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ABSTRACT 

 

Thermal ablation is more and more recognized as an important alternative in cancer treatments, for which 

the most common procedures followed are surgery, chemotherapy, and radiotherapy. Nevertheless, these 

common techniques pose critical issues such as: they are too invasive for human body, they can reveal 

serious side effects and are expensive in terms of financial costs for the national health service. Thermal 

ablation of tumors, instead, is a minimally invasive treatment option for cancer, with certain advantages 

such as minor side effects, shorter hospital stays and consequently lower costs. It consists in focusing an 

energy source (commonly radiofrequency or microwave) in the target zone (the tumoral tissue) by means 

of a probe, that causes the tumor destruction. Generally, the complete necrosis of tissue happens 

instantaneously at temperatures over about 60 °C, but lower temperatures with longer exposure times can 

be achieved. The most common approach is a percutaneous treatment performed with the aid of imaging 

techniques. On the other hand, the main shortcoming of performing a thermal ablation is to not achieve the 

complete tissue ablation, so the risk of a tumor recurrence becomes higher. In this context, an in-depth 

knowledge of thermal therapy physics has a key role in modelling heat transfer in thermal therapies, in 

order to develop more and more accurate bioheat models for clinical applications, predicting the final 

necrotic tissue diameters and volumes. Moreover, the lack of experimentation in this field, makes bioheat 

models even more significant. The first simple bioheat model was developed in 1948 by Harry H. Pennes 

and it is still widely used, but it has some shortcomings that make the equation not so accurate. For this 

reason, over the years it has been modified and more complex models have been developed. 

In this thesis work, a general overview of the different employed techniques in hyperthermia treatments of 

biological tissues and in particular tumors is first of all introduced, together with techniques used to estimate 

thermal damage.  

Next, in the second chapter, a wide state-of-the-art of how the distinct bioheat models have been modified 

over the years when applied in various hyperthermia treatments of cancer, is described.  

In chapter three, transient bioheat equations based on different bioheat models, such as Pennes’ model, and 

three porous media-based model are compared, where the porosity is the volume fraction of blood in the 

entire tissue domain. The considered porous media-based models are the Local Thermal Non-Equilibrium 

equations (LTNE), the Local Thermal Equilibrium equation (LTE), and the three-energy equations model. 

The models are implemented to a biological tissue modelled as a sphere with liver tissue properties. The 

effects of thermal ablation on the living tissue are included with a spherical energy source at the sphere 

center. Governing equations with the appropriate boundary conditions are solved with the finite-element 

software COMSOL Multiphysics®. Results are presented in terms of temperature profiles in the biological 

tissue, to appreciate differences due to the various bioheat models, concluding that LTNE model is 

preferable because it is a good compromise between accuracy and complexity.  

Thus, in the next chapter, the LTNE model is applied to the same spherical biological model with tumoral 

properties, to investigate the pulsating energy source effects modeled with references to a cosine function 

with different frequencies, and such different heating protocols are compared at equal delivered energy, 

namely, different heating times at equal maximum power. The results are shown in terms of tissue 
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temperature and percentage of necrotic tissue obtained. The most powerful result achieved using a pulsating 

heat source instead of a constant one is the decreasing of maximum temperature in any considered case, 

even reaching about 30% lower maximum temperatures. Furthermore, the evaluation of tissue damage at 

the end of treatment shows that pulsating heat allows to necrotize the same tumoral tissue area of the non-

pulsating heat source. In addition, a more complex model is developed to study a pulsating protocols 

application for radiofrequency ablation (RFA) of in vivo liver tissue using a cooled electrode and three 

different voltage levels. Three distinct heat transfer models coupled to the electrical problem are compared: 

the simplest but less realistic Pennes’ equation and two porous media-based models, i.e., the LTNE and 

LTE models, both modified to take into account two-phase water vaporization (tissue and blood). 

Moreover, different blood volume fractions in liver are considered and the blood velocity is modeled to 

simulate a vascular network. The results in terms of coagulation transverse diameters and temperature fields 

at the end of the application show significant differences, especially between Pennes and the modified 

LTNE and LTE models at high voltage level. The new modified porous media-based models cover the 

ranges found in the few in vivo experimental studies in the literature and are closer to the published results 

with similar in vivo protocol. The same model is applied considering tumoral tissue surrounded by healthy 

tissue and the outcomes show relevant differences when the tumor is included in the model. Thus, the 

different electrical conductivity and thermal properties between the two types of tissues play a fundamental 

role in the outcomes. 

In the final chapter five, the previous LTNE modified model is applied to a spherical tumoral tissue, in 

order to investigate the effects of different antennas configurations in thermal ablation. Single, double, and 

triple antennas arrangements are modelled in order to simulate the hepatic cancer treatment, which often 

requires the destruction of large volume lesions. Furthermore, different blood volume fractions and blood 

vessels are considered. The results show that using multiple antennas instead of a single antenna offers a 

potential solution for creating ablation zones with larger dimensions and to allow at the same time to have 

lower maximum tissue temperatures in all the cases compared to the single antenna configuration. 
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NOMENCLATURE 

 

Latin letters                                     Units 

a volumetric transfer area between blood and 
tissue  

m-1
 

ac antenna constant m-1 

A kinetic energy frequency factor s-1 

Atm area of the tumor m2 

c specific heat J kg-1 K 

ccell living cells concentration  m-1 

cv nanoparticle concentration in the blood flow kg l-1 

Cw water content - 

d blood vessel diameter m 

dc coagulation diameter m 

E modulus of the electric field V m-1 

E electric field vector V m-1 

ERF applied radiofrequency energy J 

f frequency Hz 

ft (cv) source term caused by alternating magnetic 

field 

W m-3 

F function depending on the 

radiative heat transfer 

W m-2 

g function depending on the 

radiative heat transfer 

W m-3 

G incident radiation W m-2 

h interfacial heat transfer coefficient W m-2 K-1 

hfg product of water latent heat of vaporization 

and water density at 100°C  

J m-3 

hr thermal convective coefficient W m-2 K-1 

hv volumetric heat transfer coefficient W m-3 K-1 

H magnetic field vector T 

I scattered diffuse intensity W m-2 

I0 intensity of radiation  W m-2 

Iac local acoustic intensity W m-2 

j0 current density A m-2 

k thermal conductivity W m-1 K-1 

kdis thermal dispersion conductivity W m-1 K-1 

kr radiative thermal conductivity W m-1 K-1 

l length of skin tissue m 

L specific thermal effects of chemical 
conversions 

m2 s-2 

Lp
LF lymphatic permeability  m Pa-1 s-1 

n refractive index - 

ninj total number of injection points - 

nnp number of nanoparticles - 

Nroll-off number of roll-offs _ 

P transmitted antenna power W 

Pt thermal damage probability - 

q heat flux W m-2 

qc convective heat flux W m-2 
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qr radiative heat flux W m-2 

Q power density W m-3 

r spatial coordinate m 

r0 electrode radius m 

r1 radius of the external sphere  m 

r2 radius of internal heated sphere in the single 
antenna configuration 

m 

r3 radius of internal heated spheres in the double 
antennas configuration  

m 

r4 radius of internal heated spheres in the triple 
antennas configuration  

m 

rdist tissue/outer surface relative distance m 

r  distance covered by the heat generated by 
nanoparticles 

m 

rinj radial distance of the injection m 

rnp mean radius of nanoparticles m 

R1 heating zone radius m 

R2 external radius of spherical tissue  m 

Rg universal gas constant  J mol-1 K-1 

Rmil radius of magnetic loop m 

RCEM CEM43 criterion variable - 

S antenna constant m-1 

SAR Specific Absorption Rate W kg-1 

t time s 

ton total time the generator is “on” s 

troll-off time of first roll-off s 

tst steady state heating time  s 

tpul total pulsating heating time  s 

T temperature K 

T0 initial temperature K 

Tp period s 

Tr coolant temperature K 

T* dimensionless period - 

u velocity vector m s-1 

u velocity component m s-1 

uq(t) step function - 

V voltage V 

w velocity component m s-1 

W tissue water density kg m-3 

x spatial coordinate m 

y spatial coordinate m 

z spatial coordinate  m 

Z Impedance  Ω 

Greek letters  

α absorption coefficient Np Hz-1 m-1 

β extinction coefficient  m-1 

βd coefficient depending on thermal damage - 

αdiff effective thermal diffusivity m2 s-1 
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δΛ parameter that refers to the microvascular 

network 

- 

H activation energy J mol-1 

γ water latent heat constant J kg-1 

Φ phase function - 

Г coordinates index - 

Гf Euler gamma function - 

 porosity - 

θ nanoparticles concentration - 

 χ” imaginary part of susceptibility of the 

magnetic nanoparticles 

- 

ρ density kg m-3 

Р arithmetic average of each segment contained 

into the tumor 

m 

ψ density of nanoparticles on the vascular walls l m-2 

σ electric conductivity S m-1 

σs Stefan-Boltzmann constant W m-2 K-4 

τ relaxation time s 

τq phase-lag of the heat flux s 

τT phase-lag of temperature gradient s 

μcr critical cosine of an angle - 

μ0 dielectric vacuum permeability H m-1 

ω blood perfusion s-1 

ωb0 constant blood perfusion s-1 

ωp pulsation s-1 

ωp0 reference pulsation s-1 

ωp
* dimensionless pulsation - 

ωPennes mean blood perfusion s-1 

ωtr nanoshell transport albedo - 

Ω solid angle - 

Ω(t) tissue injury degree - 

Subscripts  

∞ far away from heating focus                       

a arterial  

b blood   

conv convective  

cr critical  

ch channel conversion  

dis dispersion  

e effective  
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E energy to vaporize water  

ext external  

fat fat  

g gas phase  

l liquid phase  

laser laser  

max maximum  

met  metabolism  

muscle muscle  

np nanoparticles  

p probe  

perf perfusion  

ref reference  

t tissue  

tot total  

tm tumor  

v venous  
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1. INTRODUCTION 

The word “hyperthermia” is from Greek “ὑπέρ”, hyper meaning “above” or “over”, and “ϑερμός”, thermos, 

meaning “hot”, and it can be defined as temperature increase in human body over the physiological average 

of about 37 °C at armpit or 37.5 °C in rectum [1].  Most people in the world, throughout their lives, have 

been faced problems related to hyperthermia, which can be referred to failed thermoregulation, fever, or to 

clinical treatments, which will be discussed in this work.  

 

1.1. Hyperthermia applied in biological tissues 

A generic overview of clinical treatments related to hyperthermia is presented in Fig. 1.  

 

 

Figure 1. Different hyperthermia clinical treatments. 

 

Tissue necrosis occurs over a threshold temperature depending on many variables [2], so, heat can be used 

to induce necrosis in tumor cells. Induced heat can be employed also in arrhythmias treatment such as atrial 

fibrillation by using heat to destroy abnormal pathways of electric conduction [3]. Magnetic hyperthermia 

is tumor treatment which consists in temperature gradients caused by magnetic nanoparticles subject to a 

high-frequency magnetic field [4]. Hyperthermia is applied for pain treatment [5] and drug delivery too [6]. 

Finally, varicose veins can be treated with hyperthermia since heat can destroy veins and block blood 

circulation [7]. 

 

1.2. Hyperthermia in cancer treatment 

During the years, many studies have been carried out on the clinical application of hyperthermia in cancer 

therapy. Hyperthermia treatment is nowadays recognized as the fourth additional cancer therapy technique 

following surgery, chemotherapy and radiation techniques. In this type of cancer treatment tissue is exposed 

to high temperatures that can damage and kill cancer cells, usually with minimal injury to normal tissues 

[8]. The classification of the different hyperthermia cancer treatments is resumed in Fig. 2. 

According to a first classification, three kinds of hyperthermia treatment are identified depending on the 

Tumor Cardiac ablation Magnetic hyperthermia

Pain treatment Drug delivery Endovenous
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temperature achieved in the tissue: the adjuvant hyperthermia, the real hyperthermia, and the ablative 

hyperthermia. Throughout the first type of treatment, temperatures of 38-41 °C are achieved; this treatment 

is used together with other therapies such as radiation therapy and chemotherapy, obtaining better positive 

results, and at the same time reducing side effects. 

 

Figure 2. Classification of hyperthermia cancer treatments. 

 

Hyperthermia is defined “real” when temperatures of 43-46 °C are reached. In this case, the irreversible 

cellular damage is obtained without tissue necrosis, by means of electromagnetic fields applied for 40-60 

minutes. Finally, during the ablative hyperthermia treatment, temperatures raise up to 50-100 °C in a few 

minutes, causing the complete necrosis of tissues. Thermo-ablative techniques can be performed by using 

different forms of electromagnetic energy, in particular in terms of radiofrequencies (Radio Frequency 

Ablation, RFA), microwaves (MicroWave Ablation, MWA), acoustic waves or laser energy. The first 

technique uses AC current with typical frequencies of about 500 kHz, while in the second procedure 

frequencies are between 900 MHz and 2.5 GHz. Acoustic energy concerns a high-precision procedure 

known as High-Intensity Focused Ultrasound (HIFU); the focused ultrasounds can enhance tissue 

temperature very quickly, causing the necrosis of the tissue itself. Laser energy is employed in 

photocoagulation that uses optical fiber to deliver laser energy in the tumor. All these procedures are known 

as minimally or non-invasive treatments, involve fewer complications, a shorter hospital stay, and are 

potentially cheaper [9,10]. Moreover, hyperthermia therapies can be classified into three categories: local, 

regional, or whole-body hyperthermia [8]. The first is generally employed for solid, localized small tumors 

(≤ 3 cm up to 5-6 cm) and can be applied by external, intraluminal, or interstitial applicators. Usually 

microwaves, radio waves or ultrasounds are focused on the treatment volume. Regional hyperthermia is 

used for heating larger parts of the body and it is often applied in advanced tumors treatment, in particular 

when they are situated in the major and minor pelvis, abdomen or thighs and the temperature increase is 

limited to 41-42 °C. The deep-seated tumors are heated by means of external applicators, consisting of 
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antennas emitting microwave or radiofrequency energy. Regional hyperthermia can also be combined with 

cytostatic drugs and in this case, the temperature must be lower. Whole-body hyperthermia is an 

opportunity for patients with metastatic disease such as melanoma, soft tissue sarcoma or ovarian cancer. 

With this method, cancerous cells are destroyed or sensitized to drugs thanks to high temperatures applied 

to the whole organism. For this purpose, thermal chambers, hot water blankets or infrared radiators are 

used, increasing temperature to about 42 °C. Another important role played by hyperthermia regards the 

improvement of drug delivery and its efficacy in tumors. In fact, the traditional drug delivery is limited, 

and drugs do not reach the target volume in sufficient quantities to be efficacious [11]. Moreover, even 

when drug reaches the site of the tumor, it is very difficult to reach all tumor cells, because of the abnormal 

properties of their vasculature, such as the large intravascular distances and arteriovenous shunting [12,13]. 

It has been shown that in the temperature range of 39-42 °C profound physiological effects occur in tumors 

that can mediate enhancement in drug delivery [14] and there are many reports demonstrating that 

temperatures in this range increase tumor oxygenation and vascular permeability [15,16]. Furthermore, 

there are many preclinical reports showing that the combination of intravenous free drugs with 

hyperthermia improves antitumor effects [17] and a phase III trial from Europe [18] proved that 

chemotherapy combined with hyperthermia can improve local tumor control and progression free survival 

in patients with locally advanced soft tissue sarcomas compared to chemotherapy alone. 

 

1.3. Evaluation of thermal damage 

As it is resumed in Fig. 3, different phenomena are involved during hyperthermia treatments. Starting from 

a body set temperature of about 37 °C, vessel dilation due to thermal expansion and blood perfusion 

augmentation can occur up to 41 °C; at these temperatures, damages are avoided by cells answer. 

Irreversible damage starts between 41 °C and 46 °C, while with longer exposure times necrosis starts to 

become significant. Hypoxia, thrombosis formation and ischemia occur up to 52 °C, with fewer nutrients 

delivery. At about 60 °C, it is possible to appreciate protein denaturation and plasma membrane melting, 

thus cells necrosis is achieved. Over this temperature, other interesting phenomena happen. Between 60 °C 

and 100 °C, tissue desiccation starts, while at about 100 °C vaporization of water content happens. Over 

100 °C carbonization will be achieved if temperature becomes very high (say, about 200 °). So, smoke is 

produced due to partial oxidation of hydrocarbons included in the tissue. 

 

 

Figure 3. Involved phenomena in hyperthermia treatments. 

 

Dessication VaporizationThrombosis Necrosis

41  C 46  C 52  C 60  C 100  C

Dilation Damage

Hyperthermia
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From the heat transfer point of view, tissue necrosis is achieved as the necessary values of temperature and 

exposure time are obtained. Indeed, it is not sufficient to apply very large amounts of heat rates if these 

refer to short application times. This means that a criterion that considers both temperature and time is 

needed, and the thermal dose concept has been introduced through the years to overcome this issue. This 

concept is very important, as for example pointed out in Bourdon et al. [19] in a study about the relationship 

between skin exposure time, cooling duration, and temperatures of hot cups, or in Abraham et al. [20, 21], 

in which the authors derive correlations between exposure time and temperature conditions that cause 

irreversible thermal injury for skin burns. A comprehensive overview of cancer treatment hyperthermia 

thermal doses can be found in Dewhirst et al. [22]. The question of an appropriate thermal dose estimation 

has been highlighted by Sapareto and Dewey [23]. Starting from a discussion about treatments performed 

in too dispersed conditions in terms of temperature and time, they present a procedure to calculate an 

equivalent thermal dose that collects both temperature and exposure time. This thermal dose is chosen as 

the exposure time needed to achieve tissue damage under a prefixed reference temperature, that is chosen 

to be 43 °C in their work [23]. This criterion is called the Cumulative Equivalent Minutes at 43 °C (CEM43). 

The equivalent time is obtained by combining temperature vs. time during treatment together with a 

mathematical description of time-temperature relationship for thermal inactivation or damage. In their 

model, it is obvious that the higher the temperature, the shorter the required heating time. For both in vivo 

and vitro system, that refer to situations with phenomena in living systems and reproduced in test tubes, 

respectively, an exponential relationship between two generic times t1 and t2 with temperatures of T1 and 

T2 has been reported starting from thermodynamics of heat inactivation [24]. 

 

( )1 2

1 2

−
=

T T

CEMt t R                                                                                                                                                      (1) 

( )2 1− +  =
H T T

CEMR e                                                                                                                                               (2) 

 

where ΔH represents the activation energy, T is the applied temperature, while the number 2 in Eq. (2) 

approximates the universal gas constant in cal/K mol. The variable RCEM represents the inverse of the 

relative decrease for the inverse of the slope on the exponential portion of the heat inactivation survival 

curve for a one degree increase in temperature [24]. Dewey et al. [24] reported that RCEM = 0.50 for Chinese 

Hamster Ovary (CHO) cells between 43 °C and 46 °C. In Sapareto and Dewey [23], the variable RCEM can 

be assumed constant with an error of less than 2% if temperatures are between 37 and 46 °C. This variable 

is usually from 0.4 to 0.8 above 43 °C, and it includes a factor of 2 too if temperatures are below 43 °C. 

Based on this, Sapareto and Dewey [23] assumed RCEM = 0.50 if temperature is higher than 43 °C, and RCEM 

= 0.25 if it is lower than 43 °C. A monogram can be drawn (Fig. 4) in order to derive an equivalent time 

for the same effect at a different temperature. From this monogram, starting from known final heating time 

(tf) and applied temperature (T), one can obtain time (t43, also named CEM43) required to achieve the 

equivalent damage if 43 °C would have been applied, as happens in Eq. (1) with RCEM = 0.50 for T > 43 °C 

and RCEM = 0.25 for T < 43 °C. Threshold values for t43 are available in literature depending on tissue 
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examined, and they have been obtained from experimental data referred to tissue injuries at 43 °C [25-27]. 

