351 research outputs found

    Computational Analysis of Pulsed Radiofrequency Ablation in Treating Chronic Pain

    Get PDF
    In this paper, a parametric study has been conducted to evaluate the effects of frequency and duration of the short burst pulses during pulsed radiofrequency ablation (RFA) in treating chronic pain. Affecting the brain and nervous system, this disease remains one of the major challenges in neuroscience and clinical practice. A two-dimensional axisymmetric RFA model has been developed in which a single needle radiofrequency electrode has been inserted. A finite-element-based coupled thermo-electric analysis has been carried out utilizing the simplified Maxwell’s equations and the Pennes bioheat transfer equation to compute the electric field and temperature distributions within the computational domain. Comparative studies have been carried out between the continuous and pulsed RFA to highlight the significance of pulsed RFA in chronic pain treatment. The frequencies and durations of short burst RF pulses have been varied from 1 Hz to 10 Hz and from 10 ms to 50 ms, respectively. Such values are most commonly applied in clinical practices for mitigation of chronic pain. By reporting such critical input characteristics as temperature distributions for different frequencies and durations of the RF pulses, this computational study aims at providing the first-hand accurate quantitative information to the clinicians on possible consequences in those cases where these characteristics are varied during the pulsed RFA procedure. The results demonstrate that the efficacy of pulsed RFA is significantly dependent on the duration and frequency of the RF pulses

    Thermal ablation of biological tissues in disease treatment: A review of computational models and future directions

    Get PDF
    Percutaneous thermal ablation has proved to be an effective modality for treating both benign and malignant tumors in various tissues. Among these modalities, radiofrequency ablation (RFA) is the most promising and widely adopted approach that has been extensively studied in the past decades. Microwave ablation (MWA) is a newly emerging modality that is gaining rapid momentum due to its capability of inducing rapid heating and attaining larger ablation volumes, and its lesser susceptibility to the heat sink effects as compared to RFA. Although the goal of both these therapies is to attain cell death in the target tissue by virtue of heating above 50 oC, their underlying mechanism of action and principles greatly differs. Computational modelling is a powerful tool for studying the effect of electromagnetic interactions within the biological tissues and predicting the treatment outcomes during thermal ablative therapies. Such a priori estimation can assist the clinical practitioners during treatment planning with the goal of attaining successful tumor destruction and preservation of the surrounding healthy tissue and critical structures. This review provides current state-of- the-art developments and associated challenges in the computational modelling of thermal ablative techniques, viz., RFA and MWA, as well as touch upon several promising avenues in the modelling of laser ablation, nanoparticles assisted magnetic hyperthermia and non- invasive RFA. The application of RFA in pain relief has been extensively reviewed from modelling point of view. Additionally, future directions have also been provided to improve these models for their successful translation and integration into the hospital work flow

    Radiofrequency Ablation for Treating Chronic Pain of Bones: Effects of Nerve Locations

    Get PDF
    The present study aims at evaluating the effects of target nerve location from the bone tissue during continuous radiofrequency ablation (RFA) for chronic pain relief. A generalized three-dimensional heterogeneous computational model comprising of muscle, bone and target nerve has been considered. The continuous RFA has been performed through the monopolar needle electrode placed parallel to the target nerve. Finite-element-based coupled thermo-electric analysis has been conducted to predict the electric field and temperature distributions as well as the lesion volume attained during continuous RFA application. The quasi-static approximation of the Maxwell’s equations has been used to compute the electric field distribution and the Pennes bioheat equation has been used to model the heat transfer phenomenon during RFA of the target nerve. The electrical and thermo-physical properties considered in the present numerical study have been acquired from the well-characterized values available in the literature. The protocol of the RFA procedure has been adopted from the United States Food and Drug Administration (FDA) approved commercial devices available in the market and reported in the previous clinical studies. Temperature-dependent electrical conductivity along with the piecewise model of blood perfusion have been considered to correlate with the in-vivo scenarios. The numerical simulation results, presented in this work, reveal a strong dependence of lesion volume on the target nerve location from the considered bone. It is expected that the findings of this study would assist in providing a priori critical information to the clinical practitioners for enhancing the success rate of continuous RFA technique in addressing the chronic pain problems of bones

