is the optimum method in terms
of number of operations, avoiding high expensive computational operations, such as
synchronizations and atomic accesses. Our code is able to compute a high number of
systems (neurons) of any size in one call (CUDA kernel), using one thread per Hines
system instead of one CUDA block per system. Although multiple works have explore
the use of GPUs to compute multiple independent problems in parallel without trans-
forming the data layout [13, 14, 12, 18], the particular characteristics of the sparsity of
the Hines matrices forces us to modify the data layout to efficiently exploit the memory
hierarchy of the GPUs (coalescing accesses to GPU memory). These modifications have
not been explored previously, which are deeply described and analyzed in the present
work.

1.2 Motivation and Objectives

The broad objective of this thesis is the optimization of Arbor in order to exploit better
the new many-core architectures, concretely GPU architectures.

Through a quick analysis of the simulation we determined, as we mentioned before,
that the voltage computation was the most time consuming step, leading us to shift
our focus to implement a GPU kernel able to solve that tasks at least twice faster.

As we will see in Section 4.1, our implementation obtain the desired 2x speed-up
over the multi-core implementation or even more depending of the test case.

9

Chapter 2

State of the art

2.1 Graphics Processing Unit (GPU)

Although GPUs are traditionally associated to interactive applications involving high
rasterization performance, they are also widely used to accelerate much more general
applications (now called General Purpose Computing on GPU (GPGPU) [106]) which
require an intense computational load and present parallel characteristics. The main
feature of these devices is a large number of processing elements integrated into a sin-
gle chip, which reduces significantly the cache memory. These processing elements
can access to a local high-speed external DRAM memory, connected to the computer
through a high-speed I/O interface (PCI-Express). Overall, these devices can offer a
higher main memory bandwidth and can use data parallelism to achieve a higher float-
ing point throughput than CPUs [44]. Figure 2.1 (top) describes the architecture of
modern NVIDIA’s GPUs. It consists of a number of multiprocessors and each multi-
processor has a set of simple cores. All multiprocessors share the same main memory,
called “global memory”. In addition, all cores of one multiprocessor can access to the
same “shared memory”. This memory is useful when many threads have to access
to the same data or if one data is used many times by one thread. Indeed when a
block of information has to be loaded in shared memory it is necessary to take it from
global memory. To control the GPU devices and manage memory, we have used in the
present work the high level programming language CUDA [28], introduced by NVIDIA.

Calculations in CUDA are distributed into a mesh or grid of thread blocks of the
same size (number of threads). These threads run the GPU code, known as kernel; note
that although this kernel is originally called by the CPU, finally it is executed in the
GPU, as seen in Figure 2.1(bottom). Threads within a blocks are grouped into warps
of 32 threads. A warp executes one common instruction at a time, so full efficiency
is done when all 32 threads of a warp agree on their execution path. If threads of a
warp diverge via a data-dependent conditional branch, the warp serially executes each
branch path taken, disabling threads that are not on that path, and when all paths
complete, the threads converge back to the same execution path. Branch divergence
occurs only within a warp; different warps execute independently regardless of whether
they are executing common or disjoint code paths. The dimensions of both the mesh
and the threads block should be carefully chosen in order to achieve the maximum
performance depending on the specific problem being treated.

The threads within a block can work together efficiently exchanging data via a

10

CHAPTER 2. STATE OF THE ART

Figure 2.1: GPU architecture (top) and grid of CUDA blocks (bottom).

local shared memory and synchronize low-latency execution through synchronization
barriers (where threads in a block are suspended until they all reach the synchroniza-
tion point). By contrast, the threads of different blocks in the same network can only
communicate through a high-latency access to global memory (the memory graphic
board). In order to exploit the bandwidth of both global and shared memory in an
efficient way, it is better that threads have the same or very similar pattern of mem-
ory access to reach contiguous spaces of memory (coalescing access). Besides, another
technique used to avoid the latency of the global memory, consists in overlapping the
executions of threads blocks with accesses to global memory.

All CUDA code is divided in two different parts, CPU code and GPU code (kernel).
The CPU code, provides the instructions to be performed by the CPU, e.g. allocating
data on the CPU and GPU, transferring data between GPU and CPU and launching
kernels. On the other hand, the GPU code provides the instructions to be executed in
the GPU, by all threads of the kernel.

2.1.1 cuSPARSE

The cuSPARSE1 library contains a set of basic linear algebra subroutines used for
handling sparse matrices. It is implemented on top of the NVIDIA CUDA runtime

1http://docs.nvidia.com/cuda/cusparse/index.html

11

CHAPTER 2. STATE OF THE ART

(which is part of the CUDA Toolkit) and is designed to be called from C and C++.
The library routines can be classified into four categories:

• Level 1 : operations between a vector in sparse format and a vector in dense
format

• Level 2 : operations between a matrix in sparse format and a vector in dense
format

• Level 3 : operations between a matrix in sparse format and a set of vectors in
dense format (which can also usually be viewed as a dense tall matrix)

• Conversions: operations that allow conversion between different matrix formats,
and compression of csr matrices.

The cuSPARSE library allows developers to access the computational resources of the
NVIDIA graphics processing unit (GPU), although it does not auto-parallelize across
multiple GPUs. As we will see in subsequent sections this library contains the reference
solver for tridiagonal linear systems in GPU, gtsvStridedBatch which is going to be a
great reference in order to evaluate our implementations.

2.2 Tridiagonal Linear Systems

The state-of-the-art method to solve tridiagonal systems is the called Thomas algo-
rithm [15]. Thomas algorithm is a specialized application of the Gaussian elimination
that takes into account the tridiagonal structure of the system. Thomas algorithm
consists of two stages, commonly denoted as forward elimination and backward substi-
tution.

Given a linear Au = y system, where A is a tridiagonal matrix:

A =

b1 c1 0
a2 b2 c2

. . .
. . .

an−1 bn−1 cn−1
an bn

The forward stage eliminates the lower diagonal as follows:

c′1=c1
b1

, c′i=
ci

bi−c′i−1ai
for i = 2, 3, . . . , n− 1

y′1=y1
b1

, y′i=
yi−y′i−1ai

bi−c′i−1ai
for i = 2, 3, . . . , n− 1

and then the backward stage recursively solve each row in reverse order:

un = y′n, ui = y′i − c′iui+1 for i = n− 1, n− 2, . . . , 1

Overall, the complexity of Thomas algorithm is optimal: 8n operations in 2n − 1
steps.

12

CHAPTER 2. STATE OF THE ART

Cyclic Reduction (CR) [21, 8, 15, 16] is a parallel alternative to Thomas algorithm.
It also consists of two phases (reduction and substitution). In each intermediate step
of the reduction phase, all even-indexed (i) equations aixi−1 + bixi + cixi+1 = di are
reduced. The values of ai, bi, ci and di are updated in each step according to:

a′i = −ai−1k1, b
′
i = bi − ci−1k1 − ai+1k2 c

′
i = −ci+1k2, y

′
i = yi − yi−1k1 − yi+1k2

k1= ai

bi−1
,k2= ci

bi+1

After log2 n steps, the system is reduced to a single equation that is solved directly. All
odd-indexed unknowns xi are then solved in the substitution phase by introducing the
already computed ui−1 and ui+1 values:

ui=
y′i−a′ixi−1−c′ixi+1

b′i

Overall, the CR algorithm needs 17n operations and 2 log2 n − 1 steps. Figure 2.2
graphically illustrates its access pattern.

2

1 3 5 7

62

4 8

84

8642

1 3 4 5 6 7 8

Figure 2.2: Access pattern of the CR algorithm.