An example of t43 calculation is shown in Fig. 4. About 44.5 °C are continuously applied for 10 minutes, 

resulting in equivalently 80 minutes at 43 °C. This result can be roughly achieved with Eq. (3) with t2 = tf, 

T1 = 43 °C and T2 = 44.5 °C. Based on threshold values available for CEM43 from experiments [25-27], one 

can therefore establish if necrosis is achieved or not. Tissue temperature variations with time T(t) can be 

introduced in the CEM43 criterion as follows: 

 

( ) ( ) ( )43 4343

43 43

00

− −−  

=

= =   =
f f

i

t t
T TT t

CEM CEM i f CEM

t

CEM t R dt R t t R                                                                             (3) 

 

In this equation, a summation approximation can be employed with sufficiently small Δti and average 

temperatures 
iT  evaluated for each Δti; if one assumes uniform temperature (or, if an average value is 

employed), then one could derive t43 in Eq. (3) without invoking any integral or summation, as for Eq. (1) 

 

 

Figure 4. Monogram for t43 method prediction proposed by Sapareto and Dewey [23]. 

 

An alternative method to establish tissue damage is the Arrhenius damage integral criterion. With this 

criterion, damage is obtained from an exponential relationship between tissue exposure temperature, time, 

and parameters generally given by experimental studies on cells survivability. In particular, these 

parameters are available for many tissues, and they have been obtained fitting known exposure times and 

temperatures with cell surviving probabilities. However, it is noticed that the Arrhenius damage integral 
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criterion cannot be used a-priori since temperature evolution with time needs to be known. This approach 

is based on Arrhenius equation with a first-order kinetic reaction, reported in the following together with 

the thermal damage probability Pt that is between 0 and 1 [28].  

 

 ( )
( )

( ) 0

0
ln g

Ht
R Tcell

t

cell

c
t Ae dt

c t


− 

 = = 
  

                                                                 (4a) 

 

( )
1 e

−
= − t t

tP                                                                                                                                                       (4b) 

 

In this expression, Ωt(t) is the tissue injury degree, ccell represents living cells concentration that depends 

on time, Rg is the universal gas constant, A is a kinetic energy frequency factor, and ΔH the irreversible 

damage reaction activation energy [25]. Parameters A and ΔH depend on tissue types, for example in liver 

they are A = 7.39 × 1039 1/s and ΔH = 2.577 × 105 J/mol [27], while for scald burns A = 3.1 × 1098 1/s 

and ΔH = 2.577 × 105 J/mol [29]. These two parameters A and ΔH can vary through a wide range of values, 

and they can be also temperature-depending. In particular, A could vary of several order of magnitudes, 

while ΔH remains of an order of magnitude of about 105 J/mol [30, 31]. Other values for the two parameters 

are available in Pearce [28]. From Eq. (4b), one can observe that for Ωt(t) = 1 cell death probability is 63% 

(Pt = 0.63), while if Ωt(t) = 4.6, then cell death probability becomes 99% (Pt = 0.99). This tissue injury 

value can therefore be assumed for completed necrosis achieved. Other two methods that can be used to 

quantify thermal dose, and then cells damage, are the Area Under the Curve criterion (AUC) [32] and the 

iso-temperature contours criterion [33]. With the AUC criterion, temperature minus baseline is integrated 

over time to establish thermal damage, while with the iso-temperature contours criterion one assumed that 

all the tissue over a prefixed temperature is necrotic. This threshold can vary between 43 °C [34, 35] and 

59 °C [36], depending on many variables like tissues considered. Various papers compared distinct methods 

for thermal injury computation. Vallez et al. [37] suggested that CEM43 would be preferable for lower 

hyperthermia temperatures, while the Arrhenius thermal damage method is suggested for higher 

temperatures. An inverse-proportionality relationship between CEM43 and Arrehnius thermal damage 

criteria has been analyzed and discussed by Viglianti et al. [38]. Pearce [28] compared CEM43 and 

Arrhenius thermal damage criterions for laser-induced heating, concluding that the latter would be 

preferable since it allows to separately study various thermodynamically-independent processes. Mertyna 

et al. [32] generated different ablation measures by using radiofrequency ablation, microwave ablation and 

laser diffusing fibers, and they compared area under the curve, CEM43 and Arrhenius thermal damage 

criteria. The authors conclude that thermal dose should not be established based on temperature at the end 

of coagulation zone since this is not constant, but it depends on distance. Chang and Nguyen [27] simulated 

thermal and injury profiles for a radiofrequency ablation of 15 minutes, and comparisons between iso-

temperature contours, CEM43 and Arrhenius damage criteria have been shown. They conclude that 

isothermal and CEM43 might cause significant errors in the estimation of lesion size. 
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2. MODELLING HEAT TRANSFER IN TUMORS: STATE-OF-THE ART  

Nowadays, thermal therapy is a very interesting topic in medicine, and many studies on the application of 

heat transfer to living tissues have been carried out in the last few decades, especially for cancer tumors 

treatment, from mild hyperthermia to high temperature thermal ablation, as described in the previous 

section. The challenge of predicting temperature in biological tissues becomes the focus of numerous 

researchers through the years, to improve treatment techniques and to develop new sophisticated and 

accurate devices. However, heat transfer in living systems is a complex topic because it entails a mixture 

of many mechanisms to consider, such as thermal conduction in tissues, convection and perfusion of blood, 

metabolic heat generation, vascular structure, changing of tissue properties depending on physiological 

condition and so on. Thus, studying the different heat transfer mechanisms has a key role, especially during 

different hyperthermia applications, as it is schematically described in Fig. 5. 

 

 

Figure 5. Heat transfer mechanisms involved in different hyperthermia applications. 

 

In particular, modelling heat transfer in hyperthermia treatment of cancer has a key relevance in order to 

predict temperature profiles, because tumoral cells have to be destroyed completely, in order to avoid tumor 

recurrence, and at the same time the surrounding healthy tissue has to be preserved. In addition, the lack of 

experimentation in this field, due to ethical reasons, makes bioheat models even more significant. In this 

section, the attention is focused on hyperthermia treatment of cancer, showing how the models have been 

modified through the years when applied in specific applications.  

 

2.1. Bioheat models applied in cancer treatment 

Over the years, several mathematical models have been proposed since 1948, when Harry H. Pennes [39] 

introduced the “Pennes’ bioheat equation”, which describes the effect of blood perfusion and metabolic 
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heat generation rate on heat transfer within a living tissue. Based on an experimental analysis of human 

forearm, Pennes’ model is written in its simplified form as: 

 

( ) ( )t
t t t t b b b a t met

T
ρ c k T ρ c ω T T Q

t

 
=    + − + 

 
                                                                                 (5) 

 

where t is the time and T is the temperature, subscripts t, b, a and met refer to tissue, blood, arterial blood, 

and metabolism, respectively, ρ is the density, c is the specific heat, k is the thermal conductivity, ω is the 

blood perfusion rate and Qmet is the heat generation due to metabolism. This model has been widely used 

by many researchers for numerous biological and medical applications, but it shows some shortcomings 

because of the various assumptions made by Pennes. In fact, it assumes uniform perfusion rate, so it does 

not consider blood flow direction, neglecting also important anatomical features of the circulatory network 

system such as the artery-vein countercurrent arrangement. Besides, Pennes’ model considers only the 

venous blood stream as the one equilibrated with the tissue.  

To overcome the shortcomings mentioned above, Wulff [40] introduced the convection heat transfer term 

and suggested that the blood flow contribution has to be modelled with a directional convection term in 

place of the scalar perfusion one. In the same year, Klinger [41] developed an analytical model like the one 

described Wulff [40]. He modelled a convection field based on in vivo vascular anatomy and he considered 

the spatial and temporal variations of the velocity and heat source. The limitation of Wulff [40] and Klinger 

[41] models is that tissue and blood volumes have to be in thermal equilibrium, which is not true 

everywhere.  

Chen and Holmes [42] presented a model in which larger vessels are considered separately from smaller 

vessels and tissue, dividing the total tissue control volume into solid tissue and blood subvolumes, based 

on length scale analysis. The solid tissue subvolume includes scales that are not larger than one millimeter 

(tissues and smaller blood vessels), while the blood subvolume includes larger vessels. Furthermore, they 

classified blood vessels into thermally significant and insignificant vessels, showing that the major heat 

transfer process occurs for vessels with diameters between 50 and 500 μm. Even if Chen and Holmes [42] 

model represents a significant improvement of Pennes’ equation, it is not easy to implement, because it 

needs detailed knowledge of the vascular network and blood perfusion.  

Moreover, the model does not consider the effect of closely-spaced countercurrent artery-vein pairs. 

Weinbaum et al. [43, 44] introduced a new vascular three-layers bioheat model by considering the 

countercurrent blood flow and assuming that small arteries and veins are parallel, while flow direction is 

countercurrent. They derived three-equations model referred to heat transfer of the thermally significant 

artery and vein and the surrounding tissue, respectively.  

Later Weinbaum and Jiji [45] proposed a simplified blood-tissue continuum model to overcome the 

complexity of the application of the initial model to practical situations, but also this model required more 

detailed anatomical data compared to others. More recently, thanks to some progress in the biological 

tissues measurement techniques, new models have been developed to obtain better results and improve 
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treatment procedures in biomedical applications such as hyperthermia therapy. Tzou [46, 47] proposed a 

dual phase-lag model, in which it is considered that Fourier’s law of heat conduction gives erroneous results 

with non-homogenous inner structure as in the case of biological tissues. According to experimental results, 

they noted that there is non-Fourier heat conduction behaviour in living systems, resulting in a lag time 

between cause and effect in the propagation of a thermal disturbance imposed on the tissue.  

Xuan and Roetzel [48] introduced a two-equation bioheat model in which the biological system is a porous 

media. It is divided into two different regions, namely, the vascular region and the extravascular region, 

without considering local thermal equilibrium between the two phases and introducing an equivalent 

effective thermal conductivity in the energy equations of blood and tissue. They proposed an interfacial 

convective heat transfer term instead of perfusion one.  

Subsequently, Khaled and Vafai [49] and Khanafer and Vafai [50] remarked that the porous media theory 

is the most appropriate for the heat transfer treatment in biological tissues because of the fewer assumptions 

as compared to the other models.  

Nakayama and Kuwahara [51] developed a generalized two-equation bioheat models for vascular and 

extravascular space in local thermal non-equilibrium condition, and they incorporated blood perfusion term 

within the two sub-volume equations. The two-equation model is extended to a three-equation model in 

order to consider the effect of heat transfer in closely spaced countercurrent artery-vein pair. The three 

equations are derived for arterial blood phase, venous blood phase and tissue phase distinctively with three 

different temperatures.  

However, this model requires many detailed anatomical information, and its implementation is complex. 

In Table 1 the aforementioned bioheat models are resumed with their pros and cons in terms of accuracy 

and simplicity. 

 

Table 1. Pros and cons of the most important bioheat models. 

Bioheat model Pros Cons 

Pennes’ equation ✓ Very simple to apply • Low accuracy  

Two-equation bioheat 

model 

✓ High accuracy • More complex to 

implement 

Local thermal 

equilibrium 

equation 

✓ Less complex than two-

equation model 

✓ More accurate than Pennes’ 

equation 

• Lower accuracy 

than two-equation 

model 

Three-energy equation 

model 

✓ Very accurate • It requires a lot of 

anatomical data 

difficult to find 

Dual phase-lag model ✓ It allows to study the 

microstructure interactions 

with heat transport 

• Difficulties in 

phase-lag times 

calculation 
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2.1.1. Pennes’ bioheat model and its modifications 

Even if it was the first, Pennes’ [39] bioheat equation, Eq. (5), is still the mostly used model because of its 

simplicity and feasibility in hyperthermia treatment. From temperature distributions, Pennes’ derived the 

model previously depicted in Eq. (5). He concluded that heat transfer generation is proportional to the 

temperature difference between tissue and arteries by means of the perfusion rate ω (s-1) that is the quantity 

of blood perfused through the capillaries.  

Pennes’ bioheat equation has been modified several times through the years. Berjano [52] wrote a review 

on the specific topic about the state of the art of the theoretical modelling for radiofrequency ablation and 

in his work, the spatial distribution of temperature is always obtained by solving the Pennes’ bioheat 

equation with some modifications. As regards the use of the Pennes’ model for particular cases, first of all 

papers that combine the use of numerical simulation and experimental results have been described.  

Yang et al. [53] proposed a modified form of the equation to predict tissue temperature during microwave 

ablation performed ex vivo in a bovine liver. During the experimentation, tissue temperature exceeds 100 

°C, so in their model, evaporation has been considered with an extra term for energy needed to vaporize 

water, obtaining this modified equation: 

 

( ) ( )t
t t t t b b b a t met ext E

T
ρ c k T ρ c ω T T Q Q Q

t

 
=    + − + + − 

 
                                                                 (6) 

 

where Qmet is the metabolic heat source, Qext is the microwave power density, obtained by solving the 

electromagnetic problem, and QE is the term that accounts for the energy needed to vaporize water. This 

last term is related to the change in water content of tissue as a function of time: 

 

E

dW
Q γ

dt
= −

 

                                (7) 

 

where γ is the water latent heat constant, that is equal to 2260 kJ kg-1, and W is the tissue water density 

which is assumed to be only a function of temperature as follows: 
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                                     (8) 

 

Comparing the simulation results to the experimental results, they concluded that the new method generates 

a more accurate prediction of tissue temperature than the original Pennes’ bioheat equation. 

Jaunich et al. [54] analysed the temperature distributions in skin tissue medium irradiated with a laser beam. 

Experimental validation is performed both on multi-layer tissue phantoms which simulate skin tissue and 
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having an embedded inhomogeneity simulating tumors and on freshly excised mouse skin tissue samples. 

The tissue temperature is calculated with Pennes’ energy equation coupled with two different conduction 

models: the Fourier parabolic and non-Fourier hyperbolic heat conduction models. The starting Pennes’ 

model becomes: 

 

 t
t t b b b t a r

T
ρ c q ρ c ω T T q

t


= −  − − −  


                                            (9) 

 

where q is the heat flux and qr is the radiative heat flux. Radiative heat flux is expressed as: 
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                                          (10) 

 

where α is the absorption coefficient of tissue, n is the refractive index of tissue medium, σs is the Stephan-

Boltzmann constant, Φ is the phase function, I is the scattered diffusive intensity and Ω is the solid angle. 

The first term on the right side of Eq. (9) is modeled by considering either Fourier or non-Fourier heat 

conduction approaches: 

 

t tq k T= −                                                                                 (11) 

 

t t

q
q τ k T

t


+ = − 


                    (12) 

 

where τ is the relaxation time of the medium. Numerical modelling results obtained from Fourier and non-

Fourier heat conduction formulation are then compared with experimental measurements. The authors 

demonstrated that the hyperbolic heat conduction model is more accurate than the parabolic one, which 

underpredicts the peak temperature rise. They concluded that using the non-Fourier model is of prime 

importance for designing efficient technique of thermal treatment of tumors, because it considers the 

relaxation time of the tissue.  

Cavagnaro et al. [55] investigated different numerical models of the dielectric and thermal property changes 

in temperature during ex vivo microwave thermal ablation. 

Temperature distribution in the tissue is obtained solving the Pennes’ equation written as: 

 

( ) ( )t
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T
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                                                      (13) 

 

where the external source is expressed as: 
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SARext tQ ρ=                                                                                                        (14) 

 

where SAR is the Specific Absorption Rate computed by solving the Maxwell’s equations, and it is 

calculated as: 

 

2

SAR
2 t

σ

ρ
=

E
                                           (15) 

 

where σ is the effective electric conductivity and |E|2 = E is the modulus of the electric field vector, obtained 

by means of Maxwell equations. Water vaporization based on Yang’s study [53] is considered too, and the 

two models are modified with the temperature dependent properties. Models’ outcomes with and without 

temperature dependent properties are finally compared with experimental data, showing that models not 

including the changes of the dielectric and thermal properties can be used only for very low values of the 

power radiated by the antenna, whereas a good agreement with the experimental values is obtained up to 

20 W if water vaporization is included in the numerical model.  

Shao et al. [56] proposed the employment of injected different nanoparticles to perform thermal ablation in 

cancer treatment of liver by means of radiofrequencies. In their work, governing equations of bioheat 

transfer are a modified form of the Pennes’ model applied in two different regions as follows: 

a) in the living region, tissue temperature equation is expressed as: 
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                                     (16) 

 

              where in this case Qext is the radiofrequency power density; 

b) in the damaged tissue region, both perfusion and metabolic term are zero, so the equation becomes: 
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Furthermore, they considered the blood perfusion variation depending on the degree of tissue/tumor 

damage: 
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where ωb0 is the constant blood perfusion of tissue/tumor and Ω(t) is tissue injury degree. Moreover, they 
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evaluated the temperature dependence of the thermal conductivity and specific heat, by means of these 

linear functions: 
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                                           (19) 

 

where kTref = 0.502 (W m-1 K-1) and Tref = 25 °C, and: 
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where c0 =3399.9 (J kg-1 K-1) and c1 =28.9 (J kg-1 K-2).   

Moreover, the thermal conductivity model for spherical nanoparticles used in this work is the Hamilton-

Crosser (H-C) model [57], which predicts the thermal conductivity of nanofluids when they are injected to 

an intercellular space. The results of the models with and without nanoparticles injection have been 

validated thanks to an in-vitro experiment, and these outcomes revealed that incorporating thermally-

enhancing nanoparticles promote heat transfer during radiofrequency ablation, obtaining an improved 

efficiency. 

Guerrero Lopez et al. [58] used the Pennes’ equation to calculate tissue temperature during a microwave 

ablation for breast cancer treatment, using the Eq. (13). For the experimental validation, the temperature 

measurement has been carried out both in ex vivo swine breast tissue and in a breast phantom with similar 

dielectric properties to those of human tissue. The same model has been applied in 2018 by Ortega-Palacios 

et al. [59] in vivo swine experimentation to test a novel 2.45 GHz double short distance slot coaxial antenna 

for cancer breast microwave ablation therapy. The goal of both the studies was to find the best antenna in 

microwave ablation, as regards the temperatures, instead, significant differences resulted comparing 

experimental and computational results, especially at higher input powers. These results show the 

inaccuracy of the simple Pennes’ bioheat equation to predict temperature during hyperthermia treatment. 

As regard the non-experimental works, Majchrzak et al. [60] used the Boundary Element Method (BEM) 

to solve the coupled problem, electromagnetic and thermal, connected with the biological tissue heating in 

a typical radiofrequency ablation treatment of tumor. Temperature field is described in the healthy and 

tumor regions distinctively by two Pennes’ equations written in the form of Eq. (13) for both the different 

regions. This study shows the parameters of electromagnetic field allowing an optimal temperature 

distribution, considering that in the tumor region temperature has to be higher than 42 °C. The changes of 

electric field parameters cause the changes of temperature in the entire domain considered, but the choice 

of proper electric field parameters is difficult; in fact, both the distance between the tumor and the skin 

surface and its dimensions should be considered. Moreover, the method discussed can be applied when the 

tumor site and its dimensions are perfectly well known. In such a case, the methods of numerical simulation 
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are very effective tool. 

Keangin et al. [61] developed a mathematical model to predict tissue temperature distribution in interstitial 

microwave ablation of liver cancer using a single slot antenna. They coupled electromagnetic wave 

equations, bioheat and mechanical deformation equations. As regards the transient bioheat equation, the 

Pennes’ equation is written as in Eq. (13). Furthermore, liver tissue thermal conductivity and blood 

perfusion rate are considered linear functions of temperature as follows: 

 

( ) 0.0012 0.4692tk T T= +                                                                                                                                    (21) 

 

( ) 0.000021 0.00035bω T T= +                               (22) 

 

The same authors used the same model to analyse the heat transfer in liver tissue during microwave ablation 

using double slot antenna, [62] comparing the results obtained previously [61] and concluding that no clear 

difference between the two microwave coaxial antenna models has been shown due to low microwave 

power input from the microwave coaxial antenna during microwave ablation process (10 W). Furthermore, 

it has been found that the simulated results of model with deformation are corresponded closely with the 

experimental results by Yang et al. [53], whereas the results of model without deformation exhibited errors. 