    Coupled Thermo-Electro-Mechanical Models of Cardiac Ablation at Tissue-Cellular Scales and a Role of Microtubules

    Get PDF
    Radiofrequency ablation is a medical procedure that is becoming increasingly used for disease treatments. During this procedure, part of dysfunctional tissues is ablated by using the heat, typically generated from medium frequency electric current. It is a field of medicine where mathematical and computational models play a substantial role in assisting clinical practitioners with quantifications of some of the most critical characteristics, including temperature distributions and ablated volumes. In this contribution, we describe a framework for the development of coupled thermo-electro-mechanical models in this field. While our framework and the described validation procedures can be applicable to a variety of ablation modalities and treatments, a major focus has been given to some of the pecularities related to cardiac ablation at tissue-cellular scales and a role played by cell organelles such as microtubules, as well as by the cell nucleus. We have discussed the effects their inclusion makes on the calculation of the main characteristics of the radiofrequency ablation procedures. The importance of domain heterogeneity, as well as the integration of fluid-structure interaction in the developed framework along with other effects, have been highlighted and the details on ablation modalities in the context of clinical experimental research have been given. Finally, future generalizations of the proposed framework with hybrid stochastic-deterministic models have been put forward

    Computer modeling and experimentation in radiofrequiency-based minimally invasive therapies