Parallel Cyclic Reduction (PCR) [21, 8, 15, 16] is a variant of CR, which only has
substitution phase. For convenience, we consider cases where n = 2s, that involve
s = log2 n steps. Similarly to CR a, b, c and y are updated as follows, for j = 1, 2, . . . , s
and k = 2j−1 :

a′i = αiai, b
′
i = bi + αici−k + βiai+k

c′i = βici+1, y
′
i = bi + αiyi−k + βiyi+k

αi=−ai

bi−1
,βi=−ci

bi

13

CHAPTER 2. STATE OF THE ART

finally the solution is achieved as:

ui=
y′i
bi

Essentially, at each reduction stage, the current system is transformed into two smaller
systems and after log2 n steps the original system is reduced to n independent equations.
Overall, the operation count of PCR is 12n log2 n. Figure 2.3 sketches the correspond-
ing access pattern.

1

1

1

1 2 3 4 5 6 7 8

8765432

2 3 4 5 6 7 8

8765432

Figure 2.3: Access pattern of the PCR algorithm.

We should highlight that apart from their computational complexity these algo-
rithms differ in their data access and synchronization patterns, which also have a strong
influence on their actual performance. For instance, in the CR algorithm synchroniza-
tions are introduced at the end of each step and its corresponding memory access
pattern may cause bank conflicts. PCR needs less steps and its memory access pattern
is more regular [21].

In fact, hybrid combinations that try to exploit the best of each algorithm have
been explored [21, 10, 4, 8, 15, 16]. Figure 2.4 illustrates the access pattern of the
CR-PCR combination proposed in [21]. CR-PCR reduces the system to a certain size
using the forward reduction phase of CR and then solves the reduced (intermediate)
system with the PCR algorithm. Finally, it substitutes the solved unknowns back into
the original system using the backward substitution phase of CR. Indeed, this is the
method implemented by the gtsvStridedBatch routine into the cuSPARSE package [3].

There are more algorithms apart of the ones above mentioned to deal with tridiag-
onal systems, such as those based on Recursive Doubling [21], among others. However
we have focused on those, which were proven to achieve a better performance and were
implemented in the reference library [3].

2.2.1 Hines Algorithm

In this section, we describe the numerical framework behind the computation of the
Voltage on neurons morphology. It follows the next general form:

14

CHAPTER 2. STATE OF THE ART

2

PCR

1 3 5 7

8642

8642

1 3 4 5 6 7 8

Figure 2.4: Access pattern of the CR-PCR algorithm.

C
∂V

∂t
+ I = f

∂

∂x
(g∂V
∂x

) (2.1)

where f and g are functions on x-dimension and the current I and capacitance C [6]
depend on the voltage V. Discretizing the previous equation on a given morphology we
obtain a system that has to be solved every time-step. This system must be solved at
each point:

aiV
n+1

i+1 + diV
n+1

i + biV
n+1

i−1 = ri (2.2)

where the coefficients of the matrix are defined as follow:

upper diagonal: ai = −
figi+ 1

2
2∆2

x

lower diagonal: bi = −
figi+ 1

2
2∆2

x

diagonal: di = Ci
∆t
− (ai + bi)

rhs: ri = Ci
∆t
V n

i − I − ai(V n
i−1 − V n

i)− bi(V n
i+1 − V n

i)

The ai and bi are constant in the time, and they are computed once at start up.
Otherwise, the diagonal (d) and right-side-hand (rhs) coefficients are updated every
time-step when solving the system.

The discretization above explained is extended to include branching, where the
spatial domain (neuron morphology) is composed of a series of one-dimension sections
that are joined at branch points according to the neuron morphology.

For sake of clarity, we illustrate a simple example of a neuron morphology in Fig-
ure 2.5. It is important to note that the graph formed by the neuron morphology is an
acyclic graph, i.e. it has no loops. The nodes are numbered using a scheme that gives
the matrix sparsity structure that allows to solve the system in linear time.

To describe the sparsity of the matrix from the numbering used, we need an array
(pi i ∈ [2 : n]) which stores the parent indexes of each node. The pattern of the matrix
which illustrates the morphology shown above is graphically illustrated in Figure 2.5.

15

CHAPTER 2. STATE OF THE ART

Figure 2.5: Example of a neuron morphology and its numbering (left-top and bottom)
and sparsity pattern corresponding to the numbering followed (top-right).

The Hines matrices feature the following properties: they are symmetric, the diagonal
coefficients are all nonzero and per each off-diagonal element, there is one off-diagonal
element in the corresponding row and column (see row/column 7, 12, 17 and 22 in
Figure 2.5).

Given the aforementioned properties, the Hines systems (Ax = b) can be efficiently
solved by using an algorithm similar to Thomas algorithm for solving tri-diagonal sys-
tems. This algorithm, called Hines algorithm, is almost identical to the Thomas algo-
rithm except by the sparsity pattern given by the morphology of the neurons whose
pattern is stored by the p vector. An example of the sequential code used to implement
the Hines algorithm is illustrated in pseudo-code in Algorithm 1.

Algorithm 1 Hines algorithm.
1: void solveHines(double *u, double *l, double *d,
2: double *rhs, int *p, int cellSize)
3: // u → upper vector, l → lower vector
4: int i;
5: double factor;
6: // Backward Sweep
7: for i = cellSize− 1→ 0 do
8: factor = u[i] / d[i];
9: d[p[i]] -= factor × l[i];

10: rhs[p[i]] -= factor × rhs[i];
11: end for
12: rhs[0] /= d[0];
13: // Forward Sweep
14: for i = 1→ cellSize− 1 do
15: rhs[i] -= l[i] × rhs[p[i]];
16: rhs[i] /= d[i];
17: end for

16

Chapter 3

Design and Development

3.1 Implementation of cuThomasBatch

An efficient memory management is critical to achieve a good performance, but even
much more on those architectures based on a high throughput and a high memory
latency, such as the GPUs. In this sense, first we focus on presenting the different data
layouts proposed and analyze the impact of these on the overall performance. Two
different data layouts were explored: Flat and Full-Interleaved. While the Flat data
layout consists of storing all the elements of each of the systems in contiguous memory
locations, in the Full-Interleaved data layout, first, we store the first elements of each
of the systems in contiguous memory locations, after that we store the set of the second
elements, and so on until the last element.

���
���
���
���

��
��
��
��
��
��
��
��

����
����
����

����
����
����

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Size of the system

Set of vectors

Figure 3.1: Example of the Flat data layout.

For sake of clarity, Figure 3.1 and 3.2 illustrate a simple example composed by four
different tridiagonal systems of three elements each. Please, note that we only illustrate
one vector per system in Figure 3.1, but in the real scenario we would have 4 vectors
per tridiagonal system on which are carried out the strategies above described. As
widely known, one of the most important requirements to achieve a good performance
on NVIDIA GPUs is to have contiguous threads accessing contiguous memory locations
(coalescing memory accesses). This is the main motivation behind the proposal of the
different data layouts and CUDA thread mappings. As later shown, the differences
found in the data layouts studied have important consequences on the scalability.

Additionally, we have explored other data-layout, Unified-Vector. In this case, we
attempt to analyze the hierarchy of memory by exploiting the temporal locality that
there is among the different vectors (a, b, c, and u/y in Section 2.2). Basically, every
thread, immediately after ai is computed, has to compute also bi and ci, in the forward
step. In the backward step, the process is similar, but in the opposite order. Using this

17

CHAPTER 3. DESIGN AND DEVELOPMENT

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���
���

����
����
����
����

���
���
���
���

Set of first elements

Set of second elements

Set of third elements

Figure 3.2: Example of the Full-Interleaved data layout.

data layout, we want to take advantage of this characteristic of the Thomas algorithm.
For sake of clarity, Figure 3.3 graphically illustrates the data layout proposed for a
simple batch composed by only 2 independent tridiagonal systems.