Sheu et al. [63] proposed an acoustic-thermal-fluid coupled model for the purpose of predicting liver tumor 

temperature during a HIFU thermal ablation. As regards the energy equation for tissue heating, they divided 

the domain of interest into the region with tissue perfusion and the capillary region containing blood vessels. 

In the region without large blood vessels, the Pennes’ bioheat equation has been employed: 
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where 𝑇∞ is the temperature at a location far away from the heating focus and Qext is the ultrasound power 

deposition per unit volume, assumed to be proportional to the local acoustic intensity Iac as follows: 

 

2ext acQ αI=                                                                                                                                                           (24) 

 

where α is the absorption coefficient expressed in (Np MHz-1 m-1). In the region containing large vessels 

the equation employed in the model is: 
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where ub is the blood flow velocity. The authors show that HIFU frequency affects the heat deposition on 



30 

 

the tumor, in particular the higher the ultrasound frequency, the less amount of the heat is absorbed in the 

liver tumor and the smaller the focused region of the higher temperature. 

Lopez Molina et al. [64] presented an analytical model to study radiofrequency ablation with needle-like 

internally cooled cylindrical electrode. The temperature distribution in the tissue is mathematically obtained 

by solving Pennes’ bioheat Eq. (13) in cylindrical coordinates. The external source is the electrical power 

density expressed as: 
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2ext

j r
Q
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=                                  (26) 

 

where j0 is the current density at the conductor surface, σ is the electrical conductivity, r0 is the electrode 

radius and r the radial coordinate. Results showed that the maximal tissue temperature is reached ≈3 mm 

from the electrode, which confirms previous experimental findings. The authors also observed that the 

temperature distributions were similar for three coolant temperature values (5°C, 15°C and 25°C) and the 

differences were only notable in temperature very close to the probe. 

Gupta et al. [65] developed a mathematical model describing the heat transfer in tissues during hyperthermia 

therapy. Their model might consider rectangular, cylindrical, or spherical coordinates. Body tissue is heated 

by electromagnetic radiation using a 432 MHz antenna. The boundary value problem is solved by 

Galerkin’s method using the Bernstein. The bioheat equation solved under various coordinates and 

boundary conditions is a modified form of the Pennes’ model and it can be written as: 
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where Г is a coordinates index that is equal to 0, 1, 2 if references are made to rectangular, cylindrical, or 

spherical coordinates, respectively. The metabolic heat generation Qmet is expressed as a function of local 

tissue temperature as follows: 
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The heat generation per unit volume of tissue due to electromagnetic radiation absorbed Qext is in the form: 

 

( )0.01ca r
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where S and ac are the antenna constants, P is the transmitted power and r  is the distance of tissue from 

outer surface. 

An extension of the model has been proposed by Gupta et al. [66]. In their work, blood perfusion 
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dependence on temperature is considered as follows: 
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where ωb,max is the maximum perfusion of the tissue and Tcr and Tmax are fixed at 42.5 °C and 45 °C, 

respectively. For all simulations, they assume a ratio between ωb,max and ωb0 equal to 25. The solution of 

the equations in both studies is in dimensionless form and authors obtained the time to achieve hyperthermia 

position in the target area based on probe shape, boundary conditions and internal heat source term. 

Furthermore, the effect of variation of temperature in target area between the two models has been 

investigated, concluding that total time for thermal therapy in tissues, when blood perfusion is temperature 

dependent, is less in comparison to the tissue in which blood perfusion is temperature independent. 

Bermeo Varon et al. [67] employed numerical simulations to estimate state variables, like temperature 

distribution in tissues, during the ablation treatment of cancer induced by radiofrequency electromagnetic 

waves. They consider that the tumor is loaded with nanoparticles, and the Pennes’ bioheat equation is as in 

Eq. (13). In this case, the external source depends on tissue, tumor, and nanoparticles properties, in 

particular, for the healthy tissue, which is assumed to be free of nanoparticles, it is written as in Eqs. (14) 

and (15); in the tumor, instead, the contribution due to the magnetic particles is added to the source term: 
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where the subscript np refers to the tumor loaded with nanoparticles, θ=nnpπrnp
2 /Atm is the concentration of 

nanoparticles, that is, the total cross section of the nanoparticles divided by the area Atm of the tumor, while 

rnp is the mean radius of the spherical nanoparticles and nnp is the number of nanoparticles, μ0 is the dielectric 

vacuum permeability, f is the frequency, Rmil is the radius of magnetic induction loop, ''χ  is the imaginary 

part of susceptibility of the magnetic nanoparticles and H is the magnetic field vector. The first term on the 

right side of Eq. (31) is referred to the heat dissipation in the healthy tissue, the second and the third terms 

refer to the heat generation in the tumor tissue with nanoparticles, while the fourth one is related to the 

magnetic field generated in the tumor embedded with nanoparticles. The model is solved with the Particle 

Filter, by means of Sampling Importance Resampling (SIR) algorithm. This study has been carried out for 

a 2-D domain, and the same authors developed the same model in a 3-D domain [68] finding in both cases 

excellent agreement between estimated and exact temperatures.  

Reis et al. [69] used a 3-D nonlinear Pennes’ bioheat equation with a temperature-dependent blood 

perfusion to model numerically the hyperthermia treatments by magnetic nanoparticles. The tissue has been 

modelled by considering skin, fat, and muscle layers in addition to the tumor, together with their 
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temperature dependence. In this study, the bioheat equation is in the form of Eq. (13) and the external heat 

source is the heat generated by the interaction between nanoparticles and the magnetic field, defined as: 
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where rinj is the radial distance of the injection site, rdist is the distance covered by the heat generated by the 

nanoparticles, Qmax is the maximum power density and ninj is the total number of injection points. The 

temperature dependent blood perfusion of fat, muscle and tumor is given, respectively, by the following 

functions: 
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To solve the equations, the Finite-Difference Method (FDM) has been employed and the resulting system 

of nonlinear equations is then solved by a predictor-multicorrector algorithm. As regards temperature 

profiles, the simulation revealed that a temperature-dependent blood perfusion rate has a great influence in 

the results when compared to the linear model for the transient solution. 

Lopez Molina et al. [70] developed an analytical solution for the temperature distribution in a 

radiofrequency ablation process with internally cooled needle-like electrodes when the biological tissue is 

not perfused. Due to cylindrical geometry of the theoretical model, the equation used is: 

 

( ) ( ) ( )
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,

t t t

t t t ext
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ρ c k Q r t

t r r r
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                                      (36) 

 

The external source is the electrical power density expressed as in Eq. (26). They concluded that the 

temperature value is finite both when the spatial domain is finite and when time is finite for any spatial 
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domain.  

In Table 2 Pennes’ bioheat equation modifications depending on the physics are resumed. 

 

Table 2. Pennes’ bioheat equation modifications depending on the physics. 
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Gupta et al. 

[66] 
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2.1.2. Local Thermal Equilibrium and Local Thermal Non-Equilibrium Equations (LTE and LTNE) 

In both Local Thermal Equilibrium (LTE) and Local Thermal Non-Equilibrium (LTNE) formulations, it is 

assumed that the whole volume control is a porous medium [71]. Three anatomical compartments are 

identified in the porous biological tissues, namely, blood vessels, cells and interstitium, as illustrated in Fig. 

6. The interstitial space is further divided into the extracellular matrix and the interstitial fluid. However, 

for sake of simplicity, the biological tissue is divided into two distinctive regions, namely, the extra-vascular 

region and the vascular region.  
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Figure 6. Anatomical scheme of a biological porous medium. 

 

In the LTE formulation, the phases are in local thermal equilibrium, thus only one equation is needed for 

the energy; in the LTNE formulation, two phases with different temperatures have to be characterized with 

their own energy equation. The LTNE model has been proposed for biological systems by Xuan and Roetzel 

[48]. Governing equations are: 

tissue phase: 

 

( ) ( ) ( ) ( )21 1 1
t

t t t t b t t

T
ε ρ c ε k T ha T T ε Q

t


− = −  + − + −
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                                                                                     (37) 

 

blood phase: 
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ερ c T εk T ha T T εQ

t

 
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u                                                                                      (38) 

 

where the volume averaging technique is employed to consider the volume average quantities of the 

variables [17], so the symbol <> refers to the volume averaged quantity of a generic variable and will be 

neglected for the sake of simplicity. So, Tt and Tb are temperatures averaged over the tissue and blood 

volumes, ɛ is the porosity, i.e., the volume filled by the blood compared to the total volume, h is the heat 

transfer coefficient, ub is the blood velocity, a is the volumetric transfer area between tissue and blood, and 

Q is the absorbed power density. 

The same approach has been used by Yuan [72] to analyze the tumor tissue temperature during thermal 

ablation therapy, under thermal non-equilibrium conditions. In his work, comparisons between results from 
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LTNE and LTE models have been also reported to show when it is necessary to employ one of these two 

models. When the Local Thermal Equilibrium hypothesis is maintained, the tissue temperature is equal to 

blood temperature (Tt=Tb=T), thus Eqs. (37) and (38) can be combined into a single equation: 

 

( ) ( ) ( )21 1 1t t b b b b b t b t b

T
ε ρ c ερ c ερ c T ε k εk T ε Q εQ

t


 − +  +  =  − +  + − +   

u                                              (39) 

 

Yuan concluded that the one-equation porous model is suitable for a distribution of blood vessels when the 

diameters are less than 30 μm and the blood velocities are lower than 0.4 cm s−1. 

Mahjoob and Vafai [73] analytically investigated heat transfer in tissues during hyperthermia treatment, 

utilizing LTNE model in porous media and finally finding exact solutions for blood and tissue phase 

temperature profiles as well as overall heat exchange correlations are established for the first time, for two 

primary tissue/organ models representing isolated and uniform temperature conditions. The two equations 

are written for the tissue phase and blood phase respectively as: 

 

( ) ( ) ( )21 1 0t t b t metε k T ha T T ε Q−  + − + − =                            (40) 

 

( )2

,( )b b b b b b dis b b tερ C T εk k T ha T T = +  − −u                                        (41) 

 

where the metabolic heat Qmet is considered as heat source for the solid phase. It is important to underline 

that velocity is set to be uniform through the domain as explained also in [74]. Results indicate the 

importance of utilizing the local thermal non-equilibrium model especially at higher metabolic heat 

generation and within biological media with lower vascular volume fraction. In fact, a decrease in the 

metabolic heat generation or an increase in the organ/tissue’s vascular volume fraction enhances 

temperature uniformity within the media resulting in a more effective hyperthermia treatment. Mahjoob 

and Vafai [75] extended the analytical solution of the previous work [73] for bioheat transfer for double 

layer biological media, performing the analysis for the same primary tissue/organ models, namely, isolated 

core region and uniform core temperature conditions. The same analysis has been also applied for 

consecutive variable cross-sectional biological media [76].  
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Dombrovsky et al. [77] developed a combined thermal model for transient temperature field during laser 

heating of embedded gold nanoparticles. They coupled a modified two-flux approximation model for the 

radiative heat transfer and a local thermal equilibrium equation for the temperature field. The LTE equation 

is:  

 

( ) ( )1ut t b b b met ext

T
ρ c ερ c T k T ε Q Q

t


−  =    + − +


                                        (42)        

            

where Qext represents the heat generation due to absorption of laser radiation by gold nanoshells, expressed 

in this form: 

 

( )1

1

cr

ext

tr cr

μ g F
Q α

ω μ

− +
=

−
                                                                                                                 (43) 

 

with α the absorption coefficient, 𝜔𝑡𝑟 the nanoshell transport albedo, 𝜇𝑐𝑟 the critical cosine of the angle, g, 

and F two functions that depend on the radiative heat transfer. 

Dombrovsky et al. [78] improved the model presented in [77], basing it on two-dimensional axisymmetric 

models for both radiative transfer and heat transfer, and proposed a more detailed model for heat transfer 

in human tissues, especially for the radiative heat transfer part.  

For tissue phase:  
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For blood phase: 
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where αb is the spectral absorption coefficient of arterial blood, α is the total absorption coefficient and the 
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term Qch considers the heat of endothermic chemical conversions in human tissues and venous blood during 

a strong hyperthermia, described as: 

 

( )1 t v
ch a v t v v

ρ ρ
Q ε ε L ε L

t t

 
= − − +

 
                                                                                                                     (46) 

 

In this equation, 𝜀𝑣 and 𝜀𝑎 are the volume fractions of venous and arterial blood respectively and 𝐿𝑣 and 𝐿𝑡 

are the specific thermal effects of chemical conversions in venous blood and tissue, respectively. The 

authors concluded that the required uniform heating of the tumor can be achieved for some superficial 

tumors even without gold nanoshells or other invasive procedures. 

Keangin and Rattanadecho [79] analysed the temperature distribution model to calculate tissue temperature 

during microwave ablation in two-layered porous liver by single and double microwave coaxial antenna. 

They proposed a mathematical model using transient momentum equations and energy equation coupled 

with electromagnetic wave propagation equation described by Maxwell equations. The governing equation 

describing the heat transfer is the Local Thermal Equilibrium model written as: 

 

( ) ( ) 21 1t t b b b b b t b met ext

T
ε ρ c ερ c ερ c T ε k εk T Q Q

t


 − +  +  =  − +  + +   

u                                                     (47) 

 

In this case, the external heat source is equal to the resistive heat generated by the electromagnetic field 

expressed as in Eqs. (14) and (15). The influences of four blood velocities (0.4 (cm s-1), 2 (cm s-1), 3 (cm s-

1) and 3.4 (cm s-1)), three porosities (0.025, 0.05 and 0.1), four input microwave powers (5, 10, 15 and 20 

W) and three positions within the porous liver (distance from a Microwave Coaxial Antenna (MCA)) on 

the tissue and blood temperature distributions have been investigated. Comparing the results with previous 

experimental works, the authors concluded that the LTE assumption can be used when the blood velocities 

are 0.4 (cm s-1) and 2 (cm s-1) in all porosities, whilst, in case of blood velocities to be 3 (cm s-1) and 3.4 

(cm s-1) the LTNE assumption for heat transfer analysis needs to be utilized. Moreover, the LTE model is 

suitable for predicting a distribution of temperature in the case of high porosity for this model. 

In the same year, Keangin and Rattanadecho [80] proposed a LTNE model to calculate blood and tissue 
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temperatures distributions in a porous liver during microwave ablation by single slot MCA. The energy 

governing equations have been represented as: 

Tissue phase: 

 

( ) ( ) ( ) ( ) ( ) ( )2
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t


− = −  + − + − + − + −


                                          (48) 

 

Blood phase: 
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The blood perfusion term is added in both tissue and blood phases, accounting for the heat transfer 

associated with the transcapillary fluid exchange via arterial-venous anastomoses. As before, external heat 

source is expressed with Eqs. (14) and (15). The study aims to understand the influence of antenna type on 

the SAR profile, temperature profile and blood velocity profile. It is shown that the highest values of SAR, 

blood velocity and temperature are achieved through the liver if a single slot MCA is employed instead of 

a double slot antenna.  

Wang et al. [81] used the LTNE model to describe the temperature distribution in annular living tissues 

subject to radiofrequency ablation. They also considered dispersion thermal conductivity in their model. 

The governing equations for both tissue and blood phases are expressed in cylindrical coordinates and then 

solved analytically. 

For the tissue phase: 
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For the blood phase: 
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( ) ( ),

1b b
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where r is the radial coordinate, w the axial velocity component and kb,dis is the blood dispersion 

conductivity. The effects of physiological parameters such as metabolic heat generation, volume fraction 

of the vascular space, ratio of the effective blood to tissue conductivities, on the blood and tissue 

temperature distributions were analysed. From the results, the authors conclude that an increase in the 

metabolic heat generation or in the vascular volume fraction enhances the temperatures for the blood and 

tissue phases. 

Vyas et al. [82] modelled the transient variation of temperature distributions inside irradiated biological 

tissue phantoms, in photo thermal therapy (RTE). The authors coupled the LTNE with the radiative source 

term, defined by the RTE. 

For the solid matrix:  

 

( ) ( ) ( ) ( )21 1 1t
t t t t b t ext

T
ε ρ c ε k T ha T T ε Q

t


− = −  + − + −


                                                  (52) 

 

For the fluid matrix: 
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where the volumetric source term Qext is determined by calculating the divergence of the radiative heat flux: 

 

( )44ext r sQ q α σ T G=   = −                                (54) 

 

In this equation, α is the absorption coefficient and G the incident intensity. Results of the comparative 

study between LTNE and LTE models of heat transfer were presented. It was observed that even though 

LTNE model resulted in lesser values of temperature rise, it predicted the presence of significant thermal 



41 

 

gradients between the solid and fluid matrices of the porous tissue region. Furthermore, the temperature 

distribution inside tissue phantoms embedded with a single blood vessel and counter current artery vein 

blood vessels was studied. It was observed that the single blood vessel model resulted in higher temperature 

rise at the location of the inhomogeneity as compared to the counter current model. In addition, the effect 

of the blood vessel diameter on the temperature distributions was studied to determine the critical limit of 

the diameter value below which the blood vessels become thermally insignificant, concluding that blood 

vessels of diameter lesser than 1 mm have minimal effect on the resultant temperature distributions. In 

Table 3, LTNE equations modifications depending on the physics are resumed. 

 

Table 3. LTNE equations modifications depending on the physics. 

Local Thermal Non-Equilibrium (Xuan and Roetzel [48]) 

Tissue 
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Source Term Case 

Yuan [72]                Tt = Tb=T, Qext = 0          (39) Hyperthermia treatment 

Mahjoob and Vafai 

[73] 

        Qt = Qmet, Qext = 0, Qb = 0      (40,41) 

                   
,b b b disεk εk k= +            (41) 

(entering boundary heat flux) 

 

Hyperthermia treatment 

Dombrovsky et al. 

[77] 

      Tt = Tb=T, Qt = Qmet, Qb = 0       (42) 
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Dombrovsky et al. 

[78] 
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Q ε Q

α
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Laser heating of embedded 

gold nanoparticles 

Keangin and 

Rattanadecho [80] 

Qt = Qmet, Qb = 0 

( ) ( ),1ext ext t t t b b tQ ε Q ρ c ω T T= − + −      (48) 
MCA ablation 

Wang et al. [81] 

            Qt = Qmet, Qext = 0, Qb = 0        (50,51) 

                      ,b b b disεk εk k= +              (52) 

(radial coordinates model) 

RFA 

Vyas et al. [82]           ( )44ext r sQ q α σ T G=   = −        (54) Photo thermal therapy 
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2.1.3. Dual-phase-Lag bioheat model (DPL) 

Recently, the Dual-Phase-Lag (DPL) bioheat model has been developed since Fourier’s law of heat 

conduction gives erroneous results with non-homogenous inner structure as in the case of biological tissues. 

Indeed, there is a lag time between cause and effect in the propagation of a thermal disturbance imposed 

on the tissue. 

Liu and Chen [83] applied this model to study tissue temperature profiles during magnetic hyperthermia 

treatment of a spherical liver tumor. The heat transport equations in the tumor with radius R and the 

surrounding healthy tissue are written in spherical coordinates as follows. 

For the tumor region (0≤r≤R): 

 

( )
2

2

, , , ,2

1
1tm tm tm

tm T tm q tm tm tm b b b tm b t met tm

T T T
k r τ τ ρ c ρ c ω T T Q

r r r t r t r

        
+ = + − − −                

                                     (55) 

 

For the healthy tissue (R≤r≤ ∞): 
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where τq is the phase-lag of the heat flux, τT is the phase-lag of the temperature gradient, Q is the power 

density and uq(t) is a step function that modulates heat transfer. Results show that the behavior of non-

Fourier bioheat transfer is concerned with the lag times only at the early stages of heating. The lag time τT 

reflects the micro-structural interaction effect in the media, so the micro-structural interaction effect can 

significantly affect the transient behavior of bio-heat transfer in living tissues. 

