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Abstract 

Percutaneous thermal ablation has proved to be an effective modality for treating both benign 

and malignant tumors in various tissues. Among these modalities, radiofrequency ablation 

(RFA) is the most promising and widely adopted approach that has been extensively studied 

in the past decades. Microwave ablation (MWA) is a newly emerging modality that is gaining 

rapid momentum due to its capability of inducing rapid heating and attaining larger ablation 

volumes, and its lesser susceptibility to the heat sink effects as compared to RFA. Although 

the goal of both these therapies is to attain cell death in the target tissue by virtue of heating 

above 50 oC, their underlying mechanism of action and principles greatly differs. 

Computational modelling is a powerful tool for studying the effect of electromagnetic 

interactions within the biological tissues and predicting the treatment outcomes during 

thermal ablative therapies. Such a priori estimation can assist the clinical practitioners during 

treatment planning with the goal of attaining successful tumor destruction and preservation of 

the surrounding healthy tissue and critical structures. This review provides current state-of-

the-art developments and associated challenges in the computational modelling of thermal 

ablative techniques, viz., RFA and MWA, as well as touch upon several promising avenues in 

the modelling of laser ablation, nanoparticles assisted magnetic hyperthermia and non-

invasive RFA. The application of RFA in pain relief has been extensively reviewed from 

modelling point of view. Additionally, future directions have also been provided to improve 

these models for their successful translation and integration into the hospital work flow. 

 

Keywords: Thermal Ablation; Minimally Invasive Treatment; Microwave Ablation; 

Radiofrequency Ablation; Laser Ablation; Nanoparticles-assisted Ablation; Nerve Ablation; 

Bioheat Transfer; Tissue Deformation; Blood Vessels; AI and Machine-Learning Algorithms; 

Multiscale Modelling. 
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1. Introduction 

Thermal ablation is one of the rapidly emerging and promising alternative treatment 

modalities for curative and palliative treatment of vast varieties of benign and malignant 

tumors. The energy source for inducing the heat during thermal ablation procedures includes 

radiofrequency current, microwave, laser and high intensity focused ultrasound (Ahmed et 

al., 2011, Brace, 2011, Chu and Dupuy, 2014, Kim, 2018, Vogel and Venugopalan, 2003). 

The main goal during these hyperthermic ablative procedures is to attain direct cellular injury 

by the application of heat that occurs after 1-2 min at 50 oC and within few seconds above 60 

oC (Almekkawy et al., 2019). Cryoablation is another form of a thermal ablative procedure 

whereby cell death occurs by freezing it (Chu and Dupuy, 2014). Figure 1 presents the 

different types of image-guided thermal ablative modalities used in clinical practices. Among 

all these image-guided thermal ablative modalities, radiofrequency ablation (RFA) is the 

clinically dominant modality, while microwave ablation (MWA) is a newly emerging 

modality gaining rapid interest that offers several advantages over RFA, particularly for 

treating large-size tumors. Importantly, the heating mechanism is substantially different 

among both the therapies, since MWA (915 MHz or 2.45 GHz) and RFA (450-550 kHz) are 

performed at different frequencies. During MWA, the heating is induced due to kinetic 

energy induced by the rapid oscillation (between 2 and 5 billion times per second) of polar 

molecules (water, proteins, etc.) of the biological tissues that ultimately leads to coagulative 

necrosis (Singh et al., 2019). Whereas, during RFA, resistive (or ionic) heating is induced by 

a high-frequency alternating electrical current (450-550 kHz) which is incapable of inducing 

molecular rotation (Singh et al., 2019). Moreover, the treatment outcomes of MWA are less 

susceptible to the heat-sink effects caused by the large blood vessels in close proximity of the 

target tissue and are not limited by the formation of charring and water vaporization that 

allows high energy deposition for longer durations yielding greater tissue temperatures and 

steeper thermal gradients. Further, contrary to RFA, there is no requirement of ground pads 

during MWA that eliminates the associated complications of skin burns during the course of 

therapy. The above-mentioned advantages of MWA over RFA have resulted in its emergence 

as a most cost-effective ablation modality capable of attaining large zone of volumetric 

heating in short treatment times (Lopresto et al., 2017b, Ward et al., 2013). Figure 2(a) 

presents the schematic of a thermal ablation system and Fig. 2(b) presents the inherent 

different mechanism of energy deposition during the MWA and RFA procedures (Chu and 

Dupuy, 2014, Kim, 2018). Other hyperthermic ablative modalities, namely, laser ablation and 

high intensity focused ultrasound are conceptually similar to MWA and RFA but have been 

studied to a lesser extent (Ahmed et al., 2011, Chu and Dupuy, 2014). Laser ablation induces 
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electromagnetic heating, similar to RFA and MWA, while high intensity focused ultrasound 

ablation utilizes acoustic energy to induce coagulative necrosis in the selected focal zone and 

is the only non-invasive hyperthermic modality (Chu and Dupuy, 2014). The schematic of the 

effects of hyperthermic ablation on the biological tissue is represented in Fig. 2(c).  