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��
��

���
���
���

���
���
���

System 1 System 2

Vector c

Vector b

Vector a

Vector−Unified

Vector u/y

Figure 3.3: Example of the Unified-Vector data layout.

Next, we explore the different proposals about the CUDA thread mapping on the
data layouts above described. Figure 3.4 illustrates the different CUDA thread map-
pings studied in this paper. Figure 3.4(top) shows a coarse-grain scheme where a set of
tridiagonal (S1, .., Sn in Figure 3.4) systems is mapped onto a CUDA block, so that each
CUDA thread fully solves one system. We decided to explore this approach to avoid
dealing with atomic accesses and synchronizations, as well as to be able to execute a
very high number of tridiagonal systems of any size, without the limitation imposed by
the parallel methods.

Using the Flat data layout we can not exploit coalescence when exploiting one thread
per tridiagonal system (coarse approach) [15]; however by interleaving (Figure 3.2) the
elements of the vectors (a, b, c, u and y in Section 2.2), contiguous threads access to
contiguous memory locations. This approach does not exploit efficiently the shared
memory of the GPUs, since the memory required by each CUDA thread becomes too
large. Our GPU implementation (cuThomasBatch) is based on this approach, Thomas
algorithm (Section 2.2) on Full-Interleaved data layout (Figure 3.2).

On the other hand, previous studies have explored the use of the fine-grain scheme
based on CR-PCR [21, 8, 15, 16] using the Flat data layout. In this case (Fig-
ure 3.4(bottom)), each tridiagonal system is distributed across the threads of a CUDA

18

CHAPTER 3. DESIGN AND DEVELOPMENT

1
S

i j n

i n

CUDA
Block 1

CUDA
Block j

CUDA
Block n

Thread jThread 1 Thread n

S
1

S S S

S S

CUDA Block 1

Thread i
CUDA CUDA CUDA CUDA

Figure 3.4: Coarse (top) and fine (bottom) CUDA thread mapping.

block so that the shared memory of the GPU can be used more effectively (both the
matrix coefficients and the right hand side of each tridiagonal system are hold on the
shared memory of the GPU). However, computationally expensive operations, such as
synchronizations and atomic accesses are necessary. Also this approach saturates the
capacity of the GPU with a relatively low number of tridiagonal systems. Although the
shared memory is much faster than the global memory, it presents some important con-
straints to deal with. This memory is useful when the same data can be reused either by
the same thread or by other thread of the same block of threads (CUDA block). Also,
it is small (up to 64KB in the architecture used [9]) and its use hinders the exchange
among blocks of threads by the CUDA scheduler to overlap accesses to global memory
with computation. Our reference implementation (the gtsvStridedBatch routine into
the cuSPARSE package [3]) is based of this approach, CR-PCR (Section 2.2) on Flat
data layout (Figure 3.1).

3.2 Implementation of cuHinesBatch

As we mentioned previous in this work, we can say that Hines solver is a particular
case of Thomas solver, for this reason all of our proposed approaches are based on the
previous knowledge.

As in cuThomasBatch implementation, we are going to explore different data lay-
outs: Flat and Full-Interleaved, explained in the previous section, and Block-Interleaved,
that similarly to the Full-Interleaved data layout, the Block-Interleaved data layout di-
vides the set of systems in groups of systems of a given size (BS), whose elements are
stored in memory by using the strategy followed by the Full-Interleaved approach.

Same as in Figure 3.1, please note that we only illustrate one vector per system in
Figure 3.5, but in the real scenario we would have 4 vectors per Hines system.

Although, we exploit coalescence in the memory accesses by using the Full-Interleaved
approach, the threads have to jump in memory as many elements as the number of sys-
tems to access the next element of the vector(s) (Point-lines in Figure 3.5). This could
cause an inefficient use of the memory hierarchy. This is why we study an additional

19

CHAPTER 3. DESIGN AND DEVELOPMENT

���
���
���
���

��
��
��
��

��
��
��
��

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����
����

���
���
���
���

���
���
���
���

Second blockFirst block

Figure 3.5: Example of Block-Interleaved data layout with a BS equal to 2, for 4 Hines
systems of three elements each. Point-line represents the jumps in memory carried out
by the first thread/system.

approach, the called Block-Interleaved data layout. Using this approach we reduce the
number of elements among consecutive elements of the same system, and so the jumps
in memory are not as big as in the previous approach (Full-Interleaved), while keep-
ing the coalesced memory accesses. Also, the use of the Block-Interleaved data layout
can take advantage better of the growing importance of the bigger and bigger cache
memories in the memory hierarchy of the current and upcoming CUDA architectures.

3.2.1 Implementation based on Shared Memory

Unlike the previous approaches, here we explore the use of shared memory for our tar-
get application. The shared memory is much faster than the global memory; however
it presents some important constraints to deal with. This memory is useful when the
same data can be reused either by the same thread or by other thread of the same
block of threads (CUDA block). Also, it is small (until 48KB in the architecture used)
and its use hinders the exchange among blocks of threads by the CUDA scheduler to
overlap accesses to global memory with computation.

As we can see in Pseudocode 1, in our problem the elements of the vectors a, d,
b, rhs and p are reused in the Forward Sweep after computing the Backward Sweep.
However, the granularity used (1 thread per system) and the limit of the shared memory
(48KB) prevents from storing all the vectors in shared memory. To be able to use shared
memory we have to use the Block-Interleaved data layout. The number of systems to
be grouped (BS) is imposed by the size of the shared memory. In order to address the
limitation of shared memory, we only store the rhs vector, as this is the vector on which
more accesses are carried out. In this sense, the more systems are packed in shared
memory, the more accesses to shared memory are carried out.

3.3 Variable Batch

In this section, we describe the techniques used to deal with Variable Batch, batch
of tridiagonal(Thomas and Hines) systems with different sizes. Figure 3.6 graphically
illustrates a simple example of Variable Batch composed by three vectors of different
size. To deal with Variable Batch, we make use of a widely used and extended technique
very popular in parallel programming, the so called padding. This technique basically
consists of filling with null elements those memory locations between two different
data of different size. This is particularly interesting and beneficial for GPU-based
architectures, where the pattern of access to memory is critical to achieve coalescing
and reduce the impact of the high latency. However, in our particular scenario, we have
to adapt this technique to the data-layout used, Full-Interleaved. An example of this

20

CHAPTER 3. DESIGN AND DEVELOPMENT

is illustrated by Figure 3.6.

����
����
����
����

����
����
����
����
����
����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

����
����
����

����
����
����

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

����
����
����
����

���
���
���
���
��
��
��
��

���
���
���
���

���
���
���
���
���
���
���
���

����
����
����
����

���
���
���
���null null null

Full−Interleaved for Variable Batch

Figure 3.6: Example of the Full-Interleaved data layout for Variable Batch (Padding).

Regarding the CUDA thread mapping, we follow the approach based on using one
CUDA thread per tridiagonal thread (Figure 3.4-top). The reference code (gtsvStrided-
Batch) does not offer the possibility to compute batch of tridiagonal system of different
size. We have evaluated two different approaches, one called Computing Padding (CP)
and one called No Computing Padding (NCP). While the CP approach computes the
null elements located between different inputs, which does not affect to the final result,
the NCP only computes the no-null elements. This last can be shown as a more efficient
approach, but it is in need of a extra parameter (vector) which stores the size of the
systems and it suffers from divergence. Those threads that are in charge of computing
small systems, stop before others which have to compute large systems. This provokes
not only divergence among different threads in the same CUDA block, but also no
coalesce memory accesses, which can affect to performance considerably.

