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Abstract

Evolutionary Algorithms Based on

Effective Search Space Reduction for

Financial Optimization Problems

Seung-Kyu Lee

School of Computer Science & Engineering

The Graduate School

Seoul National University

This thesis presents evolutionary algorithms incorporated with effective search space

reduction for financial optimization problems. Typical evolutionary algorithms try

to find optimal solutions in the original, or unrestricted search space. However,

they can be unsuccessful if the optimal solutions are too complex to be discovered

from scratch. This can be relieved by restricting the forms of meaningful solutions

or providing the initial population with some promising solutions. To this end, we

propose three evolution approaches including modular, grammatical, and seeded

evolutions for financial optimization problems. We also adopt local optimizations

for fine-tuning the solutions, resulting in hybrid evolutionary algorithms.

First, the thesis proposes a modular evolution. In the modular evolution, the

possible forms of solutions are statically restricted to certain combinations of module

solutions, which reflect more domain knowledge. To preserve the module solutions,

we devise modular genetic operators which work on modular search space. The

modular genetic operators and statically defined modules help genetic programming

focus on highly promising search space.

Second, the thesis introduces a grammatical evolution. We restrict the possible

forms of solutions in genetic programming by a context-free grammar. In the gram-

matical evolution, genetic programming works on more extended search space than
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modular one. Grammatically typed genetic operators are introduced for the gram-

matical evolution. Compared with the modular evolution, grammatical evolution

requires less domain knowledge.

Finally, the thesis presents a seeded evolution. Our seeded evolution provides the

initial population with partially optimized solutions. The set of genes for the partial

optimization is selected in terms of encoding complexity. The partially optimized

solutions help genetic algorithm find more promising solutions efficiently. Since they

are not too excessively optimized, genetic algorithm is still able to search better

solutions.

Extensive empirical results are provided using three real-world financial opti-

mization problems: attractive technical pattern discovery, extended attractive tech-

nical pattern discovery, and large-scale stock selection. They show that our search

space reductions are fairly effective for the problems. By combining the search space

reductions with systematic evolutionary algorithm frameworks, we show that evolu-

tionary algorithms can be exploited for realistic profitable trading.

Keywords : Financial optimization problem, search space reduction, genetic pro-

gramming, genetic algorithm, attractive technical pattern, stock selection.

Student Number : 2007-30834
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Chapter 1

Introduction

Financial optimization problems have attracted much attention due to their im-

portance. In fact, they include any optimization problems arising in computational

finance. Their common objective is to find optimal models that will consistently

work on unseen data; it is quite similar to those of machine learning. Most popular

financial optimization problems include optimizations of technical patterns, techni-

cal trading, trade execution, stock selection, and so forth.

In general, most financial optimization problems require effective processing

and analyzing a huge amount of financial data such as prices, volumes, financial

statements, and macroeconomic factors. The enormous dimensionality and non-

stationarity of the data, however, prevent us from exploiting conventional exact

optimization techniques. Recently, evolutionary algorithms motivated by natural

evolution have been extensively exploited for solving such financial optimization

problems. Although they are not guaranteed to find the exact optimal solution, it

is known that they can find near-optimal solutions in a reasonable time budget.

In this thesis, we apply genetic programming and genetic algorithm to financial

optimization problems as the representatives of evolutionary algorithms.

According to the type of input data, there are two representative approaches

to financial optimizations: technical and fundamental analyses. Technical analysis

typically uses only price, volume, and open interest which can be obtained with

diverse time granularity such as minutely, hourly, daily, and so forth. It implicitly

1



assumes that the technical data including price, volume, and open interest reflect

all necessary information of financial objects such as stock, bond, and so forth.

In other words, it needs only technical data which are believed to provide complete

information for predicting the price movements. While it is still controversial whether

its assumption is correct or not, technical analysis has been popular for building

trading or prediction models due to its simplicity. Its common objective is to find

profitable technical trading rules including buy and sell signals for short-term trading

whose trading horizon is at most one month.

In contrast, fundamental analysis exploits financial statements which are an-

nounced quarterly. It tries to evaluate the intrinsic value of financial object, ir-

respective of short-term price movements possibly due to market noise. Owing to

its focus on long-term intrinsic value, its common trading horizon is at least three

months, or one quarter. One of the most popular methods in fundamental analysis

is to calculate financial ratio, defined by the ratio between two financial variables.

Using the financial ratios, the intrinsic values of stocks can be calculated and they

are exploited for trading. For example, one of the simplest methods is to buy under-

valued stocks and sell overvalued stock, which corresponds to long-short portfolio.

The major limitation of fundamental analysis is the limited applicability due to its

strong dependence on financial statements. Fundamental analysis is thus not appli-

cable to markets without financial statements such as futures and foreign exchange

markets. Recently, the clear discrimination between the two approaches has been

blurred; several studies have exploited both technical and fundamental analyses to

build more profitable trading systems. For example, technical analysis can be used

to capture better timing for portfolio management based on fundamental analysis.

Most previous evolutionary algorithms for financial optimizations are limited in

that they try to find optimal solution in the original search space. In other words,

they do not use elaborate search space reductions, which is the major bottleneck for

finding promising solutions. Among a number of search space reduction techniques to

alleviate such problem, we focus on three techniques particularly tailored to financial

optimization problems.

In this thesis, we present modular, grammatical, and seeded evolutions for ef-
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fective search space reduction in financial optimization problems. The search space

reduction techniques are adapted to reflect some important characteristics of the

problems and are combined with local optimizations. They help our evolutionary al-

gorithms focus on more meaningful, or promising search space. The effectiveness of

each technique is empirically validated by one of financial optimization problems in-

cluding attractive technical pattern discovery, its extended problem, and large-scale

stock selection.

1.1 Search Methods

In recent years, evolutionary algorithms have been extensively used for financial

optimization problems. They are inspired from natural evolution and exploit the

encoding similarity among solutions in the population. Crossover, or also called

recombination, is then used to generate an offspring by inheriting some features

of high-quality parental solutions. In contrast, mutation operator introduces new

features to the offspring; it compensates for the lack of introducing new features in

recombination operator. The crossover and mutation are the main operators in most

evolutionary algorithms such as genetic algorithm and genetic programming. Due to

their generality, or less dependence on specific problem domain, most evolutionary

algorithms belong to metaheuristic. Genetic algorithm and genetic programming

are two famous examples of evolutionary algorithms. While the former uses a linear

string for representation, the latter a nonlinear tree; the major difference between

the two lies only in the representation of solution.

Evolutionary algorithms by themselves are neither effective nor efficient for many

financial optimization problems with the large dimensionality and non-stationarity

of data. In general, they are not good at fine-tuning around local optima; they

are however greatly helped by local search’s fine-tuning. Local search requires a

neighborhood structure of a given solution and it chooses the best possible solution

in the neighborhood. It typically uses a neighborhood designated by minimal or

simple changes to a given solution. Choosing an appropriate neighborhood is quite

important in that it eventually defines the set of solutions to be probed by a local
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search. Evolutionary algorithms incorporated with local search are called hybrid

ones.

1.2 Search Space Reduction

In a combinatorial optimization problem, a search space, or also called solution space,

is defined by a finite set of feasible solutions and a cost function that maps a solution

to a real value. Since many financial optimization problems, except for problems

arising in continuous domain, are defined in discrete domain, the definition of search

space is still applicable. However, the cardinality of the set of feasible solutions is

generally too intractably large; the cost evaluation of all feasible solutions is thus

impossible in a reasonable time.

Search space reduction is to restrict the original search space to some promis-

ing subspace. In fact, a wide range of techniques including modularization, typing,

seeding, feature selection, dimensionality reduction, pruning, and so forth belong to

search space reduction. In this thesis, we focus on modular, grammatical, and seeded

evolutions which are exploited in evolutionary algorithms.

Modular evolution is to evolve the population based on modules which are encap-

sulated units preserved under genetic operators. There are a number of techniques

for defining, discovering, and reusing the modules in evolutionary algorithms. Ge-

netic programming, originally invented for evolving programs, is one of the most

popular metaheuristics exploiting modular evolution. Although a number of differ-

ent techniques are available for modular evolution, the common requirements for

module include high frequency and fitness. In other words, modules should be de-

fined so that they will be frequently reused and expected to be useful in a genetic

run.

Grammatical evolution exploits a grammar to restrict the search space to the set

of syntactically valid solutions. The grammar is different across problem domains,

and it is defined typically by users, or programmers. However, it has an advantage of

requiring less domain knowledge than other strict typing techniques such as modular

evolution. This is because defining a grammar for valid solutions is generally easier
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than identifying and exploiting promising solutions. In other words, typical gram-

matical evolution is based on valid solutions rather than promising ones. However, it

can also be used for describing promising solutions indirectly, possibly using a large

number of symbols and productions that reflect more domain knowledge.

The modular and grammatical evolutions are based on the static restrictions on

solutions, which are considered to be typing mechanisms. They are used in genetic

programming which uses unrestrictive, variable-length trees as its solution encoding.

However, they are not directly applicable to genetic algorithms whose encoding is

typically restricted to a string of fixed-length. In general, it is common that the

solutions in genetic algorithms are already aware of type restrictions by incorporating

them in the encoding stage. This motivates us to devise a space reduction technique

tailored to genetic algorithms.

Seeded evolution is a candidate approach to search space reduction in genetic

algorithms. Typical genetic algorithm uses a randomly generated population as its

initial pool of solutions, whose motivation is to provide the initial population with

diversity. However, many real-world problems require more improved initial popula-

tion for more effective evolution. This is mainly due to the time budget for evolution,

which limits the number of solutions to be searched. If the initial population is al-

ready pre-optimized, it is generally more helpful to the evolution at the cost of little

degradation of population diversity and running time.

1.3 Main Contributions

In this thesis, we propose three search space reduction techniques for financial opti-

mization problems. The major contributions of the thesis are listed in the following.

• Three effective search space reduction techniques [LM10, LM15, LMM15]:

We present three effective search space reduction techniques: modular, gram-

matically, and seeded evolutions. Modular evolution restricts the search space

into the combinations of module solutions which are predetermined by domain

knowledge. To preserve the module solutions, modular genetic operators are

devised. In this way, we can preserve atomic knowledge, which contained in the
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modules, and exploit them to find better solutions. However, the preparation

of the set of modules is not always straightforward since it requires too much

domain knowledge. It can also overly restrict the possible forms of solutions

unless the domain knowledge is carefully selected, organized, and reflected.

To find less restricted but still meaningful solutions, we propose a grammat-

ical evolution. We restrict the search space by a context-free grammar where

the valid forms of solutions are described. Grammatically typed genetic op-

erators are developed to search only syntactically valid solutions. In general,

grammatical evolution requires less domain knowledge than modular one, since

it typically designates only correct syntax. As a quite different search space

reduction, we introduce a seeded evolution, where relatively simpler part of

solution in terms of encoding complexity is pre-optimized by a heuristic. The

pre-optimized solutions are provided to the initial population, which helps

evolutionary algorithm focus on more meaningful search space.

• Formulations of attractive technical pattern discovery and its extension [LM10,

LM15]:

Previous work on technical trading typically focuses on simultaneous optimiza-

tion of technical pattern and trading model. It severely increases the complex-

ity of the problem, thereby typically producing profits worse than buy-and-

hold. Instead, we approach the problem with a multi-stage optimization which

attempts to find attractive technical patterns in the first stage and simulate

trading with them in the later stage. We focus primarily on finding attrac-

tive technical patterns, which can be exploited by diverse trading models. To

this end, we first formulate the problem in terms of profitability, simplicity,

and frequency using modular search space. We also extend the problem using

grammatically typed search space, which allows more free forms of technical

patterns.

• Formulation of large-scale stock selection [LM15]:

While typical stock selection uses only a small set of stocks with positive

financial ratios, we extend the problem to a more general one. Large-scale
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stock selection which uses the full universe of stocks and all types of financial

ratios is first formulated. Using our formulation, all stocks can be consistently

ranked, which enables us to select most profitable stocks without any selection

bias.

• Realistic empirical results outperforming buy-and-hold [LM10, LM15, LMM15]:

Our evolutionary algorithm frameworks are designed to simulate realistic mar-

kets as close as possible. This implies that our empirical results can be applied

to real trading with some minor modifications. In addition, it also shows that

our algorithms can outperform buy-and-hold, which is fairly promising for

realistic profitable trading.

1.4 Organization

The thesis is organized as follows. In Chapter 2, we present the preliminaries for later

chapters. Chapter 3 introduces a modular evolution with an application to attractive

technical pattern discovery. In Chapter 4, we propose a grammatical evolution, where

a context-free grammar directs valid solutions. Extended attractive technical pattern

discovery is described as an example application. A seeded evolution is presented in

Chapter 5. It is applied to large-scale stock selection, which is a generalized form of

typical stock selection. Finally, we make our conclusions in Chapter 6.
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Chapter 2

Preliminaries

2.1 Evolutionary Algorithms

Evolutionary algorithms (EAs) are metaheuristics that mimic the principle of nat-

ural evolution. They include genetic programming (GP) [Koz92], genetic algorithm

(GA) [Hol75, Gol89], evolution strategies [Rec73], and evolutionary programming

[FOW66].

In EA, each solution candidate, or individual, is encoded by a representation. It

is also called chromosome since most EAs use haploid representation for the direct

encoding of solution. For example, n-ary linear string and tree are the popular rep-

resentations in GA and GP, respectively. The set of individuals is called population.

Each individual is assigned a fitness which is defined such that a better individual

obtains a higher fitness. By a selection operator, EA chooses individuals for crossover

with a probabilistic bias toward fitter ones. It then recombines the individuals us-

ing crossover to produce an offspring. In general, crossover belongs to exploitation in

that it searches new solution candidate by recombining the existing features encoded

by the parental individuals.

In contrast, mutation provides the population with new unexplored features. It

blindly mutates some encoded region of the offspring, which helps EA maintain a

reasonable amount of genetic diversity. Mutation belongs to exploration in that it

introduces new genetic features to the population.

The offspring produced by crossover and mutation replaces some individuals
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in the population. One of the most common replacement methods is to select the

worst individual in the population as the individual to be replaced. There are two

popular schemes for replacement: generational and steady-state. The former replaces

the whole or most of individuals in the population while the latter typically does only

one individual. The ratio of the number of replaced individuals to the population size

is called generational gap. The next generation begins if the replacement is applied

to the population. A number of successive generations are created until a predefined

stopping condition is satisfied. Typical stopping conditions include the number of

maximum generations, the convergence of the population, and so forth. The final

best individual is reported as the output of EA.

There are several advantages of using EAs over traditional optimization meth-

ods. First, they can be applied to intractable combinatorial optimization problems

where only approximate heuristics are known. Due to implicit parallelism [Hol75],

or the capability of evaluating a huge number of schemata [Hol75, PM03a, PM03b]

simultaneously, they can explore the search space efficiently. In particular, they are

known to be fairly attractive for non-differentiable problems with multiple local

optima. Second, they do not require elaborate domain knowledge; they belong to

black-box optimizations. They are quite suitable if some domain knowledge is not

given at all, or it is hard to be obtained.

Despite these advantages, EAs have some drawbacks, or limitations as well. First,

they require a considerable amount of time to evolve a population of individuals.

They are not favored if several algorithms compete with one another to satisfy the

time constraint of the problem domain. Second, they are not good at fine-tuning

around local optima. Pure EAs, ones without any local searches, typically fail to

improve upon the solutions around local optima which are more effectively fine-

tuned by local searches. Recently, hybrid EAs [RB94a, WGM94, KM01, Kra01] have

been proposed to alleviate the weakness of the pure EA.1 Typical hybrid EAs apply

a local optimization to the offspring produced by crossover and mutation. Figure 2.1

shows a typical steady-state hybrid evolutionary algorithm.

1Recently, hybrid EAs are also called memetic algorithms [Mos89, MC03] since the meaning of
the term “hybrid” is too broad.
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create an initial population of a fixed size;
do

choose parent1 and parent2 from population;
offspring ← crossover(parent1, parent2);
mutation(offspring);
local-optimization(offspring);
replace(population, offspring);

until (stopping condition)
return the best individual;

Figure 2.1: A typical steady-state hybrid evolutionary algorithm

2.1.1 Genetic Algorithm

Genetic algorithm (GA) [Hol75, Gol89] is one of the most popular evolutionary al-

gorithms. Each candidate solution, or chromosome, is typically encoded by a linear

string of n-ary discrete or real values whose length is fixed. While binary encoding

has been most popular due to its capability of producing diverse schemata, its popu-

larity does not necessarily mean its universal dominance over other representations.

This is due to the loss of some important information by the enforcement of too lim-

ited arity. The recent studies have alleviated such enforcement by using non-binary

representations such as real-valued ones [Mic96].

Each chromosome is assigned a fitness representing the attractiveness of the

corresponding solution. Selection for survival and reproduction is then applied to

the population. Fitness-proportionate and tournament selections are the popular

representatives.

The main operators of GA are crossover and mutation; crossover produces an

offspring by recombination of two parental chromosomes and mutation introduces

new genes into the offspring. There have been a number of crossovers such as multi-

point [SD91], geographic [KM95], natural [JM00], and uniform [Sys89] crossovers.

In particular, the choice among crossover candidates is generally dependent upon

the underlying chromosomal representation. For example, geographic crossover can

naturally be applied to two-dimensional representation of chromosome.

Mutation introduces new genes to the offspring with a low probability. The dis-
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ruption by mutation is generally too small to affect the final performance of GA.

However, it does guarantee, at least theoretically, that the optimal solution can be

found if it exists.2 In practical, replacing randomly chosen genes with random ones

is enough for various applications.

The new offspring, produced by crossover and mutation, replaces one or more

chromosomes in the population. There are also several candidates for replacement

such as GENITOR-style [WK88], crowding [DeJ75], and so forth. Since population

diversity is strongly affected by the replacement, choosing a good replacement is

fairly important.

2.1.2 Genetic Programing

Genetic programming (GP) [Koz92] is also popular among evolutionary algorithms

in particular for evolving variable-length expressions or programs. It is very similar

to GA in that it evolves a population of candidate solutions by genetic operators.

Traditionally, GPs have used nonlinear representations such as tree or graph of

variable size. The nonlinearity3 and variability in representation have been two major

distinctive features of GP, compared with the other evolutionary algorithms.4 Tree

and graphs, for instance, are popular representations of typical GPs.

To encode solution candidates, GP uses two different sets of nodes: the sets of

terminals and nonterminals. The terminal set consists of input features without arity.

Each terminal can be a raw input, a pre-processed one, or even an abstracted com-

bination of raw inputs. The nonterminal set includes several functions or operators

representing the possible ways of combining the terminals.

Typical GP evolves a fixed size population of individuals by genetic operators

including selection, crossover, mutation, and replacement. While selection and re-

placement are similar to those of other evolutionary algorithms, crossover and mu-

tation are different from them. Due to the widespread tree encoding of most GPs,

2In fact, this is related to ergodicity in dynamical systems. The interested reader is referred to
[NV92, SNF98].

3In the most strict sense, nonlinear representation is not included in the distinctive features of
GPs. It is because linear representations have been used in the recent literature [BB07, WB10].

4In general, each evolutionary algorithm is discriminated from the others by representation.

11



subtree swapping is one of the most popular crossovers. It randomly chooses two sub-

trees from the two parents, and produces the offspring by swapping them. Typical

mutation operators include replacing a subtree chosen at random with a randomly

generated one.

2.2 Evolutionary Algorithms in Finance

The huge dimensionality and non-stationarity of financial data make evolutionary

algorithms (EAs) attractive for solving a wide variety of financial optimization prob-

lems. In fact, these motivations were emphasized particularly in several studies

[CKH08, KCT11]. Since the non-stationarity is naturally related to the evolving

capability of EAs [CKH08], it can be one of the most appealing merits when apply-

ing EAs to the computational finance. According to different objectives, the past

EA studies can be classified into three groups: forecasting [KH00, KM07], trading

[NWD97, AK99, Wan00, HCCC12], and modeling [LAP99, CY01].5 In general, the

maximizations of precision and return are the objectives of forecasting and trad-

ing, respectively. Since the return is commonly considered with risk, multi-objective

frameworks [CTAM09] have often been used in trading. Modeling is different from

forecasting and trading, which inevitably involve optimizations, in that its main

objective is to gain some insight into market dynamics [RCFM01]. A variety of

applications using EAs in the computational finance can be found in [CK02, TC07].

2.3 Search Space Reduction

In this section, we briefly review three evolution approaches for search space reduc-

tion: modular, grammatical, and seeded evolutions.

2.3.1 Modular Evolution

Modular evolution is to evolve the population using modules, which are genes or

chromosomes that are frequently used and expected to be promising. Its motivation

5In forecasting, EAs have often been used to improve upon some existing predictors based on
artificial neural networks [KM07].
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is to facilitate more effective and efficient evolution by reusing good reusable build-

ing blocks. It is thus very similar to modularization exploited in programming by

human. Due to the enlarged search space of GP, incurred by representing solutions

encoded by trees of variable depths, it has been one of the most important issues

in GP. In fact, a large number of techniques for modular evolution have been pro-

posed. They include encapsulation [Koz92], automatically defined function (ADF)

[Koz94], module acquisition (MA) [AP93], adaptive representation through learning

(ARL) [RB94b], and so forth. While they are different in discovering and reusing

modules,6 their common objective is to improve upon GP by introducing high-level

representations. In the broadest context, any techniques exploiting modularity such

as hierarchical or layered learning [JG07] can be classified into modular evolution. In

recent years, more mathematically rigorous approaches [GGW04, GW07] to modu-

lar evolution were proposed, but they are applicable only to the well-known artificial

problems including the one-max problem [SE91]. In general, designing effective and

efficient modular evolution for complex real-world problems requires systematic al-

gorithms for discovering and reusing modules.

However, modular evolution can be more direct when domain knowledge is read-

ily available and abundant. If it is the case, discovering and reusing modules are

degenerated to a restriction on the possible forms of solutions. Such evolution be-

longs to static module discovery, where the discovery is done before evolution.