 Computational modelling plays a vital role in the design and development of new 

protocols, along with the optimization and improvement of existing protocols of clinical 

systems. They not only provide a quick, convenient and inexpensive evaluation of the 

treatment outcomes of the thermal ablative procedure but also serve as a means of 

understanding the interaction between the various physical phenomena that occur during such 

therapies. The application of computational modelling is extensively explored in the patient-

specific treatment planning of thermal ablative therapies for the prediction of post-procedure 

damage volume and improving its efficacy (Andreozzi et al., 2019, Berjano, 2006, Chiang et 

al., 2013, Prakash, 2010, Zhang et al., 2016). Moreover, computational modelling of the 

thermal ablative procedures also play a vital role in investigating and understanding the 

effects of various extrinsic and intrinsic factors on the treatment outcome, viz., applied 

power, treatment time, tissue biophysical properties, etc. (Cavagnaro et al., 2015b, Lopresto 

et al., 2017b).  

 This review provides current state-of-the-art developments, associated challenges and 

future directions in the computational modelling of thermal ablative techniques, viz., RFA 

and MWA, as well as touch upon several promising avenues in the modelling of laser 

ablation, nanoparticles assisted magnetic hyperthermia and non-invasive RFA. The 

application of RFA in pain relief has been extensively reviewed from the modelling point of 

view. The review article is organized as follows. Section 2 provides the mathematical 

framework adopted for modelling different types of thermal ablative procedures and 

discusses different bioheat transfer and tissue damage models available in the literature. 

Section 3 focuses on the current trends in the improvements and modifications of most 

commonly applied thermal ablative procedures, viz., RFA and MWA. This includes accurate 

modelling of bio-physical parameters, incorporation of non-Fourier lags in bioheat transfer 

analysis, coupling of mechanical deformation model to the thermo-electric model for 

quantifying the induced expansion and contraction in the biological tissues subjected to 

elevated temperatures, incorporation of solid-fluid interaction models in the heat transfer 

analysis for quantifying the effects of both small capillaries and large blood vessels on the 

treatment outcomes. Additionally, the importance of image-based multiscale modelling has 

also been highlighted in this section. Section 4 highlights the application of laser ablation in 

different types of disease treatments by reviewing some of the recent articles in this research 
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area. Section 5 provides the modelling details of nanoparticle assisted magnetic hyperthermia 

and non-invasive RFA along with their associated challenges and difficulties. Section 6 

focuses on the application of RFA in treating chronic pain and provides a brief background 

along with reviewing all the computational studies reported in this area to date. Section 7 

highlights the importance of multiscale modelling for treating neurological disorders along 

with providing the importance of machine learning algorithms in the area of thermal ablation. 

Finally, Section 8 highlights some of the key challenges and provides a future road map for 

the development of more accurate computational models of RFA and MWA with the aim of 

providing more precise predictions of the treatment outcomes, so that these numerical 

predictions can be successfully translated into the clinical applications.  

 

2. Mathematical modelling of thermal ablation  

The application of mathematical modelling has been widely explored in the past decades with 

the aim of improving the efficacy of thermal ablative modalities and to reach a stage where 

such models can be readily integrated with the clinical workflow for providing a priori 

estimates of the treatment outcomes during the treatment planning stage of such therapies 

(Andreozzi et al., 2019, Berjano, 2006, Chiang et al., 2013, Prakash, 2010, Zhang et al., 

2016). Numerical modelling and simulations have already become a powerful tool for 

predicting the tissue response subjected to thermotherapies. Importantly, such predictions are 

based on utilizing the two major mathematical models, viz., bioheat transfer and tissue 

damage models. The present section provides the basic framework of such associated models 

of different thermotherapies used in clinical practices.  