Kumar and Rai [84] investigated the thermal behaviour in living tissues during thermal therapy, using time 

fractional dual-phase-lag bioheat model. A piece of skin tissue of length l is heated by electromagnetic 

radiation using a 432 MHz antenna. The DPL model is written in this form: 
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                                    (57) 

 

where 
α αt   is the fractional order Caputo derivative of arbitrary order α, Qmet is the metabolic heat 

generation source taken as a function of local tissue temperature in the form: 
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with Qmet,ref the reference metabolism and T0 is the initial temperature. The electromagnetic radiation heat 
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source is described as: 

 

( )c pa r r

extQ ρSPe
−

=                                (59) 

 

where S and ac are the antenna constants, P is the transmitted power, r  is the distance of tissue from outer 

surface and rp is the probe position. The bioheat model is then solved by means of finite element Legendre 

wavelet Galerkin method. Results obtained from proposed numerical scheme are approximately the same 

of the results obtained from exact solution in a specific case. In addition, temperature distribution in tissue 

increases as the values of time fractional order derivative increases with respect to space, so, the authors 

conclude that the success of thermal therapy in the treatment of metastatic cancerous cell depends on time 

fractional order derivative to precise prediction and control of temperature. 

 

2.1.4. Other bioheat models  

Other models have been proposed through the years, and they cannot be classified exactly as in the previous 

paragraphs since they refer to particular cases.  

Khanafer et al. [85] modelled both a single blood vessel and tumor tissue, to investigate the influence of 

pulsatile laminar flow and hyperthermia heating protocol on temperature profiles. The tumor tissue is 

modelled using the volume-averaged porous media equations. Thus, the heat transfer equations using 

cylindrical polar coordinates are: 

Artery lumen: 

 

2

, 2

1b b b b b
diff b

T T T T T
u w α

t r z r r r z

       
+ + = +  

       
              (60) 

 

where u and w are the radial and axial velocities and αdiff,b the blood thermal diffusivity. 

For the artery wall, a volume-averaged form is employed: 

 

2

, 2

1t t t t t
diff e

T T T T T
u w α

t r z r r r z

       
+ + = +  

       
                           (61) 

 

where αdiff,e is the effective thermal diffusivity, which includes effective thermal properties for thermal 

conductivity, density, and heat capacity, related to blood and tissue properties: 

 

( )1e e b b t tρ c ερ c ε ρ c= + −                  (62) 

 

( )1e b tk εk ε k= + −                   (63) 
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where ɛ is the porosity, the subscript t refers to solid matrix properties (i.e. arterial wall) and b refers to 

blood properties. It is reminded that LTE model is employed for the arterial wall (Eq. (61)). Results show 

that the presence of large vessels has a significant effect on temperature distributions and must be accounted 

for when planning hyperthermia treatment. 

Nabil et al. [86, 87] analysed time evolution and spatial distribution of particles and temperature in a tumor 

mass treated with superparamagnetic nanoparticles excited by an alternating magnetic field. The model 

illustrates a tumor slab of R3230AC mammary carcinoma on a rat model. The temperature distribution in 

the tumor is modelled by the following equation, which involves heat diffusion and convection by 

interstitial flow, heat absorption by lymphatic and capillary drainage: 

 

( ) ( )( ) ( ) ( ), 2LFtm
tm tm diff e p tm b tm b tm b T v

T
ρ c T - α T L p p T T πΡh T T δ f c

t


 
+    + − − + − =  

u                                     (64) 

 

where LF

pL  is the lymphatic permeability, Р is the arithmetic average of the individual radii of each segment 

contained into the tumor, δΛ is a parameter to scale that refers to the microvascular network, and ( )T vf c  is 

the source term caused by a low-frequency alternating magnetic field that causes nanoparticle exposure: 

 

( ) ( )2SAR 2T v vf c πΡψ πΡ c δ= +                 (65) 

 

where SAR evaluates the heat generated when nanoparticles are heated, ψ is the density of nanoparticles 

on the vascular walls, and cv is the nanoparticle concentration in the blood flow. The term in Eq. (64) that 

describes lymphatic permeability is basically referred to the Starling equation related heat transfer, i.e., the 

heat transfer related to the transcapillar exchange. The proposed model is particularly adequate for this 

application, thanks to its capability of incorporating microvasculature configurations based on 

physiological data combined with coupled capillary flow, interstitial filtration and heat transfer, but the 

principal limitation is the difficulty of determining the model coefficients.  

 

2.2. Conclusions 

In this section, the key role of modeling heat transfer in human tissues in order to accurately predict 

temperature distribution in the human body has been highlighted, focusing on biomedical applications like 

hyperthermia treatments for cancer. Thermal ablation is one of the most promising application which cause 

cancer cells necrosis by means of different forms of electromagnetic energy, in particular in terms of RFA, 

MWA, HIFU or laser energy. The various bioheat models employed in cancer treatments by means of 

different hyperthermia techniques has described in depth, for the purpose of giving a clear overview of how 

the bioheat models have been modified when applied in different applications, in order to characterize 

specific thermal therapies. 
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3. BIOHEAT TRANSFER IN A SPHERICAL BIOLOGICAL TISSUE: A COMPARISON AMONG 

VARIOUS MODELS 

As described in previous sections, modelling heat transfer has a key role to predict accurately the 

temperature distribution in tissues treated with thermo ablative techniques, and various bioheat models 

have been developed throughout the years. In this section, different bioheat transfer models are compared 

simulating a thermal ablation treatment applied to a spherical domain of tissue. The biological tissue is 

modelled as a porous medium and liver tissue properties are used. Four different models, Pennes’ model, 

Local Thermal Equilibrium equation (LTE), Local Thermal Non-Equilibrium equations (LTNE), and a 

three-energy equations model, are compared to appreciate differences among them in terms of temperature 

profiles, for two different porosities and three blood velocities.  The effects of thermal ablation on the living 

tissue are included with a source term in the tissue energy equation. Furthermore, an analysis on radiative 

heat effects is also considered. Governing equations with the appropriate boundary conditions are solved 

with the finite-element code COMSOL Multiphysics®.  

 

3.1. Geometry and properties 

The vascular structures of tissue are supposed to be uniformly distributed in order to consider the physical 

model as a uniform porous medium.  

The entire computational domain is a sphere with a radius of R2=3.10 cm, and the heating zone within the 

biological tissue is a centrally located sphere with a radius of R1=0.62 cm, as shown in Fig. 7. All the blood 

vessels are assumed to be straight in the blood flow direction (assumed to be the z direction of Fig. 7) and 

to merge in the porous medium, and both the entrance blood and the boundary temperatures are equal to 37 

°C. In addition, thermal properties of tissue and blood are considered to be isotropic, and the heat transfer 

coefficient and blood velocity are supposed to be constant throughout the domain. 

Furthermore, metabolic heat generation is neglected because it is much smaller than the power density 

released during the treatment.  

In this study a vessel diameter of 15 μm and an intervessel distance of 140 μm are considered to yield an 

estimated porosity of 0.01 [72] and two values of porosities (0.005 and 0.05) are selected. 

The relationship between volumetric heat transfer areas and diameters of blood vessels is given by Yuan 

[72], and resumed in Table 4, in which the different blood velocities related to the sizes of the vessels are 

included, according to the literature [45, 88, 89]. 

Thermal properties of tissue and blood are chosen according to the work by Kou et al. [90]. Thermal 

conductivity of tissue and blood is 0.5 W m-1 K-1, densities of tissue and blood are 1050 kg m-3, and specific 

heat capacities of tissue and blood are 3770 J kg-1 K-1, respectively. 

To notice that the common input parameters are considered the same for the different models, because the 

focus is on the comparison among the different bioheat equations and not on the sensitivity of the models 

to the input parameters. Moreover, two heating conditions are assumed: 2 s heating with a power density 

of 50 x 106 W m-3 and 50 s heating with a power density of 2 x 106 W m-3. The absorbed power density of 

blood is estimated to be one-tenth of that of tissue [91]. 
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Figure 7. Schematic diagram of the calculation domain. 

 

 

Table 4. Volumetric transfer areas for different porosities (ɛ) and vessels diameters (d). 

 

Volumetric transfer area a (m2 m-3) 

ɛ=0.005 ɛ=0.05 

d=8 μm (u=0.07 cm s-1) 

d=20 μm (u=0.3 cm s-1) 

d=30 μm (u=0.4 cm s-1) 

d=50 μm (u=2 cm s-1) 

d=100 μm (u=3 cm s-1) 

d=140 μm (u=3.4 cm s-1) 

2500 

1000 

667 

400 

200 

143 

25000 

10000 

6667 

4000 

2000 

1429 

 

 

3.2. Mathematical models  

3.2.1. Pennes’ bioheat equation 

The Pennes’ bioheat equation, considering the external heat source and neglecting the metabolic heat 

source, can be written as: 

 

( ) ( ) ( ) ( )t
t t Pennes a t extt b

T
c k T c T T Q

t


=    + − +


                                   (66) 

 

where t is the time and T is the temperature, the subscripts t, b and a stand for tissue, blood, and arterial 

blood, respectively, ρ is the density, c is the specific heat, k is the thermal conductivity, ωPennes is mean 

blood perfusion rate, that is selected to be 0.0036 s-1 for all cases [92], and Qext is the heat generation due 

to the ablation treatment. The blood temperature is assumed to be uniform throughout the tissue and it is 
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taken as body temperature equal to 37 °C. The tissue temperature Tt is equal to 37 °C at the boundary of 

the sphere R2=3.10 cm and at the starting time t=0 s. 

 

3.2.2. Local Thermal Equilibrium and Local Thermal Non-Equilibrium equations 

As described in section 2.1 Xuan and Roetzel [48] introduced a two-equation bioheat model that considers 

the heat transfer in porous media. They modelled the biological tissue by dividing it into two different 

regions, namely, the tissue region and the blood region (i.e., solid phase consists of muscle, vascular tissues, 

and other solid compounds, while the fluid phase is made up by the blood flow that streams), without 

considering local thermal equilibrium between the two media and introducing an equivalent effective 

thermal conductivity in the energy equations of blood and tissue. Furthermore, they proposed an interfacial 

convective heat transfer term instead of perfusion one. So, Eqs. (37) and (38) are here applied to the 

spherical tissue, using for the heat transfer coefficient h a constant value of 170 W m-2 K-1 for all cases as 

in [72]. When the Local Thermal Equilibrium hypothesis is maintained, the temperature of the tissue is the 

same of the blood temperature, thus the LTNE Eqs. (37) and (38) are combined in the single Eq. (39).  

 

3.2.2.1 The three-energy equation model  

In 2008, Nakayama and Kuwahara [51] extended the two-equation model to three-equation model to 

consider the effect of heat transfer in closely spaced countercurrent artery-vein pair, illustrated in Fig. 8.  

 

 

Figure 8. Schematic view of countercurrent heat exchange. 

 

The three equations are derived for arterial blood phase, venous blood phase and tissue phase distinctively 

with three different temperatures as follows. 

For the arterial blood phase: 

 

( ) ( ) ( ) ( )2

,
a

a a a a a b a dis a a a a a t a a a bb b b

T
c c T k k T a h T T c T Q

t


 +  = +  − − − + 

u                                  (67) 

 

Vein

Artery
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For the venous blood phase: 

 

  ( ) ( ) ( ) ( )2

,
v

v v v v v b v dis v v v v v t v v v bb b b

T
c c T k k T a h T T c T Q

t


 +  = +  − − − + 

u                  (68) 

 

For the tissue phase:             

( )( ) ( ) ( ) ( ) ( ) ( ) ( )21 1 1t
t t a a a t v v v t v v a a a v tt b

T
ε ρc ε k T a h T T a h T T ρc ω T ω T ε ε Q

t


− = −  + − + − + + + − −


         (69) 

 

The subscripts t, a, v, represent tissue, arterial and venous blood, respectively, while kdis is the thermal 

dispersion conductivity, which can be estimated according to the relationship in [93]: 

 

( )
2 2

3

14

a bb

dis

a a

ε ρc
k

a h

  
=

u
                                                                                          (70) 

 

Following the studies of Nakayama et al [51, 94], some assumptions have to be considered:   

• εa=εv and εa+εv=ε;  

• aaha=avhv; 

• ua=uv; 

• ωa=-ωv. 

In this model the convective heat transfer coefficients ah considered in the LTNE equations, are replaced 

by the convection-perfusion terms, namely (aaha± (ρc)bω) [95]; furthermore, the perfusion rate ω should 

vary locally, unlike that of Pennes, but it is assumed that its local value is provided everywhere, and its 

value varies in the range from 2 x 10-4 s-1 to 5 x 10-4 s-1 [51], thus, the value of blood perfusion is selected 

to be 0.0005 s-1 for all cases, considering the value that reduces mostly the heat transfer coefficient; 

specifically, h=156.1 W m-2 K-1 in the worst case, for porosity ε=0.005 and blood velocity modulus u=3.4 

cm/s.  

 

3.3. Numerical approach and validation 

The bioheat transient models are implemented by using the finite-element commercial code COMSOL 

Multiphysics software. A 2D axisymmetric model is used to minimize computational efforts and 

consequently computing time. The mesh chosen for all the models has 11746 triangular elements; thicker 

meshes have been tested on temperature profiles, but without improvements. As regards the transient solver, 

the absolute tolerance used is 0.001, the time stepping method is the intermediate BDF with initial and 

maximum steps of 0.001 s and 1 s respectively for the 50 s heating case. For the 2 s heating condition, the 

maximum step considered is 0.1 s. In order to validate the presented different mathematical models, 

simulation results of tissue temperature distributions at the center of the sphere are then compared against 
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the results obtained by Yuan [72], in which LTNE and LTE models are implemented for different conditions 

of porosity, blood velocities and heating conditions for a cubical tissue. The sphere has the same volume 

of the Yuan’s cube, in order to have the same heating power density; moreover, the properties of blood and 

tissue, the blood velocities and the heating conditions chosen are identical in order to validate the results 

obtained in COMSOL. The LTNE and LTE models have been simulated in COMSOL for all porosities, 

blood velocities and heating conditions and they fit the results obtained by Yuan very well in all cases.  

In Fig. 9 only the extreme cases of LTNE equations have been presented, considering three blood velocities, 

i.e., Fig. 9(a) shows the results for =0.005, Qt= 2 x 106 W m-3 and the blood velocities u=0.07 cm s-1, u=0.4 

cm s-1, u=3.4 cm s-1; Fig. 9(b) regards the outcomes for =0.05, Qt= 50 x 106 W m-3 and the same three 

blood velocities. An excellent agreement with literature data has been found. 

     

 

Figure 9. Temperature distributions of LTNE model compared with Yuan’s LTNE equations [72]:  

(a) =0.005, Qt= 2 x 106 W m-3; (b) =0.05, Qt= 50 x 106 W m-3. 

 

3.4. Results 

In this section all the tissue temperatures at the central point of the sphere obtained from the simulations 

for the different analyzed bioheat models are presented and compared at the same blood velocities, 

considering four separate cases as described in Figs 10-13.  

Comparing Fig. 10 to Fig. 12 and Fig. 11 to Fig. 13, the first result to underline is that for all the models 

the maximum temperature increases in the case of shorter heating duration, but in this condition of quick 

heating the temperature drop rate occurs more rapidly than in the longer heating because of the enhanced 

heat transfer. Another common conclusion for all the models is that the temperature decreases with an 

increase in porosity because higher porosity means having more blood to carry the heat away from the 

tissue, see Fig. 10 vs. Fig 11 and Fig. 12 vs. Fig. 13. Moreover, the Peclet number εuρbcb2R2/kb that 

represents the ratio of heat transfer by motion of a fluid to heat transfer by thermal conduction, increases 

as the porosity increases too, so the advection term becomes more important than the conductive one, and 

consequently the temperature decreases more quickly. Obviously, this is not valid for the Pennes’ equation, 

that is not referred to a porous medium.  
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Figure 10. Tissue temperature distributions for ε=0.005, Qt= 2 x 106 W m-3 when heating time is 50 s: (a) 

u =0.07 cm/s, (b) u=0.4 cm/s, (c) u =2 cm/s, (d) u =3.4 cm/s. 

 

 

 

Figure 11. Tissue temperature distributions for ε=0.05, Qt= 2 x 106 W m-3 when heating time is 50 s: (a) u 

=0.07 cm/s, (b) u =0.4 cm/s, (c) u =2 cm/s, (d) u =3.4 cm/s. 
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Figure 12. Tissue temperature distributions for ε=0.005, Qt= 50 x 106 W m-3 when heating time is 2 s: (a) 

u=0.07 cm/s, (b) u=0.4 cm/s, (c) u=2 cm/s, (d) u=3.4 cm/s. 

 

 

 

Figure 13. Tissue temperature distributions for ε=0.05, Qt= 50 x 106 W m-3 when heating time is 2 s: (a) 

u=0.07 cm/s, (b) u=0.4 cm/s, (c) u=2 cm/s, (d) u=3.4 cm/s. 
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Comparing LTNE and LTE models for the two porosities considered, they yield the same results for 

lower velocities, specifically for u<0.4 cm s-1, which means that the LTE equation is suitable for predicting 

the temperature during thermal ablation treatment when the blood vessels  distributed in  the tissue have a 

diameter less than 30 μm (capillaries, arterioles and terminal arteries); for higher velocities (and 

consequently vessels diameters), the LTE model overrates the heat carried out by the blood flow; in 

particular, the increase of velocity corresponds to a decrease of the Stanton number, which relates heat 

transfer coefficient to heat capacity of the fluid stream per unit cross-sectional area per unit time, namely 

h/(uρbcb), so the LTNE equations have to be used. In addition, for the LTNE equations the tissue 

temperature drops as the blood velocity rises, until u=2 cm/s; for higher velocities, the temperature restarts 

to increase because the higher velocity is compensated by the growth of the volumetric transfer area a. 

These considerations on different velocities are not valid for the Pennes’ model, which does not consider 

the blood velocity, but only the blood perfusion.  

As regards the Nakayama three-energy equation model, the results are in good agreement with the LTNE 

model for the lowest porosity and both the heating conditions, while for ε=0.05 it yields higher temperatures 

than the LTNE ones, except for the highest velocity u=3.4 cm/s, when LTNE equations result in higher 

temperatures. However, this more complex model requires more detailed anatomical data compared to 

others, so its application could be useful only in particular case, such as when artery and vein temperatures 

have necessarily to be considered different.  

To notice that typical values of tissue temperatures are higher than 55 °C because the goal of thermo 

ablation therapy is the necrosis of tumoral tissue, and this can be obtained with different combinations of 

input power and time of application depending also on the tumor dimension, for example from 32 W to 180 

W for a total duration of the corresponding treatment of 15 min and 6 min as described in [96]. On the other 

hand, the surrounding healthy tissue has to be preserved and the medical probe usually cannot support 

temperatures higher than 120 °C, so it is preferable to not overcome 100 °C. For these reasons, the 

differences observed are important especially considering higher input powers and application times.  

In addition, it is interesting to show the computational times of the different models’ simulations, more in 

particular, it has been chosen the most onerous case, which is referred to Qt= 50 x 106 W m-3 when heating 

time is 2 s, for ε=0.05, and u=3.4 cm s-1. In this situation, using a 2.50 GHz Intel Core i7-4710MQ CPU 

and a 16 GB 799 MHz DDR3 RAM, the computational times for Pennes’ equation, LTE model, LTNE 

equations and three-energy equation model are 30’19’’, 33’37’’, 45’23’’, and 59’50’’ respectively. These 

results confirm the simplicity of Pennes’ bioheat model, which is also the less onerous computationally, 

but in this case, it produces not accurate outcomes. In the other cases, the computational times are 

comparable to the Pennes’ ones, so it has not been reported. 