21

Chapter 4

Performance Evaluation

The following chapter presents the evaluations performed throughout the project, in-
cluding the analysis of the different proposed approaches for both presented implemen-
tations, cuThomasBatch and cuHinesBatch.

4.1 Evaluation Environment

In this section the technical information about the used platforms is provided, together
with all the environment setup in order to bring to the reader the possibility of repro-
duce the results by himself.

4.1.1 CTE-POWER

CTE-POWER is a cluster based on IBM Power8+ processors (Power Minsky), with a
Linux Operating System and an Infiniband interconnection network.

• 6 computing nodes, each with the following technical characteristics:

– 2x IBM PowerNV 8335-GTB @ 4.00GHz (10 cores and 8 threads/core, total
160 threads per node)

– 256 GB of main memory distributed in 32 dimms x 8GB @ 2400MHz
– 2x 480GB SSD as local storage
– 1.6TB NVMe
– 2x nVidia Pascal P100 GPU with 16GB of memory.
– Dual Port Mellanox EDR
– GPFS via two fiber links 10 GBit

The operating system is Red Hat Enterprise Linux Server 7.3 (Maipo). This platform
was use to carry out all the experiments based on cuThomasBatch, We have used
the next configuration (compilers version and flags): gcc 4.8.5, cuda 8.0, -arch=sm 60
-fopenmp -O3 -std=c++11

22

CHAPTER 4. PERFORMANCE EVALUATION

4.1.2 Minotauro

MinoTauro is a heterogeneous cluster with 2 configurations:

• 61 Bull B505 blades, each blade with the following technical characteristics:

– 2 Intel E5649 (6-Core) processor at 2.53 GHz
– 2 M2090 NVIDIA GPU Cards
– 24 GB of Main memory
– Peak Performance: 88.60 TFlops
– 250 GB SSD (Solid State Disk) as local storage
– 2 Infiniband QDR (40 Gbit each) to a non-blocking network
– 14 links of 10 GbitEth to connect to BSC GPFS Storage

• 39 bullx R421-E4 servers, each server with:

– 2 Intel Xeon E5–2630 v3 (Haswell) 8-core processors, (each core at 2.4
GHz,and with 20MB L3 cache)

– 2 K80 NVIDIA GPU Cards
– 128 GB of Main memory, distributed in 8 DIMMs of 16 GB – DDR4 @ 2133

MHz - ECC - SDRAM
– Peak Performance: 250.94 TFlops
– 120 GB SSD (Solid State Disk) as local storage
– 1 PCIe 3.0 x8 8GT/s, Mellanox ConnectXR–3FDR 56 Gbit
– 4 Gigabit Ethernet ports.

The operating system is RedHat Linux 6.7 for both configurations. This platform was
used to carry out the cuHinesBatch experiments. The main reason in order to use
Minotauro and not CTE-POWER despite being newer, is the lack of enough GPU
device in order to carry out the multi-GPU experiments. We have used the next
configuration (compilers version and flags): gcc 4.4.7, nvcc (CUDA) 7.5, -O3, -fopenmp,
-arch=sm 37.

4.2 cuThomasBatch Performance Analysis

We have evaluated the performance of each of the approaches, gtsvStridedBatch, cuThomas-
Batch, cuThomasBatch-Unified Vector using both, single and double precision opera-
tions. Our test cases consist of computing 256, 2,560, 25,600 and 256,000 tridiagonal
systems of 64, 128, 256 and 512 elements each. We have considered this test bed to
evaluate the scalability by increasing both, the size of the systems and the number of
systems, taking into account the limitation of our platform. In particular the size of
the systems in the test cases (64-512) can be fully executed by one CUDA block using
gtsvStridedBatch. Regarding the size of the tridiagonal systems, there is no a charac-
teristic size, as it depends on the nature of the applications, and because of that, we
have considered different cases to cover all the range of possible scenarios.

23

CHAPTER 4. PERFORMANCE EVALUATION

 0.1

 1

 10

 100

 1000

256 2,560 25,600 256,000

S
p
e
e
d
u
p
 (

in
 l
o
g
 s

c
a
le

)

Number of Tridiagonal Systems

Multicore
gtsvStridedBatch
cuThomasBatch

cuThomasBatch-UV

 0.1

 1

 10

 100

 1000

256 2,560 25,600 256,000

S
p
e
e
d
u
p
 (

in
 l
o
g
 s

c
a
le

)

Number of Tridiagonal Systems

Multicore
gtsvStridedBatch
cuThomasBatch

cuThomasBatch-UV

 0.1

 1

 10

 100

 1000

256 2,560 25,600 256,000

S
p
e
e
d
u
p
 (

in
 l
o
g
 s

c
a
le

)

Number of Tridiagonal Systems

Multicore
gtsvStridedBatch
cuThomasBatch

cuThomasBatch-UV

 0.1

 1

 10

 100

 1000

256 2,560 25,600 256,000

S
p
e
e
d
u
p
 (

in
 l
o
g
 s

c
a
le

)

Number of Tridiagonal Systems

Multicore
gtsvStridedBatch
cuThomasBatch

cuThomasBatch-UV

Figure 4.1: Speedup (execution time of each of the approaches divided by the execution
time of the sequential CPU code) of Multicore(Multi), cuThomasBatch, gtsvStrided-
Batch and cuThomasBatch-UnifiedVector(UV) using single precision operations for
computing multiple, 256-256,000 tridiagonal systems using different sizes: 64 (left-top),
128 (right-top), 256 (left-bottom) and 512 (right-bottom).

4.2.1 Scalability

To analyze in detail the scalability of all the implementations, we graphically illustrate
in Figures 4.1 and 4.2 the speedup for both, single and double precision operations,
against the sequential counterpart including the performance achieved by the multicore
execution (20 cores in 2 sockets IBM Power8 node, 10 cores each). The implementation
based on multicore basically makes use of an OpenMP pragma (#pragma omp for)
on the top of the for loop which goes over the different independent tridiagonal sys-
tems to distribute blocks of systems over the available cores. While gtsvStridedBatch
achieves a peak speedup about 90 in single precision and closed to 80 in double preci-
sion, cuThomasBatch scales much more (Figure 4.1 and Figure 4.2) achieving a speedup
peak about 280 in single precision and about 180 for double precision operations. It is
remarkable that the use of different precisions has a higher impact in cuThomasbatch
than in gtsvStridedBatch. It is important to note that in some cases, the multicore
OpenMP implementation outperforms, in some cases (25,600 and 256,000 systems),
the gtsvStridedBatch implementation when executing systems of small size (64). Re-
garding the cuThomasBatch-Unified Vector, this only outperforms the cuThomasBatch
performance in a few cases (256 systems of size 64, for instance). The scalability of this
approach is considerably worse, as it suffers from a fall in performance when a high
number of systems is executed.