 

2.1. Modelling of heat transfer in biological tissue 

The continuous development and application of numerical models of heat transfer in living 

tissues for predicting the temperature distribution during thermotherapies have been a topic of 

vital interest (Huang and Horng, 2015). Currently, there are three approaches for conducting 

such complicated and complex quantitative analysis in blood-perfused biological tissues, viz., 

continuum model, discrete vascular model and the combination of the first two (Raaymakers 

et al., 2009, LeBrun and Zhu, 2018). In continuum models, the blood vessels are not 

modelled individually, rather its effects are lumped into a single factor that is accounted in 

the heat transfer analysis by either incorporating an additional term or altering thermo-

physical parameters in the bioheat transfer equation. Contrary to the simplified continuum 

model approach, the discrete vascular model actually accounts for blood flow in each 
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individual blood vessels and thus requires high computational resources for predicting point-

to-point blood and tissue temperature during thermotherapies. However, in the combined 

approach, small blood vessels are modelled using the continuum approach, while only those 

large blood vessels that are considered to be a major cause of temperature non-homogeneity 

are discretely modelled. Several modifications have been reported in these conventional 

models and subsequently, more complex models have been developed and reported in the 

quest for a more accurate prediction of the temperature distributions within the biological 

tissues during thermal ablative procedures (Khanafer and Vafai, 2009, Zhu, 2009). (Bhowmik 

et al., 2013) provided a comprehensive review regarding both the conventional and newly 

developed bioheat transfer models available in the literature for the vascularized tissue. More 

recently, (Andreozzi et al., 2019) reported a review article providing a clear overview 

regarding the modifications of conventional bioheat transfer models focused on hyperthermia 

treatments of cancer.  

Among the different bioheat transfer models, the Fourier-conduction-based Pennes 

bioheat transfer equation (Pennes, 1948) is the most widely used bioheat transfer model for 

analyzing the heat transfer within the biological tissue subjected to thermal ablative 

procedures due to its simplicity and feasibility (Andreozzi et al., 2019, Bhowmik et al., 

2013), and is given by: 

( ,( )  )   b bb m pb

T
c k T c T Q QT

t
  


   


  (1) 

where  is the density (kg/m3), c is the specific heat capacity (J/kg/K), T is the tissue 

temperature (K), k is the thermal conductivity (W/m/K), b is the density of blood (kg/m3), cb 

is the specific heat capacity of blood (J/kg/K), ωb is the blood perfusion rate (1/s),  Tb is the 

temperature of blood entering the tissue, the term [bcbωb(T-Tb)] models the heat sink effect 

caused by the small capillary vasculature, Qm is the heat generated by metabolism (W/m3), 

which is normally ignored due to its minimal impact compared to other heat sources and Qp 

(W/m3) is the heat generation (or source term) during thermal ablative procedures and is 

tremendously dependent on the type of therapy under consideration and is discussed as 

follows.  

 

2.1.1 Modelling of heat source for MWA and RFA 

During the RFA and MWA procedures, electromagnetic energy is used to heat the biological 

tissues. The propagation and interaction effects of electromagnetic fields in a lossy media 

such as biological tissues are well-described by a source-free, time-harmonic form of 

Maxwell’s equations as (Chiang et al., 2013): 
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where E is the electric field intensity (V/m), D is the electric flux density (C/m2), H is the 

magnetic field intensity (A/m), B is the magnetic flux density (Wb/m2), J is the current 

density (A/m2), ω is an angular frequency (rad/s), µ is the magnetic permeability (H/m), ε is 

the complex permittivity or dielectric constant (F/m) and  j = 1 . 

Most of the MWA studies reported in the previous literature have been conducted 

utilizing the electromagnetic wave frequency of 915 MHz or 2.45 GHz, with a few studies 

also reported at higher frequencies (see e.g. (Sawicki et al., 2017, Luyen et al., 2014, Sawicki 

et al., 2018, Yoon et al., 2011)). The electric and magnetic fields related to the time-varying 

transverse electromagnetic wave can be computed from the Helmholtz harmonic wave 

equation derived from Maxwell’s equation and is given by: 

1 2

0

0

( ) 0,r r

j
k


 



  
     

 
E E                 (3) 

where E is the electric field vector (V/m), µr is the relative magnetic permeability, εr is the 

relative permittivity, σ is the electrical conductivity (S/m), ε0 is the permittivity of free space, 

ω is an angular frequency (rad/s), k0 is the free space wave number (m-1) and  j = 1 . 

Further, in the lower frequency range of 500 kHz, as is being used during RFA, the 

electromagnetic field wave length is several orders of magnitude larger than the size of the 

active electrode, i.e. 600 m at about 500 kHz. Thus, the biological medium can be considered 

to be almost totally resistive, whereby the displacement current is negligibly small in 

comparison to the resistive current. Hence, the quasi-static approximation of Maxwell’s 

equations can be used to solve the electromagnetic problem without compromising accuracy 

(Berjano, 2006, Zhang et al., 2016). Quasi-static electromagnetic field theory presumes that 

the extent of variation of electric and magnetic fields is negligible and is very similar in 

characteristic to the static fields, although the fields vary with time. Thus, the electric field 

distribution during RFA can be obtained by solving generalized Laplace equation instead of 

solving full-fledged Maxwell’s equations, as given by: 

