13,904 research outputs found

    Computational intelligence for evolving trading rules

    Get PDF
    Copyright Ā© 2008 IEEEThis paper describes an adaptive computational intelligence system for learning trading rules. The trading rules are represented using a fuzzy logic rule base, and using an artificial evolutionary process the system learns to form rules that can perform well in dynamic market conditions. A comprehensive analysis of the results of applying the system for portfolio construction using portfolio evaluation tools widely accepted by both the financial industry and academia is provided.Adam Ghandar, Zbigniew Michalewicz, Martin Schmidt, Thuy-Duong TĆ“, and Ralf Zurbrug

    Evolving temporal association rules with genetic algorithms

    Get PDF
    A novel framework for mining temporal association rules by discovering itemsets with a genetic algorithm is introduced. Metaheuristics have been applied to association rule mining, we show the efficacy of extending this to another variant - temporal association rule mining. Our framework is an enhancement to existing temporal association rule mining methods as it employs a genetic algorithm to simultaneously search the rule space and temporal space. A methodology for validating the ability of the proposed framework isolates target temporal itemsets in synthetic datasets. The Iterative Rule Learning method successfully discovers these targets in datasets with varying levels of difficulty

    Explorations in Evolutionary Design of Online Auction Market Mechanisms

    No full text
    This paper describes the use of a genetic algorithm (GA) to find optimal parameter-values for trading agents that operate in virtual online auction ā€œe-marketplacesā€, where the rules of those marketplaces are also under simultaneous control of the GA. The aim is to use the GA to automatically design new mechanisms for agent-based e-marketplaces that are more efficient than online markets designed by (or populated by) humans. The space of possible auction-types explored by the GA includes the Continuous Double Auction (CDA) mechanism (as used in most of the worldā€™s financial exchanges), and also two purely one-sided mechanisms. Surprisingly, the GA did not always settle on the CDA as an optimum. Instead, novel hybrid auction mechanisms were evolved, which are unlike any existing market mechanisms. In this paper we show that, when the market supply and demand schedules undergo sudden ā€œshockā€ changes partway through the evaluation process, two-sided hybrid market mechanisms can evolve which may be unlike any human-designed auction and yet may also be significantly more efficient than any human designed market mechanism

    Agent-Based Computational Economics

    Get PDF
    Agent-based computational economics (ACE) is the computational study of economies modeled as evolving systems of autonomous interacting agents. Starting from initial conditions, specified by the modeler, the computational economy evolves over time as its constituent agents repeatedly interact with each other and learn from these interactions. ACE is therefore a bottom-up culture-dish approach to the study of economic systems. This study discusses the key characteristics and goals of the ACE methodology. Eight currently active research areas are highlighted for concrete illustration. Potential advantages and disadvantages of the ACE methodology are considered, along with open questions and possible directions for future research.Agent-based computational economics; Autonomous agents; Interaction networks; Learning; Evolution; Mechanism design; Computational economics; Object-oriented programming.

    An Investigation Report on Auction Mechanism Design

    Full text link
    Auctions are markets with strict regulations governing the information available to traders in the market and the possible actions they can take. Since well designed auctions achieve desirable economic outcomes, they have been widely used in solving real-world optimization problems, and in structuring stock or futures exchanges. Auctions also provide a very valuable testing-ground for economic theory, and they play an important role in computer-based control systems. Auction mechanism design aims to manipulate the rules of an auction in order to achieve specific goals. Economists traditionally use mathematical methods, mainly game theory, to analyze auctions and design new auction forms. However, due to the high complexity of auctions, the mathematical models are typically simplified to obtain results, and this makes it difficult to apply results derived from such models to market environments in the real world. As a result, researchers are turning to empirical approaches. This report aims to survey the theoretical and empirical approaches to designing auction mechanisms and trading strategies with more weights on empirical ones, and build the foundation for further research in the field

    The Evolution of Neural Network-Based Chart Patterns: A Preliminary Study

    Full text link
    A neural network-based chart pattern represents adaptive parametric features, including non-linear transformations, and a template that can be applied in the feature space. The search of neural network-based chart patterns has been unexplored despite its potential expressiveness. In this paper, we formulate a general chart pattern search problem to enable cross-representational quantitative comparison of various search schemes. We suggest a HyperNEAT framework applying state-of-the-art deep neural network techniques to find attractive neural network-based chart patterns; These techniques enable a fast evaluation and search of robust patterns, as well as bringing a performance gain. The proposed framework successfully found attractive patterns on the Korean stock market. We compared newly found patterns with those found by different search schemes, showing the proposed approach has potential.Comment: 8 pages, In proceedings of Genetic and Evolutionary Computation Conference (GECCO 2017), Berlin, German
    • ā€¦
    corecore