Figure 4.3 graphically illustrates the speedup achieved by our implementation (cuThomas-

24

CHAPTER 4. PERFORMANCE EVALUATION

 0.1

 1

 10

 100

 1000

256 2,560 25,600 256,000

S
p
e
e
d
u
p
 (

in
 l
o
g
 s

c
a
le

)

Number of Tridiagonal Systems

Multicore
gtsvStridedBatch
cuThomasBatch

cuThomasBatch-UV

 0.1

 1

 10

 100

 1000

256 2,560 25,600 256,000

S
p
e
e
d
u
p
 (

in
 l
o
g
 s

c
a
le

)

Number of Tridiagonal Systems

Multicore
gtsvStridedBatch
cuThomasBatch

cuThomasBatch-UV

 1

 10

 100

 1000

256 2,560 25,600 256,000

S
p
e
e
d
u
p

(i
n
 l
o
g
 s

c
a
le

)

Number of Tridiagonal Systems

Multicore
gtsvStridedBatch
cuThomasBatch

cuThomasBatch-UV

 1

 10

 100

 1000

256 2,560 25,600 256,000

S
p
e
e
d
u
p

(i
n
 l
o
g
 s

c
a
le

)

Number of Tridiagonal Systems

Multicore
gtsvStridedBatch
cuThomasBatch

cuThomasBatch-UV

Figure 4.2: Speedup (execution time of each of the approaches divided by the execution
time of the sequential CPU code) of Multicore(Multi), cuThomasBatch, gtsvStrided-
Batch and cuThomasBatch-UnifiedVector(UV) using double precision operations for
computing multiple, 256-256,000 tridiagonal systems using different sizes: 64 (left-top),
128 (right-top), 256 (left-bottom) and 512 (right-bottom).

Batch) against the cuSPARSE routine. There is no a clear trend regarding the benefit
achieved using cuThomasBatch, as it depends on many different factors. However, this
implementation is always better than the gtsvStridedBatch routine, obtaining a speedup
range from 1.25 to 6.1 in single precision and from 1.21 to close to 5 for double precision
operations.

To evaluate both implementations, gtsvStridedBatch and cuThomasBatch, more
deeply, we make use of the NVIDIA profiler (NVPROF) to achieve some metrics like
bandwidth and efficiency (Warp Execution Efficiency in NVPROF). The peak band-
width on P100 is 732 GB/s, however the ECC (Error Correcting Code), which is na-
tively supported in the HBM2 memory, causes a fall in the bandwidth about 15% [9]. So
the real bandwidth in P100 is about 622 GB/s. To obtain these metrics, we have used
the biggest test case, 256,000 systems of 512 elements each. Unlike our implementation,
the gtsvStridedBatch routine is composed by two kernels, gtsvFirstPassKernelMEM and
gtsvSharedMemKernel. While the first is more focused on global memory operations,
the second concentrates more operations on shared memory. As commented, the algo-
rithm used in gtsvStridedBatch, see Section 2.2, can exploit efficiently shared memory.
The bandwidth achieved by gtsvFirstPassKernelMEM is about 503 GB/s (about 80%
of the real bandwidth). In gtsvSharedMemKernel the bandwidth is mush smaller, about
192 GB/s, however, this kernel focuses on shared memory operations, achieving a band-
width on this memory about 5,670 GB/s. In cuThomasBatch the bandwidth achieved
is 527 GB/s. The kernels of the cuSPARSE routine, gtsvFirstPassKernelMEM and

25

CHAPTER 4. PERFORMANCE EVALUATION

 0

 1

 2

 3

 4

 5

 6

 7

256 2560 25600 256000

S
p
e
e
d
u
p

Number of Tridiagonal Systems

64
128
256
512

 0

 1

 2

 3

 4

 5

 6

 7

256 2560 25600 256000

S
p
e
e
d
u
p

Number of Tridiagonal Systems

64
128
256
512

Figure 4.3: Speedup (execution time of the cuThomasBatch by the execution time of
the gtsvStridedBatch) using both, single precision (left) and double precision operations
(right), for computing multiple, 256-256,000 tridiagonal systems using different sizes:
64, 128, 256 and 512.

gtsvSharedMemKernel, are able to achieve an efficiency about 99.9% and 94.1% respec-
tively. In our implementation the efficiency is 100%.

It is also important to highlight that cuThomasBatch, unlike the gtsvStridedBatch,
is in need to modify the data layout by interleaving the elements of the vectors. This
preprocessing does not compromise an important overhead with respect to the whole
process, in those applications (numerical simulations) which have to solve multiple
tridiagonal systems many times in a temporal range, as this is carried out just once at
the very beginning of the simulation [19], being that the case of the neuronal networks
simulators.

4.2.2 Numerical Accuracy

The numerical accuracy is critical in a large number of scientific and engineering appli-
cations. In this sense, we compared the numerical accuracy of both parallel approaches
against the sequential counterpart, increasing the size of the system. For sake of nu-
merical stability we force the tridiagonal coefficient matrix be diagonally dominant
(|bi| > |ai| + |ci|, ∀i = 0, . . . , n). We initialize the matrix coefficients randomly follow-
ing the previous property. The error (accuracy with respect to the result obtained by
the sequential CPU code) in cuThomasBatch is zero. This is because of the intrinsic
characteristics of the Thomas algorithm. On the other hand, the error using gtsvStrid-
edBatch is between 7 × 10−8 and 9 × 10−8 for single precision and between 1 × 10−16

and 2 × 10−16 for double precision on the tests evaluated. One additional important
characteristic of our implementation is that the results, in terms of numerical accuracy,
are reproducible. This is an important characteristics for multiple applications.

4.2.3 Memory Occupancy

As commented in Section 2.2, the use of parallel methods requires an additional amount
of temporary extra storage [3]. In particular gtsvStridedBatch is in need of m × (4 ×
n + 2048) × sizeof(< type >) more memory, being m and n the number of systems
and the size of the systems respectively [3]. This supposes, for instance, that gtsvStrid-
edBatch requires about 2× more memory capacity than cuThomasBatch to compute

26

CHAPTER 4. PERFORMANCE EVALUATION

256, 000 tridiagonal systems of 64 elements each or about 1GB extra memory to com-
pute 256, 000 tridiagonal systems of 512 elements each (Figure 4.4).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

64 128 256 512

M
e

m
o

ry
 U

s
e

d
 (

G
B

)

Size of Tridiagonal Sistems

cuThomasBatch
gtsvStridedBatch

Figure 4.4: Memory used by gtsvStridedBatch and cuThomasBatch to compute 256,000
tridiagonal systems using double precision.

4.3 cuThomasVBatch

Here we evaluate the variant of cuThomasBatch for variable batch (batch of tridiagonal
systems with different sizes), cuThomasVBatch. To evaluate both variants proposed,
No Computing Padding (NCP) and Computing Padding (CP), we first initialize a batch
of tridiagonal systems with a size chosen randomly between 256 and 512. We also
compute two other cases to compute batches with the same size, one for 256 and one
for 512 using cuThomasBatch. As Figure 4.5 illustrates the variant based on CP is
significantly more efficient and faster than the NCP counterpart. This is because of,
although the NCP needs less number of memory accesses and operations, this variant
suffer from divergence and uncoalescing in memory accesses, causing and important
underutilization of the computational capacity of our GPU architecture. We also make
use of NVPROF to achieve some metrics like bandwidth and efficiency. While the
bandwidth achieved by the NCP variant is about 205 GB/s, when executing 256,000
tridiagonal systems of 256-512 elements each, the CP is able to achieve a bandwidth
about 525 GB/s (about 85% of the peak bandwidth) for the same test case. The
efficiency is also bigger using the CP approach (77%) than the NCP one (57%). The
performance (execution time) of the CP variant is bounded by the biggest size of the
batch, as shown in Figure 4.5, the time for a variable batch (cuThomasVBatch) of
256-512 is equivalent to the execution time of a fixed-size batch (cuThomasBatch) of
512.