2.3.2 Grammatical Evolution

Grammatical evolution is to exploit a grammar, commonly context-free one, for

evolving solutions. In general, the possible forms of solutions are restricted to the

language derived by the grammar. It is thus important to design a grammar that

can generate only valid and possibly promising solutions. Since designing such gram-

mar typically requires small sets of productions, nonterminals, and terminals, it is

generally easier than selecting promising modules in modular evolution. That is, the

major advantage of grammatical evolution over modular one lies in its less require-

6The scopes of module are different as well. For example, ADF is locally defined to an individual
while MA is globally defined to the population.
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ment for domain knowledge. Recently, a few studies [BO04, CBO10] have begun to

use grammatical evolution. It is notable that grammatical evolution [OR01] is fur-

ther extended using a linear genome representation with a developmental process,

or a genotype-phenotype mapping.

2.3.3 Seeded Evolution

Seeded evolution is to provide the initial population with some promising solutions. It

implicitly assumes that promising solutions, or at least parts of them, can be identi-

fied statically and exploited at runtime. Although it was proposed as one of methods

for incorporating more domain knowledge [Gre87], its effectiveness has been vali-

dated by many successful applications [CIW92, Jul94, FH96, FM96, PF99, KK05].

Interestingly, some problems exhibiting strong optimal substructure can more natu-

rally exploit the initial population seeded with the best solutions [Sas01] or the best

matching ones [OC01] for their subproblems.

There are two major issues in seeded evolution: strength and granularity. Strength

generally involves choosing the seeding algorithm, the ratio of seeded individuals,

and so forth. It is notable that most seeding algorithms are relatively simple, thereby

providing weakly optimized initial solutions. This is is because strongly optimized

initial solutions do not always produce better performances, particularly in hybrid

EAs. For instance, Reeves [Ree95] tried to solve flowshop sequencing problem with

a seeded population but they found no significant improvements except for faster

convergence of solutions. In terms of granularity, selecting the candidate for seeding

is also essential; it can be either a set of genes or chromosomes. It is also important

since excessively seeded population converges too quickly to find reasonably optimal

solutions [OC01]. Balancing the search intensities between seeded population and

entire genetic framework is thus important to obtain better results in a reasonable

time budget.

2.3.4 Summary

Modular and grammatical evolutions are similar in that they restrict the possible

forms of solutions using module set or grammar. In fact, they are systematic mecha-
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nisms motivated by syntactic typing for solutions. Due to the similarity, any modular

evolution can be converted into grammatical one by introducing a grammar whose

language is the same as the module set, and vice versa. Since modular evolution

requires the module set, which is preparable only by much domain knowledge, its

applications are generally more restrictive than grammatical evolution. Seeded evo-

lution is much simpler than modular and grammatical evolutions, since it modifies

only the initialization of population. It provides the promising seeded genes or in-

dividuals and does not involve in the evolution after the seeded initialization. The

seeded genes or individuals can also be replaced by better ones during the evolu-

tion. Its restriction on solutions is thus weaker than both modular and grammatical

evolutions; it can thus be classified into search space biasing.

2.4 Terminology

2.4.1 Technical Pattern and Technical Trading Rule

It is common that the terms called technical pattern and technical trading rule are

used without clear definitions. Typically, a technical pattern is a Boolean expres-

sion consisting of diverse price information, technical indicators, and operators. It is

commonly associated with buy or sell. However, it can have no explicit trading im-

plications when it is used as a pre-context for other technical patterns. For example,

the pattern MA5(t) > MA20(t) ∧MA20(t) > MA60(t) represents short-term (5,20)

moving averages are greater than long-term (20,60) ones for the current day. It is

commonly interpreted as a buy signal but its meaning can also be interpreted as a

pre-context for other patterns. In short, a technical pattern is typically interpreted

as buy or sell signal but it has no inherent and context-free interpretations.

In contrast, a technical trading rule has explicit buy and sell signals. For example,

consider a technical trading rule is as follows:

MA5(t) > MA20(t) ∧MA20(t) > MA60(t)→ BUY
MA5(t) < MA20(t) ∧MA20(t) < MA60(t)→ SELL

. (2.1)

In the technical trading rule, some trading days are assigned either BUY or

SELL signal while the others are not associated with any signal. In a technical
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trading rule, there are no ambiguities for interpretations. It is quite common that

a typical technical trading rule includes several technical patterns according to its

own interpretation.

2.4.2 Forecasting Model and Trading Model

The previous studies on financial data mining can be grouped by their objectives:

forecasting and trading models. The objective of forecasting models is to find mod-

els for predicting the movement of financial objects including stocks, futures, and

derivatives. There have been a number of studies can be grouped into forecasting

models including artificial neural networks (ANNs) [KM07], support vector ma-

chines (SVMs) [CT01, Kim03], and so on. However, highly precise model does not

necessarily mean profitable one, which was emphasized by [YCK05]. For example,

most oscillator technical indicators such as stochastics produce high precisions but

low returns. This is because the returns for correct predictions are small. In sum,

forecasting models are interested in whether a financial object rises or falls.

In contrast, trading models focus on the returns. They typically focus on the

rate by which a financial object rises or falls. Since the profitability is the main

interest for traders, there have been a huge number of trading models including

various machine learning techniques [AK99, PSV04]. It is notable that some trading

models often produce trading rules with precisions less than 50%; their profits are

made by the large moves of prices for correct predictions.

One can see that the two models seem to be closely related but they have quite

different objectives. Forecasting models have often been used as good candidates for

improving upon trading models.

There are also some preferences according to the machine learning methods. For

technical analysis, most forecasting models have used learning methods on continu-

ous space including ANNs and SVMs. Recently, SVMs have been more popular than

other methods due to their generalization capabilities. In contrast, trading models

have used learning methods on discrete space including GPs. The popularity of them

is attributed to the interpretabilty of solutions which is one of the most appealing

features of GPs.
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2.4.3 Portfolio and Rebalancing

A portfolio is formulated as a real-valued column vector (w1, w2, . . . , wN )T , where wi

and N represent the proportion of asset invested on the i-th financial object, called

weight, and the number of financial objects, respectively. The sum of all proportions

is typically one, meaning the entire asset that can be invested. Each proportion is

generally nonnegative, but it can be negative if short sale, or simply sell of a bor-

rowed financial object, is allowed for the corresponding financial object. The financial

objects can be the same or different; our primary focus is on the homogeneous finan-

cial objects, i.e., stocks, or securities. The portfolio return is the weighted arithmetic

mean of the returns of financial objects in a portfolio.

Portfolio consisting of different financial objects is commonly used in higher level

asset managements; it generally includes both risky and risk-free assets to control the

level of expected return and risk. By constructing a portfolio, an investor can min-

imize non-systematic, or diversifiable risk.7 Once an initial portfolio is constructed,

the weights in the portfolio are generally changed based on period or tolerance band

of estimated asset [DY03, Mas03]; the readjustment of the weights in a portfolio is

called rebalancing. The key idea to rebalancing is to increase the undervalued finan-

cial objects while decreasing the overvalued ones, thus providing a steady growth in

the portfolio return.

2.4.4 Data Snooping Bias

Data snooping bias, or also called data mining bias, is a statistical bias by ex post

selection of models. Technical trading rules and momentum/contrarian strategies

[JT01, DT85] are common examples of the models. By ex post, we mean that a

model is selected at the end of a given time series’ period. It is thus possible that one

can derive any profitable models by exploiting the past data extensively. However,

the fitted models are likely to have little predictive power for previously unseen data.

In the finance literature, the data snooping bias is typically relieved by sta-

tistical tests including reality checks [Whi00, Han05] which use a full universe of

7Since it is related to the condition of a firm, it is also called firm-specific risk. Its counterpart
is systematic, or non-diversifiable risk which results from the market condition.
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trading models and stationary bootstrap samples [PR94]. The full universe means

that any trading model’s performance should be evaluated by a set of full possible

configurations or parameterizations. For example, a filter rule using n-day local low

price should be tested by all possible n’s. The stationary bootstrap also has simi-

lar implications for the test data. Typical stationary bootstrap generates a number

of samples, representing different possible scenarios, to be used for obtaining the

distribution of test statistic.

While the statistical tests are statistically sound, they have several limitations as

well. First, preparing a full universe of trading models requires a considerable amount

of time. In addition, it can be biased toward the experimenter’s experience as well.

Second, choosing a set of parameters for stationary bootstraps is not standardized.

Typically, it is done by following the earlier studies because the parameters are

known to be insignificant for the statistical test [STW99].

Most statistical studies reported that they found almost no excess returns for

popular trading rules. We think that this is due to severe performance degradation

by including too large number of unmeaningful models or resampled data.

In the computer science literature, the most similar term to the data snoop-

ing bias is overfitting. Solutions to overfitting have a long history including the

early stopping [Pre98], parsimony pressure [GSPT06] toward simpler models, and so

forth. For technical trading, Allen and Karjalainen [AK99] summarized four general

solutions to overfitting: 1) introducing a validation set, 2) increasing the amount of

training data, 3) penalizing for the model complexity, and 4) minimizing informa-

tion for describing the model and data. They used a validation set called a selection

period for choosing the best validation rule from a sequence of the trained best rules

during a run. Recently, GPs alleviating the data snooping bias with the reality check

have also been proposed. For example, Agapitos et al. [AOB10] reported their out-

of-sample returns were improved using Hansen’s SPA test [Han05]. However, it is

still unclear which method is better for obtaining stable out-of-sample returns with

diverse data and learning frameworks.

18



2.5 Financial Optimization Problems

2.5.1 Attractive Technical Pattern Discovery and Its Extension

Most studies in technical analysis have focused on finding new profitable technical

trading rules. They typically used genetic programming where each solution contains

both buy and sell rules. The buy and sell conditions can be implicit, or not contained

in the solution, if an independent automaton for trading is involved [AK99]. Since a

technical trading rule contains one or more technical patterns, such studies are con-

sidered to implicitly optimize two objectives: optimizations of technical pattern and

trading model. These studies collectively belong to technical trading rule discovery.

Although they have been popular and quite intuitive, they have several prob-

lems. One of the most severe problems is the increased complexity resulting from

the simultaneous optimization of technical pattern and trading model. In fact, iden-

tifying optimal technical pattern involves a complex non-parametric optimization

where both structure and parameters should be considered. Trading model is gener-

ally more easily optimized than technical pattern, but it is a non-trivial parametric

optimization as well.

Recently, several studies have focused primarily on finding new technical pat-

terns. They first try to find technical patterns that are attractive in terms of some

criteria. For example, Lee and Moon [LM10] formulated attractive technical pat-

tern based on profitability, simplicity, and frequency. They obtained notable excess

returns over buy-and-hold with a commercial trading simulation tool, which corre-

sponds to a trading model. The merit of finding attractive technical patterns is the

separation of technical pattern and trading model. The newly discovered technical

patterns can be exploited by other trading models; they are not strongly coupled

with some trading models, resulting in an improved generality. These studies, focus-

ing on finding new technical patterns, are referred to as technical pattern discovery.

In general, they can virtually be called attractive technical pattern discovery since

they are always associated with some criteria for attractiveness of technical pattern.
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2.5.2 Stock Selection

Stock selection is to identify a set of stocks that are expected to produce high excess

returns [HCCC12, Hua12, ZYH+06]. While modern portfolio theory [Mar52] uses a

portfolio vector consisting of all stocks’ invested asset proportions, stock selection

scores all stocks with various criteria and select the top-ranked ones for a portfolio.

It is more practical to use stock selection than modern portfolio theory due to its

low computational cost and high scalability.

In general, stock selection is also called stock picking [Wer00, CB05, GNH11]

or stock screening [GL99, TKC91, SD09].8 It reduces the full universe of stocks

to a set of stocks that have some attractive features typically by financial ratios

[Cou78, Whi80, Bar87] including P/B (price-to-book), P/E (price-to-earnings), and

D/E (debt-to-equity) ratios. This reduction makes stock selection attractive for both

a prior step for portfolio construction [HZ95] and a direct portfolio by selecting the

top-ranked stocks [HCCC12]. There have been a number of studies for stock selection

including ANNs [QS99], GPs [CB05, BFL07], and GAs [HCCC12].

For stock selection, aggregating scores produced by the set of financial ratios is

important; it can be linear or nonlinear. Linear models have been popular due to

their simplicity but several studies showed that nonlinear models are promising as

well. One of the most famous linear models is Piotroski’s score, or also called F -

Score, where nine binary financial signals are summed up for scoring stocks [Pio00].

By the degree of exploiting expert’s evaluation, stock selection can be divided into

two groups: fully automated and partially automated. While fully automated stock

selection uses domain knowledge at the design stage, which is provided typically

by experts, it is not helped by experts in the later stages. Most machine learning

algorithms for stock selection belong to this class.

8In the most strict sense, stock screening typically refers to filtering out unattractive stocks.
However, many studies have also used this term as synonym to stock selection. Stock picking is
commonly exploited in the context of stock picking ability of funds.
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2.6 Issues

2.6.1 General Assumptions

In fact, most financial optimization problems virtually belong to the general data

mining with time series. They are generally provided with large data sets, commonly

divided into training, validation, and test sets. Their objectives are commonly related

to building forecasting or trading models that will consistently work on the test sets.

Similar to the general data mining, solving financial optimization problems relies on

three underlying assumptions: existence, identifiability, and exploitability of model

[LC10]. We reintroduce these assumptions with our own view, focusing on financial

optimization problems.

First, the existence of model assumes that there exists a model, irrespective of

interpretability of the model, in the time series data. In fact, it is the most funda-

mental assumption since any data mining becomes futile when the data are closer

to random ones, having no identifiable model. Since it cannot be validated easily,

most studies implicitly assume that there are some models in their data. Recently,

some pretests [CN06] were proposed to validate such model existence assumption,

focusing on GP-evolved trading strategies. Second, the identifiability postulates that

a model can be discovered if it exists in the data. While it seems to be quite natural,

it cannot be easily verified as well; the identifiability involves an intractable number

of testing possible algorithms when no formal proof is available. Instead, most stud-

ies on financial optimization problems have used popular methods such as classical

regression models and evolutionary algorithms for model identification, or discovery.

Finally, the exploitability means that an identified model will consistently work in

the future. In general, it is much harder to satisfy in the financial domain than other

general ones. This is mainly due to the different time in each data entry, meaning

that the underlying features in the data are likely to be time-variant. The market

context such as trend [LAOK10] can be used to improve upon such inconsistency, or

degraded generality, but its availability is inherently limited in that it can only be

determined ex post. Although there are also popular regression models for explain-
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ing return and its volatility in the finance literature,9 they are not quite useful for

data-driven learning models; this is primarily due to many simplified assumptions

for modeling time series data.

2.6.2 Performance Measure

In most financial optimization problems that focus on profitability, return and risk

are two common measures for performance comparisons. In fact, these are the two

fundamental performance factors in the computational finance. Arithmetic and ge-

ometric average returns are popular measures in aggregating the returns of stocks

and periods, respectively. The aggregation of returns over a given period can use

arithmetic average return and it is commonly used with risk measures10 such as

Sharpe ratio [Sha66, Sha94]. However, geometric average return is more natural

than arithmetic average one, even with risk measures, since it is the real growth rate

of invested asset [DE13].

Compared with other literature, where some famous benchmark problems are

available, most financial optimization problems focus only on beating buy-and-hold,

or market return. This is mainly due to different markets, periods, universes, and

so forth. It is thus virtually impossible to compare among algorithms, except for

some simple but standardized experimental studies. Fortunately, buy-and-hold can

be used as the common benchmark for performance comparisons since it repre-

sents the market return. Since the possibility of outperforming buy-and-hold is still

controversial, it is enough to compare the return with that by buy-and-hold for val-

idating the usefulness of a system or strategy. It should be noted that each market

has its most representative market return; in Korean stock market, KOSPI (Korea

Composite Stock Price Index) return is commonly selected as a benchmark.

9Autoregressive moving average (ARMA) [Whi51] and generalized autoregressive conditional
heteroskedastic (GARCH) [Bol86] models are popular return and volatility models, respectively.

10There are a number of risk measures including Jensen’s alpha [Jen68], Treynor’s ratio [Tre65],
value at risk (VaR) [LP00], Sortino ratio [SVDM91], Sterling ratio [Kes96], and so forth. Despite
of their differences, many risk measures showed an identical ranking in comparing among funds
[ES07].
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Chapter 3

Modular Evolution

Modular evolution is to evolve the population of candidate solutions with mod-

ules, or good reusable building blocks. It assumes that good building blocks appear

repetitively in the evolution, thereby playing an important role in the subsequent

evolution. This is quite similar to modular programming by human where reusable

code chunks are modularized, and then reused by other similar programs. Since ge-

netic programming has originally been invented for evolving programs, it has been

the representative metaheuristic exploited in modular evolution. In this chapter,

modular evolution is thus described only in the context of genetic programming.

In general, there are three fundamental issues in modular evolution: definition,

discovery, and reuse. The definition of module is still not clear despite it can easily

be defined intuitively. For example, a module can be defined by a frequently used

subtree with a relatively high fitness in the most general definition. By such a broad

definition, even an incomplete subtree consisting of only nonterminals such as arith-

metic and Boolean operators can be a module; but its fitness cannot be defined

explicitly. If it is the case, the fitness should be approximated for its availability,

which is not straightforward for many real-world problems. Hence, it is common

that only complete subtrees, which are meaningful and frequent ones, have been

modularized in most studies.

Once the definition of module is clarified, the discovery of the module can be

done in many ways. The most common classification for module discovery is based
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on the timing to discover modules: static and runtime. In static module discovery,

modules are identified before a genetic evolution begins. Due to the timing, they

cannot exploit the runtime statistic of a genetic evolution such as the frequency

of a subtree. Each module is thus discovered by some domain knowledge such as

its popularity, complexity, and so forth. In contrast, modules can be discovered

during a genetic evolution, which is based on runtime statistic. Typical runtime

module discovery is based on several runtime statistic such as frequency and fitness

of subtree. The choice between the two methods is commonly related to the amount

of domain knowledge. In general, static module discovery is preferred if the domain

knowledge is enough to give insight into the problem domain.

The discovered modules are then preserved and reused in a genetic evolution.

Each module is encapsulated as an atomic unit and reused in other individuals,

or solutions. Although there can be a number of possible ways to reuse modules,

typical module reuse is implicitly done by crossover operator. To reuse the modules,

a genetic programming should save them on a repository which includes individuals

themselves, the set of terminals, some statistic data, and so forth. They can also

be dynamically extended or shrunk by resource limitation, which is quite similar to

popular cache replacement methods.

In this chapter, we propose a modular genetic programming for finding attractive

and statistically sound technical patterns for stock trading. The search space is re-

stricted to combinations of modules for more effective search. We carefully prepared

the set of modules based on existing studies of technical indicators and our own

experience. Our modular genetic programming successfully found unknown attrac-

tive technical patterns for the Korean stock market. A trading simulation with the

generated patterns by a commercial tool showed significantly higher accumulative

returns than buy-and-hold, or KOSPI.

3.1 Modular Genetic Programming

Typical, or unrestricted GPs are known to be very inefficient to find sensible solutions

for highly complex problems [Mon95]. In fact, they spend most of their time on
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finding only feasible solutions whose fitness values are much worse than the optimal

ones [Mon95].

To give insight into our modular GP, let us consider the problem of discovering

attractive technical patterns. The attractiveness of a technical pattern can be defined

by several criteria such as profitability, simplicity, and frequency. Although there

are a number of building block patterns for attractive technical patterns, they are

generally too complex to be discovered from scratch by black-box optimizations such

as genetic programming.

For example, a white marubozu with long body (pc(t) = ph(t) ∧ po(t) = pl(t) ∧
1.07 ∗ po(t) < pc(t), where po(t), ph(t), pl(t), and pc(t) are opening, high, low, and

closing prices for the current day t, respectively) is known to be very effective for

trading. It implies that a bullish market is strongly supported by buyers, thus it is

a well-known signal for buy timing. However, it is hard to be discovered by typical

GPs due to its complexity; it consists of three clauses which are tightly defined. The

situation would become more serious if we attempt to find more attractive technical

patterns containing one or more white marubozus. Type restrictive GPs including

strongly typed and lambda abstracted ones have the same hardness as well.

Instead, we define a set of module patterns and try to find more attractive

technical patterns by recombination of them. To define the set of modules requires

some domain knowledge, but it is quite an efficient way to help GPs search on more

sensible space.

More generally, let M = {m1,m2, . . . ,md} be the set of module solutions, or

expressions. Each mi is restricted to a comparison expression or conjunctions of

comparison expressions. In a genetic evolution, each mi is preserved as a module.

By module, we mean that it is never broken into individual clauses by any genetic

operators including crossover, mutation, and local optimization. More formally, we

define modular space and modular closure property as follows:

Definition 3.1.1 (Modular search space). A modular search space C induced by a

module set M is C = ∪∞k=1Pk, where Pk is the set of all k distinct conjunctive forms

of mi ∈M .
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Definition 3.1.2 (Modular closure property). A genetic operator g : Cn → C

is said to satisfy modular closure property on modular space C if and only if

∀(c1, c2, . . . , cn) ∈ Cn, g(c1, c2, . . . , cn) ∈ C.

For example, a binary crossover satisfying modular closure property is regarded

as a genetic operator g mapping two parents (p1, p2) ∈ C2 to an offspring g(p1, p2) ∈
C. All genetic operators including crossover, mutation, and local optimization should

satisfy the modular closure property on C. The modular closure property of genetic

operators guarantees that modular GP works only on modular space. As an example,

we show that a modular crossover, whose cut points are restricted to only the set of

module root nodes and Boolean operator ones, satisfies modular closure property.

Fact 3.1.1. A modular crossover, whose cut points are restricted to only the set of

module root nodes and Boolean operator ones, satisfies modular closure property.

Proof. Let M(p1) ⊆ M and M(p2) ⊆ M be the sets of modules in two parents p1

and p2, respectively. If a valid modular cut point is assigned to each parent, we have

two sets of modules S1 ⊆M(p1) in p1 and S2 ⊆M(p2) in p2 to be swapped. After the

crossover operator, we have two offspring o1 and o2 represented by (M(p1)∩S1c)∪S2
and (M(p2)∩S2c)∪S1, respectively. For the offspring o1, (M(p1)∩S1c)∪S2 ⊆M since

M(p1)∩S1c ⊆M(p1) and S2 ⊆M(p2). By Definition 3.1.1, o1 ∈ P|(M(p1)∩S1
c)∪S2| ⊆

C, where |(M(p1) ∩ S1c) ∪ S2| <∞. The argument for o2 is symmetric to o1.