    Full text link
    Tesis por compendio[ES] La ablación por radiofrecuencia (RF) se ha convertido en una técnica ablativa importante, ampliamente utilizada en el área de las terapias mínimamente invasivas de la medicina moderna. El avance en el campo de las tecnologías basadas en RF a lo largo de los años ha llevado a un número creciente de aplicaciones en diferentes áreas terapéuticas tales como arritmias cardíacas, epilepsia, oncología, resección asistida, apnea, dolor o cirugía estética. Sin embargo, existe una constante necesidad de desarrollar estudios computacionales y experimentales para mejorar el rendimiento de estas técnicas. El enfoque principal de esta tesis doctoral está centrado en examinar los efectos térmicos y eléctricos de ablación por radiofrecuencia de tejidos para mejorar la eficacia y la seguridad de las terapias y dispositivos basados en energía de radiofrecuencia. Las dos áreas principales de interés han sido el tratamiento del dolor y la cirugía hepática oncológica, que se han organizado en tres estudios independientes. La metodología de los estudios se ha basado en modelos computacionales y estudios experimentales sobre phantom de agar, modelos ex vivo e in vivo y ensayos clínicos. El estudio focalizado en el tratamiento del dolor ha incluido el análisis de los efectos eléctricos y térmicos del tratamiento con radiofrecuencia pulsada (PRF) y el riesgo relacionado con el daño térmico al tejido. Se han estudiado diferentes protocolos pulsados empleados en la práctica clínica utilizando modelos computacionales. La exactitud del modelo se ha validado mediante un modelo en phantom de agar. Se han propuesto también modelos computacionales adicionales para los protocolos pulsados alternativos en los cuales se reduciría el efecto térmico sin afectar al efecto eléctrico. En el estudio se ha discutido también el concepto de electroporación leve como el resultado de PRF. En el área de la cirugía hepática oncológica se han analizado dos técnicas diferentes. El primer estudio se ha centrado en examinar la hidratación del tejido durante la ablación por RF con un nuevo electrodo ICW. El nuevo diseño ha incluido dos agujas de perfusión expandibles integradas en el catéter. El objetivo principal ha sido mejorar la precisión del modelo computacional de ablación por RF de tumor utilizando una geometría realista de la distribución de solución salina en el tejido y evaluar el rendimiento del catéter de RF. Se han modelado diferentes casos de tumor infundido con solución salina y los resultados simulados se han comparado con los datos clínicos de un ensayo en 17 pacientes con cáncer hepático. Con el fin de obtener una distribución espacial realista de la solución salina infundida, se ha empleado un estudio in vivo sobre el modelo de hígado de cerdo. El segundo estudio se ha centrado en el desarrollo de una nueva técnica de sellado endoluminal basada en catéter, como una alternativa más efectiva para el manejo del remanente pancreático. El método ha consistido en una ablación por radiofrecuencia guiada por impedancia con la técnica de pullback. El ajuste del tipo de catéter de RF y del protocolo de ablación se ha realizado mediante modelos porcinos ex vivo. Posteriormente, la efectividad del sellado se ha evaluado sobre un modelo de cerdo in vivo.[CA] L'ablació per radiofreqüència (RF) s'ha convertit en una tècnica ablativa important, àmpliament utilitzada en l'àrea de les teràpies mínimament invasives de la medicina moderna. L'avanç en el camp de les tecnologies basades en RF al llarg dels anys ha portat a un número creixent d'aplicacions en diferents àrees terapèutiques com ara arítmies cardíaques, epilèpsia, oncologia, resecció assistida, apnea, dolor o cirurgia estètica. No obstant això, hi ha una constant necessitat de desenvolupar estudis computacionals i experimentals per a millorar el rendiment d'aquestes tècniques. Aquesta tesi doctoral ha estat centrada en examinar els efectes tèrmics i elèctrics de l'ablació per radiofreqüència de teixits per tal de millorar l'eficàcia i la seguretat de les teràpies i dispositius basats en energia de radiofreqüència. Dos àrees principals són el tractament del dolor i la cirurgia hepàtica. Aquestos han sigut organitzats en tres estudis independents. La metodologia dels estudis ha estat basada en models computacionals i experimentals sobre phantom d'agar, models ex vivo i in vivo i assajos clínics. L'estudi enfocat en el tractament del dolor ha inclòs l'anàlisi dels efectes elèctrics i tèrmics del tractament amb radiofreqüència polsada (PRF) i el risc relacionat amb el dany tèrmic al teixit. S'han estudiat diferents protocols polsats emprats en la pràctica clínica utilitzant models computacionals. L'exactitud del model ha estat validada per mitjà d'un model de phantom d'agar. S'han proposat també models computacionals addicionals per a protocols polsats alternatius en els quals es reduiria l'efecte tèrmic sense afectar l'efecte elèctric. En aquest estudi s'ha discutit també el concepte d'electroporació lleu com el resultat de PRF. A l'àrea de la cirugía hepàtica han sigut analitzades dos tècniques diferents. El primer estudi s'ha centrat en la hidratació del teixit durant l'ablació per RF amb un nou elèctrode ICW. El nou disseny ha inclòs dos agulles de perfusió expandibles integrades en el catèter. L' objetiu principal ha sigut millorar la precisió del model computacional d' ablació de tumors per RF utilitzant una geometria realista per a la distribució de sèrum salií en el teixit i evaluar el rendiment del catèter de RF. S'han modelat diferents casos de tumor infundit amb sèrum salí i els resultats simulats han sigut comparats amb les dades clíniques d'un assaig dut a terme sobre 17 pacients amb càncer hepàtic. Amb l'objetiu d'obtenir una distribució espacial realista del sèrum salí injectat, s'ha du a terme un estudi in vivo basat en un model de fetge de porc. El segon estudi s'ha centrat en el desenvolupament d'una nova tècnica de tancament endoluminal bassat en catèter, com una alternativa més efectiva per a gestionar el romanent pancreàtic. El mètode ha consistit en una ablació per radiofreqüència guiada per impedància amb la tècnica de pullback. L'ajust del tipus de catèter de RF i del protocol d'ablació ha sigut realitzat per mitjà de models porcins ex vivo. Posteriorment, l'efectivitat del tancament ha sigut avaluada sobre un model de porc in vivo.[EN] Radiofrequency (RF) ablation has become an important ablative technique widely used in the area of minimally invasive therapies of the modern medicine. The advancement in the field of RF-based technologies over the years has led to a growing number of applications in different therapeutic areas such as cardiac arrhythmias, epilepsy, oncology, assisted resection, apnea, pain or aesthetic surgery. There is, however, a constant need for the development of computer and experimental studies, which would enhance the performance and safety of these techniques. The main focus of this PhD Thesis was on examining the thermal and electrical phenomena behind tissue radiofrequency ablation in order to improve the efficacy and safety of the RF-based therapies and applicators. Two main areas of interest were pain management and oncology, which were organized into three independent studies. The research methodology was based on computer modeling and experimental studies on phantoms, ex vivo and in vivo models, and clinical trials. The research on pain management involved the analysis of electrical and thermal effects of the pulsed radiofrequency (PRF) treatment and the related risk of tissue thermal damage. Different pulse protocols used in clinical practice were studied using computer modeling and the study accuracy was validated by means of agar phantom model. Additional computer models for alternative pulse protocols were also proposed, in which thermal effect would be reduced but the electrical effect would remain unchanged. The study also discussed the concept of a mild electroporation from PRF. In the area of oncology, two different techniques were analyzed. First study focused on examining tissue hydration technique during RF ablation with a novel internally cooled wet (ICW) electrode. The new design involved two expandable perfusion needles built into the catheter. The main aim was to improve the accuracy of computer model of tumor RF ablation using a realistic geometry of saline distribution in tissue, and to assess the performance of the RF catheter. Different cases of saline-infused tumor were modeled and the simulated results were compared with the clinical data from a trial on 17 hepatic cancer patients. An in vivo study on pig liver model was used to obtain a realistic spatial distribution of the infused saline. The second study focused on the development of a new catheter-based endoluminal sealing technique as more effective alternative for management of the pancreatic stump. The method consisted of the impedance-guided radiofrequency ablation with pullback. Fine-tuning involving RF catheter type and ablation protocol was performed using ex vivo porcine models, and posteriorly, sealing effectiveness was assessed on an in vivo pig model.The completion of this work would have not been possible without the financial support of the Spanish Ministerio de Economía, Industría y Competitividad that provided funding for the development of this research project, my Predoctoral scholarship, and also Travel Grant for the research stay in The Wellman Center for PhotomedicineEwertowska, E. (2019). Computer modeling and experimentation in radiofrequiency-based minimally invasive therapies [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/134057TESISCompendi