 

3.5. Radiative heat transfer effects 

Radiation effects on the biological medium considered in this paper can be analysed with two simplified 

approaches, the Rosseland diffusive approximation and the Beer-Lambert-Bouguer law; the first assumes 
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the medium to be optically thick and allows to define a “radiative conductivity” as follows:   

    

2 316

3

s
r

n σ T
k

β
=                                                                                                        (71) 

  

where n is the refractive index, assumed to be 1.4 [27], σs is the Stefan-Boltzmann constant and β is the 

extinction coefficient, considered equal to 5550 m-1, according to the study of optical properties of ex vivo 

human tissues by Simpson et al. [97]. The Beer-Lambert-Bouguer law, instead, is a simplified form for the 

Radiative Transfer Equation in which the radiation is assumed to be collimated, and consequently the 

radiative heat flux divergence (heat source term for the governing equations) could be written as: 

                                                                                                                                                          

2 2

0

β r z

Rq βI e− + = −                                                                                            (72) 

 

where I0 is the intensity of radiation measured in W m-2. Since one can assume that the energy irradiates 

from the internal sphere to the external (the internal sphere acts as a catheter with a spherical tip), the heat 

exchange area for the radiation contribution is the internal/external spheres contact surface area. This 

because if one assumes that the radiative source is pointwise, for r = 0 one can have an infinite value of the 

radiative source term in Eq. (72). For this reason, tissue temperature is evaluated at r=0.62 cm in the model 

that accounts for the Beer-Lambert-Bouguer law and consequently it is compared with tissue temperature 

at r=0.62 cm for LTNE. Radiative contribution effects are presented in Fig. 14 for both Rosseland 

approximation and Beer-Lambert-Bouguer law. It is shown that in both cases the radiative contribution 

does not affect the tissue temperature in all the models considered and can be neglected, even in the case 

of the maximum temperature reached (i.e., for ɛ=0.005, Qt= 50 x 106 W m-3, u=0.07 cm/s and when heating 

time is 2 s). 

 

 

Figure 14. Tissue temperature profiles evaluated at r=0.62 cm for LTNE model compared with tissue 

temperatures reached taking into account the radiative contributions from the Rosseland approximation and 

Beer-Lambert-Bouguer law, for ɛ=0.005, Qt= 50 x 106 W m-3, u=0.07 cm/s and when heating time is 2 s. 
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3.6. Conclusions 

In this section, four models have been compared in modelling heat transfer in a spherical biological tissue: 

the simplest Pennes’ equation, the Local Thermal Equilibrium equation, the Local Thermal Non-

Equilibrium equations and the three-equation model. By using the finite-element commercial code 

COMSOL Multiphysics software, the tissue temperature profiles versus time are presented for each model 

under different porosities, blood velocity, vessels diameters and heating conditions. According to the 

results, the Pennes’ model shows its inaccuracy due to its simplicity, while the LTE model is suitable to 

predict temperatures during thermal ablation therapy when the diameter of the blood vessels is less than 30 

μm, which corresponds to the low blood velocity of 0.4 cm s-1. For higher velocities, and consequently 

vessels diameters, the LTE model overrates the heat carried out by the blood flow, so the LTNE equations 

have to be used to take into account interfacial convective heat transfer. As regards the Nakayama three-

energy equation model, the results are in good agreement with the LTNE model for the lowest porosity and 

both the heating conditions, even if this model requires more detailed anatomical data compared to others, 

so its application could be useful only in particular case, such as when artery and vein temperatures have 

necessarily to be considered different. This means that the LTNE model gives the best trad off between 

accuracy and simplicity. Finally, radiative heat transfer effects have been analyzed by employing either 

Rosseland approximation or Beer-Lambert-Bouguer law, showing that radiation through biological tissues 

is negligible for the conditions herein presented. 
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4. PULSATING HEAT SOURCES APPLIED IN A TUMOR TISSUE 

Modulation of heat sources can be employed during different treatments for human beings in many clinical 

applications. Sluijter [98, 99] showed that for spinal pain a pulsed radiofrequency treatment does not cause 

any neural damage because of the lower temperature achieved during the treatment. Munglani [100] 

presented some case reports, in which effects of this technique are presented for patients with neuropathic 

pain, concluding that results were very promising. Cohen and Foster [101] treated three patients with groin 

pain and orchialgia with this technique, achieving complete pain relief after their six-months follow-up 

visit. Other examples of clinical applications are trigeminal neuralgia treatments [102], cervicogenic 

headache [103], ultrasound hyperthermia drug delivery [104], or tumor ablation.  

With references to tumor ablation, various solutions have been proposed in literature through the years. 

Goldberg et al. [105] analyzed by means of experiments on animals with both ex vivo and in vivo 

techniques two different methods of pulsating RF ablation, i. e. with constant peak current with variable 

duration and with variable peak current but with a specified minimum duration. They concluded that 

variable peak current can be useful to treat larger tumors since coagulation diameter is bigger. The same 

pulsating algorithm has been used by Ahmed et al. [106] in their study on NaCl injection effects on 

radiofrequency ablation in animal models. A numerical study on different heating scheme for hyperthermia 

treatment has been presented by Khanafer et al. [85], with an emphasis on heating propagation on large 

vessels.  By employing a physiological waveform for the inlet velocity profile at the vessel entrance, they 

assume uniform temperature outside the vessel, and they compared different heating protocols by making 

this temperature variable through time. They compared uniform heating scheme with a pulsating heating 

one with an interval of 3 seconds. The authors concluded that temperatures are lower with pulsating heat 

schemes, that might cause normal tissue damage. López Molina et al. [107] analytically studied pulsed 

radiofrequency ablation by employing both hyperbolic and Fourier heat transfer equation, that considers 

thermal wave effects. Their model is based on a spherical electrode placed in a biological tissue. Heat is 

supplied by means of a waveform, and this is coupled to the heat transfer equation by means of the Joule 

heat distribution via solving Laplace’s equation for the voltage field. 

Another reason why pulsating heat protocol might be useful concerns the roll-off phenomenon. The roll-

off is the augmentation of electrical impedance due to tissue dehydration and charring, that reduces heat 

transfer and might cause problems like reduced coagulation zones. Fukushima et al. [108] treated fifteen 

patients with hepatocellular carcinoma either conventional temperature control or by controlling 

impedance. They conclude that patients with impedance control have larger ablation zones and reduced 

ablation times, with almost equal energy requirements. A numerical model for impedance-controlled 

pulsing protocol has been presented by Trujillo et al. [109]. In their model, a cooled electrode is employed 

for either pulsating current or pulsating voltage cases, obtaining results that match pretty well experiments. 

The relationship between the area of target tissue necrosis and target tissue size when a pulsating protocol 

is applied has been numerically investigated by Zhang et al. [110]. Different waveforms have been 

compared, and the half square provided a larger ablation area than the half-sine wave, while the maximum 

applied voltage, that can be applied without any roll-off, has been found to be lower with higher target 
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tissue diameters in all cases.   

Pulsating protocols have been proposed for microwave ablation too. Microwave ablation is useful for larger 

ablation zones because of the reduction of heat-sink effect. Bedoya et al. [111] experimentally examined 

both ex vivo bovine liver and in vivo porcine livers by employing different heating protocols at equal 

delivered energy, i. e. 15 kJ for the ex vivo and 30 kJ for the in vivo case. The authors concluded that for 

the in vivo case the pulsed protocol can make larger ablation zones with lower average power, and that an 

optimization of this protocol is required. Switched-mode ablation and synchronous ablation have been 

numerically and experimentally analyzed by Biffi Gentili and Ignesti [112], showing that these two 

techniques provide the same ablative performance. 

 

4.1. Numerical analysis of the pulsating heat source effects in a tumor tissue 

4.1.1. Mathematical model 

The geometry representing the biological tissue is here made up of two spheres having the same center but 

different radius, as shown previously in section 3.1. So, the radius of the internal and external spheres are 

R1 = 0.62 cm and R2 = 3.10 cm respectively, and the heating source is in the internal sphere as it is displayed 

in Fig. 7. 

The biological structure is treated by means of the porous media theory [17], which recognizes two different 

phases: the cells and interstitial space represent the tissue phase, that is the solid phase; on the other hand, 

the blood vessels, that infiltrate through the solid phase, are the fluid phase. With regard to the bioheat 

model, a two-equation Local Thermal Non-Equilibrium (LTNE) model is employed. Considering the 

conservation of energy to the tissue and blood, the two differential equations are formulated as follows.  

For the blood phase: 

 

( ) ( )2b

b b b t b extb

T
ε ρc T εk T ha T T εQ

t

 
+  =  + − + 

 
u                                                                     (73) 

 

For the tissue phase: 

 

( )( ) ( ) ( ) ( )21 1 1
t

t t t b extt

T
ε ρc ε k T ha T T ε Q

t


− = −  − − + −


                                                              (74) 

 

with ɛ the porosity, ρ the density, c the specific heat, T the temperature, t the time, u the velocity vector, h 

the interfacial heat transfer coefficient, a the volumetric heat transfer area between tissue and blood, Qext 

the external power density imposed during the treatment.  

As regards the fluid phase, all the blood vessels are assumed to be aligned in the blood flow z direction, the 

initial blood and the boundary temperatures are equal to 37 °C, as for the solid phase. In addition, the entire 

geometry is implemented with 2D axisymmetric model, so the adiabatic condition is employed on the 

symmetry axis. The thermal properties of the two phases are considered isotropic and constant with 
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temperature, while both interfacial heat transfer coefficient and blood velocity are supposed to be uniform 

across the computational domain.  

Thermal properties of tissue and blood are chosen according to B. Zhang et al. [110] as it is shown in Table 

5. 

 

Table 5. Thermal properties of tumoral tissue and blood used in this study. 

 ρ (kg m-3) c (J kg-1 K-1) k (W m-1 K-1) 

Tumoral tissue 1045 3760 0.600 

Blood 1000 4180 0.490 

 

In addition, the interfacial heat transfer coefficient h is here chosen 170 W m-2 K-1, as in Yuan [72]. The 

specific surface area, a, is obtained from the definition of hydraulic diameter in a porous media [113, 114].  

 

 
4ε

a
d

=                                                                                                                                                                    (75) 

 

where d is the blood vessel diameter. In this study, three different blood vessel diameters are considered, 

which correspond at three different blood velocities u, following the work of Crezee and Lagendijk [88]. 

More in detail, diameters and velocities of capillaries, secondary veins and main veins are selected, as in 

Table 6. Moreover, three different porosities i.e., ɛ1 = 0.05, ɛ2 = 0.2 and ɛ3= 0.6 for the biological tissue are 

investigated, so both the consequent specific surface areas a and volumetric convective coefficients hv=ha 

are displayed. 

 

Table 6. Values of diameters and blood velocities in the present work. 

 d (mm) |u| (cm s-1)                a (m-1)     hv=ha (W m-3 K-1) 

                                                                                  ɛ1 = 0.05   ɛ2 =0.2   ɛ3 = 0.6 ɛ1 = 0.05   ɛ2 =0.2   ɛ3 = 0.6 

Capillaries 8.00E-3 7.00E-2 2.50E4    1.00E5    3.00E5 4.25E6     1.70E7    5.10E7 

Secondary veins 1.50 1.30 1.33E2    5.33E2    1.60E3 2.26E4     9.06E4    2.72E5 

Main veins 2.40 1.50 8.33E1    3.33E2    1.00E3 1.42E4     5.66E4    1.70E5 

 

Regarding the external heating, that is the power density given to the tissue, Qext  (1 - ɛ) = 5.6 x 106 W m-3, 

it is assumed to be the same among the different cases considered and such that the tissue temperature is as 

low as to neglect phenomena like evaporation. Furthermore, to take into consideration pulsating heating 

effects, a modular power density is employed, considering the following cosine function: 

 

( ) ( )
1 1

, cos
2 2

p pf ω t ω t
 

= + 
 

                                                                                                                                    (76) 
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where ωp is the pulsation and t the time. To determine a reference pulsation to define a scaled 

pulsation/period, a steady state reference case needs to be defined. It is assumed that for the ablation time 

considered in this work, t = 50 s, the sinusoidal function has to be 0.95. In this case a reference pulsation is 

determined equal to ωp0 = 0.00902 s-1. A dimensionless period T* is defined as T* = ωp
*/2π, while ωp

* = 

ωp0/ ωp is the dimensionless pulsation. The dimensionless pulsation becomes 1 for the mentioned above 

steady state reference case. It is shown that the lower is the dimensionless period, the higher is the pulsation. 

The following Fig. 15 displays different pulsating functions vs time, for different values of dimensionless 

period T*.  

 

 

Figure 15. Cosine functions for different dimensionless period. 

Moreover, it is important to compare pulsating and non-pulsating cases at equal energy density. This 

because, if the heating time is the same, the pulsating heat will yield lower temperatures since less energy 

is delivered to the tissue and the ablated zones will not be comparable. In order to obtain the same energy, 

the total heating time tpul for pulsating heating case needed to obtain the same power density of non-

pulsating case is calculated solving the equation below: 

 

( )0
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1 1
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2 2
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ext stQ t Q ωt dt
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                                                                                                                           (77)  

 

where tst is the steady state heating time that is 50 seconds. Solving the integral, the following equation is 

found: 

 

sin( )
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p p
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                                                                                (78) 

 

This equation is solved by employing an in-house MATLAB code. Roots of the equations obtained for 

different ωp, and then ωp * and T* obtained from Eq. (78) are represented in Fig. 16 for different T*. It is 

shown that the total time approaches to an asymptotic value that is equal to 2tst. This because the sinusoidal 

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

f 
(ω

p
,t

)

t (s)

T*=1.00 T*=0.5 T*=0.10 T*=0.01T* = 1.00 T* = 0.5 T* = 0.10 T* = 0.01



61 

 

component of Eq. (78) becomes negligible for low T* (and high ωp). In particular, from values of T* < 1.00 

x 10-2 this is true with an error of ± 1%, as observed in Fig. 16. 

In this work, three different dimensionless periods are examined, i.e., T* = 1.00 x 10-4, T* = 1.03 x 10-2 and 

T* = 2.87 x 10-2, which correspond to periods equal to Tp = 6.96  x 10-2 s, Tp = 7 s, and Tp = 20 s respectively, 

as it is shown in Fig. 16, where the vertical lines point at the three dimensionless periods chosen.  

 

 

Figure 16. Total time of pulsating heating vs dimensionless period. 

 

The choice of these values is related to both the purposes of considering three different sizes of periods and 

at the same time avoiding too high widths in temperature oscillations. 

 

4.1.2. Numerical approach and validation 

Governing equations are numerically solved with the finite element commercial code COMSOL 

Multiphysics and a 2D axisymmetric model is employed in order to minimize computational time. A 

triangular mesh of 8768 elements is here used and the grid convergence is verified on the maximum 

temperature as in Table 7 below, where negligible temperature differences for the most significative case 

are displayed. The 2D computational domain and the mesh are shown in Fig 17. 

 

 

Figure 17. 2D computational domain and mesh. 
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PARDISO direct solver is employed to solve governing equations, and second order Lagrangian elements 

are used to discretize equations. Moreover, the absolute tolerance used for the transient solver is 0.0001, 

the time stepping method is the intermediate BDF with initial and maximum steps of 0.001 s and 0.1 s, 

respectively. 

Comparisons between the disclosed mathematical model and numerical results from Yuan [72] are here 

presented as in section 3.3, showing the tissue temperature profiles at the center of the sphere. It has to be 

highlighted that the geometry chosen by Yuan [72] is a cube with the same volume of the sphere employed 

in the present work, so, the applied external power density is the same. The LTNE equations are simulated 

in COMSOL Multiphysics and the results agree very well in all cases, as it is shown in Fig. 9 of the previous 

section 3.3 for different blood velocities, porosities, and heating conditions.  

 

Table 7. Maximum value of tissue temperature for different numbers of triangular elements. 

Number of triangular elements Maximum tissue temperature 

2192 

4384 

96.77 °C 

96.82 °C 

8768 96.85 °C 

17536 96.86 °C 

 

 

4.1.3. Results 

In this paragraph results obtained with pulsating and non-pulsating heating conditions are presented. The 

maximum tissue temperatures reached for different blood vessels diameters, porosities and dimensionless 

period are presented. It is shown that pulsating effect always reduces maximum temperatures, even reaching 

about 30% lower maximum temperatures compared to the non-pulsating case. By comparing the three 

different dimensionless periods T*, it seems that maximum temperature achieved is independent of T* in 

these cases. This because when pulsating heat occurs there is no relaxation time for heat to appreciate 

temperature differences. The maximum temperature reduction (that is between about 10 °C and 25 °C) is a 

very important result since it allows to reduce the steam popping phenomenon that occurs in thermoablation 

[115]. By comparing different diameters, in Fig. 18 it is shown that the lowest temperatures are reached for 

d = 1.5 mm in all cases. This because this diameter corresponds to the highest volumetric heat exchange 

between the two phases (see the second term on the right side of Eqs. (73) and (74), that depends on a 

compromise between volumetric heat transfer coefficient (see Table 6) and blood flow velocity.  
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Figure 18. Maximum tissue temperatures at the center of the sphere for pulsating and non-pulsating 

heating, when d=0.008 mm (capillaries), d=1.5 mm (secondary veins), and d=2.4 mm (main veins), for (a) 

ɛ=0.05, (b) ɛ=0.2 and (c) ɛ=0.6. 

 

Indeed, heat goes to the solid phase and it is removed by the fluid phase and its velocity. The quality of this 

heat exchange depends on the volumetric heat transfer coefficient and on blood flow velocity. However, 

this point will be clarified later. 

In Fig. 19, maximum tissue temperatures for the different porosities are compared at equal diameters. 

Again, maximum temperatures are reduced with pulsating heat of about 30% for the best case. By 

comparing different porosities, it is shown that maximum temperatures are always inversely proportional 

to porosity. This because the higher is the porosity the higher are the blood volume fraction and the 

volumetric heat exchange between the two phases, so the heat is removed mainly from tissue. 

 

 

Figure 19. Maximum tissue temperatures at the center of the sphere for pulsating and non-pulsating 

heating, when ɛ=0.05, ɛ=0.2 and ɛ=0.6. for (a) d=0.008 mm (capillaries), (b) d=1.5 mm (secondary veins), 

and (c) d=2.4 mm (main veins). 

 

Tissue temperature profiles at the center of the sphere as a function of time are displayed in Fig. 20 for 

different blood vessels diameters, porosities, and dimensionless pulsating heating periods.   
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Figure 20. Tissue temperature distributions at the center of the sphere for pulsating and non-pulsating 

heating, when d=0.008 mm (capillaries), d=1.5 mm (secondary veins), and d=2.4 mm (main veins), for (a, 

d, g) ɛ=0.05, (b, e, h) ɛ=0.2 and (c, f, i) ɛ=0.6. 

 

For the non-pulsating condition, it is shown in all cases that temperature tends to increase since a certain 

time, that corresponds to the heating time. After this time, there is a slow decay because the tissue tends to 

reach external applied temperature, that is 37 °C. 

In some cases, especially for high porosity, this temperature is achieved in reasonable time (say, about 100 

seconds). With references to different dimensionless periods, temperatures achieved are generally lower 

when pulsating heat is applied, as previously shown in Figs. 18 and 19 for maximum temperatures. In 

particular, temperature outlines related to the three different periods are very similar for the lowest porosity, 

while for ɛ=0.6 the dimensionless periods T* = 2.87 x 10-2 causes wider oscillations that result in higher 

temperature differences. To notice that the tissue temperature decreases with the increase of porosity when 

the blood vessels diameters and the dimensionless periods are the same, because higher the porosity more 

the blood and more the heat removed from the tissue, as previously shown in Fig. 19 for maximum 

temperatures for different porosities.  
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In Fig. 21 convective heat rate per unit volume vs time is shown for all the different conditions of porosity, 

diameter, and dimensionless periods. The convective power density is referred to the second term on the 

right side of Eqs. (73) and (74). It represents the heat rate between the two phases of the porous medium 

per unit volume and depends on a compromise between volumetric heat transfer coefficient (see Table 6) 

and blood flow velocity. Indeed, the heat applied in the tissue goes to the blood flow phase depending on 

this. It is shown that convective heat rate per unit volume depending on blood vessels diameters at equal 

porosity has maximum values for d = 1.5 mm. On the other hand, it increases with porosity at equal 

diameter. These trends are consistent to what has been previously shown in Figs. 18 and 19 for maximum 

temperature achieved in the tissue. 

As shown above, the most powerful result achieved using a pulsating heat source instead of a constant one 

is the decreasing of maximum temperature in any considered case to avoid steam pops [115] and the roll 

off phenomenon [116] during radiofrequency ablation. However, it has to be guarantee that the tumoral 

tissue destroyed is enhanced when pulsating heat is applied, or at least equal to the non-pulsating heat case. 