27

CHAPTER 4. PERFORMANCE EVALUATION

 0.0001

 0.001

 0.01

 0.1

256 2560 25600 256000

T
im

e
(s

)
in

 l
o
g
 s

c
a
le

Number of Tridiagonal Systems

cuThomasBatch(256)
cuThomasVBatch-CP(256-512)

cuThomasVBatch-NCP(256-512)
cuThomasBatch(512)

Figure 4.5: Execution time for the two variants, No Computing Padding and Computing
Padding, of the cuThomasVBatch.

4.4 cuHinesBatch Performance Analysis

To evaluate the different implementations described in the previous section, we have
used real configurations (neurons’ morphologies)1. In particular, 6 different neurons
were used, which can be divided into 6 different categories regarding their sizes and
number of branches. More details are described in Table 4.1. We have considered these
6 different morphologies, as a wide range of the neurons fall into the chosen morpholo-
gies.

Name Size #Branches Code Name neuron ID
small-low 76 7 299-DG-IN-Neuron2 NMO 00076
small-high 76 29 202-2-19nj NMO 00076

medium-low 305 30 59D-40X NMO 00302
medium-high 319 157 Culture-9-5 NMO 00319

big-low 695 66 28-2-2 NMO 00695
big-high 691 341 HSE-fluoro02 NMO 00691

Table 4.1: Summary of the neurons used.

In this section, 5 different implementations are analyzed. Three of them are the
same implementations analyzed in Section 4.2: Multicore, Flat and Full-Interleaved
Additionally, we study a Block-Interleaved approach explained in Section 3.2 and the
use of shared memory (Block-Shared) over Block-Interleaved. There are multiple dif-
ferent configurations regarding the block-size (BS) and CUDA block for the last two
scenarios (Block-Interleaved and Block-Shared). For sake of clarity we focus on one of
the possible test cases to evaluate these two approaches. The benefit shown for these
two implementations is similar to the rest of test-cases.

First, we evaluate the Multicore, Flat and Full-Interleaved for 256, 2,560, 25,600
and 256,000 medium-high (Table 4.1) neurons (Fig. 4.6). On those test cases that do
not compromise a high number of neurons (256 and 2,560), Multicore obtains better

1http://www.neuromorpho.org/

28

CHAPTER 4. PERFORMANCE EVALUATION

performance than the GPU-based implementations. This is mainly because of the par-
allelism of these tests, which is not enough to saturate GPU and this can not reduce
the impact of the high latency by overlapping execution and memory accesses. The use
of multicore (16 cores and 2 sockets) supposes a speedup (over sequential execution)
about 2 for 256 neurons and about 6 for 256,000 neurons. As shown, Flat is not able to
scale, even on those test-cases that involve a high number of neurons, being even slower
than multicore execution, achieving a maximum speedup about 2. This is because of
the memory access pattern which can not exploit coalescing (contiguous threads access
to contiguous memory locations). On the other hand, Full-Interleaved turns up as the
best choice, being faster than Multicore and Flat, when dealing with a high number
of neurons (25,600 and 256,000). Unlike Flat, Full-Interleaved takes advantage of coa-
lescing when accessing to global memory. As expected, this has an impressive impact
on performance, being Full-Interleaved about 20× and 25× faster than sequential code
when computing 25,600 and 256,000 neurons respectively on one K80 GPU. The use
of multiple GPUs is only beneficial on those test cases with an enough computational
load where a high number of neurons must be computed (25,600 and 256,000 neurons),
with an extra benefit close to the ideal scaling (about 1.9× faster than using one K80
GPU).

 0

 10

 20

 30

 40

 50

 60

256 2560 25600 256000

S
p
e
e
d
u
p

Number of Hines Systems

Multicore
Flat(one logic GPU)

Full-Inter.(one logic GPU)
Full-Inter.(K80)

Full-Inter.(2xK80)

Figure 4.6: Performance (speedup over sequential execution) achieved by multicore
(16 cores, 2 sockets) and the GPU-based approaches, Flat and Full-Interleaved (using
different number of GPUs), using medium-high neurons.

As it is not possible to have the control on CUDA scheduler, we have explored a high
number of different combinations regarding block-size (BS) for the Block-Interleaved
approach (Section 3.2). For sake of clarity, and given the huge number of different
test-cases possible, we have focused on one particular scenario. It consists of computing
256,000 medium-high neurons using different block sizes (BS) and fixing the size of the
CUDA block (number of threads per block). This is a characteristic case among the
tests carried out, as the features (sizes and number of branches) of the morphology
used is in between of the other two morphologies. As shown in Figure 4.7(left), some
of the cases are slightly better than the Full-Interleaved approach, being about a 2%
faster.

Next we analyze the performance of the Block-Shared implementation. We focus
on the same scenario used for the Block-Interleaved. Figure 4.7(right) graphically

29

CHAPTER 4. PERFORMANCE EVALUATION

 12.4

 12.6

 12.8

 13

 13.2

Full-Inter 32 64 128 256 512

S
p
e
e
d
U

p

Block(Interleaved)-Size

 2

 4

 6

 8

 10

 12

 14

Multi Flat Full-Inter Shared

S
p
e
e
d
U

p

Approaches

Figure 4.7: (Left) Performance (speedup over sequential execution) achieved by the
Block-Interleaved approach for multiple BS (32, 64, 128, 256, 512) for a CUDA Block
size equal to 128. (Right) Performance (speedup over sequential execution) achieved
by the Block-Shared implementation, Flat, Full-Interleaved (Full-Inter) and Multicore
(Multi) using 16 cores. The test-case consisted of computing 256,000 medium-high
neurons, using one of the two logic GPUs in one K80 NVIDIA GPU.

illustrates the performance achieved by the Block-Shared and the other approaches.
Although using shared memory is better than the performance achieved by the Flat
approach, it is much smaller than the Full-Interleaved counterpart. For this partic-
ular scenario (medium-high morphology), a very low number of systems saturate the
capacity of the shared memory (48KB in NVIDIA k80). Also, the data reuse is low
using one-thread per Hines system. These drawbacks do not allow to achieve a better
performance when the shared memory is used. It is important to note that the usage of
the shared memory affects to the exchanging of CUDA blocks to overlap computation
with memory accesses.

Finally, we evaluate the impact on performance of the particularities of each of the
morphologies (Table 4.1). The performance achieved by the Flat is not included as it
was proven to be very inefficient. As shown in Fig. 4.8, both approaches, Multicore and
Full-Interleaved, show a similar trend in performance independently of the neurons’
morphology. In particular the peak speedup achieved on the different morphologies
does not vary significantly (47×-55×).

After comparing the performance achieved by Multicore and GPU, now we focus
on evaluating the efficiency of our GPU implementation. To do that, we make use of
NVPROF2. We do not obtain results very different depending on the input (number and
shape of neurons). In all cases, we obtain more than 99% of efficiency (sm efficiency).
It is also achieved a bandwidth (Global Load Throughput) close to 160GB/s, being the
theoretical peak equal to 240 GB/s and the effective about the bandwidth achieved by
our implementation. As most of the GPU applications, our implementation is memory
bound and this is reflected by a low occupancy (about 24%).