    LARGE TARGET TISSUE NECROSIS OF RADIOFREQUENCY ABLATION USING MATHEMATICAL MODELLING

    Get PDF
    Radiofrequency ablation (RFA) is a clinic tool for the treatment of various target tissues. However, one of the major limitations with RFA is the ‘small’ size of target tissues that can be effectively ablated. By small it is meant the size of the target tissue is less than 3 cm in diameter of the tissue otherwise ‘large’ size of tissue in this thesis. A typical problem with RFA for large target tissue is the incompleteness of tumour ablation, which is an important reason for tumour recurring. It is widely agreed that two reasons are responsible for the tumour recurring: (1) the tissue charring and (2) the ‘heat-sink’ effect of large blood vessels (i.e. ≥3 mm in diameter). This thesis study was motivated to more quantitatively understand tissue charring during the RFA procedure and to develop solutions to increase the size of target tissues to be ablated. The thesis study mainly performed three tasks: (1) evaluation of the existing devices and protocols to give a clear understanding of the state of arts of RFA devices in clinic, (2) development of an accurate mathematical model for the RFA procedure to enable a more quantitative understanding of the small target tissue size problem, and (3) development of a new protocol based on the existing device to increase the size of target tissues to be ablated based on the knowledge acquired from (1) and (2). In (1), a design theory called axiomatic design theory (ADT) was applied in order to make the evaluation more objective. In (2), a two-compartment finite element model was developed and verified with in vitro experiments, where liver tissue was taken and a custom-made RFA system was employed; after that, three most commonly used internally cooled RFA systems (constant, pulsed, and temperature-controlled) were employed to demonstrate the maximum size of tumour that can be ablated. In (3) a novel feedback temperature-controlled RFA protocol was proposed to overcome the small target tissue size problem, which includes (a) the judicious selection of control areas and target control temperatures and (b) the use of the tissue temperature instead of electrode tip temperature as a feedback for control. The conclusions that can be drawn from this thesis are given as follows: (1) the decoupled design in the current RFA systems can be a critical reason for the incomplete target tissue necrosis (TTN), (2) using both the constant RFA and pulsed RFA, the largest TTN can be achieved at the maximum voltage applied (MVA) without the roll-off occurrence. Furthermore, the largest TTN sizes for both constant RFA and pulsed RFA are all less than 3 cm in diameter, (3) for target tissues of different sizes, the MVA without the roll-off occurrence is different and it decreases with increase of the target tissue size, (4) the largest TTN achieved by using temperature-controlled RFA under the current commercial protocol is still smaller 3 cm in diameter, and (5) the TTN with and over 3 cm in diameter can be obtained by using temperature-controlled RFA under a new protocol developed in this thesis study, in which the temperature of target tissue around the middle part of electrode is controlled at 90 ℃ for a standard ablation time (i.e. 720 s). There are a couple of contributions with this thesis. First, the underlying reason of the incomplete TTN of the current commercially available RFA systems was found, which is their inadequate design (i.e. decoupled design). This will help to give a guideline in RFA device design or improvement in the future. Second, the thesis has mathematically proved the empirical conclusion in clinic that the limit size of target tissue using the current RFA systems is 3 cm in diameter. This has advanced our understanding of the limit of the RFA technology in general. Third, the novel protocol proposed by the thesis is promising to increase the size of TTN with RFA technology by about 30%. The new protocol also reveals a very complex thermal control problem in the context of human tissues, and solving this problem effectively gives implication to similar problems in other thermal-based tumour ablation processes