This means that it is important to reach the temperature threshold of necrosis of about 55 °C [117]. 

Moreover, there are other different methods to evaluate the target tissue necrosis, such as the cumulative 

equivalent minutes at 43 °C and the Arrhenius model [110]. In this work, the Arrhenius equation is 

implemented, and the degree of tissue necrosis is defined as previously described in Eq. (4a). In this work, 

A = 3.247 x 1043 (s-1) and ΔH = 2.814 x 105 (J mol-1) are taken from literature [118]. In Fig. 22 the percentage 

of necrotic tissue vs the radius of the spherical tissue is shown for all cases here investigated at tst = 50 s for 

the non-pulsating condition and at tpul = 100 s for the pulsating one, that correspond to the end of thermal 

ablation for both cases, in order to have a comparison at the same power density. The tissue is considered 

100 % necrotic when Ω(t) = 1. From this figure it is evident that in most cases the values are very close. 

This means that pulsating heat allows to necrotize the same tumoral tissue of the non-pulsating heat source, 

but with lower maximum temperature, as shown before in Figs. 18 and 19.  

Temperature differences between tissue and blood are displayed in Fig. 23, for pulsating and non-pulsating 

heating in all cases investigated. It can be noticed that for all the porosities and with reference to the smallest 

diameter here investigated d = 0.008 mm (Fig. 23 (a), (b) and (c)), differences between the two phases 

temperatures are negligible, so Tt = Tb.  This because volumetric heat transfer coefficient becomes very 

high (see Table 6) due to the very small blood vessel diameter. In this case, local thermal equilibrium (LTE) 

hypothesis is verified. 
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Figure 21. Convective power density distributions at the center of the sphere for pulsating and non-

pulsating heating, when d=0.008 mm (capillaries), d=1.5 mm (secondary veins), and d=2.4 mm (main 

veins), for (a, d, g) ɛ=0.05, (b, e, h) ɛ=0.2 and (c, f, i) ɛ=0.6. 
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Figure 22. Percentage of necrotic tissue for pulsating and non-pulsating heating, when d=0.008 mm 

(capillaries), d=1.5 mm (secondary veins), and d=2.4 mm (main veins), for (a, d, g) ɛ=0.05, (b, e, h) ɛ=0.2 

and (c, f, i) ɛ=0.6. 

 

0

20

40

60

80

100

0 0.01 0.02 0.03

N
ec

ro
ti

c 
ti

ss
u

e
(%

)

r (m)

(a)

0

20

40

60

80

100

0 0.01 0.02 0.03

N
ec

ro
ti

c 
ti

ss
u

e 
(%

)

r (m)

(d)

0

20

40

60

80

100

0 0.01 0.02 0.03

N
ec

ro
ti

c 
ti

ss
u

e 
(%

)

r (m)

(g)

0

20

40

60

80

100

0 0.01 0.02 0.03

N
ec

ro
ti

c 
ti

ss
u

e 
(%

)

r (m)

(b)

0

20

40

60

80

100

0 0.01 0.02 0.03

N
ec

ro
ti

c 
ti

ss
u

e 
(%

)

r (m)

(e)

0

20

40

60

80

100

0 0.01 0.02 0.03

N
ec

ro
ti

c 
ti

ss
u

e 
(%

)

r (m)

(h)

0

20

40

60

80

100

0 0.01 0.02 0.03

N
ec

ro
ti

c 
ti

ss
u

e 
(%

)

r (m)

(c)

0

20

40

60

80

100

0 0.01 0.02 0.03

N
ec

ro
ti

c 
ti

ss
u

e
(%

)

r (m)

(f)

0

20

40

60

80

100

0 0.01 0.02 0.03

N
ec

ro
ti

c 
ti

ss
u

e 
(%

)

r (m)

(i)

d=0.008 mm d=0.008 mm d=0.008 mm

d=1.5 mm d=1.5 mm d=1.5 mm

d=2.4 mm d=2.4 mm d=2.4 mm



68 

 

 

Figure 23. Differences between tissue and blood temperatures at the center of the sphere for pulsating and 

non-pulsating heating, when d=0.008 mm (capillaries), d=1.5 mm (secondary veins), and d=2.4 mm (main 

veins), for (a, d, g) ɛ=0.05, (b, e, h) ɛ=0.2 and (c, f, i) ɛ=0.6. 
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The geometry of the model is shown Fig. 24, which includes an RF applicator (comprised of metal electrode 
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500 kHz, and the electric and thermal properties of the materials used in the models are shown in Table 8. 

Since the temperature dependence of thermal conductivity is very small this is considered constant. 
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consider the drastically reduced water content loss as temperature increases and vaporization occurs [119]. 

 

0.015( 37)0.19                                        0 °C 99 °C

0.19 2.5345                                         99 °C 100 °C
( )

0.19 (2.5345 0.50183( 100))     100 °C 105 °C

0.19 2.5345 1

Te T

T
σ T

T T

−  

  
=

 − −  

  2

       

0                                             105 °CT−






 

                                    (79) 

 

 

Figure 24. Two-dimensional axisymmetric model consisting of a fragment of liver tissue and an internally 

cooled electrode (out of scale, dimensions in mm).  

 

Table 8. Properties of the materials modeled [120, 121, 122]. 

 ρ (kg·m-3) c (J·kg-1·K-1) k (W·m-2·K-1) σ (S·m-1) 

Liver 1080a 3455a 

 0.502 

 

 

See Eq. (1) 

 

 
370b 2156b 

Blood 1000a 

370b 

3639a 

2156b 

 

0.502 

 

Electrode 8000 480 15 7.4  106 

Plastic 70 1045 0.026 10-5 

aAt temperatures below 100°C, and b  above 100°C 

 

4.2.2. Electrical problem equations 

The heat source from RF power Qext (Joule losses) is given by: 

 

Qext =|E|2                                                                                                                                                 (80) 

 

where E is the electric field. E = −V is obtained from the governing equation of the electrical problem 
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·(()V=0),  being the electrical conductivity and V the voltage.  

A constant voltage is set on the ablation electrode during the entire protocol duration of 720 s except during 

roll-offs, when impedance rises by 30 Ω, in which case the standard roll-off protocol of switching off the 

applied voltage for 15 s is followed.  

The three voltage values employed are 45 V, 65 V and 90 V. This choice covers the range from the highest 

roll-off avoidance value (45 V) to the highest standard protocol value used in clinical practice (90 V) [109].  

For the electrical boundary conditions, an insulation electrical condition is applied to the contours of the 

tissue, except for top and bottom, which represent the dispersive electrode, where a condition V = 0 V is 

set. 

 

4.2.3. Thermal problem equations 

Three different bioheat models are implemented: the Pennes’, LTNE and LTE. First, the issues common to 

all three models will be presented. Initial and boundary tissue temperature are 37°C. The thermal cooling 

effect inside the electrode is modeled by applying a convective heat flux (qc) to the internal boundary of 

the electrode as follows: 

 

( )c r r tq h T T= −                               (81)    

                                                                                                                             

where hr is the thermal convective coefficient (3127 W m-2 K-1), Tt the tissue temperature and Tr the coolant 

temperature (5°C) as described in [109]. Thermal damage is computed using the Arrhenius model, in which 

tissue damage is increased with time of exposure, and it is obtained as follows from an exponential 

relationship between tissue exposure temperature, time and the kinetic parameters that account for 

morphologic changes in tissue relating to the thermal degradation of proteins [33]: 

 

Δ

( )

0

Ω( )
tot

g t

Ht

R T t

tott Ae dt
−

=                                            (82)   

                                                                                                                   

where A is the frequency factor (7.39  1039 s-1), ΔH is the activation energy for the irreversible damage 

reaction (2.577  105 J mol-1) [123], and Rg is the universal gas constant. The thermal damage contour is 

estimated using the isoline Ω = 4.6, which encompasses the zone with 99% cell death probability.  

 

4.2.3.1 Modified Pennes’ equation 

Pennes’ bioheat model is starting point for the comparison of the models, based on the following equation: 

 

( ) ( )t
t t perf met extt

T
ρc k T Q Q Q

t


=    + + +


                                                                                                          (83) 
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where subscript t refers to the tissue, ρt is density, ct the specific heat, kt the thermal conductivity, Tt the 

temperature, t the time, Qperf the blood perfusion term, Qmet metabolic heat source (which is neglected in 

RFA applications [109]) and Qext is the external RF power density imposed to the tissue during RF power 

application (see Eq. (80)). To introduce vaporization into the Pennes’ equation, one alternative is to follow 

the enthalpy method as described in [120], so that the term (ρtct) in Eq. (83) becomes: 
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                                                              (84) 

 

where ρl and cl are density and specific heat of tissue at temperature below 100°C (liquid phase), ρg and cg 

are density and specific heat of tissue at temperature above 100°C (gas phase), hfg is the product of water 

latent heat of vaporization and water density at 100°C (2.17·109 J m-3), and Cw,t is the water content inside 

the liver tissue (68%) [121]. Furthermore, Qperf in Eq. (83) is defined as follows: 

 

( )perf d b b b b tQ β ρ c ω T T= −                              (85)          

 

where ρb and cb are the density and specific heat of blood respectively, ωb is blood perfusion coefficient 

(0.019 s-1) [124], Tb is blood temperature (which is assumed to be constant throughout the tissue and taken 

as body temperature of 37 C in Pennes’ model), and βd is a coefficient that is 0 or 1 depending on the value 

of thermal damage function Ω (see Eq. (82)), so, βd = 0 for Ω ≥ 4.6 and βd = 1 for Ω< 4.6. 

 

4.2.3.2 Modified LTNE model 

The second model is based on a modified form of the Local Thermal Non-Equilibrium equations, first 

developed in 1997 by Xuan and Roetzel[48] to model heat transfer in a porous medium. As previously 

described, the entire biological medium is divided into two distinct phases: the tissue phase, which is the 

solid part, made up of cells and interstitial spaces, and the blood phase, which is the fluid part, represented 

by the blood flowing through the solid phase. We thus have two energy equations for this model, slightly 

different from Eqs. (37) and (38), one for the tissue temperature (Tt): 

 

( )( ) ( ) ( ) ( )21 1 ( ) 1
t

t t t b d b b b t extt

T
ε ρc ε k T ha T T β ρ c ω T T ε Q

t


− = −  − − + − + −


                                (86) 

             

and one for the blood temperature (Tb): 
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( ) ( )2 ( )u
b

b b b t b d b b t b extb

T
ε ρc β T εk T ha T T β ρ c ω T T εQ

t

 
+  =  + − + − + 

 
                             (87) 

 

The second terms on the right side of Eqs. (86) and (87) describe the interfacial convective heat transfer 

between blood and tissue phases across the vascular wall as defined by Newton’s cooling law. Note that 

the Pennes’ model does not consider any advective term such as the second term on the left side of Eq. (87), 

but an overall blood perfusion term as a heat sink for tissue. The LTE and LTNE models split the Pennes’ 

equation perfusion term into a modified perfusion term and a convective term [51]. The modified perfusion 

term in the porous media-based models (third term on the right side of Eqs. (86) and (87)) differs from Eq. 

(85) for the value of the perfusion coefficient ω, which is ω = 0.0005 s-1, instead of ωb = 0.019 s-1, to 

consider the modification described above. In fact, Pennes obtained this coefficient for the volume flow of 

blood through tissue by fitting his model with experiments. He specified that 0.0005 s-1 is the most suitable 

value when the balance between blood and tissue is incomplete. Nakayama et al. also used this value in 

their work on LTNE equations [51]. 

The volume averaging technique is employed to consider the volume average quantities of the variables 

[71], so that the symbol <> refers to the average volume of a generic variable and is neglected from this 

point onwards. In the LTNE model, the most important modifications regard the phase change and blood 

velocity. In fact, the phase change is considered separately in both phases, while vaporization only refers 

to water in the tissue in the Pennes’ model (see Eq. (84)). Vaporization is thus included as in Eq. (84) for 

the tissue phase, while for the blood phase we have: 
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In this way the evaporation of water in blood is included, choosing the value of water content in blood Cw,b 

= 79% as in [125]. Four different blood velocity directions were considered to simulate a more realistic 

vascular network and the initial values were the same in all four directions uz = u-z = ur = u-r, where directions 

z and r are specified in Fig. 24. As for blood perfusion, blood velocity is considered zero when cell death 

probability was 99% according to the βd coefficient. Terminal artery blood velocity was chosen following 

the experimental values reported in Crezee and Lagendijk [88], a reasonable choice according to Chen and 

Holmes’ LTNE model [42], in which blood heat exchange is assumed to occur only downstream of the 

terminal arteries before the arterioles. Blood velocity value is thus assumed reasonably to be 0.4 cm·s-1, 

with a blood vessel diameter d = 0.03 mm. Furthermore, four different porosity values are considered, ɛ: 

0.2, 0.3, 0.4 and 0.6 to employ the liver values given in clinical and numerical studies in the literature [80, 

126-129]. These, in fact, show wide dispersity because of the different assessment methods considered 
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[126, 128]. The interfacial heat transfer coefficient h is 170 W·m-2·K-1, as in Yuan [72], based on 

experimental measurements. Table 9 summarizes the specific surface areas a and volumetric convective 

coefficients hv=ha for all the cases considered. 

 

Table 9. Volumetric transfer areas and volumetric heat transfer coefficients considered in LTNE. 

a (m-1)     hv (W·m-3·K-1) 

  ɛ = 0.2   ɛ = 0.3   ɛ = 0.4   ɛ = 0.6      ɛ = 0.2   ɛ = 0.3   ɛ = 0.4   ɛ = 0.6    

26667    40000     53333    80000    4.53E6   6.80E6   9.07E6   1.36E7 

a: volumetric transfer area; hv: volumetric heat transfer coefficient 

 

4.2.3.3 Modified LTE model 

The LTNE model described above considers the blood phase and the tissue phase at two distinct 

temperatures (i.e., TtTb). However, when the local thermal equilibrium hypothesis is maintained, tissue 

and blood are really at the same temperature, so that Tt= Tb= T and Eqs. (86) and (87) can be combined in 

a single equation as follows: 

 

( )( ) ( ) ( ) ( ) 21 1 t b extt b b

T
c c c T k k T Q

t


 − + +   =  − +  +   

u                                            (89) 

 

In this model the heat sink effect for tissue is only represented by the advective term related to the blood 

velocity. In fact, when Eqs. (86) and (87) are combined the perfusion term disappeared.  Note that in this 

case local thermal equilibrium should be a good approximation for temperature distributions because of the 

small size of the vessels considered (as described in [50, 121, 130]), while this assumption would not be 

valid in the presence of larger vessels. Even if the two phases are at the same temperature, they have 

different water contents, as in the LTNE model, so that vaporization was included as in Eqs. (84) and (88) 

by considering Tt= Tb= T. The assumptions on blood velocity for LTNE are also valid for this model. 

 

4.2.4. Numerical approach and validation 

The three models are numerically solved with the software Comsol Multiphysics (Burlington, MA, USA). 

A triangular mesh is employed with a finer size on the boundary between electrode and tissue domains as 

in [109], where the highest temperature gradients take place. The grid convergence is verified on the 

maximum tissue temperature (Tt,max) obtained at first roll-off time. When the difference between simulations 

is less than 0.5% in Tt,max former mesh size is considered as appropriate. A similar convergence test is 

employed to estimate the optimal outer dimensions. The PARDISO direct solver is used with the implicit 

intermediate Backward Differentiation Formulas (BDF) time stepping method, where the intermediate 

configuration is chosen to fix the initial and maximum steps of the solver, in this case 0.01 s and 1 s, 

respectively.  

As regards the comparison of our computer results with in vivo experimental studies in the literature, 



74 

 

Goldberg et al [105] reported a coagulation diameter of 3.7 ± 0.6 cm for a pulsed protocol similar to the 90 

V case. This value agrees with the results from the LTE and LTNE models with ɛ = 0.3 (which is the most 

realistic published values [126-128, 131]), i.e., 3.42 cm and 3.47 cm, respectively. Note that the exact 

protocol is unknown for the specific case, but the predominant current peak of about 1600 mA is 

comparable with the 1500 mA predominant peak obtained in our case. Although these differences could 

slightly affect the results, they did not affect the overall comparison of all the models. 

Figure 25 compared tissue temperature evolution at 10 and 20 mm from the electrode between the 

experimental results in [105] and the three bioheat models: Pennes’ equation, LTE model with ɛ= 0.3, and 

LTNE model with ɛ= 0.3, respectively. 

It can be seen that the temperature difference between the porous media-based models and the experimental 

data are 4°C and 2°C at 10 mm and 20 mm, respectively. However, the slightly higher predominant current 

peak could partially justify this difference. At 10 mm the temperature differences between the two porous 

media-based models and Pennes’ equation are only about 2°C, mostly in the last 200 s, so the three bioheat 

models come reasonably close to the experimental data. However, at 20 mm, the differences between both 

the LTE and LTNE models and Pennes’ equation are 8 °C, which justifies the difference of about 1 cm in 

the final coagulation diameters obtained and suggests that the porous media-based models could be more 

accurate than Pennes’ in this case of very similar protocol. The LTE and LTNE model results confirmed 

that the thermal local equilibrium is maintained in this case, as explained previously, so that they also give 

very similar outcomes in terms of tissue temperature.  
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Figure 25. Temperature profiles for (a) Pennes’ equation, (b) LTE equation with ɛ = 0.3, (c) LTNE 

equations with ɛ = 0.3, and in vivo experimental results obtained by Goldberg et al. [105] 

 

4.2.5. Results 

The results are given in terms of the minor diameter of coagulation zones dc (transverse diameter to the 

applicator shaft in r direction in Figs. 26 and 27), total energy delivered during the application ERF, 

maximum tissue temperature reached Tt,max, total time in which the generator is “on” (ton), time of first roll-

off (troll-off) and number of roll-offs Nroll-off, distinguishing between the Pennes’, LTNE and LTE results with 
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four different porosity values.  

 

 

Figure 26. Tissue temperature distributions after 720 s of applying 45 V computed from Pennes’ bioheat 

model (a), LTE model (b-e), and LTNE model (f-i) for different porosity values (ɛ). White line represents 

coagulation zone contour. 

 

 

Figure 27. Tissue temperature distributions after 720 s of applying 65 V computed from Pennes’ bioheat 

model (a), LTE model (b-e), and LTNE model (f-i) for different porosities (ɛ). White line represents 

coagulation zone contour. 

 

All the models employed are compared at voltage values of 45, 65 and 90 V for 720 s. As expected, only 
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in the 45 V case the absence of roll-offs allows RF power to be applied continuously for the entire 720 s. 

When roll-offs occur at 65 and 90 V the pulsing protocol is activated [109]. 

Table 10 shows the results of the 45 V simulations. The first finding is that the coagulation diameters 

computed from the LTE and LTNE models are smaller than those from the Pennes’ model for all porosity 

values.  

 

Table 10. 45 V RFA results computed for different bioheat models (Pennes’, Local Thermal Equilibrium, 

Local Thermal Non-Equilibrium) and porosity values. 

Model ε dc(cm) ERF(kJ) ton (s) troll-off(s) Nroll-off Tt,max (°C) 

Pennes - 1.94 19.7 720 - - 106 

 

LTE 

0.2 1.81 19.5 720 - - 106 

0.3 1.30 18.6 720 - - 105 

0.4 1.01 17.7 720 - - 101 

0.6 0.70 16.7 720 - - 87 

 

LTNE 

0.2 1.69 19.4 720 - - 105 

0.3 1.23 18.2 720 - - 103 

0.4 0.94 17.4 720 - - 94 

0.6 0.65 16.5 720 - - 81 

dc: coagulation diameter; ERF: applied RF energy; ton: total time generator is “on”; troll-off: time of first roll-

off; Nroll-off: number of roll-offs. 

 

For instance, the difference between Pennes’ and LTE ranges from only 1.3 mm for ε = 0.2 to 12.4 mm for 

ε = 0.6. The coagulation diameter reduces dramatically as porosity increases (from 0.2 to 0.6) and the value 

of the maximum temperature in tissue also drops. In fact, the higher the porosity, the larger the convective 

contribution of the mass blood flux.  