It is notable that our modular search space is simpler than the existing studies

[Woo03, GW07], but still captures several important aspects in modular evolution.

The modular closure property is the most important aspect in that it enforces genetic

operators to preserve the module solutions, which are atomic meaningful units. Our

formulation also facilitates easier validation of the modular closure property for

diverse genetic operators. For example, all genetic operators including crossover,

mutation, and local optimization in the next section are designed so that they satisfy

the modular closure property. The proofs of their modular closure properties are

omitted since they are rather straightforward.

However, this naive set-theoretic definition of modular search space has limita-

tions as well. One of the most important limitations is the underestimation of the
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real search space of GP by excluding of isomorphic solutions, or trees. In fact, the

search space of GP typically consists of trees which have a huge number of isomor-

phic ones. To give some insight into the problem, let us define a finite modular search

space Cd = ∪dk=1Tk, where Tk is the set of full binary trees with k distinct modules

in M = {m1,m2, . . . ,md} and k − 1 Boolean AND operators.

Fact 3.1.2. The cardinality of a finite modular search space Cd is
∑d

k=1
(2(k−1))!d!

(k−1)!k!(d−k)! .

Proof. The possible number of tree topologies with k distinct modules and k − 1

Boolean AND operators is the same as the possible number of distinct binary tree

topologies with k leaves; the modules and Boolean AND operators correspond to leaf

nodes and internal ones, respectively. By this correspondence, it can be calculated

by (k − 1)th Catalan number Ck−1 = (2(k−1))!
(k−1)!k! . For each tree topology, there exist

P (d, k) = d!
(d−k)! permutations of modules. Hence, the cardinality of Tk is the product

of Ck−1 and P (d, k). The cardinality of Cd is then calculated as follows:

|Cd| =

d
∑

k=1

|Tk|

=
d
∑

k=1

Ck−1P (d, k)

=

d
∑

k=1

(2(k − 1))!

(k − 1)!k!

d!

(d− k)!

=
d
∑

k=1

(2(k − 1))!d!

(k − 1)!k!(d − k)! .

Fact 3.1.2 shows that even a finite modular space has a huge number of possible

trees, or solutions in GP. The selection of appropriate module set is thus quite

important for search space reduction.
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3.2 Hybrid Genetic Programming

We use a steady-state genetic programming, where the offspring promptly replaces

individuals in the same population.

• Representation and initialization

Each individual is represented by a randomly generated tree. It is a parse tree

representing a conjunctive expression of modules. The population size is set to

50.

• Selection, crossover, and mutation

The tournament selection [GDK91] is used. The crossover chooses two subtrees

from parents at random and swaps them. It is important that the crossover

does not disrupt modules and preserves them as encapsulated units. For the

preservation of modules, a cut point, or the root node of a subtree to be

swapped, should be either a Boolean operator node or the root node of a

module. Figure 3.1 shows an example individual and possible cut points colored

by dark or light gray. This crossover satisfies the modular closure property as

shown in Fact 3.1.1. We use a mutation that picks a module at random and

replaces it with another module chosen at random.

• Replacement and stopping criterion

The worst individual is first tried to be replaced. If it is the same as the best

on the validation period, the worse of two randomly selected individuals is

replaced with some probability. Otherwise, we replace the better with a small

probability. The number of maximum generations is 1,000 and the maximum

consecutive fails before termination is 300.

• Local optimization

In the local optimization shown in Figure 3.2, we traverse each module in an

individual and compute the gain if it is replaced with another module chosen

at random. We apply the replacement of a module only if the maximum gain

is positive. The neighborhood size N is set to 3.
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Figure 3.1: An example individual and possible cut points

3.3 Attractive Technical Pattern Discovery

3.3.1 Introduction

Technical pattern analyses [Nis91, EMB07, Mur99, LMW00] aim to capture ap-

propriate timing in a stock market. There have been a huge number of technical

patterns for predicting the trend of stock prices. They typically predict short-term

movements: continuation, reversal, and no movement [Mor92]. However, most of

them are based on investors’ limited intuition and experience. In this sense, they are

subjective and likely to have cognitive bias.

In Morris’ study [Mor92], the average hit ratio (up or down) of 88 famous candle

patterns was around 51%, which is just 1% over a random guess. Thirty three of

them showed lower than 50% hit ratios. The result implies that the patterns based

on human beings intuition are not statistically solid.

To alleviate the subjectiveness, evolutionary algorithms such as genetic algo-

rithm [Hol75, Gol89] and genetic programming (GP) [Koz92, BNKF98] for finding

technical patterns have been proposed. Some of them were successful to find techni-

cal patterns that give excess returns over buy-and-hold [Lip07] while others reported

no excess returns over buy-and-hold [AK99, CY97, MYR07, MYC08]. The possibil-
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Input:

T : tree, or individual
N : neighborhood size
Output:

T : locally optimized tree
Description:

LocalOptimization(T ,N)
{

i← 0;
for each root node of module mi ∈ T ;

Gmax ← 0;
for j ← 1 to N

m′

i ← a random module from M ;
T ′ ← T with m′

i in place of mi;
Gj ← f(T ′)− f(T );
if Gj > Gmax

Gmax ← Gj ;
mmax ← m′

i;
if Gmax > 0

T ← T with mmax in place of mi;
return T ;

}

Figure 3.2: Local optimization for modular GP

ity of finding profitable technical patterns beating the efficient market hypothesis

[Ale64, FB66, Sam65, JB70, Fam70] has been controversial.1 Regardless of the prof-

itability, most of them were unsuccessful to find sensible and interpretable technical

patterns.

Since typical GPs require a considerable amount of time to find sensible and in-

terpretable technical patterns, restrictive GPs have been popular alternatives. They

include strongly typed GPs [Mon95] and lambda abstracted GPs [YCK05]. They are

similar in restricting the set of input types, which permits GPs to evolve only on

valid and sensible technical patterns. While they were successful for some domains,

the restrictions are not strong. For example, we cannot expect such GPs to find well-

1In terms of technical analysis, the efficient market hypothesis can be interpreted that there is
no exploitable patterns in financial markets.
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known complex technical patterns such as white marubozu with long body [Mor92] in

a reasonable time. It seems that the type restrictions by strongly typed and lambda

abstracted GPs should be further refined to find sensible technical patterns in stock

markets, which is the main motivation of our new modular genetic programming.

Our new modular genetic programming works on modules, or predefined technical

subpatterns to be combined, which reduces the search space to more promising ones.

In addition to our new genetic framework, our approach has two notable features.

First, we focus only on the buy side. Although most studies on technical trading

have focused on both buy and sell sides, they have struggled with increased com-

plexity. They managed to construct some successful technical trading models, but

their models were too complex or hard to interpret. Instead, we focus on the buy

side and try to find attractive technical patterns to capture buy timing. Of course,

it would be symmetric and easy to apply our GP to the sell side.

Second, most of the previous studies are limited as well since they have focused

mainly on profitability. They considered neither simplicity nor generality of technical

patterns. If technical patterns are complex, they generally match few cases, which

degrades the generality even if they are highly profitable. In this context, we try

to find attractive technical patterns considering simplicity and generality as well as

profitability.

3.3.2 Problem Formulation

Attractive technical patterns can be defined in terms of various criteria. One of the

most intuitive criteria is profitability. However, highly profitable technical patterns

may become too complex to be interpreted. Since too complex patterns disable us

to interpret, they are not preferred in general. In other words, attractive technical

patterns should be not only highly profitable but also simple enough to facilitate

easy interpretation.

Another additional criterion for attractive technical patterns is frequency. Al-

though a technical pattern is both highly profitable and simple enough, it may

match few cases for a given data set. Its usefulness would be greatly degraded if it

has too small matching cases.
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In summary, we define a technical pattern r to be attractive if it satisfies all of

the following three criteria:

1. r should be highly profitable. (profitable)

2. r should not be too complex. (simple)

3. r should have at least a given number of matching cases. (frequent)

More formally, let R(r) be the set of matching cases by a technical pattern r as

follows:

R(r) = {(i, j) : r matches company i on trading day j}. (3.1)

To measure the profitability of a technical pattern r, we define expected earning

rate of r after k trading days by

Ek(r) =
1

|R(r)|
∑

(i,j)∈R(r)

pc(i, j + k)

pc(i, j)
, (3.2)

where pc(i, j) is the closing price of company i on trading day j.

Intuitively, the expected earning rate of r after one trading day, or E1(r), can

be used for finding profitable technical patterns. However, it is fairly sensitive to

daily fluctuations of stock prices. To alleviate the sensitivity, we use the arithmetic

average of n consecutive days’ expected earning rates. This can be regarded as a

form of smoothing to the expected earning rate.

To find simple and frequent patterns, we need additional constraints on technical

patterns. We define a technical pattern r to be simple if |r| < M , where |r| is
the number of clauses in r. We also define a technical pattern r to be frequent if

|R(r)| ≥ m, where |R(r)| is the cardinality of the set R(r). The m and M are

predetermined constants that require tuning by prior knowledge.

The fitness of a technical pattern r is defined by

f(r) =

{

1
n

∑n
k=1Ek(r) if |r| < M and |R(r)| ≥ m
0 otherwise,

(3.3)

where n is the number of consecutive days for smoothing the expected earning rates.

We call n the smoothing constant for f(r). Our problem is a maximization problem

of finding a technical pattern r that maximizes f(r).
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Some useful facts on f(r) can be drawn with a few assumptions. Let µ be the

upper limit on daily price change. Differently from U.S. market, Korean stock market

does not allow a daily price change exceeding some limit, which is enforced by a price

limit system [LK95]. That is, we assume that pc(i, j + 1) ≤ µ × pc(i, j) for all (i, j)

cases.

Fact 3.3.1. Given a daily price limit µ > 1, f(r) ≤ 1
n
µ(µn−1)

µ−1 .

Proof. Suppose that |r| < M , |R(r)| ≥ m, and for all (i, j) ∈ R(r), pc(i, j + k) =

µk × pc(i, j) to maximize f(r). The upper bound for f(r) is calculated as follows:

f(r) =
1

n

n
∑

k=1

Ek(r)

=
1

n

n
∑

k=1





1

|R(r)|
∑

(i,j)∈R(r)

pc(i, j + k)

pc(i, j)





≤ 1

n

n
∑

k=1





1

|R(r)|
∑

(i,j)∈R(r)

µk × pc(i, j)
pc(i, j)





=
1

n

n
∑

k=1

µk

=
1

n

µ(µn − 1)

µ− 1
.

Of course, the upper bound of f(r) is dependent on both µ and n.

3.3.3 Modular Search Space

Let the original search space of technical patterns be the set of Boolean clauses. Each

clause is an expression of comparison operators, arithmetic operators, functions, and

constants. A technical pattern is restricted to a conjunctive form of expressions. The

set of comparison operators and that of arithmetic operators are {<,>,=,≤,≥}
and {+,−, ∗, /}, respectively. A function is represented by a symbol which takes
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Table 3.1: The set of functions
Name Notation

Opening Price po(t)
Closing Price pc(t)
Highest Price ph(t)
Lowest Price pl(t)

Trading Volume v(t)
n-day Moving Average MAn(t)

n-day Volume Moving Average VMAn(t)
n-day Highest Price HPn(t)
n-day Lowest Price LPn(t)

Bollinger Upper Band BUBn(t)
Bollinger Lower Band BLBn(t)

n-day Disparity DISPn(t)
Stochastic(n,m,k) Fast %K STOF(n,m,k)%K(t)
Stochastic(n,m,k) Slow %K STOS(n,m,k)%K(t)
Stochastic(n,m,k) Slow %D STOS(n,m,k)%D(t)

an integer relative offset from the current trading day as an argument. Table 3.1

shows the set of functions. A constant is a real value which is typically multiplied

to a variable or a constant. For example, the expression of “1.1 ∗ po(−1) < pc(0) ∧
MA20(0) > MA60(0)” means that the opening price of the previous trading day

multiplied by 1.1 is smaller than the closing price of the current trading day and the

20-day moving average of the current trading day is greater than the 60-day one of

the current trading day.

While the original search space is natural, it has a drawback of allowing a vast

number of unmeaningful technical patterns. For example, a price can be compared

with a trading volume, which has almost no meaning. Similar problems arise when-

ever an input is compared with less meaningful inputs. With the unrestricted GPs,

these problems can only be alleviated by implicit penalization of such unmeaningful

expressions, which is fairly inefficient.

Instead, we prepare the set of module solutions using our domain knowledge,

which is the basis for our modular search space. Table 3.2 shows some representa-

tive modules. It includes various technical patterns consisting of popular candlesticks

[Nis91] and technical indicators [BLL92]. The selection is based primarily on pat-
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Table 3.2: Some representative modules: candlesticks and technical indicators

Category Pattern Constants†

White Body m ∗ po(t) ≤ pc(t) m ∈ {1.07}, t ∈ [−4, 0]
m ∗ po(t) ≤ pc(t) ∧ n ∗ po(t) > pc(t) (m,n) ∈ {(1.0, 1.02), (1.02, 1.05),

(1.05, 1.07)}, t ∈ [−4, 0]
Black Body m ∗ po(t) ≥ pc(t) m ∈ {0.93}, t ∈ [−4, 0]

m ∗ po(t) ≥ pc(t) ∧ n ∗ po(t) < pc(t) (m,n) ∈ {(1.0, 0.98), (0.98, 0.95),
(0.95, 0.93)}, t ∈ [−4, 0]

Gap Up m ∗ ph(t − 1) < pl(t) m ∈ {1.0, 1.02, 1.05, 1.07}, t ∈
[−4, 0]

Gap Down m ∗ pl(t − 1) > ph(t) m ∈ {1.0, 0.98, 0.95, 0.93}, t ∈
[−4, 0]

White Marubozu pc(t) = ph(t) ∧ po(t) = pl(t) ∧ m ∗ po(t)
< pc(t)

m ∈ {1.0, 1.02, 1.05, 1.07}, t ∈
[−4, 0]

Black Marubozu po(t) = ph(t) ∧ pc(t) = pl(t) ∧ m ∗ po(t)
> pc(t)

m ∈ {1.0, 0.98, 0.95, 0.93}, t ∈
[−4, 0]

Equalities of Prices P (t) = P ′(t) P , P ′ (P 6= P ′) ∈ {po, pc, ph, pl},
t ∈ [−4, 0]

Uptrend by MA MA20(t− 1) < MA20(t) t ∈ [−9, 0]
Downtrend by MA MA20(t− 1) > MA20(t) t ∈ [−9, 0]

Uptrend by Stochastic STOS(5,3,3)%D(t) < STOS(5,3,3)%K(t) t ∈ [−9, 0]
Downtrend by Stochastic STOS(5,3,3)%D(t) > STOS(5,3,3)%K(t) t ∈ [−9, 0]

Bullish Arrangement of MA MA5(t) > MA10(t) ∧ MA10(t) >
MA20(t) ∧ MA20(t) > MA60(t)

t ∈ [−9, 0]

Bearish Arrangement of MA MA5(t) < MA10(t) ∧ MA10(t) <
MA20(t) ∧ MA20(t) < MA60(t)

t ∈ [−9, 0]

Disparity DISP20(t) > 105 t ∈ [−9, 0]
DISP20(t) < 95 t ∈ [−9, 0]

Uptrend by VMA VMA20(t − 1) < VMA20(t) t ∈ [−9, 0]
Downtrend by VMA VMA20(t − 1) > VMA20(t) t ∈ [−9, 0]

Sell Signal by Stochastic STOS(5,3,3)%K(t) > 80 t ∈ [−9, 0]
Buy Signal by Stochastic STOS(5,3,3)%K(t) < 20 t ∈ [−9, 0]
Bollinger Band Break BUB(t) < pc(t) t ∈ [−9, 0]

BLB(t) > pc(t) t ∈ [−9, 0]
Trading Range Break HP5(t) < pc(t) t ∈ [−9, 0]

LP5(t) > pc(t) t ∈ [−9, 0]

† We denote by [m,n] the set of integers from m to n (boundaries inclusive).

tern’s popularity and complexity.

3.3.4 Experimental Results

Parameter Settings

We set the smoothing constant n for f(r) and the minimum cardinality m of R(r)

to 5 and 300, respectively.
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Table 3.3: Data set and its division
Training years # of stocks Validation year # of stocks Test year # of stocks

2000 - 2002 1636 2003 1589 2004 1616
2001 - 2003 1676 2004 1616 2005 1638
2002 - 2004 1704 2005 1638 2006 1653
2003 - 2005 1738 2006 1653 2007 1725
2004 - 2006 1775 2007 1725 2008 1768
2005 - 2007 1797 2008 1768 2009 1822
2006 - 2008 1796 2009 1822 2010 1846
2007 - 2009 1860 2010 1846 2011 1840
2008 - 2010 1949 2011 1840 2012 1805
2009 - 2011 2012 2012 1805 2013 1788
2010 - 2012 1964 2013 1788 2014 1820

Test Beds and Test Environment

We tested our GP with Korean stocks.2 Table 3.3 shows our data set and its division.

The numbers of stocks are different across training, validation, and test periods due

to listing and delisting. For a training period, the number of stocks is larger than

those of its validation and test periods due to its longer time span. We trained our

GP with three consecutive years and validated it with the immediately following

year. The best solution in the validation year was tested in the next year. This

process was shifted year by year.

For easier interpretations, we define Ek(r)S and f(r)S to be the percentages of

returns as follows:

Ek(r)S = (E′k(r)S − 1)× 100
f(r)S = (f ′(r)S − 1)× 100,

(3.4)

where E′k(r)S and f ′(r)S are the expected earning rate of r after k trading days on

period S and the fitness of pattern r on period S. The S can be one of training t,

validation v, and the test d periods. The E and f are called expected profit and fitness,

both in percentage return, respectively. Throughout this section, the experimental

2We excluded both funds and preferred stocks from our study. It is because the prices of common
stocks are believed to have different characteristics from funds and preferred stocks due to their
own nature.
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results will be shown in terms of Ek(r)S and f(r)S . The best pattern on a validation

period will be denoted by rb and the size of matching set byR(r)S where S ∈ {t, v, d}.
The number of modules in the best pattern rb is denoted by |rb|. Note that the

minimum number of matching cases restriction is removed when evaluating f(r)d

since it is too restrictive for test period d.

All programs were written in C# language and run on Intel Xeon E5620 2.40

MHz with Windows Server 2008 R2 Datacenter. They were compiled using Visual

Studio 2010 Ultimate.

Performance

Table 3.4 shows the experimental results. The profit rates and the set sizes of the

matching cases were averaged over 30 independent runs. They are denoted by µ(·)
to represent averaging.

As shown in Table 3.4, our GP found highly attractive technical patterns with

average profits higher than 4% on all the test years; the average profit over the entire

test period was 8.69%. They are in fact quite high considering our trading horizon,

i.e., 5 trading days. Overall, the profit rates were consistently high for all data

sets. The ratio of average return by each test period to that by the corresponding

training one, i.e., µ(f(r)d)/µ(f(r)t), was 0.995 on average, which implies a strong

generalization capability. In particular, four test years out of the eleven test ones

showed even higher generalized returns than their corresponding training years, as

shown in Figure 3.3 The matching cases, closely associated with trading opportunity,

appeared at least several hundreds times for all the test years. On average, they

appeared 553.30 times per year. On the bounds, the year 2006 had 328.9 occurrences

and the year 2011 had 865.53 occurrences.

Interestingly, the patterns found by our GP were not very complex; they were

mostly the combinations of gap up patterns, moving averages, and so on. This is

quite notable in that several hundreds of module patterns were provided to our

GP. Table 3.5 shows the node complexity, simply measured by counting the number

of nodes in an individual, of solutions for all years. Although the minimum and

maximum node complexities were varied over years, the medians were quite stable

37



Table 3.4: Average profit rates and the set sizes of matching cases for training,
validation, and test periods

Year µ(f(r)t) µ(f(r)v) µ(f(r)d) max(f(r)d) µ(|R(r)|d)
2004 13.3 8.08 9.25 16.16 622.87
2005 8.06 8.7 13 17.61 788.87
2006 8.45 14.54 13.58 20.99 328.9
2007 11.77 15.16 13.85 18.91 348.4
2008 11.23 12.12 6.73 11.53 455.7
2009 11.99 5.87 6.91 11.23 792.67
2010 7.55 6.26 4.83 10.18 490.1
2011 8.44 7.32 7.97 11.69 865.53
2012 5.93 6.39 5.59 10.28 653.6
2013 6.68 6.27 6.3 10.89 389.17
2014 6.26 5.73 7.57 13.71 350.47

Average 9.06 8.77 8.69 13.93 553.30
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Figure 3.3: Comparison of returns between training, validation, and test periods

and less than 20 except for 2007, which are substantially lower than expected. It

implies that several, not exceeding 4 or 5, module patterns were more effective than

the others for our modular evolution.
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Table 3.5: Node complexity of solution
Year Minimum Lower quartile Median Upper quartile Maximum

2004 12 13 15 27 41
2005 7 13 18 25 31
2006 7 13 13 25 49
2007 11 15 27 27 44
2008 7 13 15 25 33
2009 7 13 13 27 55
2010 7 12 14 27 39
2011 11 13 13 23 33
2012 11 13 14 23 39
2013 7 13 14 23 33
2014 11 13 13 24 27

†Each value is rounded up or down to the nearest integers.

Comparison with Individual Modules

Since an individual module is a technical pattern as well, its performance can be

evaluated by the fitness used in our GP. The performance of the individual modules

is important since it can give insight into our genetic evolution.

Figure 3.4 shows the fitness of individual modules averaged over all years. Almost

all modules showed slightly positive or negative fitness values, which are fairly close

to zero; the average fitness of all modules was 0.02. Some modules, however, provided

significantly large or small fitness values; most of them are related to gap up or

down patterns. This implies that the final evolved patterns are likely to include

some high-quality modules, which was empirically validated. It is thus important to

select relevant or promising modules before a genetic run.