    Coupled thermo-electro-mechanical models for thermal ablation of biological tissues and heat relaxation time effects

    Get PDF
    Thermal ablation is a widely applied electrosurgical process in medical treatment of soft biological tissues. Numerical modeling and simulations play an important role in prediction of temperature distribution and damage volume during the treatment planning stage of associated therapies. In this contribution we report a coupled thermo-electro-mechanical model, accounting for heat relaxation time, for more accurate and precise prediction of the temperature distribution, tissue deformation and damage volume during the thermal ablation of biological tissues. Finite element solutions are obtained for most widely used percutaneous thermal ablative techniques, viz., radiofrequency ablation (RFA) and microwave ablation (MWA). Importantly, both tissue expansion and shrinkage have been considered for modeling the tissue deformation in the coupled model of high temperature thermal ablation. The coupled model takes into account the non-Fourier effects, considering both single-phase lag (SPL) and dual-phase-lag (DPL) models of bio-heat transfer. The temperature-dependent electrical and thermal parameters, damage-dependent blood perfusion rate and phase change effect accounting for tissue vaporization have been accounted for obtaining more clinically relevant model. The proposed model predictions are found to be in good agreement against the temperature distribution and damage volume reported by previous experimental studies. The numerical simulation results revealed that the non-Fourier effects cause a decrease in the predicted temperature distribution, tissue deformation and damage volume during the high temperature thermal ablative procedures. Furthermore, the effects of different magnitudes of phase lags of the heat flux and temperature gradient on the predicted treatment outcomes of the considered thermal ablative modalities are also quantified and discussed in detail

    Modelling heat transfer in tissues treated with thermal ablation

    Get PDF

    Brain and Human Body Modeling

    Get PDF
    This open access book describes modern applications of computational human modeling with specific emphasis in the areas of neurology and neuroelectromagnetics, depression and cancer treatments, radio-frequency studies and wireless communications. Special consideration is also given to the use of human modeling to the computational assessment of relevant regulatory and safety requirements. Readers working on applications that may expose human subjects to electromagnetic radiation will benefit from this book’s coverage of the latest developments in computational modelling and human phantom development to assess a given technology’s safety and efficacy in a timely manner. Describes construction and application of computational human models including anatomically detailed and subject specific models; Explains new practices in computational human modeling for neuroelectromagnetics, electromagnetic safety, and exposure evaluations; Includes a survey of modern applications for which computational human models are critical; Describes cellular-level interactions between the human body and electromagnetic fields
    • …
    corecore