At lower temperatures electrical conductivity increases less, so impedance (Z) decreases less, and RF 

applied power decreases too (P = V 2/Z). This is confirmed by the reduced energy (19.5 kJ to 16.5 kJ when 

porosity rises from 0.2 to 0.6). This highlights the importance of considering the blood volume fraction, 

(i.e., porosity) in bioheat thermal ablation models. The porosity of different organs ranges from negligible 

values such as the brain (0.03 to 0.05) to very high as in liver (about 0.3) and kidney (about 0.35) [79, 129, 

132-136]. 

The same organ can have different porosities in different physiological conditions, as happens for 

example in chronic liver hepatitis and cirrhosis, when porosity can be less than 0.2 [126]. 

 Figure 26 shows temperature distributions and coagulation contours at 45 V and 720 s computed from 

the Pennes’, LTE and LTNE models, respectively. The mean temperature dropped in the domain as porosity 

increased. 

The results of the LTE and LTNE models at the same porosity value are almost identical. As all the cases 

referred to a tissue with infiltrating terminal arteries, as described in Section 4.2.3.2, the values of blood 

vessel diameter and blood velocity in the LTNE model were small enough to validate the local thermal 
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equilibrium assumption, in agreement with the results reported in [50, 72, 137], which all confirmed that 

the LTE temperature distributions agree with those of LTNE only when small blood vessels are considered 

(up to 0.03 mm) and blood velocity is less than 0.4 cm s-1, showing that blood does not act as a heat sink in 

these cases. Note that the LTNE and LTE equations are not limited to model vessels smaller than 1 mm, 

but can also model larger vessels, which were not considered in this work. 

Tables 11 and 12 show the results for 65 and 90 V, respectively. Unlike 45 V, the coagulation diameters 

computed from the LTE and LTNE models with 65 and 90 V at all porosity values are greater than those 

from the Pennes’ model, except for LTNE ε = 0.6. This can be explained by their different ways of applying 

power: at 45 V it is continuous for 720 s, so that the only physical phenomenon that affects coagulation 

zone size is the larger heat loss through blood as porosity increased, which also mean less energy delivered 

in the LTNE and LTE models. Instead, the higher voltage values involving alternating periods of rising 

(power on) and falling (power off) temperatures weigh on the different thermal inertia of the models. In 

fact, unlike Pennes’ equation, they consider solid and fluid phases separately at different temperatures and 

water contents. This results in a better heat storage capability in the “off” periods, which becomes 

determinant in achieving necrosis, especially away from the electrode, and so it produces greater final 

coagulation diameters. This can also be seen in Figure 25 concerning the comparison with experimental 

results. 

As for 45 V, at these voltages the larger the porosity (from 0.2 to 0.6), the smaller the coagulation diameter 

(from 4.09 to 3.17 cm for LTE and 3.72 to 2.23 cm for LTNE at 65 V, from 4.13 to 3.16 cm for LTE and 

3.94 to 2.62 cm for LTNE at 90 V).  

Interestingly, the smaller diameter is associated with a slight increase in delivered energy: from 28.6 to 32.1 

kJ for LTE and from 31.2 to 34.2 kJ for LTNE at 65 V, and 33.8 to 36.2 kJ for LTE and 38.1 to 39.8 kJ for 

LTNE at 90 V. This is probably due to roll-offs again, involving different thermal inertia in the LTE and 

LTNE models.  

Table 11. Results for different bioheat models at 65 V. 

Model ε dc(cm) ERF (kJ) ton (s) troll-off(s) Nroll-off Tt,max (°C) 

Pennes - 2.47 30.7 494 126 16 114 

 

LTE 

0.2 4.09 28.6 437 127 19 113 

0.3 3.46 30.2 464 135 18 112 

0.4 3.21 30.3 475 151 17 112 

0.6 3.17 32.1 514 178 14 112 

 

LTNE 

0.2 3.72 31.2 480 131 16 113 

0.3 3.17 31.8 495 145 15 112 

0.4 3.02 32.2 511 164 14 113 

0.6 2.23 34.2 555 209 11 113 

dc: coagulation diameter; ERF: applied RF energy; ton: total time generator is “on”; troll-off: time at first roll-off; Nroll-off: 

number of roll-offs. 
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Table 12. Results for different bioheat models at 90 V. 

Model ε dc(cm) ERF (kJ) ton (s) troll-off(s) Nroll-off Tt,max (°C) 

Pennes - 2.50 36.5 270 31 30 119 

 

LTE 

0.2 4.13 33.8 239 31 32 118 

0.3 3.42 34.9 251 35 32 119 

0.4 3.28 35.3 254 36 31 118 

0.6 3.16 36.2 270 38 30 119 

 

LTNE 

0.2 3.94 38.1 270 34 30 118 

0.3 3.47 38.8 281 35 30 120 

0.4 2.99 38.6 286 36 29 117 

0.6 2.62 39.8 300 40 28 118 

dc: coagulation diameter; ERF: applied RF energy; ton: total time generator is “on”; troll-off: time at first roll-off; Nroll-off: 

number of roll-offs. 

 

When porosity is increased, the larger blood volume removes heat from the tissue more effectively, which 

simultaneously delays roll-off, i.e., power can be applied longer (higher values of ton), requiring slightly 

higher power in LTE and LTNE. The maximum tissue temperature is quite similar in all cases at the same 

voltage level (114 ºC for 65 V and 120 ºC for 90 V) because in all cases the on-off periods avoid the 

temperature rising above the limit value. When the LTE and LTNE models are compared at the same 

porosity value, the LTNE coagulation diameters are similar to or even smaller, with longer ton and higher 

energy, possibly because of the effect of vaporization at different temperatures for tissue and blood, which 

is more significant for these applications than at 45 V. For the same bioheat model, the results obtained at 

the two different voltage levels are almost identical, (differences in coagulation diameter from 0.01 cm to 

0.07 cm in LTE and from 0.03 to 0.39 cm for LTNE), which suggests that 65 V is enough to obtain 

maximum coagulation diameter after 12 min.  

Figure 27 shows temperature distributions and coagulation contours at 65 V and 720 s computed from the 

Pennes’, LTE and LTNE models, respectively. Comparing Figures 27 and 28 shows the different 

coagulation shapes at voltages higher than 45 V. In fact, at 65 V the zones are more spherical for both the 

LTE and LTNE models than Pennes’, especially at low porosities. 

Figure 28 summarizes the coagulation zone diameters computed from the three bioheat models at different 

porosities (models based on porous media approach). 
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Figure 28. Transverse diameters of coagulation zone (dc) computed after 720 s of RFA for the three 

considered bioheat models (Pennes’, LTE and LTNE) at different porosity values () and applied voltages: 

45 V (a), 65 V (b) and 90 V (c). 

 

As highlighted in Figs. 26−28, the differences in terms of coagulation diameters and temperature 

distributions could differ significantly or not at all between the porous media-based and Pennes’ models, 

according to applied voltage and porosity. For instance, at 45 V, Pennes’ provides the same result as LTE 

and LTNE for  = 0.2. In fact, the range of differences in coagulation diameters obtained is from only 1 

mm at 45 V and LTE  = 0.2 to about 1.60 cm for the highest voltage applied and LTE  = 0.2. These 

differences could play a relevant role in predicting coagulation zones, since the risk could be either 

incomplete ablation and tumor recurrence or overestimating the ablated area and healthy tissue necrosis.  

 

 

4.3. Numerical analysis of radiofrequency ablation in a tumor tissue bounded by healthy tissue 

In radiofrequency ablation (RFA) modelling, geometry and thermophysical properties play a key role. Thermal 

and electrical properties vary with temperature, and they depend on the organ considered [137], and on its 

condition (tumoral or healthy) [138]. A review about functions proposed to consider temperature dependence 

of such properties has been presented by Trujillo and Berjano [139], showing that results are not significantly 

affected by the kind of function employed. Haemmerich et al. [140] found that electrical conductivity of tumour 

tissue can be about two times than that of healthy tissue. Similar differences can be found in Zhang et al. [110], 

where also thermal conductivity at 21 °C for liver tumour is about 20% higher than that of a healthy liver. A 

study that considers two different layers of tissue, i.e., tumour tissue and healthy, has been already proposed by 

Rattanadecho and Keangin [80] with references to ex vivo microwave ablation. They modelled tissues as porous 

layers under the assumption of local thermal non equilibrium with different properties depending on if tissue 

is healthy or not, without including vaporization of water in the two phases. In this paragraph, a porous media 

model for heat transfer predictions in RFA for in vivo liver tissue is presented. The objective is to assess how 

important is to consider separately tumour and healthy tissue in such problems. Governing equations are 

developed with references to the porous media theory under the assumption of local thermal non-equilibrium, 

while vaporization is considered with the effective heat capacity method. Two geometries are compared: a 
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healthy liver tissue and a tumoral tissue bounded by a healthy tissue. Results are developed by considering 

different electrical and thermal properties for tumoral and healthy tissue, and properties variation with 

temperature is also considered. 

 

4.3.1. Mathematical model 

RFA of liver tissue is numerically simulated considering two scenarios: a homogeneous healthy tissue and a 

spherical tumour bounded by healthy tissue. The geometry of the problem is shown in Figure 29, in which it 

can be recognized the RF applicator with a 1.5 mm diameter active electrode and a plastic handle.  

 

 

Figure 29.  Geometry of the model, which consists of a cooled electrode applied on healthy liver tissue 

and tumoral tissue bounded by healthy tissue. (out of scale, dimensions in mm). 

 

An internally cooled 3-cm electrode is completely inserted in the hepatic tissue. As regards the tumoral tissue, 

a 2 cm radius spherical tumour is considered. The problem has axial-symmetry, so it is possible to implement 

a 2D axisymmetric model in order to minimize computing time. The heating in tissue domain is modelled 

with the porous media theory, and a modified Local Thermal Non-Equilibrium bioheat model is used for 

the energy equations, thus two different equations are implemented for the extra-vascular and vascular 

regions as described in paragraph 4.2.3.2, by Eqs. (86) and (87). Moreover, the assumptions done for the 

model described previously in paragraph 4.2 are the same, except the properties used in the different 

domains, as shown in Table 13. To notice that the LTNE equations are modified to include the water content 

vaporization in both liver tumoral tissue and blood separately, by following the enthalpy method described 

by Abraham and Sparrow [120], as previously reported in Eqs. (84) and (88) for tissue phase and blood 

phase respectively, where Cw is the water content inside the tumoral liver tissue (81%) or in the blood (79%) 

as found in literature [125, 141]. 
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Table 13. Characteristics of the materials employed in the model [109, 110, 140].  

 

 ρ (kg·m-3) c (J·kg-1·K-1) k (W·m-2·K-1) σ(37°C) (S·m-1) 

Healthy liver 1080a 

370b 

3455a 

2156b 

0.502 0.19 

Tumour 

 

Blood 

 

Electrode 

Plastic 

1045a 

370b 

1000a 

370b 

8000  

70 

3760a 

2156b 

3639a 

2156b 

480 

1045 

0.600 

 

0.502 

 

15 

0.026 

0.45 

 

 

 

7.4 x 106 

10-5 

a at temperature below 100°C, b at temperature above 100°C 
 

In this work, the values of the electrical conductivity of both healthy and tumoral liver tissue evaluated at 

37°C are taken from literature [109, 140], and their values are 0.19 (S m-1) and 0.45 (S m-1) respectively. 

So, according to Eq. (90), in Figure 30 the different electrical conductivity profiles of both healthy and 

tumoral tissue are shown.  
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In addition, two different voltages (45 and 65 V) are here employed. This choice is due to consider the 

highest value which avoids the roll-off phenomenon (45 V), and the value which causes the highest 

coagulation diameter. Roll-off happens when impedance increases significantly since the tissue around the 

electrodes becomes completely dehydrated [109]. In this case it is set that the roll-off happens when 

impedance becomes 30 Ω higher than the initial one. Furthermore, the experimental protocol in which the 

applied voltage is switched off for 15 s when the roll-off happens is applied. 

As regards the initial and boundary conditions of the problem, tissue and blood temperatures considered 

are 37°C. The thermal cooling effect inside the electrode is modelled by applying a convective heat flux 

(qc) to the internal boundary of the electrode as previously seen in paragraph 4.3.2. in Eq. (81). 

Furthermore, an insulation electrical condition is set to the contours of tissue, except at the bottom and top 

contours, which represent the dispersive electrode, where a condition V = 0 V is employed. Governing 

equations are numerically solved with the finite element commercial code COMSOL Multiphysics 

(Burlington, MA, USA). A triangular mesh made up by 2509 elements is used with a finer size on the 

boundary between electrode and tissue domains as in [109], where the higher temperature gradients take 

place. PARDISO direct solver is employed to solve the equations, the time stepping method is the 

intermediate backward differentiation formulas (BDF) with initial and maximum steps of 0.01 s and 1 s, 

respectively. Furthermore, for each time step the absolute tolerance is set equal to 10-3. 
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Figure 30.  Temperature-dependent electrical conductivity of both healthy and tumoral tissue. 

 

4.3.2. Results 

The results are shown in Table 14 in terms of the coagulation zones transverse diameters dc (in r direction 

of the following Figure 32), total energy delivered during the application (ERF), maximum tissue 

temperature reached (Tt,max), total time in which the generator is “on” (ttot,on), time of first roll-off (troll-off) 

and number of roll-off (Nroll-off).  

 

Table 14. Results with and without tumoral tissue for 45 V and 65 V. 

45 V dc (cm) ERF (kJ) ton (s) troll-off (s) Nroll-off    Tt ,max (°C) 

Healthy liver 

 

1.23 18.2 720    -                  -  103 

Healthy liver 

and tumour 

3.40 34.8 720 -                   -         105 

65 V dc (cm) ERF (kJ) ton (s) troll-off (s) Nroll-off    Tt ,max (°C)  

Healthy liver 

 

3.17 31.8 495      145                    15         112 

Healthy liver 

and tumour 

4.26 50.2 460      117                    18         117 

 

The first outcome for both the cases is the prominent increase of the coagulation diameter when the 

spherical tumour is included in the model. In fact, the higher electrical conductivity of tumour gives higher 

energy Qext from Eq. (80). Distinguishing the 45 V and 65 V cases, the coagulation diameter increases of 2.17 

cm and 1.09 cm respectively, so the effect is most evident with lower voltage. Focusing on the 65 V application, 

when the tumour is considered, the appearance of the first roll-off is advanced 28 s, so the total time during 

which the generator is applying power is 35 s smaller, nevertheless, the resulting energy delivered is 58% 

higher. All the results obtained from Table 14 are highlighted in Figure 31. As regards the tissue temperature, 

while the peak is similar comparing the models (with healthy tissue and the tumoral one), the temperature 

distribution changes drastically when 45 V is applied, as shown in Figure 32. In fact, the tumoral tissue entails 

higher mean temperatures inside the coagulation zone. Consequently, the higher mean temperatures reached 
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in the tumoral tissue cause larger coagulation zones and this is the key point of our results.  

 

 

 

Figure 31.  Coagulation diameters, total energy, total time of applied power and time of first roll-off after 

45 V and 65 V applied for healthy liver and tumoral hepatic tissue bounded by healthy liver. 

 

Figure 32 also shows that the spherical 2 cm tumour cannot be completely ablated performing 45 V RFA, 

so the risk of incomplete ablation and tumour recurrence is very high. Moreover, as regards the 65 V case, 

while the mean temperature distribution is higher when the tumoral tissue is included, the differences are 

not so relevant as in 45 V case. However, the spherical 2 cm tumour can be completely ablated in this case, 

avoiding the risk of tumour recurrence. 

Furthermore, it is interesting to display the tissue temperature evolution during the heating time in three 

different points along the r direction, in correspondence with the center of the electrode (z = 0.075 m). In 

Figure 33 tissue temperature profiles for 45 V is shown at 0.25 cm, 1 cm, and 2 cm far from the electrode. 

From Figure 33 it is highlighted the drastic temperature increase when the tumoral tissue is included in the 

domain. At the end of the application at 2 cm far from the electrode the temperature is lower than 50 °C 

and the complete ablation is not reached. 

Moreover, in Figure 34 the tissue temperature evolution is displayed for 65 V and it is confirmed that the 

differences in terms of temperatures are not so relevant as in 45 V application. However, the complete 

ablation of the tumoral tissue is obtained at the end of treatment; in fact, at 2 cm far from the electrode, in 

correspondence with the tumour contour, tissue temperature is about 50 °C.   
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Figure 32.  Tissue temperature distributions after 720 s of applied 45 V (a, b) and 65 V (c, d) computed 

for: healthy hepatic tissue (a, c) and tumoral hepatic tissue bounded by healthy liver (b, d). White and 

black lines represent the coagulation zone and tumour contours, respectively. 

 

 

 

Figure 33.  Tissue temperature evolution during 45 V RFA computed for: healthy hepatic tissue (a) and 

tumoral hepatic tissue bounded by healthy liver (b). 
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Figure 34.  Tissue temperature evolution during 65 V RFA computed for: healthy hepatic tissue (a) and 

tumoral hepatic tissue bounded by healthy liver (b). 

 

4.4. Conclusions 

The aim of the present section is to investigate the behavior of pulsating heat protocols in modelling heat 

transfer for thermal ablation treatment of tumors. First of all, in paragraph 4.1., different periodical heating 

schemes and tissues morphologies in a spherical tumor tissue are analyzed. The tumor tissue is modelled 

as a porous sphere and a LTNE model is employed. The pulsating effect is modelled with references to a 

cosine function with different frequencies, and such different heating protocols are compared at equal 

delivered energy. The results show that pulsating effect always reduces maximum temperatures compared 

to the non-pulsating case; this is a very important result since it allows to reduce the steam popping 

phenomenon that occurs in thermoablation. Moreover, by means of the analysis of the percentage necrotic 

tissue in the domain, it is shown that that pulsating heat allows to necrotize the same tumoral tissue of the 

non-pulsating heat source, but with lower maximum temperature. In paragraph 4.2., the thermal problem is 

coupled with the electric problem to compare three different heat transfer models for radiofrequency 

ablation (RFA) of in vivo liver tissue using a cooled electrode. The study is conducted implementing a low 

voltage and two high voltage levels in order to consider cases with and without roll-off. The results show 

that using a similar protocol than Goldberg et al. [105] (e.g. 90 V pulsed protocol with a predominant 

current peak of about 1500 mA and 15 s off periods), for an in vivo experimental case, the porous media 

model achieved a better agreement with the experimental results, since Pennes’ bioheat model tended to 

underestimate temperature fields for the cases here investigated. Finally, in paragraph 4.3., the same model 

is used to compare two distinct cases: a healthy liver tissue and a tumoral tissue bounded by the surrounding 

healthy liver. The considered different electrical and thermal properties for tumoral and healthy tissue play 

a fundamental role in the coagulation zones prediction. The outcomes show the relevant increase of the 

coagulation diameter, especially at low voltage, due to the higher electrical conductivity in tumoral tissue 

that entails higher total energy delivered at the end of the application. Even if the temperature peaks are 

about the same, the higher energy obtained gives higher mean temperatures in the domain. Furthermore, 

the temperature evolution in three different points of the tumour confirms the results above and highlights 
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the importance of distinguishing tumoral and healthy tissue in this kind of problem, in order to predict 

accurately the coagulation zones achieved during a thermal ablation. In fact, the results show that 2 cm far 

from the electrode, in correspondence with the tumor contour, tissue temperature is  50 °C only for 65 V 

application, so in this case the complete ablation of the tumoral tissue is reached. This is fundamental to 

avoid on the one hand an incomplete ablation and the consequent tumor recurrence, and on the other hand 

the coagulation of the surrounding healthy tissue. All the presented results highlight the importance of 

modelling accurately bioheat transfer in tissues, in order to improve medical protocols and devices in 

thermal ablation. 
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5.1. A novel Local Thermal non-equilibrium model for biological tissue applied to multiple-antennas 

configuration for thermal ablation 

 

Thermal ablation can be induced by using different insertions, or by using various applicators to obtain a 

more diffuse ablation zone at the same time. Harari et al. [142], indeed, performed experiments on both ex 

vivo and in vivo liver models, for two and three-antennas arrays and with sequential and simultaneous 

ablations. They showed that multiple antennas for microwave ablation provide more confluent ablations 

with higher temperatures, with respect to sequential power delivery. Similar conclusions have been found 

by Brace et al. [143], that performed experiments on female domestic swine on three simultaneous triaxial 

antennas. Another reason for why multiple-antennas ablation can be useful is the reduction of temperature 

peaks, at equal necrosis volume, in order to avoid undesired phenomena like steam pops [115]. 