Figure 3.5 shows the maximum and average fitness values of the module set

and our GP. The GP-evolved patterns showed larger maximum and average fitness

values than those by the module set. Their significant improvement in performance

is one of the key evidences for supporting the search effectiveness of our GP. It is

also notable that the improvement factor begins to decrease from 2008, when the

subprime mortgage crisis [DH09, DVH11] resulted in stock market crash.
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Figure 3.5: Comparison of fitness between module set and GP

Trading Simulation

We provided the final patterns to SimTrade, a simulation tool of Optus Investments

Inc.3 which is a company specialized in algorithm trading. Provided with a set of

3http://www.optus.co.kr 40



patterns, SimTrade simulates trading based on its own strategy starting with a given

amount of money. The tax and transaction fee are parameters of SimTrade; we set

them following the practice of the Korean stock market: 0.3% of tax per each sell

and 0.015% of transaction fee per each sell or buy. SimTrade also has a parameter

for the upper bound of daily trading volume; we restricted each trade not to exceed

2% of the total daily trading volume, which keeps one from overly affecting the

price. We also used stop loss, or forceful liquidation of stock when its loss becomes

greater than a certain level, to reflect one of the most important features in risky

asset management.

Figure 3.6 shows the simulated returns by SimTrade with different initial cash

and stop loss combinations. It showed that all combinations are profitable, but the

simulated returns were degraded as the amount of cash increases. This is mainly due

to the reduced trading amount enforced by the daily trading volume limit. Figure

3.7 shows that excess return, one deducted by KOSPI4 return, can even become

negative for too large initial cashes. However, the results are still fairly attractive;

we found that the returns can be more improved by some ensembles with more

attractive technical patterns.

Figure 3.8 shows accumulative normalized assets by our strategy and KOSPI.

Our strategy used 500 million KRW and −10% as the initial cash and stop loss

rate, respectively. One can see that we could obtain more consistent accumulative

profits than the KOSPI index over the test years. This is notable in that our strategy

with the attractive technical patterns shows less volatile as well as more profitable

asset growth, even with the realistic limitations such as transaction cost and trading

volume limit.

3.3.5 Summary

We proposed a modular genetic programming for finding attractive technical pat-

terns. We defined the properties for attractive technical patterns and tried to find

them using a new modular GP. Experimental results showed that our GP success-

4The KOSPI is a capitalization-weighted index of 200 big Korean stocks. It consists of over 70%
of the total market value of the Korea Stock Exchange.
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fully found attractive technical patterns for the Korean stock market. It is notable

that the patterns were not very complicated, which means that they are practical

enough. The comparison with individual modules showed that our GP can find more

profitable technical patterns than individual modules. We also ran a trading sim-

ulation tool based on the attractive technical patterns. The simulation resulted in

significantly higher balances than the strategy following the KOSPI index fund.

Although our modular genetic programming found notable attractive technical

patterns, we believe that there still remains considerable room for improvement. In

terms of modular search space, we need more elaborate module patterns to incorpo-

rate more domain knowledge. Since there are a huge number of technical subpatterns

that are known to work, the selection of module patterns is fairly important. In fact,

it is another optimization problem as well.

Future work would include refining the definition of attractive technical patterns.

For example, incorporating the risk concept such as Sharpe ratio [Sha66, Sha94] is a

candidate. Finding attractive technical patterns is also multi-objective [CTAM09],

where pareto optimization is a good appropriate approach.
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Chapter 4

Grammatical Evolution

In the broadest context, grammatical evolution is to exploit a grammar for de-

scribing the search space. It is thus also called grammar-based or grammar-guided

evolution, where a grammar provides type restrictions on the search space. Recently,

it is further extended to grammatical evolution, where a mapping from genotype to

phenotype by a grammar is exploited; it is quite similar to the biological process of

protein synthesis. In this thesis, grammatical evolution is restricted to any evolution

exploiting a grammar for type restrictions.

The grammar in grammatical evolution is considered to be a rule-based knowl-

edge by type restrictions. Even the earliest studies in genetic programming (GP)

have already emphasized that such type restrictions are important for solving com-

plex problems. They enforced some syntactic structures on their candidate solutions,

which guarantees that GP always produces syntactically valid solutions. The syntac-

tic structures can be provided by some typing methods as well; strongly typed and

lambda abstracted GPs are popular examples. Such typing methods for inputs and

output for a function is, however, generally not enough to restrict the search space

reasonably. They are frequently suffered from less meaningful inputs and output,

which are not effectively used in the problem domain.

Grammatical evolution alleviates such problem by exploiting a grammar of de-

scribing the search space. Typically, it generates a population of initial solutions

that are derived from the grammar. It then evolves them by genetic operators which
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are also directed by the grammar. Only syntactically valid solutions are searched

owing to the grammar during its evolution.

Designing effective grammar is one of the most important issues in grammatical

evolution. Intuitively, the grammar should incorporate the key concept of domain

knowledge in a succinct and unambiguous form. Context-free grammar is frequently

used for the purpose since it is widely used for representing knowledge in machine

learning. Typically, it is defined statically before a genetic run but it can also be

evolved in the genetic run. If it is evolved at runtime, its productions are associated

with selection probabilities which are adapted based on some statistic in the genetic

run.

In this chapter, we propose a grammatically typed genetic programming for dis-

covering attractive technical patterns. Typical genetic programming approaches for

finding technical trading rules have optimized both technical pattern and trading

strategy simultaneously. They have induced trading rules using common or popular

technical patterns which have not been verified to be statistically sound. The strong

coupling between technical pattern and trading strategy has been a major bottleneck

for identifying attractive technical patterns. To this end, we try to find attractive

technical patterns which can be exploited by diverse trading strategies or models.

We describe the problem of finding attractive technical patterns and present a hy-

brid genetic programming incorporated with a grammatical type system. Extensive

experimental results using all Korean stocks showed that our algorithm successfully

found a number of attractive technical patterns. Trading simulations also showed

that systematic trading strategies using the attractive technical patterns can out-

perform buy-and-hold.

4.1 Grammatical Type System

We use a context-free grammar G = (V,Σ, P, S), where V , Σ, P , and S are the set of

nonterminals, the set of terminals, the set of production rules, and the start symbol,

respectively. Table 3.1 shows the set of terminal functions that are selected after some

experiments. Figure 4.1 shows our context-free grammar G for describing technical
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patterns. In the grammar, T is a relative offset designating where the technical

pattern r is evaluated. For example, MA5(−1) returns the previous day’s 5-day

moving average. The nonterminals Ob, Oc, and Oa represent Boolean, comparison,

and arithmetic operators, respectively.

Our context-free grammar is elaborately designed by a compromise between sen-

sibility and generality. By sensibility, we mean that a technical pattern is syntacti-

cally and semantically correct. For example, consider a technical pattern MA5(0) >

VMA5(0). The pattern is syntactically correct because each function returns a real

value. However, it is semantically incorrect sinceMA5(0) and VMA5(0) return price

and volume, respectively. It is also hard to find out what is implied by the pattern.1

Such semantically incorrect patterns are not generated by our grammar. By general-

ity, we mean that our grammar allows new patterns that have not been popular. For

example, BLB(0) < 1.05 ∗ po(−1) +BUB(0) is a valid pattern that can be derived

by our context-free grammar. It is quite general since a typical Bollinger band (i.e.,

BLB or BUB) is compared only with the closing price.

Compared with other GPs using grammatical type systems [AOB10, KT10], our

grammar has three notable features. First, it allows type compatible but complex

patterns. Using the intermediate nonterminals (i.e., Cp, Cv, Cd, and Cs), which are

called group nonterminals, the possible pattern forms are enforced to be type com-

patible. The Cv, for instance, restricts its possible functions to only Fv’s which are

then derived to only volume moving averages VMAn’s. The production rule Sr → Sr

Ob Sr | C can build an indefinitely long and complex pattern as needed. In our GP,

the indefinite derivation is implicitly blocked by decreasing the probability of select-

ing such derivation. Second, each literal is aware of its belonging group and it is then

used in its appropriate context. Agapitos et al. [AOB10], for example, used a union

of two literal sets for two different types of technical indicators. Their union set is

inefficient since a literal can be compared with an inappropriate technical indicator.

In contrast, our technical pattern can use its most meaningful literals by using the

derivations from the group nonterminals. For example, DISP5 and STOF(5,3,3)%K

1Wang [Wan00] managed to explain such pattern by large price movement with low volume.
However, most studies do not allow patterns with incompatible comparisons [BPZ02].
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use Ld and Ls, respectively. Finally, the grammar has some normalization effects

[CM03, CM08]. The production Cv → Cvl Oc Cvr, for example, designates the left

tree Cvl and the right one Cvr. The Cvl is derived to a pattern containing an arith-

metic operator while Cvr is not. It implies that only left subtrees contain arithmetic

expressions. Every parse tree generated by our grammar is thus a normalized form,

which enables us to reduce the search space effectively.

4.2 Hybrid Genetic Programming

We use a steady-state genetic programming, where the offspring replaces an indi-

vidual in the same population.

• Representation and initialization

Each individual is represented by a randomly generated tree with our context-

free grammar G. The population size is set to 50. The minimum and maximum

internal depths, considering only logical operator nodes, for creating the initial

population are 0 and 2, respectively.

• Selection, crossover, and mutation

The tournament selection [GDK91] is used. The crossover chooses two subtrees

from parents at random and it swaps them. The cut points are restricted

to Boolean and comparison operators. Crossover between different types of

operators, e.g., Boolean operator between comparison one, is allowed. Such

more free crossover produces more diverse trees than the strict typing among

operators [AK99]. Mutation is performed by replacing a subtree chosen at

random with a randomly generated one. It is also directed by our context-free

grammar G.

• Replacement and stopping criterion

We replace the worst individual on the training period. If the worst is the same

as the best on the validation period, two individuals are randomly selected as

replacement candidates. One of the replacement candidates is replaced with
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// V = {Sr , C, Cp, Cpl, Cpr , Fp, Cv, Cvl, Cvr , Cd, Cdl, Cdr ,
// Cs, Csl, Csr , Fp1, Fp2, Fp3, Fp4, Lp, Fv, Lv,
// Fd, Ld, Fs, Ls, T,Ob, Oc, Oa}
// Σ = all symbols excluding V
// S = the start symbol
// P = the set of production rules in the following

S → Sr Ob Sr

Sr → Sr Ob Sr | C
C → Cp | Cv | Cd | Cs

Cp → Cpl Oc Cpr

Cpl → Lp Oa Fp(T )
Cpr → Fp(T )
Fp → Fp1 | Fp2 | Fp3 | Fp4

Cv → Cvl Oc Cvr

Cvl → Lv Oa Fv(T )
Cvr → Fv(T )
Cd → Cdl Oc Cdr

Cdl → Fd(T )
Cdr → Ld | Fd(T )
Cs → Csl Oc Csr

Csl → Fs(T )
Csr → Ls | Fs(T )
Fp1 → po | pc | ph | pl
Fp2 → MA5 | MA10 | MA20 | MA60 | MA120 | MA250

Fp3 → HP5 | HP10 | HP20 | HP60 | HP120 | HP250 |
LP5 | LP10 | LP20 | LP60 | LP120 | LP250

Fp4 → BUB | BLB
Lp → 0.85 | 0.90 | 0.95 | 1.00 | 1.05 | 1.10 | 1.15
Fv → VMA5 | VMA10 | VMA20 | VMA60 | VMA120 | VMA250

Lv → 0.33 | 0.50 | 1.00 | 3.00 | 5.00
Fd → DISP5 | DISP10 | DISP20 | DISP60 | DISP120 | DISP250

Ld → 90 | 95 | 100 | 105 | 110
Fs → STOF(5,3,3)%K | STOS(5,3,3)%K | STOS(5,3,3)%D |

STOF(10,6,6)%K | STOS(10,6,6)%K | STOS(10,6,6)%D |
STOF(20,12,12)%K | STOS(20,12,12)%K | STOS(20,12,12)%D |
STOF(60,36,36)%K | STOS(60,36,36)%K | STOS(60,36,36)%D

Ls → 20 | 25 | 30 | 70 | 75 | 80
T → −10 | −9 | −8 | −7 | −6 | −5 | −4 | −3 | −2 | −1 | 0
Ob → ∧ | ∨
Oc → = | < | >
Oa → + | − | × | ÷

Figure 4.1: Context-free grammar for technical patterns

a probabilistic bias toward worse individuals. Our GP stops if the number

of consecutive fails to update the best solution reaches 300 or the number of

generations exceeds 1,000.

• Local optimization
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We devise a local optimization using two different neighborhoods. Figure 4.2

shows a neighborhood search by node change. It defines a neighborhood of a

tree by replacing a node with compatible ones, which is a single node version of

shaking search [MHF08]. The solutions in the neighborhood are examined by

an approximate fitness function f̂2 which is evaluated on a sample of 30 random

companies. The approximate fitness function helps significantly reducing the

running time of fitness evaluations. The neighborhood size is determined by

Nd and the entire search process is directed by the direction of maximal gain

in fitness, i.e., fitness differential.

Figure 4.3 shows a neighborhood search by clause change. It is quite similar

to the one by node change, but uses a larger unit, i.e., clause, to generate

neighbor solutions. It uses the neighborhood size determined by Nc and its

search process is also directed by the fitness differential.

Figure 4.4 shows our local optimization using these neighborhood searches.3

It applies the two different neighborhood searches sequentially until no gain is

obtained from any of them or the maximum trial count, Tmax, is reached. We

set all Nd, Nc, and Tmax to 3 after some experiments.

• Best update and elitism

After the initialization of population, the best individual on the training period

is evaluated on its validation one. Its fitness on the validation period is then

saved as the best fitness. Whenever a better solution on the training period

is found, its fitness is evaluated on its validation one. If it also improves upon

the best fitness, it is accepted as the new best individual. This best update

scheme has been extensively used in the literature [AK99].

Elitism [DeJ75] is also used to further improve upon our GP. The best indi-

2In the approximate fitness, the minimum set size, β, should be adjusted to a smaller value,
reflecting the ratio of sample size to the number of all companies. In the fitness approximations
literature, there have been a huge number of techniques. The interested reader is referred to [Jin05].

3This local optimization using sub-layer heuristics can be regarded as a special case of hyper-
heuristics [Kam13]. Dynamic selection by the performance of each sub-layer heuristic is a candidate
for further improvements.
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Input:

τ : parse tree for the technical pattern r
n: a node in the tree τ
f̂o: approximate fitness of the original tree
Nd: neighborhood size
S: the set of sampled companies for approximate fitness
f̂(τ): approximate fitness of the tree τ
Γ(p): the set of possible terminal symbols generated by all productions whose left symbol is p
Output:

T : a structure containing τ and gmax

Description:

NSNC(τ ,n,f̂o,Nd,S)
{

gmax ← 0;
no ← n;
nmax ← n;
for i← 1 to Nd

if n ∈ Γ(Oi) (i = b or c or a)
n ← a random operator ∈ Γ(Oi);

else if n is a literal and its parent is a function
n ← a random offset literal ∈ Γ(T );

else if n is a function and n ∈ ∪p4i=p1Γ(Fi)

j ← a random symbol ∈ {p1, p2, p3, p4};
n ← a random symbol ∈ Γ(Fj);

else if n is a function and n ∈ Γ(Fi) (i = v or d or s)
n ← a random symbol ∈ Γ(Fi);

else

k ← a nonterminal (∈ {Cp, Cv, Cd, Cs}) that generated the literal n;
if k = Ci (i = p or v or d or s)

n ← a random symbol ∈ Γ(Li);

g ← f̂(τ) − f̂o;
if g > gmax

gmax ← g;
nmax ← n;

n ← no;
if gmax > 0

n ← nmax;
T.gmax ← gmax;
T.τ ← τ ;
return T ;

}

Figure 4.2: Neighborhood search by node change

vidual is replaced only if it performs worse than the new best individual on

the validation period.
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Input:

τ : parse tree for the technical pattern r
n: a node in the tree τ
f̂o: approximate fitness of the original tree
Nc: neighborhood size
S: the set of sampled companies for approximate fitness
f̂(τ): approximate fitness of the tree τ
Γ(p): the set of possible terminal symbols generated by all productions whose left symbol is p
Output:

T : a structure containing τ and gmax

Description:

NSCC(τ ,n,f̂o,Nc,S)
{

gmax ← 0;
no ← n;
nmax ← n;
for i← 1 to Nc

n ← a random operator ∈ Γ(Oc) (subtree’s root);
j ← a random group nonterminal subscript ∈ {p, v, d, s};
n.left ← a subtree generated by the symbol Cjl as the start symbol;
n.right ← a subtree generated by by the symbol Cjr as the start symbol;

g ← f̂(τ) − f̂o;
if g > gmax

gmax ← g;
nmax ← n;

n ← no;
if gmax > 0

n ← nmax;
T.gmax ← gmax;
T.τ ← τ ;
return T ;

}

Figure 4.3: Neighborhood search by clause change

4.3 Extended Attractive Technical Pattern Discovery

4.3.1 Introduction

Trading with technical patterns [Nis91, EMB07, Mur99, LMW00] has been exten-

sively used for diverse markets including stock markets, foreign exchange markets,

and so on. It tries to predict short-term price trends typically using price and volume

information [Mor92]. Chart patterns [LMW00], candlesticks [Mor92, LJ99, MYR06],

and technical indicators [Kau98] are well-known building blocks for technical trad-

ing.

The technical pattern studies can be classified into two distinctive groups: sta-
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Input:

τ : parse tree for the technical pattern r
n: a node in the tree τ
Nd: neighborhood size for NSNC()
Nc: neighborhood size for NSCC()
Tmax: maximum number of trials
f̂o: approximate fitness of the original tree
DFS(τ): a sequence of nodes in τ by the depth first search
DFS′(τ): a sequence of comparison or logical operator nodes in DFS(τ)
Γ(p): the set of possible terminal symbols generated by all productions whose left symbol is p
S: the set of sampled companies for approximate fitness
Output:

T : a structure containing τ and gmax

Description:

LocalOptimization(τ ,n,Nc,Nd,Tmax,S)
{

i← 0;
gn ← 0;
gc ← 0;
while i < Tmax and gn ≥ 0 and gc ≥ 0

gn ← 0;
f̂o ← f̂(τ);
foreach node n in DFS(τ)

T ← NSNC(τ ,n,f̂o,Nd,S);
τ ← T.τ ;
gn ← gn + T.gmax;

gc ← 0;
f̂o ← f̂(τ);
foreach node n in DFS′(τ)

T ← NSCC(τ ,n,f̂o,Nc,S);
τ ← T.τ ;
gc ← gc + T.gmax;

i← i+ 1;
return T ;

}

Figure 4.4: Local optimization

tistical analysis approach and evolutionary approach. The main objective of the sta-

tistical analysis approach is to find out whether technical patterns have statistical

predictive power or not. For example, Alexander [Ale61] examined filter rules which

advise a trader to buy or sell if price moves out of a given filtered range; the filter rules

were found to be almost unprofitable for Dow Jones Industrial Average (DJIA) stocks

after adjusting transaction costs [FB66]. There have also been other studies using fa-

mous technical indicators or candlestick patterns, which failed to find profitable trad-

ing rules [VHP68, CKH08, MYC08, CTAM09]. These negative results including the
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famous efficient market hypotheses (EMH) [Fam70] have resulted in the widespread

skepticism about the usefulness of technical trading rules [PI07]. However, some re-

cent studies found evidences against EMH [DT85, JT01, GMS+09, EM11], which

makes it harder to reach consensus among researchers.

Most early statistical studies are limited in that they have data snooping biases

[JB70, LM90]. Data snooping bias is a statistical bias by ex post selection of technical

trading rules. It states that profitable technical trading rules can be identified by

extensive mining with past data but they are likely to have little predictive power.

For example, Brock et al. [BLL92] found a set of profitable technical trading rules

but they were not able to eliminate the data snooping bias. To alleviate the data

snooping bias, new statistical tests called reality checks [Whi00, Han05] have been

developed. They tested a number of technical trading rules with a full universe of

parameterizations on stationary bootstrap [PR94] time series. They showed that the

profitability of most popular technical trading rules are attributable to data snooping

bias.

Recently, evolutionary approaches such as genetic programmings (GPs) [Koz92,

BNKF98] have been extensively used for finding technical trading rules. Allen and

Karjalainen [AK99] applied GP to find profitable technical trading rules for S&P 500

index, which is the first evolutionary approach in the literature. They used a small

set of terminals and excess return over buy-and-hold including risk-free interest rate

for no position as the fitness function. The data snooping bias was relieved by in-

corporating validation sets. Their results reported almost no excess return over buy-

and-hold, which was confirmed by other studies [Nee03, FMT05, HLV10] with a few

exceptions [YCK05]. Some studies using individual stocks [PSV04] rather than com-

posite indexes also failed to find profitable technical trading rules. Interestingly, most

GPs for other markets such as foreign exchange markets [NWD97, DJ01, BPZ02]

have been successful. Wang [Wan00] suspected that the conflicting results might be

due to different transaction costs, base returns, or testing methods for various mar-

kets [YCK05]. However, it has not been validated which factors are really affecting

the conflicting results across different markets.

Most GPs have tried to find profitable technical trading rules using a set of simple
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technical patterns. They typically encoded a solution with patterns for either buy

or sell. It implies that the ordinary encoding optimizes both technical pattern and

trading strategy simultaneously. It is thus not surprising that most studies struggled

with increased complexity and they were not able to find profitable technical trading

rules; some of them even replicated buy-and-hold or its variants [Wan00, DJ01]. The

strong coupling between technical pattern and trading strategy also prevents us from

exploiting the patterns for other trading strategies or models.

To find profitable, statistically sound, and more exploitable technical patterns,

Lee and Moon [LM10] formulated attractive technical patterns. Using the formula-

tion, they tried to find attractive technical patterns consisting of predefined module

patterns using GP. Trading strategies using the patterns showed they can outperform

buy-and-hold. However, their strong modularization restricts the search space into

a considerably limited region consisting of some predefined module patterns. The

preparation of module patterns also requires extensive domain knowledge which is

likely to have strong selection biases. These motivate us to devise a GP without the

predefined module patterns.