2nvprof -m achieved occupancy,sm efficiency,gld throughput,gst throughput,gld efficiency,
gst efficiency ./run

30

CHAPTER 4. PERFORMANCE EVALUATION

 0

 10

 20

 30

 40

 50

 60

256 2560 25600 256000

S
p
e
e
d
u
p

Number of Hines Systems

Multicore
Full-Inter.(one logic GPU)

Full-Inter.(K80)
Full-Inter.(2xK80)

 0

 10

 20

 30

 40

 50

 60

256 2560 25600 256000

S
p
e
e
d
u
p

Number of Hines Systems

Multicore
Full-Inter.(one logic GPU)

Full-Inter.(K80)
Full-Inter.(2xK80)

 0

 10

 20

 30

 40

 50

 60

256 2560 25600 256000

S
p
e
e
d
u
p

Number of Hines Systems

Multicore
Full-Inter.(one logic GPU)

Full-Inter.(K80)
Full-Inter.(2xK80)

 0

 10

 20

 30

 40

 50

 60

256 2560 25600 256000

S
p
e
e
d
u
p

Number of Hines Systems

Multicore
Full-Inter.(one logic GPU)

Full-Inter.(K80)
Full-Inter.(2xK80)

 0

 10

 20

 30

 40

 50

 60

256 2560 25600 256000

S
p
e
e
d
u
p

Number of Hines Systems

Multicore
Full-Inter.(one logic GPU)

Full-Inter.(K80)
Full-Inter.(2xK80)

 0

 10

 20

 30

 40

 50

 60

256 2560 25600 256000

S
p
e
e
d
u
p

Number of Hines Systems

Multicore
Full-Inter.(one logic GPU)

Full-Inter.(K80)
Full-Inter.(2xK80)

Figure 4.8: Performance (speedup over sequential execution) achieved for computing
multiple (256, 2,560, 25,600, 256,000) neurons using different morphologies: small-low
(top-left), small-high (top-right), medium-low (center-left), medium-high (center-right),
big-low (bottom-left) and big-high (bottom-right).

31

CHAPTER 4. PERFORMANCE EVALUATION

4.5 cuHinesVBatch

As it was done in Section 4.3, we explored the impact of dealing with neurons of dif-
ferent size, but unlike in cuThomasVBatch, here we have to deal with an additional
drawback, the differences found in the neurons’ morphologies. In order to evaluate the
impact of both parameters we just generated synthetic morphologies based on some
neurons’ properties and % of branching given as an input.

Figure 4.9: Execution time for the two variants, No Computing Padding and Computing
Padding, of the cuHinesVBatch, for neurons with same morphology(mono), different
morphology(multi) and different size and morphology(multi 600/700).

As we can see in Figure 4.9, the fall in performance for neurons of the same size (600)
with different morphologies is critically high, leading us to explore another approaches
and opening the way of the future work.

32

Chapter 5

Conclusions and Future Work

Regarding cuThomasBatch, our implementation is able to outperform the cuSPARSE
implementation, even when a low number of systems is computed. This is because of
a simpler management of CUDA threads, as we do not have to deal with synchroniza-
tions, atomic operations and the limitations regarding the size of shared memory and
CUDA blocks. It is important to remark that the implementation of the cuThomas-
Batch code presented in this paper will be included in the next cuSPARSE release as
gtsvInterleavedBatch, being this a great success.

Otherwise, the performance obtained by cuHinesBatch for more relevant inputs(
neurons with different morphologies and different sizes) is still under our expectations,
for this reasons as future work, we want to analyze different approaches in order to
expose a higher parallelism with a lower number of neurons.

The integration of cuHinesBatch into the Arbor simulator is still under development
and it is being carried out by ETH Zürich and the Swiss National Supercomputing
Center (CSCS) as the main developers of Arbor. That is the main reason why we
could not present any performance results regarding the simulation itself, despite being
the main objectives of this work.

33

Chapter 6

Contributions

In this Section we are going to review all the contributions derived from the presented
work.

• Pedro Valero-Lara, Ivan Martinez-Perez, Raul Sirvent, Xavier Martorell, Antonio
J. Pena. NVIDIA GPUs scalability to solve multiple (batch) tridiagonal systems.
Implementation of cuThomasBatch . 12th International Conference on Parallel
Processing and Applied Mathematics (PPAM), September 10-13, 2017 At Lublin,
Poland.
The solving of tridiagonal systems is one of the most computationally expen-
sive parts in many applications, so that multiple studies have explored the use
of NVIDIA GPUs to accelerate such computation. However, these studies have
mainly focused on using parallel algorithms to compute such systems, which can
efficiently exploit the shared memory and are able to saturate the GPUs capacity
with a low number of systems, presenting a poor scalability when dealing with
a relatively high number of systems. The gtsvStridedBatch routine in the cuS-
PARSE NVIDIA package is one of these examples, which is used as reference in
this paper. We propose a new implementation (cuThomasBatch) based on the
Thomas algorithm. Unlike other algorithms, the Thomas algorithm is sequential,
and so a coarse-grained approach is implemented where one CUDA thread solves
a complete tridiagonal system instead of one CUDA block as in gtsvStridedBatch.
To achieve a good scalability using this approach is necessary to carry out a trans-
formation in the way that the inputs are stored in memory to exploit coalescence
(contiguous threads access to contiguous memory locations). Different variants
regarding the transformation of the data are explored in detail. The results given
in this study prove that the implementation carried out in this work is able to
beat the reference code, being up to 5× (in double precision) and 6× (in single
precision) faster using the latest NVIDIA GPU architecture, the Pascal P100.

• Pedro Valero-Lara, Ivan Martinez-Perez, Antonio J. Pena, Xavier Martorell, Raul
Sirvent, and Jesus Labarta. cuhinesbatch: Solving multiple hines systems on gpus
human brain project* . In International Conference on Computational Science,
ICCS 2017, 12-14 June 2017, Zurich, Switzerland, pages 566–575, 2017.
The simulation of the behavior of the Human Brain is one of the most important
challenges today in computing. The main problem consists of finding efficient
ways to manipulate and compute the huge volume of data that this kind of sim-
ulations need, using the current technology. In this sense, this work is focused

34

on one of the main steps of such simulation, which consists of computing the
Voltage on neurons’ morphology. This is carried out using the Hines Algorithm.
Although this algorithm is the optimum method in terms of number of operations,
it is in need of non-trivial modifications to be efficiently parallelized on NVIDIA
GPUs. We proposed several optimizations to accelerate this algorithm on GPU-
based architectures, exploring the limitations of both, method and architecture, to
be able to solve efficiently a high number of Hines systems (neurons). Each of
the optimizations are deeply analyzed and described. To evaluate the impact of
the optimizations on real inputs, we have used 6 different morphologies in terms
of size and branches. Our studies have proven that the optimizations proposed in
the present work can achieve a high performance on those computations with a
high number of neurons, being our GPU implementations about 4x and 8x faster
than the OpenMP multicore implementation (16 cores), using one and two K80
NVIDIA GPUs respectively. Also, it is important to highlight that these optimiza-
tions can continue scaling even when dealing with number of neurons.

• Pedro Valero-Lara, Ivan Martinez-Perez, Raul Sirvent, Xavier Martorell, Anto-
nio J. Pena. cuThomasBatch: a new CUDA Routine to compute Multiple(Batch)
Tridiagonal Systems on NVIDIA GPUs. CONCURRENCY AND COMPUTA-
TION: PRACTICE AND EXPERIENCE 2018;00:1-12.
The solving of tridiagonal systems is one of the most computationally expen-
sive parts in many applications, so that multiple studies have explored the use
of NVIDIA GPUs to accelerate such computation. However, these studies have
mainly focused on using parallel algorithms to compute such systems, which can
efficiently exploit the shared memory and are able to saturate the GPUs capacity
with a low number of systems, presenting a poor scalability when dealing with
a relatively high number of systems. The gtsvStridedBatch routine in the cuS-
PARSE NVIDIA package is one of these examples, which is used as reference in
this paper. We propose a new implementation (cuThomasBatch) based on the
Thomas algorithm. Unlike other algorithms, the Thomas algorithm is sequential,
and so a coarse-grained approach is implemented where one CUDA thread solves
a complete tridiagonal system instead of one CUDA block as in gtsvStridedBatch.
To achieve a good scalability using this approach is necessary to carry out a trans-
formation in the way that the inputs are stored in memory to exploit coalescence
(contiguous threads access to contiguous memory locations). Different variants
regarding the transformation of the data are explored in detail. The results given
in this study prove that the implementation carried out in this work is able to
beat the reference code, being up to 5× (in double precision) and 6× (in single
precision) faster using the latest NVIDIA GPU architecture, the Pascal P100.