In this section, different simultaneous antennas are numerically investigated and compared with the one 

antenna arrangement; cases with two- or three- antennas are investigated. The mathematical model is built 

up based on a sphere with uniform heating zones, that simulate antennas heating, in which porous media 

equations for tissue and blood is employed under the local thermal non equilibrium between the two phases 

assumption. The model is modified in order to consider two-phase water vaporization (tissue and blood). 

Furthermore, different blood volume fractions and blood vessels are considered. Governing equations are 

solved with the commercial finite element code COMSOL Multiphysics®, and comparisons between 

various antennas are performed at equal total delivered energy, in order to understand if larger ablation 

zones can be achieved and peaks avoided.  

 

5.1.1. Mathematical model 

The biological tissue computational domain is here modelled as a spherical geometry as shown in Figure 

35. The tumoral sphere radius is r1=3.10 cm and the heating volume is represented by internal spheres with 

different dimensions, depending on the three different antennas configurations analyzed in this work. 

 

 

Figure 35. Geometry of the physical domain for the three different antennas configurations: (a) single 

antenna, (b) double antennas and (c) triple antennas. 

 

Heating zone
Heating zones

Heating zones
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In the first case, the single antenna heating volume is described with a single sphere with a radius r2=0.620 

cm, the second arrangement is made up of two antennas and the two heating zones are modelled with two 

adjacent spheres with the same radius r3=0.492 cm, and finally, the last arrangement consists of three 

antennas represented by three identical adjacent spheres with a radius r4=0.430 cm, where the central sphere 

is placed in the middle of the whole computational domain. In this way, the total heating volume is the 

same for all the cases and equal to 1 cm3. In addition, it is possible to implement a 2D axisymmetric model 

in order to minimize computing time, since the problem has axial-symmetry, so the computational domains 

for the three different configurations are displayed in Figure 36. 

 

 

 

Figure 36. 2D computational domain for the three different antennas configurations: (a) single antenna, (b) 

double antennas and (c) triple antennas. 

 

The entire domain is treated with the porous media theory [71] as described in the previous paragraph 2.1.2., 

using a novel Local Thermal Non-Equilibrium bioheat model, modified in order to include the water content 

vaporization in both the phases. So, two different equations are implemented for the extra-vascular and 

vascular regions, modifying Eqs. (86) and (87) as follows, to neglect the perfusion term, which does not 

affect the results.  
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for the tissue phase: 
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In this case, four different types of blood vessel are considered, following the work of Crezee and Lagendijk 

[88]. So, diameters and the corresponding blood velocities of capillaries, terminal arteries, terminal 

branches, and tertiary branches are selected. Moreover, two different values for porosity are employed, i.e., 

0.1 and 0.3, to cover the experimental measures found in literature for different liver tissues [126, 128, 

131]. The interfacial heat transfer coefficient h is 170 W m-2 K-1, as in Yuan [72]. In Table 15 all the values 

employed for blood velocities and diameters are resumed, with the related specific surface areas a and the 

resulting volumetric convective coefficients hv = a·h for all the cases considered.  

 

Table 15. Values employed for diameters and blood velocities and the related specific surface areas and 

volumetric convective coefficients. 

 
d 

(mm) 

|u| 
(cm s-1) 

a 

(m-1) 

hv 

(W m-3 K-1) 

                                                                                      ɛ = 0.1    ɛ =0.3           ɛ = 0.1             ɛ =0.3    

Capillaries 0.008 0.07 50000      150000        8.50 x 106       2.55 x 107     

Terminal arteries 0.03 0.4 13333      40000          2.27 x 106       6.80 x 106     

Terminal branches 

Tertiary branches 

0.05 

0.14 

2 

3.4 

8000        24000     

2857        8571 

     1.36 x 106       4.08 x 106     

     4.86 x 105       1.46 x 106     

 

Furthermore, Qext is the external power density applied during the thermal ablation treatment and the symbol 

<> refers to the volume averaged quantity of a generic variable. As regards the fluid phase, the blood 

velocity is assumed uniform in all directions in order to simulate a sort of in vivo vascular network. 

Nevertheless, as the coagulation of tumoral tissue occurs, the blood velocity becomes zero, thus the β 

coefficient is introduced into Eq. (91), equal to 0 or 1 depending on the value of thermal damage function 

Ω defined here by using the Arrhenius model [33] as previously described in Eq. (82), where, in this case, 

A = 3.247 x 1043 s-1 and ΔH = 2.814 x 105 J mol-1 as in [110]. The thermal damage is evaluated using the 

D99 thermal damage contour, considering the isoline at Ω = 4.6, that corresponds to the 99% cell death 

probability, so the β coefficient will be 1 for Ω < 4.6 and 0 for Ω = 4.6. In fact, this value gives a better 

prediction of coagulation zone size than Ω = 1 (68 % probability of cell death).  Moreover, the LTNE 

equations are modified to include the water content vaporization in both liver tumoral tissue and blood 

separately, by following the enthalpy method described by Abraham and Sparrow [120], and previously 

reported in Eqs. (84) and (88) for tissue phase and blood phase respectively, where Cw is the water content 

inside the tumoral liver tissue (81%) or in the blood (79%) as found in literature [125, 141].  

As concerns the initial and boundary conditions, a uniform initial temperature distribution of 37 °C is 

assumed for both tumoral tissue and blood. For t > 0 temperature is maintained at 37 °C on the external 

contour, because the domain is large enough to neglect boundary effects from surroundings, and the 

adiabatic condition is employed on the symmetry axis, because of the axial symmetry of the model. Thermal 

properties of both tissue and blood phases are assumed to be isotropic through the domain and they are 

chosen according to Trujillo et al. [109] and Zhang et al. [110] as resumed in Table 16.  
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The external power density given is Qext = 5 x 106 W m-3 for each single heating volume in the different 

arrangements. The heating time is 100 s for all the cases, so the total external energy transferred to the 

tissue is 500 J. The LTNE equations are solved numerically by using the finite-element commercial code 

COMSOL Multiphysics software. A 2D axisymmetric model is employed to minimize computing time. A 

triangular mesh of 9388 elements is applied, the absolute tolerance used is 0.0001, the time stepping method 

is the intermediate BDF with initial and maximum steps of 0.001 s and 0.1 s.  

 

Table 16. Characteristics of the materials employed in the model. 

 ρ (kg·m-3) c (J·kg-1·K-1) k (W·m-1·K-1) 

Tumor 

Blood 

1045 

1000 

3760 

3639 

0.600 

0.502 

 

The model is validated by comparing tissue temperature profiles at the center of the sphere herein obtained 

with results from Yuan [72], where the LTNE model is employed for different conditions of porosity, blood 

velocities and external power densities for a cube-shaped tissue with a single cubic heating zone at the 

center. To notice that the geometry chosen by Yuan [72] is a cube with the same volume of the spheres 

used in the present work, so, the external power density is the same. In Figure 37, tissue temperature profiles 

are reported for two different heating conditions and porosities, considering three different blood velocities; 

they agree very well in all cases. 

 

 

Figure 37. Validation of the model. Tissue temperatures at the center of the sphere for present work and 

Yuan [72]: (a) ɛ=0.005, Qext = 2 x 106 W m-3 and (b) ɛ=0.05, Qext = 50 x 106 W m-3. 

 

5.1.2. Results 

The outcomes are presented for the three antennas configurations in terms of coagulation zones achieved 

at the end of the application, maximum temperatures obtained and temperature fields at different heating 

times, for two different values of porosity, i.e., ɛ=0.1 and ɛ=0.3, and four different types of blood vessels, 

i.e., capillaries, terminal arteries, terminal branches, and tertiary branches. The first result to highlight is 

that the size of the completely coagulated tissue, obtained at Ω = 4.6, is larger for all the three antennas 
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arrangements compared at the lowest porosity value ɛ=0.1, as shown in Figure 38. So, even if the total 

power and energy are the same in all the configurations, using multiple antennas instead of a single antenna 

offers a potential solution for creating ablation zones with larger dimensions. The coagulation zone 

increases by about 6 mm for all the blood vessels considered using the two-antennas configuration, while 

the three antennas configuration gives the best results with an increase of more than 1 cm for all the vessels, 

as it is displayed in Table 17. 

 

 

 

Figure 38. Thermal damage Ω at the end of the application and ɛ=0.1, for the three different antennas 

configurations, and the different tissue vascularizations: (a) capillaries, (b) terminal arteries, (c) terminal 

branches and (d) tertiary branches. 

 

Table 17. Coagulation diameters obtained for ɛ=0.1.  

 Coagulation diameter dc (cm) 

 1 antenna 2 antennas 3 antennas 

Capillaries 1.40 2.05 2.62 

Terminal arteries 1.36 2.01 2.58 

Terminal branches 1.16 1.78 2.27 

Tertiary branches 1.08 1.66 2.11 

 

Comparing the different coagulation zones for the same arrangement but at different blood vessels 

diameters, their width is almost the same or slightly reduces for terminal branches and tertiary branches. 
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This because as the blood vessel diameter increases, the blood velocity increases too, and the heat is 

removed more from the tissue phase by the blood phase.  

As regards the highest value of porosity ɛ=0.3, the size of the completely coagulated tissue, obtained at Ω 

= 4.6 is larger for the three antennas configuration when capillaries and terminal arteries are considered. 

However, simulating terminal branches and tertiary branches for the blood vessels, the 99% cell death 

probability is not achieved except for the terminal branches with one antenna arrangement, as shown in 

Figure 39.  

 

 

 

Figure 39. Thermal damage Ω at the end of the application and ɛ=0.3, for the three different antennas 

configurations, and the different tissue vascularizations: (a) capillaries, (b) terminal arteries, (c) terminal 

branches and (d) tertiary branches. 

 

For this value of porosity, the coagulation zone increases by about 6.5 mm for capillaries and terminal 

arteries using the two antennas configuration, while the three antennas configuration gives the best results 

again, with an increase of 1.2 cm for capillaries and terminal arteries, as it is resumed in Table 18.  

Because of the higher amount of blood fraction, in this case the heat removed from the tissue is higher 

compared to the previous case of lowest porosity, in fact the higher the porosity, the larger the convective 

contribution of the mass blood flux, so tissue temperatures are generally lower as the same blood vessels 
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diameters are considered. Thus, another important outcome to highlight regards the maximum tissue 

temperatures reached as it is shown in Figure 40. 

 

Table 18. Coagulation diameters obtained for ɛ=0.3.  

 Coagulation diameter dc (cm) 

 1 antenna 2 antennas 3 antennas 

Capillaries 1.40 2.05 2.62 

Terminal arteries 1.32 1.97 2.50 

Terminal branches 0.45 no no 

Tertiary branches no  no no 

 

 

 

 

Figure 40. Maximum tissue temperatures achieved for the three different antennas configurations, for the 

four different tissue vascularizations: (a) ɛ = 0.1 and (b) ɛ = 0.3 

 

It is clear from the figure that the three antennas arrangement allows to have lower maximum tissue 

temperatures in all the cases. This happens because the energy distribution in the single heating volumes in 

two antennas and three antennas configurations is more uniform, even if the total energy distributed in the 

heating zones is the same. This is another advantage of thermal ablation with multiple antennas, applying 

the same total power and energy. In fact, it is important to avoid very high temperatures, because of the 

complications that can occur such as the steam popping phenomenon [115], the roll off phenomenon [116] 

using radiofrequencies, the healthy tissue destruction, and the damage of medical devices. 

To show more in detail this aspect, in Figure 41 tissue temperature fields are displayed for the three different 

antennas arrangements at four different heating times, i.e., 25 s, 50 s, 75 s, and 100 s, choosing terminal 

arteries for blood vessels. This is a reasonable choice according to Chen and Holmes’ LTNE model [42] in 

which blood heat exchange is assumed to occur only downstream of the terminal arteries before the 

arterioles. As previously displayed, the porosity value does not affect the results for this type of 

vascularization, so only one case is shown, i.e., for ɛ = 0.3. Figure 41 gives a clearer overview of 

temperature distribution during the application; in fact, it can be easily observed the lower mean 

temperatures obtained as the number of antennas employed increases. The temperature decrease is due to 
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the lower power applied by the single antenna used in the multiple antennas’ configurations, even if the 

total applied power is the same in the three cases. The wider coagulation zones achieved by multiple 

antennas is clearly shown by the black lines in Figure 41. Moreover, it can be underlined that the 

coagulation zones are symmetric along both r and z directions, thus, considering a different antennas’ 

location, a different arrangement could be selected depending on the tumor shape.  

 

Figure 41. Tissue temperature distributions at different heating times for one antenna (a-d), two antennas 

(e-h) and three antennas (i-l) configurations. Terminal arteries for the blood vessels and ɛ = 0.3 for the 

porosity are considered.  

 

5.2. Conclusions 

In this section The purpose the effects of single, double, and triple antennas arrangements on thermal 

ablation of a tumoral tissue is described. The tissue is modelled as a porous medium. The heat sources are 

referred only to a part of the tissue domain and they release equal total power and energy for different 

antennas configurations. A Local Thermal Non-Equilibrium (LTNE) model is employed and modified in 
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order to take into account the vaporization of the different water content in tumor and blood, and governing 

equations with the appropriate boundary conditions are solved with the finite-element commercial software 

COMSOL Multiphysics®. Results are presented in terms of temperature fields and tissue damage for the 

three different antennas arrangements, different porosities and vascularizations. Even if the total power and 

energy are the same in all the analyzed arrangements, using multiple antennas instead of a single antenna 

offers a potential solution for creating ablation zones with larger dimensions. Moreover, the multiple 

antennas arrangements allow to have lower maximum tissue temperatures in all the cases compared to the 

single antenna. These results are very important to improve the medical protocols and devices in thermal 

ablation, in fact, the objective of the treatment is to achieve the complete necrosis of tumoral tissue, 

avoiding very high temperatures and the related complications such as the steam popping phenomena, the 

roll off phenomenon in radiofrequency ablation, the healthy tissue destruction and the damage of medical 

devices. Moreover, along the direction of the antenna’s location, the wider coagulation zones achieved by 

multiple antennas suggests that a different arrangement could be selected depending on the tumor shape. 
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CONCLUSIONS 

This thesis work is focused on the key role that modelling heat transfer can play in thermal therapies, 

especially in thermal ablation treatments of cancerous tissues, since it is nowadays considered a promising 

technique to overcome the critical issues of the most common procedures such as surgery, chemotherapy, 

and radiotherapy. Thermal ablation of tumors, indeed, is a minimally invasive treatment option for cancer, 

with certain advantages such as minor side effects, shorter hospital stays and consequently lower costs. The 

most common approach is a percutaneous treatment performed with the aid of imaging techniques, during 

which an energy source (commonly radiofrequency or microwave) is focused in the target zone (the tumoral 

tissue) by means of a probe, that causes the tumor destruction. The main shortcoming of performing a 

thermal ablation is to not achieve the complete tissue ablation, so the risk of a tumor recurrence becomes 

higher. In this context, modelling heat transfer in thermal therapies allows to develop more and more 

accurate bioheat models for clinical applications, predicting the final necrotic tissue diameters and volumes. 

In this thesis work, a general overview of the different employed techniques in hyperthermia treatments of 

biological tissues and in particular tumors is first of all introduced, together with techniques used to estimate 

thermal damage. Then, different bioheat models are implemented and numerically solved on distinct 

simulated biological media, considering various ablation protocols such us the use of pulsating heat sources 

and probes arrangements, obtaining relevant results. 

The first result suggests that the porous media-based Local Thermal Non-Equilibrium equations are the 

starting point to develop more and more accurate bioheat models, since it is a good compromise between 

accuracy and complexity. Secondly, the most powerful result achieved using a pulsating heat source instead 

of a constant one is the decreasing of maximum temperature in any considered case. Furthermore, the 

evaluation of tissue damage at the end of treatment shows that pulsating heat allows to necrotize the same 

tumoral tissue area of the non-pulsating heat source. In addition, a more complex model is developed to 

study a pulsating protocols application for radiofrequency ablation (RFA) of in vivo liver tissue using a 

cooled electrode and three different voltage levels. Three distinct heat transfer models coupled to the 

electrical problem are compared and modified to consider two-phase water vaporization. The results in 

terms of coagulation transverse diameters and temperature fields at the end of the application show 

significant differences, especially between Pennes equation and the modified LTNE and LTE models at 

high voltage level. The new modified porous media-based models cover the ranges found in the few in vivo 

experimental studies in the literature and are closer to the published results with similar in vivo protocol. 

The same model is applied considering tumoral tissue surrounded by healthy tissue and the outcomes show 

relevant differences when the tumor is included in the model. Thus, the different electrical conductivity and 

thermal properties between the two types of tissues play a fundamental role in the outcomes. 

Finally, the previous LTNE modified model is applied to a spherical tumoral tissue, in order to investigate 

the effects of different antennas configurations in thermal ablation. The results show that using multiple 

antennas instead of a single antenna offers a potential solution for creating ablation zones with larger 

dimensions and to allow at the same time to have lower maximum tissue temperatures in all the cases 

compared to the single antenna configuration. 
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All these outcomes achieved highlight how important could be to perform more and more accurate bioheat 

models, in order to advance in new thermal ablation protocols and devices, personalizing the treatment 

depending on different organs, tumors dimensions and patient conditions.  

 

FUTURE PERSPECTIVES  

In the future, the next step of this research will regard the experimental validation of the developed bioheat 

models, using different techniques: first of all, bio-images and histological samples of tumors from hospitals 

will be used. In particular, data set of re-elaborated computed tomography (CT) images and biopsy samples 

will be manipulated and employed in specific tumor modelling. The experimental campaign will be aimed 

at validating the mathematical and numerical models as a valuable tool to simulate and guide therapeutic 

clinical procedures. The development of hydrogel tissue-mimicking phantoms and of patient-derived tumor 

models will constitute, with increasing degree of complexity, two pre-clinical models able to closely mimic 

the physical and geometrical properties of target tissues. The use of hydrogel-based tissue-mimicking 

phantoms with a well-controlled level of hydration, will provide the possibility to monitor the time-

dependent temperature distribution after single or multiple local fast thermal perturbations. These models 

will constitute the closest approximation to the real tissue of clinical interest for experimental studies of 

temperature-based therapies and, together with hydrogel phantoms, to evaluate the ability of numerical 

models to predict the experimental results. Obtaining a more and more accurate bioheat model has a key 

role in predicting tissue temperature fields and consequently final necrosis volumes. These achievements 

are relevant in thermal ablation field because the provided data for the medical devices employed nowadays 

are set on the results from ex vivo or in vivo healthy animal tissues. Thus, the suggested time-power 

combinations to obtain a certain necrosis zone do not correspond to the real achieved outcomes. This issue 

becomes more relevant when large vessels are near the target region to be ablated and the heat sink effect 

plays a significant role. Thanks to the developed tumor models and experimental setup, the real influence 

of the heat sink effect during a thermal ablation can be studied in depth too. Moreover, on the basis of 

patient data, patient-specific models will be built, and different ablation settings will be simulated. The 

optimal ablation values predicted by simulation will be applied on clinical treatments. Real-time 

measurement of heating of tumor and surrounding tissues and imaging follow up will be used as standard 

of reference. The final purpose is consequently to achieve personalized thermal ablation protocols in terms 

of applied power and treatment duration, depending on different organs, tumor characteristics, and  clinical 

conditions of the patient and to improve the thermal ablation devices and techniques. 
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