4.3.2 Problem Formulation

We extend the formulation of attractive technical pattern [LM10] to include more

meaningful features.

Let R be the set of ordered pairs (i, j) where i and j represent indices for company

and trading day, respectively. The indices i and j are nonnegative integers whose

upper bounds are determined by the data set.

A technical pattern r is an element of L(G) by our context-free grammar G =

(V,Σ, P, S) as follows:

L(G) = {w ∈ Σ∗ : S
∗⇒ w}, (4.1)

where ∗ and
∗⇒ represent the Kleen star operation and repetitive production appli-

cations, respectively.

The matching set of a technical pattern r is defined by
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R(r) = {(i, j) ∈ R : r is evaluated to be true for (i, j)}. (4.2)

Each (i, j) ∈ R(r) is called a matching case for r. The matching set by date that

depends only on a calendar date d is defined as follows:

Rd = {(i, j) ∈ R : (i, j)’s calendar date = d}. (4.3)

In a matching set, most of the matching cases can occur at only a few number

of dates by sudden market crashes or rallies. If it is the case, any statistic on the

matching set is biased due to the large number of matchings for such dates. To filter

out the effects, we define the filtered matching set by

Rf (r) = {(i, j) ∈ R(r) : |Rδ(i,j) ∩R(r) | ≤ α|R(r)|}, (4.4)

where δ(i, j) is a function that maps a matching case (i, j) into its corresponding

calendar date and 0 < α ≤ 1 is a predefined constant.

For a given matching set M(⊂ R), the expected return after k trading days is

defined by

Ek(M) =
1

|M |
∑

(i,j)∈M

(

pc(i, j + k)

pc(i, j)
− 1

)

, (4.5)

where pc(i, j) is the closing price of company i on trading day j.

The kth element of fitness function fk(r) is defined as follows:

fk(r) = 1
|Rf (r)|

∑

(i,j)∈Rf (r)

(

pc(i,j+k)
pc(i,j)

− 1− Ek(Rδ(i,j))
)

= Ek(R
f (r))− 1

|Rf (r)|
∑

(i,j)∈Rf (r)Ek(Rδ(i,j)).
(4.6)

The Ek(Rδ(i,j)) represents the expected return of all companies on the day δ(i, j)

after k trading days. It is called the base expected return for the day δ(i, j). By

subtracting the base expected return from pc(i,j+k)
pc(i,j)

− 1, fk(r) measures the average

relative expected return compared to all companies after k trading days. The fitness

vector ~f r is defined by a n-dimensional vector whose element is fk(r) + 1.

55



To enforce a constraint of the number of yearly matching cases, we define the

product operator ⊗ by

W ⊗ y = {(i, j) ∈W : y = ϕ(δ(i, j))}, (4.7)

where W is a matching set and ϕ(d) is the function returns the year of a calendar

date d.

To alleviate possible daily fluctuations of stock prices, the fitness function f is

defined as follows:

f(r) =

{

1
||w|| ~w · ~f r − 1 if |Rf (r)⊗ y| ≥ β for all y ∈ Z

η otherwise,
(4.8)

where Z, ~w, β, and η are Z = {z : ϕ(δ(i, j)) = z for all (i, j) ∈ R}, a weight

vector ~w = (w1, w2, . . . , wn), a constant for the minimum set size, and a constant

for the minimum fitness, respectively. More intuitively, f(r) is a weighted average of

{f1(r), f2(r), . . . , fn(r)} with the weight {w1, w2, . . . , wn}.

4.3.3 Experimental Results

Parameter Settings

We set the constant α for Rf (r) and n for f(r) to 0.05 and 5, respectively. The β

for f(r) is set to 200. There are several candidates for choosing the weight vector

~w whose element wk gives an weight to fk(r). We choose five representative weight

models as follows:

• Equal (EQ) : wk = 1
n

• Linearly Decreasing (LD): wk = n−k+1∑n
i=1 n−i+1

• Linearly Increasing (LI): wk = k∑n
i=1 i

• Exponentially Decreasing (ED): wk = en−k+1
∑n

i=1 e
n−i+1

• Exponentially Increasing (EI): wk = ek∑n
i=1 e

i
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where e is the natural logarithm constant. The η in f(r) is set to −1.0 which is small

enough for the invalid fitness.

Test Beds and Test Environment

We tested our GP with daily data of Korean stocks4 including all listed and delisted

stocks5 from January 1999 to December 2014.

To alleviate the data snooping bias, we divided the data into nine overlapping

sequences and used the rolling forward method [PT95]. For each sequence, three con-

secutive years6 were used as the training period and the next year as the validation

one. The year following the validation period was used as the test year.

For the complete availability of all technical indicators, a period preceding the

training one, called windup period [Kau98], is also necessary. The windup period is

needed since the calculations of n-day technical indicators require the previous n

trading days. By rolling forward, the first sequence, for instance, uses 1999, 2000-

2002, 2003, and 2004 as the windup, training, validation, and test periods, respec-

tively; this process was shifted year by year. We performed 30 runs for each sequence.

In later sections, we use subscripts t, v, and d for training, validation, and test peri-

ods, respectively. For example, the training fitness of a technical pattern r is denoted

by f(r)t.

It should be noted that a form of bias can be included unless we carefully filter out

some subperiod from training, validation, and test periods. Assume that a matching

case (i, j) is included in Rf (r) and its corresponding date δ(i, j) is the last trading

day of 2002 in the training period 2000-2002. In calculating fk(r), the term pc(i, j+k)

then uses some data in 2003 which are beyond the scope of the training data. Exactly

the same problem also occurs at the ends of its validation and test periods. To this

end, we removed the last month from each training, validation, and test period.

4We excluded funds, preferred stocks, and convertible ones from our study. It is because the prices
of common stocks are believed to have different characteristics from funds and preferred stocks due
to their own nature. Convertible stocks are typically very short lived, which is not meaningful for
investments. All data were provided by Optus Investments Inc.

5The inclusion of delisted stocks is important to eliminate survivorship bias [GT92, EGB96].
6In general, the length of training period also affects the characteristics of technical patterns

[MB04].

57



Another problem arises when we calculate fitness on test period. The |R(r)| is
required for constructing Rf (r), but it is not available until the end of a given test

period. It is thus impossible for the fitness on test period to use Rf (r). In our GP,

we used R(r) instead of Rf (r) in calculating fk(r) on test period.

These problems are closely related in that they require the unavailable future

data from a given trading day. We call such problems look-ahead biases.7 The looka-

head bias is often hard to be identified if it appears in a complex pattern or function.

All programs were written in C# language and run on Intel Xeon E5620 2.40

MHz with Windows Server 2008 R2 Datacenter. They were compiled using Visual

Studio 2010 Ultimate.

Comparisons among Different Weight Models

Figure 4.5 shows the fitness values using different weight models: EQ, LD, LI, ED,

and EI. They cannot be compared with each other due to their different calculations.

However, they showed that the weight models produce quite generalized results,

which was confirmed by high values of the generalization factor µ(f(r)d)/µ(f(r)t).

The generalization factor averaged over all years ranged from 0.82 in EI weight model

to 0.96 in ED one. Figure 4.6 shows the generalization factors of different weight

models for all years. It shows that LD and ED have comparable generalization

factors to the others before the year 2008 but they obtain higher ones thereafter.

Since both LD and ED give more weights on the near future, it implies that shorter

term technical patterns are more consistently identified since 2008.

To find out which weight model is the best, we provided the final best patterns

to SimTrade,8 a commercial simulation tool of Optus Investments Inc.9 which is an

investment company specialized in algorithm trading. The SimTrade begins with a

7In the finance literature, it is often referred to as survivorship bias which is caused by ex post
selection of survived stocks [HNV01]. However, we think that this term should be extended to
include any ex post actions to financial data. In the most strict sense, Yeh et al. [YLT11] even
discriminated the model design stage from the model validation ones.

8We are not able to present its detailed algorithm by business contract. For the same reason, we
also do not provide the found patterns explicitly. However, the interested readers can replicate our
results using popular asset allocation algorithms [OLLZ05].

9http://www.optus.co.kr
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Figure 4.5: Fitness values using different weight models

given amount of the initial cash. It uses the best pattern for each year and switches it

to that for the next year after the end of each year. With the patterns, it simulates

trading by its own strategy with a number of parameters. The parameters also
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Figure 4.6: Generalization factors of different weight models

include the tax and transaction fee; we set them following the practice of the Korean

stock market: 0.3% of tax per each sell and 0.015% of transaction fee per each sell

or buy. Compared with common trading simulations without the upper bound of

trading volume [PSV04, WYC12], the SimTrade has a parameter for the upper

bound of trading volume; the daily accumulative trading volume is restricted up

to 2% of the total daily trading volume. The restriction on daily trading volume is

quite important to obtain realistic simulation results. It is because one cannot trade

a huge amount of volumes without affecting the price.

Table 4.1 and 4.2 show the simulated absolute and excess returns using the differ-

ent weight models with the SimTrade, respectively. The excess return was calculated

by deducting buy-and-hold10 return from the simulated absolute one. The EI weight

model outperformed the other ones across diverse parameters. Both absolute and

excess returns were degraded as the amount of the initial cash increases, which is

mainly due to the daily trading volume limit. Hereafter, we describe the experimen-

10In this section, buy-and-hold return was calculated by KOSPI which is a capitalization-weighted
index of 200 large Korean stocks. During the entire period, i.e., from January 2004 to December
2014, buy-and-hold return was 133.25%.
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Table 4.1: Simulated absolute returns using different weight models

Parameter EQ LD LI ED EI
Initial cash Stop loss rate Return Return Return Return Return

100 n.a. 686.20 627.30 554.64 604.94 736.03

500 n.a. 315.17 294.43 272.21 286.02 337.45

1000 n.a. 209.01 197.39 186.96 194.42 225.46

3000 n.a. 99.37 96.85 93.91 95.96 109.95

5000 n.a. 67.84 67.23 66.46 65.68 75.49

100 -10 897.18 796.76 711.68 766.97 919.25

500 -10 387.22 356.24 328.99 348.35 401.70

1000 -10 249.14 231.83 219.43 230.45 262.39

3000 -10 114.66 109.39 106.17 109.53 122.60

5000 -10 77.90 75.12 74.02 74.19 83.20

100 -20 773.60 698.46 618.29 671.64 816.48

500 -20 346.12 321.93 294.38 313.54 366.94

1000 -20 226.19 212.16 198.88 210.20 242.27

3000 -20 105.70 101.85 97.66 101.81 115.79

5000 -20 71.78 70.27 68.53 69.30 78.89

The best pattern on validation period among 30 runs was selected for each test year.
Bold-faced number represents the best return.
Monetary unit for initial cash is million KRW.
Returns and stop loss rates were written in percentage.

tal results only by the best weight model, i.e., the EI weight model, unless otherwise

noted explicitly.

Features of Attractive Technical Patterns

Table 4.3 shows the fitness values for all years. On average, both training and valida-

tion periods showed about 5 percent fitness values. The fitness was degraded on the

test period to about 4 percent which is still very close to those of the training and

validation periods. Table 4.4 shows the sizes of matching sets for all years. The size

of matching set varied with year; it ranged from 485.73 in 2008 to 24283.57 in 2010.

The average size of the matching sets was 7263.93, which means 29.06 matching

companies per day assuming each year has 250 trading days. It is quite adequate

in that common investors trade at most tens of companies per day.11 This is be-

11Even with longer trading horizons, it is common to restrict the number of companies in a
portfolio to at most 20 or 30 [ZYH+06, HCCC12].
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Table 4.2: Simulated excess returns using different weight models

Parameter EQ LD LI ED EI
Initial cash Stop loss rate Return Return Return Return Return

100 n.a. 552.95 494.05 421.38 471.69 602.78

500 n.a. 181.92 161.18 138.96 152.77 204.20

1000 n.a. 75.76 64.14 53.71 61.17 92.21

3000 n.a. -33.88 -36.40 -39.34 -37.29 -23.30

5000 n.a. -65.41 -66.02 -66.79 -67.57 -57.76

100 -10 763.93 663.51 578.43 633.72 786.00

500 -10 253.97 222.99 195.74 215.10 268.45

1000 -10 115.89 98.58 86.18 97.20 129.14

3000 -10 -18.59 -23.86 -27.08 -23.72 -10.65

5000 -10 -55.35 -58.13 -59.23 -59.06 -50.05

100 -20 640.35 565.21 485.04 538.39 683.23

500 -20 212.87 188.68 161.13 180.29 233.69

1000 -20 92.94 78.91 65.63 76.95 109.02

3000 -20 -27.55 -31.40 -35.59 -31.44 -17.46

5000 -20 -61.47 -62.98 -64.72 -63.95 -54.36

The best pattern on validation period among 30 runs was selected for each test year.
Bold-faced number represents the best return.
Monetary unit for initial cash is million KRW.
Returns and stop loss rates were written in percentage.

Table 4.3: Results on fitness values

Year µ(f(r)t) µ(f(r)v) µ(f(r)d) max(f(r)d) σ(f(r)t)/
√
n σ(f(r)v)/

√
n σ(f(r)d)/

√
n

2004 8.19 4.36 6.34 17.34 0.90 0.64 0.90
2005 2.95 3.72 3.91 16.85 0.55 0.79 1.12
2006 4.93 7.76 7.10 21.49 0.70 1.16 1.24
2007 8.37 10.73 9.95 16.30 0.73 0.99 0.78
2008 10.36 10.64 5.79 15.57 1.01 0.99 0.84
2009 10.72 6.35 3.32 9.43 1.24 0.89 0.72
2010 2.94 1.72 1.04 8.15 0.64 0.41 0.45
2011 3.08 2.17 2.56 12.11 0.72 0.51 0.66
2012 1.69 2.16 0.35 7.69 0.33 0.41 0.44
2013 1.70 1.58 1.43 6.76 0.43 0.28 0.35
2014 1.71 1.70 2.09 15.17 0.37 0.31 0.59

Average 5.15 4.81 3.99 13.35 0.69 0.67 0.74

For each year, fitness values were averaged over 30 runs.
The subscripts t, v, and d represent training, validation, and test periods, respectively.
µ(·) and σ(·)/√n represent average and group standard deviation of n runs, respectively.
All fitness values were written in percentage.
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Table 4.4: Results on sizes of matching sets

Year µ(|R(r)|d) σ(|R(r)|d)/
√
n max(|R(r)|d) min(|R(r)|d)

2004 3588.63 2394.38 72667 211
2005 3301.23 1912.76 58255 66
2006 879.03 150.26 3471 210
2007 974.33 356.72 11216 219
2008 485.73 119.08 3280 100
2009 1739.57 852.57 26288 298
2010 24283.57 10846.27 251408 186
2011 14040.27 8809.81 204562 133
2012 20188.97 10590.06 250522 251
2013 9021.5 7363.33 221914 151
2014 1400.4 326.25 8517 148

Average 7263.93 3974.68 101100 179.36

For each year, sizes of matching sets were averaged over 30 runs.
The subscript d represents test period.
µ(·) and σ(·)/

√
n represent average and group standard deviation of n runs, respectively.

Table 4.5: Statistical significance by t-test

Period f(r)t f(r)v f(r)d
Training Validation Test t-value p-value t-value p-value t-value p-value

2000-2002 2003 2004 9.094 < 0.000001 6.859 < 0.000001 7.056 < 0.000001
2001-2003 2004 2005 5.372 0.000005 4.688 0.000030 3.504 0.000754
2002-2004 2005 2006 7.035 < 0.000001 6.687 < 0.000001 5.745 0.000002
2003-2005 2006 2007 11.485 < 0.000001 10.796 < 0.000001 12.723 < 0.000001
2004-2006 2007 2008 10.251 < 0.000001 10.69 < 0.000001 6.889 < 0.000001
2005-2007 2008 2009 8.638 < 0.000001 7.118 < 0.000001 4.603 0.000038
2006-2008 2009 2010 4.612 0.000037 4.183 0.000121 2.306 0.014220
2007-2009 2010 2011 4.296 0.000089 4.282 0.000093 3.909 0.000256
2008-2010 2011 2012 5.075 0.000010 5.237 0.000007 0.802 0.214503
2009-2011 2012 2013 3.933 0.000240 5.597 0.000002 4.13 0.000141
2010-2012 2013 2014 4.599 0.000039 5.462 0.000004 3.539 0.000689

cause too large number of trades degrade excess return; they also increase implicit

management cost for trading. In practice, the number of daily trades is restricted to

manageably small even with automated trading executions.

To validate our results statistically, we conducted t-test to the fitness values

on training, validation, and test periods. The null and alternative hypotheses are

H0: µ(f(r)) = 0 and H1: µ(f(r)) > 0, respectively. The statistical results by one-
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Figure 4.7: Fitness correlations between data sets

tailed t-test are shown in Table 4.5. They showed that all fitness values, except for

f(r)d in 2012, are statistically significant with p < 0.05.

Figure 4.7 shows the fitness correlations between data sets. The fitness values for

training, validation, and test periods are denoted by f(r)t, f(r)v, and f(r)d, respec-

tively. The figure shows that our GP performed consistently on the tested years. On

the bounds, the correlation between the training period and the test one was 0.75

in 2012 and 0.98 in 2011. It implies that if our GP can improve upon a solution on

training period, it is likely to obtain a better solution on test period. However, the

high correlation does not necessarily mean that more profitable technical patterns

can be found easily. Highly correlated, but low fitness values for both training and

test periods are possible as indicated in 2011. As expected, the correlation between

validation and test periods was fairly low since they are both out-of-samples.

Although profitability of technical patterns is the main interest for common

traders, precision is an important feature as well. We measured precisions using two

different methods: absolute and relative. Absolute precision measures the proportion

of matching cases with positive returns to all matching ones. In contrast, relative
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Figure 4.8: Absolute and relative precisions

precision is measured by the proportion of matching cases with positive excess re-

turn over the base return, i.e., Ek(Rδ(i,j)), to all matching ones. Figure 4.8 shows the

average absolute and relative precisions for all years after five trading days. Both

absolute and relative precisions showed similar performance patterns to the fitness

values in Figure 4.5(e); they were significantly degraded after 2008. In general, ab-

solute precisions performed better than relative ones for most years. Most notable

feature is that both precisions were generally lower than 50% except for a few years.

It implies that our patterns obtain large profits for correct predictions, which is a

feature of most trend following patterns.

Figure 4.9 shows the box-and-whisker plot of node complexities [CKH08] for all

years. The medians, or 50% quartiles, of the node complexities were quite small; they

were around 20, which means that a pattern typically consists of only 4-5 clauses. We

think that this is due to the selection of best patterns using validation periods. Since

the performances of too complex patterns are generally degraded in their validation

periods, they are not likely to be selected as the final best patterns. This is the

main reason for excluding the restriction on the number of nodes or clauses from
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Figure 4.9: Node complexities

our formulation of attractive technical patterns.

Visualization of Similarity Networks

Due to multiple runs for each year, there are many patterns for each year to be

analyzed. In particular, we have 30 best patterns per year and 330 ones for all eleven

years in total by our parameter settings. To give more insight into the patterns, we

constructed a graph for each year.

Let G = (V,E) be an undirected weighted graph, where V is the set of vertices

and E is the set of weighted edges. The set V consists of the best patterns in a test

year and E has edges whose weight represents a similarity between two patterns.

Each pattern in V is converted into its corresponding postfix expression of token IDs.

For example, 1.2∗MA20(−1) > pc(0) is converted into (L, ∗, L,MA20, L, pc, >) where

the first L(literal) corresponds to 1.2 while the second and the final ones to relative

offsets −1 and 0, respectively. Using the conversion, each pattern is represented by a

sequence of token IDs which can also be regarded as a document in the information

retrieval literature. Similarly, each token ID corresponds to a term in a document.
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These correspondences enable us to use famous document similarity measures for

calculating the similarities among patterns.

To this end, TF-IDF(Term Frequency, Inverse Document Frequency) [SJ72, SM86]

was selected. In the similarity measure, TF (t, p) represents the frequency of token

ID t’s in pattern p. IDF (t) is calculated by

IDF (t) = log

(

1 +
|P |

DF (t)

)

, (4.9)

where DF (t) is the pattern frequency of token id t and |P | is the number of patterns.

An element V p
i of vector ~V p representing pattern p with distinct token ID ti’s is

defined by

V p
i =

TF (ti, p)
∑

ti∈p TF (ti, p)
× IDF (ti). (4.10)

The ~V p is called the pattern vector of pattern p.

The similarity between two pattern vectors ~V p and ~V q is defined by

SIM(~V p, ~V q) =
~V p · ~V q

||~V p||||~V q||
, (4.11)

where || · || represents the Euclidean norm.

Using this similarity measure as a weight function, a complete weighed graph G

was constructed for each year. However, we found that it is hard to interpret the

graph G due to its large number of edges. To include only statistically significant

edges, we calculated the average µE and sample standard deviation σE of weights

in E. A new graph G′ = (V,E′) was then built by selecting edges whose weights,

or similarities, are greater than µE + σE. It means that only statistically heavier

edges, assuming Gaussian distribution, are selected [KKM03]. The graph G′ is called

similarity network for clarity.

Figure 4.10 shows the similarity networks12 for each year. The years 2004-2007

showed that they have several connected components with a few patterns. In con-

trast, the networks in 2008-2012 revealed connected components with more scat-

tered edges. Figure 4.11 shows average clustering coefficients and modularities for

12They were visualized by Gephi [BHJ09], a tool for visualizing large networks. We used the Force
Atlas algorithm [Noa09] for drawing the networks.
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Figure 4.10: Similarity networks using TF-IDF

each year. It showed that average clustering coefficient begins to drop suddenly in

2008 and remains considerably low until 2012; the local peak in 2009 is the only

exception possibly due to strong trend reversal between 2008 and 2009. In contrast,

modularity provided a bitonic pattern showing the highest peak in 2009, which im-

plies that several solution communities were formed. We suspect that these results

are related to the sharp fitness degradation after 2008 as shown in Figure 4.5(e).

In 2008, there were a few important events such as the currency swap agreement

between U.S. and Korea13 which incurred a dramatic bullish market. Their effects

were sharply contrasted with the severe bearish market14 in 2008. In this sense, the

year 2008 seems to add fairly large noises to the learning process of our GP.