• cuThomasBatch will be added in the next cuSPARSE release under the name
gtsvInterleavedBatch.

• cuThomasBatch-cuThomasvBatch1 repositories

• cuHinesBatch2 repositories

1https://pm.bsc.es/gitlab/run-math/cuThomasBatch-cuThomasVBatch
2https://pm.bsc.es/gitlab/imartin1/cuHinesBatch

Acknowledgements

To complete this project just need to thank all those people who have made this project
could end in fruition.

To Pedro, my director, for providing me this opportunity, give me the confidence and
guidelines that have allowed much of our analysis.

To my friends Artem and Navarro, for help me when work was accumulated

My girlfriend Gala, for dealing with my frustration when things not came out and
stay awake at night next to me while working.

And finally my parents, who have teach me the value of hard work and bring me
the opportunities in order to follow my dreams.

36

Bibliography

[1] Roy Ben-Shalom, Gilad Liberman, and Alon Korngreen. Accelerating compart-
mental modeling on a graphical processing unit. Frontiers in Neuroanatomy, 7:4,
2013.

[2] Samuel Daniel Conte and Carl W. De Boor. Elementary Numerical Analysis: An
Algorithmic Approach. McGraw-Hill Higher Education, 3rd edition, 1980. ISBN
0070124477.

[3] cuSPARSE. Nvidia-cuda toolkit documentation.
http://docs.nvidia.com/cuda/cusparse/.

[4] Andrew Davidson, Yao Zhang, and John D. Owens. An auto-tuned method for
solving large tridiagonal systems on the GPU. In IEEE International Parallel and
Distributed Processing Symposium, May 2011.

[5] Andrew A. Davidson, Yao Zhang, and John D. Owens. An auto-tuned method
for solving large tridiagonal systems on the GPU. In 25th IEEE International
Symposium on Parallel and Distributed Processing, IPDPS, Anchorage, Alaska,
USA, pages 956–965, May 2011.

[6] Sandra Diaz-Pier, Mikaël Naveau, Markus Butz-Ostendorf, and Abigail Morri-
son. Automatic generation of connectivity for large-scale neuronal network models
through structural plasticity. Frontiers in Neuroanatomy, 10:57, 2016. ISSN 1662-
5129. doi: 10.3389/fnana.2016.00057. URL http://journal.frontiersin.org/
article/10.3389/fnana.2016.00057.

[7] Michael Hines. Efficient computation of branched nerve equations. International
Journal of Bio-Medical Computing, 15(1):69 – 76, 1984. ISSN 0020-7101. doi: http:
//dx.doi.org/10.1016/0020-7101(84)90008-4. URL http://www.sciencedirect.
com/science/article/pii/0020710184900084.

[8] Hee-Seok Kim, Shengzhao Wu, Li wen Chang, and Wen mei W. Hwu. A scalable
tridiagonal solver for GPUs. 2013 42nd International Conference on Parallel Pro-
cessing, 0:444–453, 2011. ISSN 0190-3918. doi: http://doi.ieeecomputersociety.
org/10.1109/ICPP.2011.41.

[9] NVIDIA. The most advanced datacenter accelerator ever built featuring pascal
gp100, the world’s fastest gpu. In White paper: NVIDIA Tesla P100, pages 1–45,
2017.

[10] N. Sakharnykh. Efficient tridiagonal solvers for adi methods and fluid simulation.
In NVIDIA GPU Technology Conference, September 2010.

37

BIBLIOGRAPHY

[11] Harold S. Stone. An efficient parallel algorithm for the solution of a tridiagonal
linear system of equations. J. ACM, 20(1):27–38, January 1973. ISSN 0004-
5411. doi: 10.1145/321738.321741. URL http://doi.acm.org/10.1145/321738.
321741.

[12] Pedro Valero-Lara. Multi-gpu acceleration of DARTEL (early detection of
alzheimer). In 2014 IEEE International Conference on Cluster Computing, CLUS-
TER 2014, Madrid, Spain, September 22-26, 2014, pages 346–354, 2014.

[13] Pedro Valero-Lara and Fernando L. Pelayo. Towards a more efficient use of gpus. In
International Conference on Computational Science and Its Applications, ICCSA
2011, Santander, Spain, June 20-23, 2011, pages 3–9, 2011.

[14] Pedro Valero-Lara and Fernando L. Pelayo. Analysis in performance and new
model for multiple kernels executions on many-core architectures. In IEEE
12th International Conference on Cognitive Informatics and Cognitive Comput-
ing, ICCI*CC 2013, New York, NY, USA, July 16-18, 2013, pages 189–194, 2013.

[15] Pedro Valero-Lara, Alfredo Pinelli, Julien Favier, and Manuel Prieto Matias. Block
tridiagonal solvers on heterogeneous architectures. In IEEE 10th International
Symposium on Parallel and Distributed Processing with Applications, ISPA ’12,
pages 609–616, 2012.

[16] Pedro Valero-Lara, Alfredo Pinelli, and Manuel Prieto-Matias. Fast finite differ-
ence poisson solvers on heterogeneous architectures. Computer Physics Communi-
cations, 185(4):1265 – 1272, 2014. ISSN 0010-4655. doi: 10.1016/j.cpc.2013.12.026.

[17] Pedro Valero-Lara, Alfredo Pinelli, and Manuel Prieto-Mat́ıas. Fast finite differ-
ence poisson solvers on heterogeneous architectures. Computer Physics Commu-
nications, 185(4):1265–1272, 2014.

[18] Pedro Valero-Lara, Poornima Nookala, Fernando L. Pelayo, Johan Jansson, Ser-
apheim Dimitropoulos, and Ioan Raicu. Many-task computing on many-core ar-
chitectures. Scalable Computing: Practice and Experience, 17(1):32–46, 2016.

[19] Pedro Valero-Lara, Ivan Mart́ınez-Perez, Antonio J. Peña, Xavier Martorell, Raúl
Sirvent, and Jesús Labarta. cuhinesbatch: Solving multiple hines systems on gpus
human brain project*. In International Conference on Computational Science,
ICCS 2017, 12-14 June 2017, Zurich, Switzerland, pages 566–575, 2017.

[20] Pedro Valero-Lara, Alfredo Pinelli, Julien Favier, and Manuel Prieto-Mat́ıas.
Block tridiagonal solvers on heterogeneous architectures. In 10th IEEE Interna-
tional Symposium on Parallel and Distributed Processing with Applications, ISPA,
Leganes, Madrid, Spain, pages 609–616, July 2012.

[21] Yao Zhang, Jonathan Cohen, and John D. Owens. Fast tridiagonal solvers on the
GPU. SIGPLAN Not., 45(5):127–136, January 2010. ISSN 0362-1340. doi: 10.
1145/1837853.1693472. URL http://doi.acm.org/10.1145/1837853.1693472.

[22] Yao Zhang, Jonathan Cohen, and John D. Owens. Fast tridiagonal solvers on
the GPU. In Proceedings of the 15th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPOPP, Bangalore, India, pages 127–136,
January 2010.

38

