738 research outputs found

    Phase Transitions of the Typical Algorithmic Complexity of the Random Satisfiability Problem Studied with Linear Programming

    Full text link
    Here we study the NP-complete KK-SAT problem. Although the worst-case complexity of NP-complete problems is conjectured to be exponential, there exist parametrized random ensembles of problems where solutions can typically be found in polynomial time for suitable ranges of the parameter. In fact, random KK-SAT, with α=M/N\alpha=M/N as control parameter, can be solved quickly for small enough values of α\alpha. It shows a phase transition between a satisfiable phase and an unsatisfiable phase. For branch and bound algorithms, which operate in the space of feasible Boolean configurations, the empirically hardest problems are located only close to this phase transition. Here we study KK-SAT (K=3,4K=3,4) and the related optimization problem MAX-SAT by a linear programming approach, which is widely used for practical problems and allows for polynomial run time. In contrast to branch and bound it operates outside the space of feasible configurations. On the other hand, finding a solution within polynomial time is not guaranteed. We investigated several variants like including artificial objective functions, so called cutting-plane approaches, and a mapping to the NP-complete vertex-cover problem. We observed several easy-hard transitions, from where the problems are typically solvable (in polynomial time) using the given algorithms, respectively, to where they are not solvable in polynomial time. For the related vertex-cover problem on random graphs these easy-hard transitions can be identified with structural properties of the graphs, like percolation transitions. For the present random KK-SAT problem we have investigated numerous structural properties also exhibiting clear transitions, but they appear not be correlated to the here observed easy-hard transitions. This renders the behaviour of random KK-SAT more complex than, e.g., the vertex-cover problem.Comment: 11 pages, 5 figure

    Combining Spatial and Temporal Logics: Expressiveness vs. Complexity

    Full text link
    In this paper, we construct and investigate a hierarchy of spatio-temporal formalisms that result from various combinations of propositional spatial and temporal logics such as the propositional temporal logic PTL, the spatial logics RCC-8, BRCC-8, S4u and their fragments. The obtained results give a clear picture of the trade-off between expressiveness and computational realisability within the hierarchy. We demonstrate how different combining principles as well as spatial and temporal primitives can produce NP-, PSPACE-, EXPSPACE-, 2EXPSPACE-complete, and even undecidable spatio-temporal logics out of components that are at most NP- or PSPACE-complete

    A hybrid constraint programming and semidefinite programming approach for the stable set problem

    Full text link
    This work presents a hybrid approach to solve the maximum stable set problem, using constraint and semidefinite programming. The approach consists of two steps: subproblem generation and subproblem solution. First we rank the variable domain values, based on the solution of a semidefinite relaxation. Using this ranking, we generate the most promising subproblems first, by exploring a search tree using a limited discrepancy strategy. Then the subproblems are being solved using a constraint programming solver. To strengthen the semidefinite relaxation, we propose to infer additional constraints from the discrepancy structure. Computational results show that the semidefinite relaxation is very informative, since solutions of good quality are found in the first subproblems, or optimality is proven immediately.Comment: 14 page

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Complexity, parallel computation and statistical physics

    Full text link
    The intuition that a long history is required for the emergence of complexity in natural systems is formalized using the notion of depth. The depth of a system is defined in terms of the number of parallel computational steps needed to simulate it. Depth provides an objective, irreducible measure of history applicable to systems of the kind studied in statistical physics. It is argued that physical complexity cannot occur in the absence of substantial depth and that depth is a useful proxy for physical complexity. The ideas are illustrated for a variety of systems in statistical physics.Comment: 21 pages, 7 figure

    A Decomposition Approach to Multi-Vehicle Cooperative Control

    Full text link
    We present methods that generate cooperative strategies for multi-vehicle control problems using a decomposition approach. By introducing a set of tasks to be completed by the team of vehicles and a task execution method for each vehicle, we decomposed the problem into a combinatorial component and a continuous component. The continuous component of the problem is captured by task execution, and the combinatorial component is captured by task assignment. In this paper, we present a solver for task assignment that generates near-optimal assignments quickly and can be used in real-time applications. To motivate our methods, we apply them to an adversarial game between two teams of vehicles. One team is governed by simple rules and the other by our algorithms. In our study of this game we found phase transitions, showing that the task assignment problem is most difficult to solve when the capabilities of the adversaries are comparable. Finally, we implement our algorithms in a multi-level architecture with a variable replanning rate at each level to provide feedback on a dynamically changing and uncertain environment.Comment: 36 pages, 19 figures, for associated web page see http://control.mae.cornell.edu/earl/decom

    On Continuous Local BDD-Based Search for Hybrid SAT Solving

    Full text link
    We explore the potential of continuous local search (CLS) in SAT solving by proposing a novel approach for finding a solution of a hybrid system of Boolean constraints. The algorithm is based on CLS combined with belief propagation on binary decision diagrams (BDDs). Our framework accepts all Boolean constraints that admit compact BDDs, including symmetric Boolean constraints and small-coefficient pseudo-Boolean constraints as interesting families. We propose a novel algorithm for efficiently computing the gradient needed by CLS. We study the capabilities and limitations of our versatile CLS solver, GradSAT, by applying it on many benchmark instances. The experimental results indicate that GradSAT can be a useful addition to the portfolio of existing SAT and MaxSAT solvers for solving Boolean satisfiability and optimization problems.Comment: AAAI 2
    • …
    corecore