13KOSPI has risen by +11.95%, which is the highest record in its history, on Dec. 30, 2008.
14In 2008, Korean stock market experienced a dramatic meltdown incurred by the subprime

mortgage crisis [DH09, DVH11].
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Figure 4.11: Average clustering coefficients and modularities

Ensemble Methods for Improving Returns

In general, ensemble [Bre96] is a method of combining the outputs of multiple mod-

els to build a better model. The model can be a classifier, a neural network, and so

forth. Typical ensemble aggregates outputs in a model [KM07], but it is also possible

to combine different underlying models with various layers to obtain better outputs

[HYC08]. In our GP, we built three ensembles combining the outputs of the multiple

runs for each year as follows:

1. I-Ensemble

- by intersection among the matching sets of the best n solutions.

2. M -Ensemble

- by majority voting among the matching sets of the best n solutions.

3. U -Ensemble

- by union among the matching sets of the best n solutions.

By majority voting, a matching case is included in M -Ensemble if it occurs in

more than or equal to ⌈n2 ⌉ matching sets of the best n solutions. We set the number
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Table 4.6: Simulated returns using ensembles

Parameter w/o Ensemble I-Ensemble M -Ensemble U -Ensemble
Initial cash Stop loss rate Abs Exc Abs Exc Abs Exc Abs Exc

100 n.a. 736.03 602.78 180.13 46.88 797.20 663.95 1450.36 1317.11

500 n.a. 337.45 204.20 109.96 -23.29 368.00 234.75 614.90 481.65

1000 n.a. 225.46 92.21 77.91 -55.34 243.98 110.73 398.52 265.27

3000 n.a. 109.95 -23.30 39.91 -93.34 113.21 -20.04 185.46 52.21

5000 n.a. 75.49 -57.76 27.33 -105.92 76.84 -56.41 128.29 -4.96

100 -10 919.25 786.00 198.66 65.41 992.94 859.69 2099.57 1966.32

500 -10 401.70 268.45 120.38 -12.87 438.29 305.04 819.55 686.30

1000 -10 262.39 129.14 85.31 -47.94 284.22 150.97 517.07 383.82

3000 -10 122.60 -10.65 43.31 -89.94 129.23 -4.02 238.13 104.88

5000 -10 83.20 -50.05 29.61 -103.64 88.06 -45.19 166.01 32.76

100 -20 816.48 683.23 186.08 52.83 871.80 738.55 1708.33 1575.08

500 -20 366.94 233.69 113.18 -20.07 396.12 262.87 692.56 559.31

1000 -20 242.27 109.02 80.18 -53.07 260.00 126.75 440.67 307.42

3000 -20 115.79 -17.46 41.00 -92.25 119.13 -14.12 202.19 68.94

5000 -20 78.89 -54.36 28.13 -105.12 80.73 -52.52 139.22 5.97

The best five patterns on validation period among 30 runs consist of an ensemble pattern for each test year.
Bold-faced number represents the best return.
“Abs” and “Exc” represent absolute and excess returns, respectively.
Monetary unit for initial cash is million KRW.
Returns and stop loss rates were written in percentage.

of the best solutions n to 5. The ensemble matching sets were then provided to the

SimTrade.

Table 4.6 shows the simulated returns using the ensembles and Figure 4.12

summarizes them in terms of excess return. I-Ensemble and M -Ensemble were

not useful; I-Ensemble severely degraded the return and M -Ensemble performed

marginally better than the strategy without ensemble. In contrast, the returns by

U -Ensemble were dramatically increased for all parameters. They were further im-

proved with −10% stop loss rate. Their absolute returns were about two times than

those without ensemble. We suspect that the different returns among the ensembles

are due to the different sizes of matching sets in the ensembles. Since I-Ensemble

and M -Ensemble produce too small matching sets, they lose most opportunities for

profitable trades. The significant improvement by U -Ensemble implies that the best

patterns found by our GP are so diverse that they can be combined to obtain better

returns.

Figure 4.13 shows the normalized accumulative assets without ensemble and with
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Figure 4.12: Simulated excess returns of ensembles with different parameters
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Figure 4.13: Ensemble effect on accumulative assets

U -Ensemble, where 1000 million KRW and −10% were used as the initial cash and

the stop loss rate, respectively. We denote by T, S, and C total, stock, and cash assets,
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respectively. For easier comparisons, all assets were normalized to 1 in the beginning

date. We found that both the strategies without ensemble and with U -Ensemble

dominated buy-and-hold; they showed stable and consistent total asset growths as

well. In particular, the growth rate of total asset with U -Ensemble significantly

dominated that without ensemble. Since U -Ensemble invests more assets on stock

than the strategy without ensemble, it seems to have stable risk premium over no

ensemble. Its high cash asset rate means that its performance is also related to

the effect of time diversification [AR00]. Due to the stability and profitability, our

ensemble patterns would be readily exploited by other trading systems.

Comparison with Other Frameworks

It is also necessary to compare our results with those of other previous frameworks.

We denote by “A” and “E” the attractive technical pattern discovery (ATPD)

[LM10] and its extension in this section, respectively. For fair comparisons, we reim-

plemented the modular GP [LM10] with validation period and restructured the set

of modules. The new modular GP and our grammatical GP are denoted by MGP

and GGP, respectively. Among all possible combinations, the case of MGP+E was

not included since the set of modules needs to be carefully rebuilt using our new

technical inputs. The excess returns without ensemble and with U -Ensemble were

selected to represent the base and best performances, respectively. Both returns were

simulated with −10% stop loss rate, which results in the best return.

Figure 4.14 shows the simulated excess returns of the three framework combina-

tions: GGP+E, GGP+A, and MGP+A.Without ensemble, GGP+E only marginally

outperformed GGP+A but significantly did MGP+A. However, GGP+E was slightly

dominated by GGP+A under trading with U -Ensemble; the return gap was quickly

diminished as the amount of cash increases. MGP+A provided the worst returns

irrespective of the application of ensemble. These results imply that one of the

drawbacks in ATPD, overfitting to some specific period, is significantly relieved by

our new implementation. We suspect that the introduction of validation period to

the modular GP [LM10] is the key factor for such improvement. In sum, the differ-

ence between GPs was significant while the different problem formulations provided

72



-100

 0

 100

 200

 300

 400

 500

 600

 700

 800

100 500 1000 3000 5000

R
et

ur
n 

(%
)

Inintial cash (million KRW)

GGP+E
GGP+A
MGP+A

(a) w/o Ensemble

-500

 0

 500

 1000

 1500

 2000

 2500

100 500 1000 3000 5000

R
et

ur
n 

(%
)

Inintial cash (million KRW)

GGP+E
GGP+A
MGP+A

(b) U -Ensemble

Figure 4.14: Simulated excess returns of three framework combinations

little difference. Since our extension to ATPD, however, uses the filtered matching

set, which decreases the trading opportunities substantially by removing too large

number of matching cases for a specific day, it has more potential than ATPD for

practical trading. We think that more systematic comparisons with more diverse

parameters are needed to give further insight into this issue.

4.3.4 Summary

We proposed a hybrid genetic programming for finding attractive technical patterns.

To find more free forms of attractive technical patterns, we provided a grammatical

type system for describing valid and promising search space of technical patterns.

In addition, the formulation of attractive technical patterns was extended in a more

systematic way including filtered matching set, base return, and weighted average.

By using the extension, we constructed not only more clear but also more meaningful

model for describing attractive technical patterns. We also presented an efficient

local optimization exploiting two different neighborhoods to fine-tune around local

optima.

Various weight models including EQ, LD, LI, ED, and EI were tested on diverse

parameters with a commercial simulation tool by Optus Investments Inc. It was
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found that EI weight model performed better than the others in terms of simulated

returns, which is attributable to its more weights on the distant future.

We studied diverse features of the attractive technical patterns: size of matching

set, correlation between data sets, precision, and node complexity. The average size of

matching sets over all years was neither too large nor too small, which is appropriate

for realistic trading. High correlation between data sets showed that our problem

formulation is robust in that a consistent fitness measure can be used for training,

validation, and test periods. Our patterns typically showed low precisions which are

lower than 50 percent except for a few years. This is related to the characteristics

of patterns; our patterns seem to include trend following patterns which typically

show low precisions. The small node complexities indicated that our patterns are not

very complicated, which is another notable feature of our patterns. We suspect that

this is due to out-of-sample validation where the fitness of an overtrained complex

pattern is implicitly penalized.

The similarity networks among patterns showed that strongly connected compo-

nents were found in most years. To improve upon returns, we presented ensembles

aggregating the best patterns. The ensemble using union among the matching sets

outperformed the others. We think that it is partly related to the strong size restric-

tion on the matching set for each year. The relative performance among ensembles

can be different if the size restriction is relieved. Our ensemble results showed that

systematic trading strategies with the attractive technical patterns significantly out-

perform KOSPI which is the buy-and-hold in the Korean stock market.

The comparison with the previous frameworks showed that our GP is more

attractive than modular GP, but the difference between problem formulations is not

significant. More systematic comparisons are needed since each framework has a

number of specific methods, parameters, and so forth.

Future studies would include extension of the set of inputs and trading simula-

tions. Financial statements and their related indicators [Has08] are good candidates

for inputs. If the number of inputs becomes too large, it would be necessary to par-

allelize GPs using popular parallel platforms such as CUDA [CJHNL12, MW12].

More elaborate inputs possibly coupled with band filter [Kau10] or market context
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[KM07, Res09, Kau10] can be very meaningful for further improvements. In terms

of performance comparisons, more trading simulation models are needed to compare

among various formulations of attractive technical patterns.

Finding attractive technical patterns for sell is also quite interesting. Portfolio

rebalancing with high-frequency signals [IK11], for instance, can exploit both buy

and sell patterns to refine its trading decisions. Besides popular financial objectives

such as return and its variance, there are also a number of objectives including utility

[HL70, KS02], robustness across various parameters [Kau98], and so on. Modeling

our problem as a multi-objective [CTAM09], or pareto optimization problem is left

for the further study.
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Chapter 5

Seeded Evolution

Typical evolutionary algorithm begins its evolution with the initial population of

candidate solutions which are generated at random. In other words, it does not

assume any domain knowledge on the initial solutions, which is one of the main

advantages of evolutionary algorithms. However, the advantage becomes no longer

evident when domain knowledge is available and it can be exploited to reduce the

search space. One of the most effective methods to reflect domain knowledge is to

provide, or seed, the initial population with some promising solutions. Since any evo-

lutionary algorithm uses a finite population, its performance is likely to be affected

by the quality of the initial population.

In general, there are three fundamental issues in seeded evolution: the strength

of seeding which involves the selection of heuristic, the ratio of seeded individuals,

and the genes to be seeded. First, the performance of seeded evolution is strongly

dependent upon the selected heuristic for generating promising solutions. If the

heuristic is too strong, the subsequent evolution is expected to suffer from premature

convergence due to the loss of diversity among individuals. The opposite case is not

effective as well; the heuristic has little effect on the initial population. Second, the

ratio of seeded individuals is also important in that it designates the number of

seeded individuals, indirectly controlling the strength of seeding. In fact, it is the

major candidate for tuning the strength of seeding since modifying the selection of

heuristic requires more effort than changing the ratio of seeded individuals. Finally,
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the selection of the genes to be seeded has a substantial effect on the performance as

well. When more than one encodings are used for solution, each encoding can have

its own meaning and its hardness can also be different. Ideally, more important but

cheaply optimizable genes are considered to be the best choice for seeding. The best

seeded evolution can be achieved by the optimal balancing between exploitation and

exploration, similar to other techniques used in more improved evolution.

In this chapter, we propose a hybrid genetic algorithm for large-scale stock selec-

tion. We present a heuristic seeding for the initial population. The heuristic seeding

provides the initial population with partially optimized individuals generated by a

sampling-based heuristic. A ranking with partitions for penalization of unattractive

and invalid financial ratios is also presented for further improvements. In the ranking

algorithm, all stocks are assigned consistent rank scores with partitioned penaliza-

tion of negative and invalid financial ratios. Experimental results showed that our

methods significantly improve upon the return of portfolio.

5.1 Heuristic Seeding

While a linear string of binary, integer, or real values is the most popular encoding

used in genetic algorithms, a mixture of them can be natural according to problem

domain. For example, stock selection problem [HCCC12] used a linear string of real

values followed by that of binary values as its chromosomal encoding. In fact, it in-

volves a simultaneous optimization of two heterogeneous gene parts in the encoding,

that is, real and binary vectors. However, such simultaneous optimization is not the

best when the importance of each gene part is quite different.

Let us suppose that we use a mixed chromosomal encoding using a linear string

of K w-values followed by that of K b-values, where the number of possible values

in w-value is quite larger than that in b-value. The former values are called w-vector

and the latter b-vector in a vector notation. The most common examples of w-value

and b-value are real and binary ones, respectively. Intuitively, the b-values can more

easily be optimized than the w-values due to their fairly smaller number of possible

values. In addition, if they are believed to be more important in performance, they
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are good candidates for pre-optimization by fixing w-values to some representative

ones. That is, we try to pre-optimize b-values, which are less complex in encoding

and believed to be more important, using fixed w-values. The pre-optimized b-values

are used to generate some individuals in the initial population, thereby providing

the initial pool of promising solutions.

Figure 5.1 shows our heuristic seeding algorithm in detail. First, we select the set

of genes that are encoded in a more complex form, or w-vector, which is the candidate

for fixation. The vector is fixed to a representative vector to reduce the dimension of

the problem. We simply choose the geometric center, i.e., (w1, w2, . . . , wK)T where

wi =
1
K (i = 1, 2, . . . ,K) for K inputs, as the representative vector. Second, a num-

ber of random solutions, whose w-vectors are fixed by the representative vector,

are generated and evaluated with the fitness function. In other words, we evaluate

diverse b-vectors for the representative w-vector. The number of samples to be eval-

uated is parameterized by hn. After the sampling, the most attractive b-vector is

determined by the majority voting among ⌊hn × hv⌋ samples, where hv is the ratio

of voting samples. Finally, the most attractive b-vector is then provided to the initial

population with probability hp. The ratio of seeded individuals to the entire initial

population is controlled by hp.

Our heuristic seeding has two notable features. First, it optimizes only part of

a chromosome that is expected to be more easily optimized. Since tuning w-vector,

which involves optimization of real-valued genes, seems to be much harder than

that of b-vector, it tunes only b-vector. This is notable in that most seeded GAs

use fully-optimized chromosomes, meaning all genes are optimized, as the promising

initial seeds. Second, it is quite general due to its sole dependence upon fitness; it

can be applied to general problems where the cost of fitness evaluation is reasonably

cheaper than the entire GA framework.

5.2 Hybrid Genetic Algorithm

We use a steady-state genetic algorithm [WK88, Sys89], where the offspring replaces

an individual in the same population. In this section, w-vector and b-vector corre-
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spond to the weight and sorting indicator vectors, respectively (see Section 5.3.2 for

details).

• Representation and initialization

Each individual is represented by a linear chromosome of two distinct vectors:

weight and sorting indicator vectors. The weight vector consists of K weights,

where each weight 0 ≤ wi ≤ 1 represents the importance of the i-th financial

ratio. The sum of all weights is always constrained to 1. The i-th element of

the sorting indicator vector represents the ranking function used by the i-th

financial ratio. It is zero or one, meaning that we consider only two ranking

methods indicated by the binary sorting indicator. We use an unbiased random

sampling, which was introduced by [Rub81],1 for generating a random weight

vector.2 Figure 5.2 shows the unbiased sampling for choosing a random weight

vector. The population size is set to 50.

• Fitness function

The fitness function is defined by the average compound return ϕtb,te
p . The

portfolio size p is set to 30.

• Selection, crossover, mutation, and repair

The tournament selection [GDK91] is used. The crossover exploits two different

crossovers: arithmetic and uniform crossovers. The arithmetic crossover [Mic96]

is used for weight vector and uniform crossover [Sys89] for sorting indicator

vector. Mutation for weight vector is performed by increasing or decreasing

a randomly chosen gene by 0.1 with the bound [0, 1]. For sorting indicator

vector, a randomly chosen sorting indicator, having 0 or 1, is flipped. After

the crossover and mutation, a repair by normalization of weight is performed

so that the sum of all weights is 1.

• Replacement and stopping criterion

1http://cs.stackexchange.com/questions/3227/uniform-sampling-from-a-simplex
2In fact, this is identical to uniform sampling on the unit simplex, which is also closely related

to the Dirichlet distribution.
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We first try to replace the worst individual on the training period. If the worst

is the same as the best on the validation period, two individuals are randomly

selected as replacement candidates. One of the replacement candidates is re-

placed with a probabilistic bias toward worse individuals. Our GA stops if

the number of consecutive fails to update the best solution reaches 100 or the

number of generations exceeds 500.

• Local optimization

We use a local optimization that sequentially optimizes the weight and sorting

indicator vectors. Figure 5.3 shows our local optimization algorithm. It first

begins with the sorting indicator vector and samples nh solutions by flipping

the value of a randomly chosen gene index. The fitness gains are computed for

all sample solutions and the gene index and its value with the best gain, i.e.,

smax and bmax are saved. If the best gain is positive, its corresponding gene,

i.e., c.si[smax], is modified to bmax. The optimization for the weight vector

is similar but it uses two different neighborhoods: by increase and decrease.

The size for both increase and decrease is determined by the constant d. The

weight vector is then normalized by dividing each weight by the sum of all

weights so that the sum of all weights is constrained to 1. Note that the search

intensity can be controlled by adjusting nh; the larger value for nh means more

neighborhood solutions to be investigated. After some experiments, we set the

parameters nh and d to 3 and 0.1, respectively.

• Best update and elitism

After the initialization, the best individual on its training period is selected

and its fitness on the validation period is saved as the best fitness. The best

fitness is updated if new trained best individual also improves upon the fitness

on the validation period. This update scheme has been extensively used in the

literature [AK99].

Elitism [DeJ75] is also used to further improve upon our GP. The best indi-

vidual is replaced only if it performs worse than the new best individual on
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the validation period.

5.3 Large-Scale Stock Selection

5.3.1 Introduction

In stock markets, identifying attractive stocks [QS99, HCCC12] is a critical topic

for investments. Typical objectives for selecting attractive stocks include famous

features such as high return and low risk. Among the features, one of the most

common features is return, which is to be maximized for any traders or investors.

There have been two common approaches to choose attractive stocks: modern

portfolio theory and stock selection. For modern portfolio theory, Markowitz [Mar52]

proposed a method for maximizing expected return of a combination of stocks, or

portfolio, for a given level of risk. Although the framework is theoretically attractive,

it has a drawback of requiring a huge amount of computations particularly in calcu-

lating the covariance between the returns of all stocks. To alleviate the computational

complexity, Sharpe [Sha63] proposed a single index model assuming that the risk

of any individual stock is dependent only upon a common market’s variance. These

portfolio theories have resulted in market equilibrium models including capital asset

pricing model (CAPM) [Sha64, Lin65a, Lin65b, Mos66] and arbitrage pricing theory

(APT) [Ros76]. The modern portfolio theories, however, have common drawbacks

in that they cannot reflect the practical constraints including desired cardinality for

portfolio and minimum transaction lots; such constraints have been alleviated by

some recent studies [CMBS00, MS99]. Instead of using classical optimization meth-

ods, a number of evolutionary algorithms [Bäc96] such as genetic algorithms (GAs)

[Hol75] for portfolio optimization [AI09, LL08] have also been proposed.

Compared with the modern portfolio theory, which optimizes a portfolio vector

where each element represents the proportion of asset invested on the corresponding

stock, stock selection is to score stocks with various criteria and select the top-

ranked ones for a portfolio [HCCC12]. Although it can be used as a prior stage

for limiting the universe of portfolio [HZ95], it has typically been used for directly

constructing a portfolio by selecting the top-ranked stocks. The criteria for stock
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selection include financial, technical, and macroeconomic variables. One of the most

common variables is financial ratio [Hor68, Cou78] such as P/E (price-to-earnings)

ratio in relation to quarterly or annual financial statements.

Due to the recent advances of computer technologies, several machine learning

methods have been proposed for stock selection. Quah and Srinivasan [QS99] used

an artificial neural network (ANN) for choosing attractive stocks with several fi-

nancial ratios including yield, liquidity, risk, growth, and momentum factors. They

showed that a simple ANN was enough to construct portfolios with significant ex-

cess returns in Singapore equity market. To find more interpretable models, some

studies used genetic programmings (GPs) [CB05, BFL07] for stock selection. Fuzzy

systems [YS13] and hybrid ones [Che13] have also gained in public favor for im-

proving upon the naive stock selection models. Recently, Huang et al. [HCCC12]

proposed a fuzzy-based genetic algorithm with feature selection. They adjusted the

final stock ranking with a triangular fuzzy membership function whose parameters

were adaptively tuned. It is notable that they evolved even the sorting orders for

financial ratios which have been determined by financial experts [XMP09].

Most studies on stock selection are limited in that they use the naive sorting

algorithm for converting from financial ratios into rank scores. For example, Huang

et al. [HCCC12] used a binary sorting indicator which directs only ascending or

descending order of a given financial ratio. Since their data set was restricted to only

large-cap 200 stocks, which have good, or positive financial ratios, they could obtain

significant excess returns. We strongly suspect that their model will not work well

for the full universe of stocks which includes stocks with bad, or negative financial

ratios. In addition, an extension of their model to include delisted stocks would also

require some modifications.

Another important problem is the heterogeneous complexity of subproblems. The

stock selection model by Huang et al. [HCCC12] optimizes both weight and sorting

indicator simultaneously. From an encoding complexity perspective, it consists of

two intertwined problems: optimizations of real-valued weight and binary sorting

indicator. They are not completely independent but it is clear that the latter has

less complexity due to its binary encoding, which facilitates some pre-optimization.
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5.3.2 Problem Formulation

We extend Huang et al.’s stock selection model [HCCC12] in a systematic way to

include more general features. For simplicity, we assume that the number of stocks

is constant over time; it equals to the number of currently available all stocks. This

assumption simplifies the problem but it incurs two types of invalid stocks: delisted

and not-yet-listed stocks. Both delisted and not-yet-listed stocks have no available

data for prices and financial statements. We call them invalid stocks at a given time

t. Stocks that are not invalid, i.e., listed stocks, are called valid.

Let N be the number of all stocks including valid and invalid stocks and K be

the number of financial ratios. The sets of valid and invalid stocks at time t are

represented by Lt and Dt, respectively. Note that N is time-invariant, meaning that

N is equal to the sum of |Lt| and |Dt| irrespective of time t. Let V t = [vtij ] be the

N ×K value matrix whose element represents the value of financial ratio j of stock

i at time t = {0, 1, . . . , Q− 1}.
A ranking function rtj (∈ R) for financial ratio j at time t is a function that maps a

column vector (vt1j , v
t
2j , . . . , v

t
Nj)

T to a rank score column vector (st1j , s
t
2j, . . . , s

t
Nj)

T ,

where 0 ≤ stij < 1 for i ∈ Lt, stij = 1 + δ (δ > 0) for i ∈ Dt, and R is the set of

all possible ranking functions. By applying the ranking function rtj to all columns of

V t, a score matrix St = [stij] is obtained.

The score of stock i at time t is defined by

St
i = (sti1, s

t
i2, . . . , s

t
iK)(wt

1, w
t
2, . . . , w

t
K)T , (5.1)

where (wt
1, w

t
2, . . . , w

t
K)T is the weight vector for assigning nonnegative weights wi’s

(0 ≤ wi ≤ 1) to the correspondingK financial ratios. The sum of weights, or
∑K

i=1wi

is constrained to unity, or 1.

To construct a portfolio with size p, it is common to choose stocks with the

smallest p scores. Let σti(r
t, wt) denote the index of stock with the i-th smallest

score at time t by the vector of ranking functions rt = (rt1, r
t
2, . . . , r

t
K) and the weight

vector wt = (wt
1, w

t
2, . . . , w

t
K)T . For simplicity, we write σti instead of σti(r

t, wt).

Let the indices for the stocks with the smallest scores be {σt1, σt2, . . . , σtp}, where
σti represents the original index of stock i. The return of the portfolio at time t is
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defined by

ϕt
p =

1

p

p
∑

i=1





P t
σt
i

P t−1
σt
i

− 1



 , (5.2)

where P t
σi

is the total value, or simply the price, of stock σti at time t.

For a period from tb to te, the average compound return of the portfolio is cal-

culated by

ϕtb,te
p =

(

te
∏

t=tb

(ϕt
p + 1)

)
1
n

− 1, (5.3)

where n = te − tb + 1 is the number of portfolio returns.

Definition 5.3.1 (Stock selection). Let R and W = [0, 1] be the sets of ranking

functions and weight values, respectively. For a given period (tb, te), K financial

ratios, and portfolio size p, stock selection is to find the optimal sequence of (r, w)’s

S∗ such that

S∗ = argmax
(rtb ,wtb),...,(rte ,wte)

ϕtb,te
p ,

where rt = (rt1, r
t
2, . . . , r

t
K) ∈ RK is the vector of ranking functions, which are selected

a priori, and wt = (wt
1, w

t
2, . . . , w

t
K) ∈WK is the weight vector.

However, finding the optimal vector of ranking functions r by nonparametric

optimizations is computationally intractable in general. To reduce the problem to

a tractable one, it is customary to choose a small set of ranking functions from all

possible ones. The most common set for ranking function is the set of two linear

rankings by sort: by ascending and descending orders, which reduces R to the set of

two ranking functions (i.e., |R| = 2). The linear ranking by ascending sort, for ex-

ample, assigns i−1
|Lt| score to the i-th smallest value for Lt stocks. In later sections, we

use two linear ranking functions, which are indexed by the value of sorting indicator.

Finally, we verify the safety condition which states our portfolio never chooses

invalid stocks under reasonable assumptions.

Fact 5.3.1. Given 0 < p ≤ |Lt|, any portfolio of p stocks with the smallest p rank

scores does not have invalid stock.
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Proof. It is easily verified by contradiction. Suppose that an invalid stock i is in-

cluded a portfolio of p stocks and its rank score is St
i . From the definition of score

for invalid stock, St
i =

∑K
k=1w

t
ks

t
ik = (1 + δ)

∑K
k=1w

t
k = 1 + δ(δ > 0) (i.e., St

i > 1).

Since any valid stock j has its rank score St
j < 1, any invalid stock with St

i > 1

cannot be selected for a portfolio unless p > |Lt|. This causes a contradiction to our

assumption that invalid stock i is included in a portfolio with size 0 < p ≤ |Lt|.

Note that this fact holds if the sum of weights is unity irrespective of weights

and ranking functions.

5.3.3 Ranking with Partitions

Linear ranking by naive sorting is one of the most popular methods for scoring

financial ratios. Although it is enough for some restricted universe of stocks, it is

not appropriate for a large or the full universe of stocks which includes bad finan-

cial ratios as well. Note that bad financial ratio typically means negative one for

most well-known financial ratios. For example, P/E (price-to-earnings) ratio mea-

sures the price-level, or market capitalization, divided by net income or profit. In

stock selection, stocks with smaller P/E ratios are generally preferred since they are

undervalued; their prices are believed to rise to their fair values, which has been

supported by many empirical studies [Bas77, Bas83].3 However, if the P/E ratio is

negative, its interpretation is not equivalent to that of positive value; smaller P/E

ratio means larger net loss, thereby implying less attractive. This inconsistency for

the sign makes rankings by native sorting less meaningful for a large or the full

universe of stocks.

There have been two popular methods to deal with the inconsistency: restric-

tion of universe and explicit filtering. The restriction of universe [HCCC12] typically

limits the universe, or all stocks under evaluation, to stocks with large market cap-

italizations. It implicitly filters out stocks with negative financial ratios since the

large-cap stocks are typically likely to have positive ones. In contrast, explicit fil-

3These results are strong counter-evidences to the earlier work [BB68] which supported the
futility of analyzing announced, or publicly available, financial statements for obtaining excess
returns.
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tering [Gil90, JKW89, MDK97, HLY07, YS13] excludes stocks with some negative

financial ratios, i.e., negative P/E ratios, from its experimental study. One common

drawback of these two methods is their lack of ranking for negative financial ratios.

Moreover, most studies did not use delisted stocks, which are useful for eliminating

survivorship bias [GT92, EGB96].

For more generalized ranking, we propose a ranking algorithm with partitions,

where all financial ratios can be consistently ranked. Figure 5.4 shows our ranking

algorithm with partitions for a financial ratio. In the algorithm, Partition(~vtj ,m,n,ψ)

reorders the vector elements from vtmj to v
t
nj with the pivot ψ so that ∀i < q, vtij < ψ

and ∀i ≥ q, vtij ≥ ψ and it returns q as the largest index of the lower partition. The

binary values of the sorting indicator I represent two predefined ranking functions.

The index[a, b] returns the index of a in the sorted list b.

The ranking algorithm first divides all stocks into two partitions: valid and in-

valid. The valid stocks have the values for a financial ratio; each value can be positive

or negative. The partitioning is then applied only to valid stocks and it divides them

into two further partitions: positive and negative. The ranking algorithm assigns

rank scores to all stocks by the corresponding sorting indicator. Note that the par-

titions for negative and invalid values are not affected by the sorting indicator. It is

because they are not very useful for constructing profitable portfolio. Only positive

values are affected by the sorting indicator.

It should be noted that our ranking algorithm first seems to be similar to the

explicit filtering in that it assigns higher scores to positive financial ratios than

negative and invalid ones by the partitioning. However, it leaves the possibility

of selecting the negative ones while the explicit filtering does not. The difference

would be evident if some financial ratios have skewed distributions of their signs.

In addition, the explicit filtering raises a selection problem when several competing

financial ratios are present for the filtering.
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5.3.4 Experimental Results

Parameter Settings

The sets of hn, hv, and hp values are {500, 1000, 2000}, {0.05, 0.5}, and {0.2, 0.5, 0.8},
respectively. The number of financial ratios K is set to 15 and the number of all

stocks to 2471. We set the number of times Q to 54, which corresponds to the number

of quarters in our study. The special values δ and ζ in Figure 5.4 are set to 0 and

the maximum floating-point number,4 respectively.

Test Beds and Test Environment

We used all Korean stocks including listed and delisted stocks from 2000 to 2014.

All quarterly financial statements were used for calculating the values of financial

ratios. The data were provided by Optus Investments Inc.

The time lag between the fiscal quarter and its actual announcement date was

reflected as well; we assumed that the quarterly financial statements for each fiscal

year-end are available after 90 days and those for other quarters after 45 days.5 By

these time lags, the four quarters in each year begin from April 1, May 16, August

16, and November 16, respectively. For simplicity, they are denoted only by their

months in later sections.

The set of financial ratios was adapted from Huang et al.’s study [HCCC12] with

minor modifications. To alleviate possible seasonal effects, some financial variables

used aggregate values summed over the most recent four quarters. They include net

income, net sales, operating income, inventory, cash flow from operating activities,

and accounts receivable. The others used the values at the most recent quarter. Com-

pared with most financial variables, which are completely determined by financial

4This can be different across the underlying compilers or systems.
5This is rather conservative since most companies release their annual reports within 90 days.

For example, Ball and Brown [BB68] showed that most firms release their annual reports about
40 days before the filing deadline in 1965. They also showed that the time lag between the fiscal
year-end and the announcement date of the annual report had been declining over their sample
period. Recently, U.S. Securities and Exchange Commission (SEC) has reduced the filing deadlines
for annual and quarterly reports to 60 and 35 days, respectively [Sen04]. Korean firms have similar
tendency of such early announcements particularly in their annual reports.
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Table 5.1: The set of financial ratios
Name Description

PBR (P/B Ratio) Price-to-book ratio = market capitalization / shareholders’ equity
PSR (P/S Ratio) Price-to-sales ratio = market capitalization / net sales
PER (P/E Ratio) Price-to-earnings ratio = market capitalization / net income

ROE Return on equity = net income / shareholder’s equity
ROA Return on asset = net income / total assets
OPM Operating profit margin = operating income / net sales
NPM Net profit margin = net income / net sales

DER (D/E Ratio) Debt-to-equity ratio = total liabilities / shareholder’s equity

CFR (CF Ratio) Cash flow ratio = cash flow from operating activities / current liabilities
CR Current ratio = current assets / current liabilities
QR Quick ratio = quick assets / current liabilities

ITR Inventory turnover rate = net sales / inventory
RTR Receivables turnover rate = net sales / accounts receivable

OIG Operating income growth rate =
∑t

j=t−3 OIj /
∑t−4

j=t−7 OIj
NIG Net income growth rate =

∑t

j=t−3 NIj /
∑t−4

j=t−7 NIj

OIj and NIj are operating and net incomes at quarter j, respectively.
Note that OIG and NIG were calculated differently from the common equation for growth rate of income.
Both net and operating incomes were adjusted after taxes.

statements, market capitalization requires the price and number of shares outstand-

ing at a specific date. It was calculated at the beginning date of each quarter; it

also included preferred stocks for more exact valuation. Table 5.1 shows the set of

financial ratios. Each financial ratio belongs to one of six groups as follows:

• Share price rationality : PBR, PSR, and PER

• Profitability : ROE, ROA, OPM, and NPM

• Leverage : DER

• Liquidity : CFR, CR, and QR

• Efficiency : ITR and RTR

• Growth : OIG and NIG

To obtain more consistent out-of-sample performance, we used the rolling forward

method [PT95]. For a given test quarter t, the four quarters from t− 5 to t− 2 were

used as training period and the quarter at t− 1 as validation one. This process was
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shifted quarter by quarter for all overlapping sequences. We performed 30 runs for

each sequence.

Dividends were reflected in calculating returns due to their significance. Trans-

action fees, however, were not included in our results; they were found to be too

small to significantly affect the quarterly returns of our portfolio. The portfolio size

was set to 30, which is common to both academic experiments and practical fund

managements.

All programs were written in C# language and run on Intel Xeon E5620 2.40

MHz with Windows Server 2008 R2 Datacenter. They were compiled using Visual

Studio 2010 Ultimate.

Effects of Diverse Factors

Table 5.2 shows the average quarterly compound returns of our portfolio with re-

spect to diverse factors6 including the ranking with partitions, heuristic seeding, and

parameters of the heuristic seeding. The total number of generations for each run

is the sum of all generations required for running all sequences. Inclusions of the

ranking with partitions and the heuristic seeding are denoted by “R” and “H,” re-

spectively. The columns “Best,” “Average,” and “σ/
√
n” represent the best, average,

and group standard deviation of 30 runs, respectively. The statistical significance of

the average returns over HGA and HGA+R was evaluated by two tailed t-test.7 The

columns “PHGA” and “PHGA+R” represent the corresponding p-values.

The table showed that HGA+H performed better than HGA for all heuristic

seeding parameters in average returns. In particular, 14 out of the 18 cases were

significant with p < 0.05. In addition, the best returns were notably improved as

well. It seems that HGA+H has little discernible patterns in performance across

various heuristic seeding parameters.

In contrast, HGA+R showed a dramatic improvement over HGA; it increased the

6Pure GAs, or ones without any local optimizations, were also experimented but they are not
included in this thesis. They showed consistently degraded results compared with their hybrid GA
counterparts.

7The null and alternative hypotheses were H0: µ1 = µ2 and H1: µ1 6= µ2, respectively; µ1 and
µ2 are the average quarterly compound returns.
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average quarterly return from 2.20% to 8.42%. It seems to have better capability for

selecting attractive stocks due to the ranking with partitions which penalizes bad, or

negative financial ratios. Among various methods, HGA+HR outperformed all the

other GA variants using diverse heuristic seeding parameters. The statistical test

of HGA+HR against HGA+R showed that 8 out of the 18 cases were significant

with p < 0.05. In particular, the average quarterly return tends to be improved as

increasing hv and hp values while it does not for increasing hn. In fact, too large

hn was not quite meaningful for obtaining higher returns, which is possibly due to

over-tuning of the heuristic seed.

It is interesting that the heuristic seeding is more meaningful when the ranking

with partitions is incorporated. In other words, it is more useful only when rela-

tively better schemata [Hol75], i.e., the ones which have better sorting indicator

vector provided by the heuristic seeding, are rather consistently identified. Here-

after, we present the experimental results only by HGA+HR with (hn, hv , hp) =

(2000, 0.5, 0.8) which performed best in terms of average quarterly compound re-

turn.

Effectiveness of Heuristic Seeding

Our GA is provided with the population of partially seeded solutions. The par-

tially seeded solutions are used by the genetic operators to find better ones. If they

are meaningful for improvement, the partially seeded genes would remain largely

unchanged after a genetic run.

To investigate the effect of the heuristic seeding, we computed the Hamming

distance [Ham50], or the number of different bits between two binary strings, between

the initial sorting indicator vector and the final one contained in the best solution

after a genetic run. For each quarter, the distances of 30 runs were averaged. Figure

5.5 shows the average distance between the initial and final sorting indicator vectors.

It shows that the average distances were very small compared to the dimension of the

sorting indicator vector, i.e., 15, for all quarters. In fact, the distance averaged over

all quarters was around 2.00, which means that the seeded sorting indicator vectors

were almost unchanged in the genetic run. This is attributable to the high-quality
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Table 5.2: Average quarterly compound returns with respect to diverse factors

Method hn hv hp Best Average σ/
√
n PHGA PHGA+R Gen† CPU‡

HGA - - - 3.994 2.202 0.216 1.000 0.000 7628 343

HGA+H

500 0.05 0.2 5.024 2.889 0.193 0.025 0.000 7398 421
500 0.05 0.5 4.981 3.003 0.170 0.007 0.000 7315 416
500 0.05 0.8 5.120 3.188 0.155 0.001 0.000 7314 424
500 0.5 0.2 4.969 2.697 0.199 0.102 0.000 7391 431
500 0.5 0.5 4.898 3.039 0.216 0.010 0.000 7483 429
500 0.5 0.8 4.781 2.704 0.213 0.109 0.000 7274 422

1000 0.05 0.2 6.117 3.044 0.175 0.005 0.000 7509 524
1000 0.05 0.5 5.044 3.019 0.177 0.007 0.000 7392 517
1000 0.05 0.8 5.308 3.274 0.170 0.001 0.000 7328 513
1000 0.5 0.2 4.940 3.065 0.192 0.006 0.000 7398 521
1000 0.5 0.5 4.810 2.848 0.194 0.034 0.000 7420 521
1000 0.5 0.8 4.393 3.084 0.119 0.001 0.000 7338 518
2000 0.05 0.2 4.221 2.422 0.160 0.420 0.000 7408 711
2000 0.05 0.5 4.841 3.164 0.144 0.001 0.000 7461 704
2000 0.05 0.8 4.572 3.158 0.154 0.001 0.000 7202 700
2000 0.5 0.2 4.358 2.723 0.159 0.062 0.000 7517 709
2000 0.5 0.5 5.293 2.853 0.185 0.030 0.000 7315 708
2000 0.5 0.8 5.296 3.217 0.187 0.001 0.000 7247 696

HGA+R - - - 9.687 8.418 0.145 0.000 1.000 7705 347

HGA+HR

500 0.05 0.2 10.201 8.778 0.132 0.000 0.078 7516 435
500 0.05 0.5 9.968 8.539 0.130 0.000 0.540 7420 432
500 0.05 0.8 10.329 8.666 0.139 0.000 0.227 7429 435
500 0.5 0.2 9.786 8.694 0.130 0.000 0.168 7536 439
500 0.5 0.5 11.163 8.883 0.136 0.000 0.027 7298 425
500 0.5 0.8 11.337 9.102 0.139 0.000 0.002 7306 427

1000 0.05 0.2 9.746 8.600 0.100 0.000 0.310 7531 535
1000 0.05 0.5 9.469 8.755 0.073 0.000 0.047 7526 533
1000 0.05 0.8 9.899 8.654 0.120 0.000 0.220 7287 520
1000 0.5 0.2 9.990 8.713 0.118 0.000 0.125 7496 533
1000 0.5 0.5 10.315 9.104 0.128 0.000 0.001 7562 528
1000 0.5 0.8 10.259 9.007 0.113 0.000 0.003 7334 520
2000 0.05 0.2 9.855 8.602 0.120 0.000 0.335 7663 730
2000 0.05 0.5 9.760 8.513 0.111 0.000 0.607 7510 720
2000 0.05 0.8 9.647 8.791 0.107 0.000 0.048 7378 724
2000 0.5 0.2 10.006 8.630 0.121 0.000 0.270 7514 722
2000 0.5 0.5 10.895 9.073 0.119 0.000 0.002 7348 715
2000 0.5 0.8 10.160 9.253 0.100 0.000 0.000 7354 716

† Average of 30 runs.
‡ CPU seconds on Intel Xeon E5620 2.40 MHz.
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of the seeded sorting indicator vectors.

Quarterly Analyses of Returns

It is important to analyze how the compound return was achieved over the entire

period as well. Table 5.3 shows the quarterly returns of all quarters. To compare each

quarterly return with buy-and-hold, we used two benchmark returns by “KOSPI”

and “All stocks.” The former is a capitalization-weighted index, which is the most

famous market index in Korea, while the latter an equal-weighted index8 that aver-

ages the returns of all stocks in the same country. The excess returns over the two

benchmarks are denoted by “ExcK” and “ExcA,” respectively.

For most quarters, our portfolio showed positive excess returns; average winning

rates by ExcK and ExcA were 78% and 89%, respectively. The quarters with lower

ExcK overlapped several bullish quarters driven only by large-cap stocks. However,

the average excess returns by ExcK and ExcA were quite similar; they were 7.73%

and 7.36%, respectively. It implies that our portfolio has several quarters with fairly

large excess returns, which compensates for its lower winning rate by ExcK .

To give insight into the compensation effect, Figure 5.6 compares the quarterly

returns of our portfolio and buy-and-hold (KOSPI). It shows that a notable asym-

metry exists between the returns of our portfolio and the market. For most bullish

quarters, identified by large buy-and-hold returns, our portfolio outperformed buy-

and-hold significantly. In November 2004, for example, KOSPI showed 12.01% return

while our portfolio did 56.78%, which causes the largest excess return over all pe-

riods. Similarly, one can easily identify several quarters with large buy-and-hold

returns, but with even larger portfolio returns. In contrast, our portfolio provided

little, or even slightly negative excess returns for most bearish quarters.

8Despite of its less popularity, it is meaningful because our portfolio is an equal-weighted port-
folio. Ohlson and Rosenberg [OR82] emphasized that the first index fund [BS74] was to trace an
equal-weighted index.
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Table 5.3: Quarterly returns of all quarters

Quarter Training Validation Test Benchmark Excess return
Date Avg Std Avg Std Avg Std KOSPI All stocks ExcK ExcA

May 2001 9.80 3.24 13.56 1.32 21.04 3.86 1.49 −2.18 19.55 23.22
Aug 2001 14.45 2.91 28.62 3.70 10.16 3.41 5.15 −1.6 5.01 11.76
Nov 2001 20.00 2.67 12.46 2.57 44.98 8.62 43.37 26.38 1.61 18.60
Apr 2002 22.84 1.37 48.09 6.79 2.66 10.95 −2.03 −8.32 4.69 10.98
May 2002 29.98 1.58 7.72 11.71 −13.72 2.27 −16.29 −19.96 2.57 6.24
Aug 2002 32.22 2.48 −11.15 2.84 −5.80 2.48 −6.31 −14.78 0.51 8.98
Nov 2002 17.38 2.72 −3.87 2.22 −13.34 3.33 −19.97 −19.93 6.63 6.59
Apr 2003 13.77 2.07 −9.92 1.77 20.55 2.91 13.42 17.09 7.13 3.46
May 2003 1.36 4.22 23.47 2.72 9.70 5.66 19.02 8.72 −9.32 0.98
Aug 2003 0.78 1.10 16.06 4.54 14.71 4.84 11.4 −3.46 3.31 18.17
Nov 2003 7.75 0.97 18.61 3.57 13.02 4.86 9 −1.73 4.02 14.75
Apr 2004 13.52 1.22 16.33 3.10 −4.53 2.24 −12.95 −3.56 8.42 −0.97
May 2004 20.97 1.20 −0.72 1.91 5.57 4.10 0.7 −8.16 4.87 13.73
Aug 2004 14.93 1.46 10.35 2.82 31.81 3.94 13.28 9.86 18.53 21.95
Nov 2004 12.49 2.20 33.35 3.55 56.78 8.63 12.01 40.87 44.77 15.91
Apr 2005 17.82 1.79 64.07 5.42 −3.18 2.07 −5.38 −1.23 2.20 −1.95
May 2005 25.68 1.75 3.38 2.48 40.12 15.14 20.22 30.62 19.90 9.50
Aug 2005 26.02 1.67 47.63 14.45 37.20 7.25 13.45 31.04 23.75 6.16
Nov 2005 43.74 4.23 50.62 3.15 1.88 4.14 7.3 8.08 −5.42 −6.20
Apr 2006 47.59 4.97 8.41 3.30 3.31 2.61 1.66 1.19 1.65 2.12
May 2006 34.89 4.43 8.78 4.74 −11.70 2.84 −4.81 −13.48 −6.89 1.78
Aug 2006 33.42 2.50 −8.17 1.82 20.13 4.26 7.23 13.38 12.90 6.75
Nov 2006 18.05 1.29 21.48 1.83 26.28 4.19 2.96 13.83 23.32 12.45
Apr 2007 12.61 1.59 35.71 4.69 19.54 2.80 10.19 12.48 9.35 7.06
May 2007 16.00 1.56 23.23 2.45 17.50 5.93 5.71 5.64 11.79 11.86
Aug 2007 18.92 1.95 24.44 5.20 13.13 9.16 13.84 2.72 −0.71 10.41
Nov 2007 28.40 2.70 17.96 8.93 −4.52 3.99 −11.63 −11.06 7.11 6.54
Apr 2008 27.92 2.82 0.90 2.72 9.40 2.18 10.96 5.25 −1.56 4.15
May 2008 17.36 1.73 12.79 1.74 −12.07 2.05 −16.77 −14.58 4.70 2.51
Aug 2008 15.13 1.29 −8.84 2.79 −39.42 3.78 −30.78 −38.88 −8.64 −0.54
Nov 2008 7.01 1.32 −32.87 3.26 33.21 6.91 13.33 27 19.88 6.21
Apr 2009 −7.39 1.22 40.07 3.64 33.02 4.44 12.84 31.96 20.18 1.06
May 2009 3.02 1.27 32.62 4.73 5.56 3.67 14.35 4.75 −8.79 0.81
Aug 2009 8.17 1.93 10.07 2.54 −2.86 3.01 0.07 −8.11 −2.93 5.25
Nov 2009 14.52 2.10 0.46 2.84 22.91 4.65 7.96 11.72 14.95 11.19
Apr 2010 27.24 1.37 26.90 3.09 7.05 7.30 −1.37 0.95 8.42 6.10
May 2010 21.45 1.60 6.60 3.11 −1.81 1.98 2.81 −2.86 −4.62 1.05
Aug 2010 14.67 1.75 1.23 1.72 19.17 3.30 8.94 5.27 10.23 13.90
Nov 2010 10.16 1.64 17.97 3.28 10.10 7.12 11.68 5.12 −1.58 4.98
Apr 2011 14.84 1.55 17.54 5.91 6.23 2.34 −0.79 −2.12 7.02 8.35
May 2011 13.18 1.22 9.28 2.04 −0.34 6.29 −10.66 −3.73 10.32 3.39
Aug 2011 15.00 1.17 6.87 3.22 −3.13 4.82 −1.27 −0.97 −1.86 −2.16
Nov 2011 18.27 1.82 3.45 3.21 35.82 9.82 8.51 17.78 27.31 18.04
Apr 2012 13.65 2.60 42.15 6.97 −6.20 1.88 −8.62 −9.04 2.42 2.84
May 2012 17.30 3.84 −3.69 1.11 9.41 2.55 6.38 7.28 3.03 2.13
Aug 2012 13.82 2.25 13.76 2.46 12.43 3.70 −4.96 −0.07 17.39 12.50
Nov 2012 14.17 2.22 15.95 2.53 23.48 4.52 7.26 16.48 16.22 7.00
Apr 2013 16.97 2.24 31.65 3.26 10.32 5.86 −0.46 5.39 10.78 4.93
May 2013 15.45 3.21 20.58 3.87 3.21 3.76 −3.36 −2.42 6.57 5.63
Aug 2013 22.97 2.84 6.84 6.38 1.53 2.03 4.45 −4.49 −2.92 6.02
Nov 2013 23.03 4.64 2.60 2.23 25.90 6.37 −0.68 9.95 26.58 15.95
Apr 2014 29.85 5.16 28.82 6.15 10.78 4.70 1.08 3.26 9.70 7.52
May 2014 18.72 2.02 11.69 2.60 13.27 5.01 2.47 2.99 10.80 10.28
Aug 2014 19.17 3.14 15.64 6.11 −3.02 1.92 −5.72 −0.32 2.70 −2.70

Average† 18.17 2.26 15.40 3.84 10.69 4.67 2.96 3.33 7.73 7.36

For each quarter, returns were averaged over 30 runs.
† Arithmetic average.
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Interpretation of Solutions

Due to our direct encoding of weight and sorting indicator vectors, analyzing the so-

lutions is rather straightforward. To give more insight into our problem, the solutions

for each quarter were arithmetically averaged over 30 runs; they were then averaged

over the entire period, i.e., 54 quarters. Figure 5.7 shows the average weight and

sorting indicator vectors. PBR, PSR, and PER showed the highest weights, which

is notable due to their simplicity and popularity. This is roughly consistent with

the previous studies for Korean stock markets [MDK97, BRZ08].9 In contrast, QR,

CR, and DER showed the lowest weights; the differences among them were not

significant.

For sorting indicator, an average value close to zero or one is more consistent

than one close to 0.5. The sorting indicators close to 0 and 1 mean ascending and

descending orders in our ranking function, respectively. For example, the average

sorting indicator of PBR was around 0.013, which strongly suggests that the ranking

by ascending order is more appropriate. The results showed that PBR, PSR, and

PER strongly suggest ascending orders while NIG and OIG do descending ones.

It is notable that the value for NIG is larger than OIG, which means that NIG is

more consistent than OIG in terms of directionality over a long period of time; this

is quite contrary to most fund managers’ intuition that net income is less credible

than operating one. The sorting indicators closest to 0.5 were CFR, NPM, and ITR

whose values were 0.529, 0.535, and 0.465, respectively. Their values imply that the

sorting direction is not very meaningful for them.

To find out the change of quarterly values over time, we plotted the quarterly

weight and sorting indicator vectors as heatmaps. Figure 5.8 shows the weights

and sorting indicators over time. PBR, PSR, and PER showed consistently large

weights for most quarters; PBR was the most dominant factor among them. Most

notable financial ratios were CR and QR which are related to liquidity or short-term

solvency; they showed the recent increase in weight. We think that more profitable

9However, the significance of financial ratios was different across studies. For example, Mukherji
et al. [MDK97] showed that PBR, PSR, and DER were significant for explaining Korean stock
returns, while PER was not.
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portfolios can be constructed by exploiting such recent changes in weight.

The results for sorting indicator vector were similar to those of weight vector.

The sorting indicator of PBR was almost time-invariant; it strongly favors ascending

order. While PBR, PSR, and PER supported ascending order, NIG and OIG directed

descending one. Compared with the weight vectors, they showed more consistent

results possibly due to their simpler binary encoding. It is notable that ITR and

RTR, which are related to turnover rate, showed the recent increase in directionality.

However, they showed fairly noisy patterns over time, which can also be explained

by other factors such as periodicity.

Comparisons with Commercial Portfolios

Despite many studies in the finance literature reported their excess returns over buy-

and-hold, most of them did not compare their returns with those by commercial

portfolio algorithms. Such comparisons have been virtually impossible since most

investment companies hide the details of asset management.

Fortunately, we could obtain a commercial preliminary portfolio from Optus In-

vestments Inc.10 Dynamic PortfolioTM,11 one of the subsystems exploited in the

first stage of portfolio selection at Optus Investments Inc., was used for constructing

the portfolio.12 It uses several hundreds of inputs including macroeconomic, fun-

damental, and technical variables. The inputs can be modularized, feedbacked, or

replaced by some criteria; they can have even general expressions including arith-

metic, Boolean, and so forth. Table 5.4 shows some representative settings of Dy-

namic PortfolioTM.

The average quarterly compound returns by our GA, Dynamic PortfolioTM, and

buy-and-hold (KOSPI) were 9.36%,13 15.44%, and 2.29%, respectively. It seems that

10http://www.optus.co.kr
11In fact, it is a preliminary portfolio universe screening system. Note that its output is not

the operating portfolio in Optus Investments Inc. In general, operating portfolio is constructed by
interactions among more complex, multi-layered systems.

12We are not able to provide its detailed algorithm due to business contract.
13This return is slightly larger than the best average return in Table 5.2 due to its arithmetic

averaging of 30 runs’ portfolio returns for each quarter, which contributes to a smaller variance of
quarterly returns, resulting in the larger average compound return.
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Table 5.4: Representative settings of Dynamic PortfolioTM

Feature Setting

Inputs macroeconomic, financial, and technical variables
- Number of inputs several hundreds
- Modularization of inputs N
- Feedback inputs N
- Replacement for inputs N
- General expression for inputs N
Initial seed approximation
Genetic operators -
Local optimization iterative improvement with feature selection
Time complexity Θ(K2) to Θ(K) (reducible to even sublinear)
Training method extending window
Intra-quarter transactions N
Sectoral filters N
Liquidity filters N
Additional information N
- Sectoral information N
- Holding company information N

The symbol “-” means the feature is not supported.
The number of inputs is represented by K.

beating the commercial portfolio is very hard due to the different degrees of abstrac-

tion level, optimizations, coverages of inputs, and so forth. However, it is notable

that our GA was able to provide a large excess return over buy-and-hold, in partic-

ular with much smaller number of inputs and less complex framework. In addition,

the performance pattern to the market context was similar to that of Dynamic

PortfolioTM, which implies that our portfolio captured important features of obtain-

ing excess returns in the commercial preliminary portfolio.

5.3.5 Summary

We presented a hybrid genetic algorithm for large-scale stock selection. To include all

types of financial ratios including positive, negative, and invalid ones, we formulated

the stock selection in a systematic way. Due to the interpretational inconsistency

of negative financial ratios, the ranking with partitions was proposed. It partitions

financial ratios into positive, negative, and invalid ones, where each stock is assigned
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a rank score based on its matching partition. The ranking with partitions provided

significant improvements over the linear ranking using a naive sort.

To further improve upon the performance, a heuristic seeding algorithm was pre-

sented. In our problem, the sorting indicator vector was heuristically seeded due to

its less complex encoding in comparison to the weight vector. The initial population

seeded by our seeding algorithm showed significant improvements, which substan-

tially dominated buy-and-hold. Our results imply that typical stock selection with

binary sorting indicator can be efficiently solved by a multistage optimization frame-

work.

By analyzing the solutions, we found that the popular financial ratios includ-

ing PBR, PSR, and PER have larger weights than the others. The least significant

financial ratios were QR, CR, and DER. It is notable that CR and QR showed the re-

cent increase in weight. For sorting indicator, PBR showed an almost time-invariant

consistency, which implies that its direction for attractiveness is more consistently

identified. It is interesting that the directionalities of ITR and RTR were increased

in the recent quarters.

Despite of our significant excess returns, we found that our portfolio is not com-

parable to a commercial preliminary portfolio provided by Optus Investments Inc.

We suspect that the different levels of abstraction, optimizations, and coverages of

inputs are key factors describing the performance gap. However, the similar per-

formance pattern to the market context implies that we were able to capture core

features of obtaining excess returns in the commercial portfolio. We believe that our

GA is still promising due to its scalability and efficiency.

Future work would include multi-objective modeling [BFF08] and stock scoring

reflecting accounting particularities [XMP09]. In particular, we think that reflect-

ing accounting particularities is quite important for more effective stock selection.

Extending our framework to include a large number of stock markets in various

countries is also promising. The market differences across countries, however, would

require more elaborate financial ratios that incorporate information asymmetries

[SHH12] among different countries.
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Input:

K: the length of each vector
hn: the number of samples
hv: the ratio of voting samples
hp: the ratio of seeded individuals in the population
P : the initial population
Output:

P : the seeded initial population
Description:

HeuristicSeeding(P ,hn,hv,hp,K)
{

// c: a temporary chromosome
// c.w: w-vector in c
// c.b: b-vector in c
// Ls: a sorted list of < f, c.b > with descending order of f
for i← 1 to K

c.w[i]← 1
K
; // geometric center

for i← 1 to hs
for j ← 1 to K

c.b[j]← a random integer from {0, 1};
f ← calculate fitness of chromosome c;
insert < f, c.b > to Ls;

v ← ⌊hn × hv⌋; // voting samples
for i← 1 to K

s[i]← 0;
for i← 1 to v

c.b ← c.b in Ls[i]; // select from the largest f
for j ← 1 to K

s[j]← s[j] + c.b[j];
for i← 1 to K // majority voting

if s[i] > ⌊ v2⌋
b[i]← 1;

else

b[i]← 0;
Ps ← ⌊hp × |P |⌋ random indices from {1, 2, . . . , |P |};
for each c ∈ Ps

for j = 1 to K
c.b[j]← b[j];

return P ;
}

Figure 5.1: Heuristic seeding
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Input:

K: dimension, or the number of financial ratios
Output:

~w: a random n-dimensional weight vector
Description:

UnbiasedSamplingRandomWeight(K)
{

for i← 1 to K + 1 // wr: temporary vector
if i = 1

wr
i ← 0;

else if i = K + 1
wr

i ← 1;
else

wr
i ← a random real number from [0, 1];

~wr ← Sort ~wr in ascending order;
for i = 1 to K

wi ← wr
i+1 −wr

i ;
return ~w;

}

Figure 5.2: Unbiased sampling for random weight

99



Input:

c: chromosome
nh: neighborhood size
d: step size for increase/decrease
Output:

c: locally optimized chromosome
Description:

LocalOptimization(c,nh,d)
{

fo ← calculate fitness of chromosome c;
gmax ← 0;
for i← 1 to nh

s← a random integer from [1,K];
t← c.si[s];
c.si[s]← 1− c.si[s];
f ← calculate fitness of chromosome c;
g ← f − fo;
c.si[s]← t;
if g > gmax

gmax ← g;
bmax ← 1− c.si[s];
smax ← s;

if gmax > 0
c.si[smax] ← bmax;
fo ← fo + gmax;

gmax ← 0;
tarr ← copy the array c.w;
for i← 1 to nh

s← a random integer from [1,K];
c.w[s]← min(1.0, c.w[s] + d); // increase

Normalize c.w so that
∑K

j=1 c.w[j] = 1;
f ← calculate fitness of chromosome c;
g ← f − fo;
c.w← copy the array tarr;
if g > gmax

gmax ← g;
wmax ← min(1.0, c.w[s] + d);
smax ← s;

c.w[s]← max(0.0, c.w[s]− d); // decrease

Normalize c.w so that
∑K

j=1 c.w[j] = 1;
f ← calculate fitness of chromosome c;
g ← f − fo;
c.w← copy the array tarr;
if g > gmax

gmax ← g;
wmax ← max(0.0, c.w[s]− d);
smax ← s;

if gmax > 0
c.w[smax] ← wmax;

Normalize c.w so that
∑K

j=1 c.w[j] = 1;
return c;

}

Figure 5.3: Local optimization
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Input:

~vtj : a column vector of the values of financial ratio j at time t

δ: special constant denoting the invalid rank score (δ > 0)
ζ: special constant denoting the invalid financial ratio

(ζ ≫ vtij for all i ∈ Lt, where Lt is the set of valid stocks)

I: sorting indicator (0: ascending, 1: descending) only for positive values
Output:

~stj : a column vector of the rank scores of financial variable j at time t
Description:

RankingWithPartitions(~vtj ,δ,ζ,I)

{
q ← Partition(~vtj ,1,N ,ζ);

p← Partition(~vtj ,1,q,0);

// [1 . . p]: negative, [p+ 1 . . q]: positive, [q + 1 . . N ]: invalid
if I = 0

vp ← sort vt
(p+1)j

, vt
(p+2)j

, . . . , vtqj in ascending order;

else

vp ← sort vt
(p+1)j

, vt
(p+2)j

, . . . , vtqj in descending order;

// vn: does not dependent upon I
vn ← sort vt1j , v

t
2j , . . . , v

t
pj in descending order;

for i← 1 to N
if vtij ∈ vp

stij ← (index[vtij , vp]− 1)/q;

else if vtij ∈ vn

stij ← (index[vtij , vn]− 1 + p)/q;
else

stij ← 1 + δ;

return ~stj ;

}

Figure 5.4: Ranking with partitions
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Chapter 6

Conclusions

In this thesis, we presented evolutionary algorithms using effective search space

reduction for financial optimization problems. Due to the large dimensionality of such

problems, we devised three effective search space reductions: modular, grammatical,

and seeded evolutions. Modular and grammatical evolutions restrict the possible

forms of solutions using prior domain knowledge by using modules and context-free

grammar, respectively. They were exploited in genetic programming where the forms

of solutions are generally not restricted. In contrast, seeded evolution provides the

initial population with partially optimized solutions, which is exploited in genetic

algorithm. While all of these evolutions are different in reflecting domain knowledge,

they have the common principle of focusing on more promising solutions in their

evolutions.

In Chapter 3, we described a modular evolution, where the possible forms of

solutions are restricted by module patterns. The restriction was statically determined

by the set of module patterns using prior domain knowledge. Genetic operators

which can disrupt the module patterns were modified to modular ones, which always

preserve the module patterns. We showed that our modular genetic programming is

quite effective for attractive technical pattern discovery.

In Chapter 4, we proposed a grammatical evolution, where solutions are gener-

ated by a context-free grammar. The grammar also requires domain knowledge, but

it defines more free forms of solutions than modular evolution. Similar to modular
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evolution, genetic operators were modified to be aware of the underlying grammar.

We also extended attractive technical pattern discovery using more relevant features.

The grammatically typed genetic programming was fairly effective for the extended

problem.

In Chapter 5, we introduced a seeded evolution, where partially optimized so-

lutions are provided to the initial population. Since most genetic algorithms use

a fixed-length encoding, where typing of solutions is not meaningful, we directly

seeded the initial population with promising solutions. To maintain the diversity in

the population, the seeding solutions were partially optimized. The candidate genes

for such optimization were selected primarily by domain knowledge including encod-

ing complexity. The usefulness of this seeded evolution was empirically validated by

large-scale stock selection problem.

While our search space reductions were quite effective for the selected problems,

there are still a wide variety of problems to be investigated, even in the computational

finance. Since their common idea is to focus on promising solutions using domain

knowledge, they are more readily applicable only to problems with abundant domain

knowledge. They need to be further studied to find out their fundamental benefits

and disadvantages using various problems. There are also a number of issues in find-

ing, organizing, and reusing domain knowledge. In financial optimization problems,

they become more complex due to the huge dimensionality and non-stationarity of

time series data. Devising more effective and efficient evolutionary algorithms, which

are knowledge-directed, for diverse financial optimization problems is left for further

study.
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국문 초록

본 논문은 금융 최적화 문제를 위해 효과적인 탐색 공간 축소와 결합한 진화 연산을

제시한다. 전형적인 진화 연산은 제한이 없는 원래의 탐색 공간에서 최적해를 찾으려

노력한다. 그러나 최적해가 사전 지식없이 찾기에 지나치게 복잡한 경우, 이러한 진화

연산은 성공적이지 않다. 이러한 문제는 해의형태를 의미있는 형태로 제한하거나 초기

해집단에 유망한 해를 공급함으로써 완화될 수 있다. 이를 위해 모듈화된, 문법적인,

파종된 진화를 포함하는 세 가지 진화 접근을 제안한다. 또한 해들의 미세 조정을 위한

지역 최적화 알고리즘도 채용하여, 혼합형 진화 연산을 구현한다.

첫번째로, 모듈화된 진화를 제안한다. 모듈화된 진화는 가능한 해의 형태를 더 많은

영역 지식을 반영하는 모듈해의 조합만으로 정적으로 제한한다. 모듈해를 보존하기 위

해 모듈화된 탐색공간에서 동작하는 모듈화된 유전 연산자를 고안한다. 모듈러 연산자

와 정적으로 정의된 모듈들은 유전 프로그래밍이 매우 유망한 탐색 공간에 집중하도록

돕는다.

두번째로,문법적인진화를소개한다.문법적인진화는유전프로그래밍에서가능한

해의 형태를 문맥 자유 문법을 사용하여 제한한다. 유전 프로그래밍은 모듈화된 진화

보다 확장된 문법적인 탐색공간에서 해를 탐색한다. 이러한 진화에서 사용되는 문법

적으로 타입화된 유전 연산자들을 소개한다. 모듈화된 진화에 비해, 문법적인 진화는

영역 지식을 적게 요구한다.

마지막으로, 파종된 진화를 제안한다. 파종된 진화는 초기 해집단에 부분적으로 최

적화된 해를 공급한다. 부분적인 최적화 대상이 되는 유전자는 인코딩 복잡도 측면을

고려하여 선택한다. 부분적으로 최적화된 해들은 유전 알고리즘이 보다유망한 해를 효

율적으로찾을수있도록돕는다.이러한해들은과도하게최적화되어있지는않으므로,

유전 알고리즘은 여전히 더 좋은 해들을 찾을 수 있다.

본 논문은 매력적인 기술적 패턴 발견과 그의 확장된 문제, 대규모 주식 선택을

포함한 세 가지 금융 최적화 문제를 대상으로 광범위한 실험 결과를 제시한다. 이러한



문제들에 대해 제안된 탐색 공간 축소 방법들이 상당히 효과적임을 보인다. 체계적인

진화 연산과 탐색 공간 축소를 결합하여, 진화 연산이 실제 수익을 내는 거래에 이용될

수 있음을 보인다.

주요어 : 금융 최적화 문제, 탐색 공간 축소, 유전 프로그래밍, 유전 알고리즘, 매력적인

기술적 패턴, 주식 선택.

학번 : 2007-30834
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