 [( ] 0,V                              (4) 

where V is the applied electric potential (V), σ is the electrical conductivity of biological 

tissue (S/m) and the electric field vector ‘E’ (V/m) for the quasi-static approximation of 

Maxwell’s equations during RFA is computed from: 

.V E       (5) 
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Further, the external heating source term to be fed in the bioheat transfer model for MWA 

and RFA is computed from: 

21
,

2
pQ SAR    E     (6) 

where  is the density of biological tissue (kg/m3), SAR is the specific absorption rate (W/kg), 

σ is the electrical conductivity of biological tissue (S/m) and E is the electric field vector 

given by Eq. 3 and Eq. 5 for MWA and RFA, respectively. 

 

2.1.2 Modelling of heat source for laser ablation 

The heat source term during laser ablation i.e. the absorption of laser energy along the tissue 

depth (z) within the biological tissue is mostly modelled utilizing the Beer-Lambert’s law 

(Sahoo et al., 2014, Wongchadakul et al., 2018), as given by: 

                       2 2( /2 ) ( ) ( )

0 ,

p

r z z

Q I

I e e e   



   

 

   
                      (7) 

where I is the laser irradiation intensity (W/m2), I0 is the irradiation intensity at the tissue 

surface (W/m2), α is the absorption coefficient (m-1), β is the scattering coefficient (m-1), z is 

the depth of tissue and σ is the width of the irradiated area.  

 

2.1.3 Modelling of heat source for ultrasound ablation 

Acoustic heat deposition with an interstitial ultrasound transducer is mostly modelled as 

(Jiang et al., 2012, Prakash and Diederich, 2012, Prakash et al., 2012, Scott et al., 2014): 

                      2

2

2 ,

p

r
dr

rt t
s

Q I
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I e

r
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





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                                                (8) 

where α is the ultrasound absorption coefficient (Np/m), I is acoustic intensity (W/m2), τ is 

the transmission coefficient, Is is the acoustic intensity on the transducer surface (W/m2), rt is 

the radius of transducer (m), r is the radial distance from the transducer’s central axis (m), 

and μ is the ultrasound attenuation coefficient (Np/m). 
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2.2. Modelling of induced thermal damage during thermal ablative procedures 

Several techniques have been used to quantify the size of ablation volume attained during the 

computational modelling of thermal ablative procedures, viz., isotherm contour, thermal 

isoeffective dose (TID) and Arrhenius model (Zhang et al., 2016). A comparative analysis 

and critical review regarding the different mathematical models used in literature for 

quantifying cell death during thermal ablative procedures has been provided in (Pearce, 

2013). The simplest approach to evaluate the tissue death in computational models is to use a 

50 oC isotherm contour approach (Qadri et al., 2017, Singh, 2018, Singh et al., 2016, Singh et 

al., 2019), and recently 55 oC and 59 oC isotherm contours have also been used (Zhang et al., 

2016). Importantly, this approach considers that the death of tissue during thermal ablative 

procedures is dependent only on the local temperature and does not take into account the 

dependence of target tissue type and heating duration, and thus the use of other models (e.g., 

TID and Arrhenius models) have also been explored to address this issue (Zhang et al., 2016, 

Qadri et al., 2017). The TID model is a normalizing method to convert various time-

temperature exposures to cumulative equivalent minutes at a reference temperature of 43 oC 

(CEM43), and is computed using  

(43 )
43

0
(min),

t
TCEM R dt                           (9) 

where T represents the constant temperature applied for the time t (min) and R is the factor to 

compensate for a 1 oC temperature change. The factor R is considered to be 0.5 for 

temperature exceeding 43 oC, i.e., the equivalent time doubles per degree temperature 

increase and 0.25 for temperature below 43 oC, i.e., the equivalent time decreases by a factor 

of four per degree temperature decrease (van Rhoon, 2016). The critical thermal dosage 

representing complete damage of tissue is considered to be CEM43 = 120 or 240 min. 

Although this model is widely used to predict the tissue death during hyperthermia, i.e. for 

lower temperature range between 40 and 45 oC, for higher temperatures (i.e. above 50 oC) 

attained during thermal ablation this approach is considered to be inapplicable as this 

parameter normalizes treatment thermal histories rather than predicting treatment results 

(Zhang et al., 2016, Pearce, 2013, Reddy et al., 2013). 

 The Arrhenius model provides a simple, straightforward and widely applied method 

for predicting the ablation volume in the computational modelling of thermal ablation (Zhang 

et al., 2016, Qadri et al., 2017). The tissue damage during thermal ablation is associated with 

the different irreversible process of protein denaturation that can be characterized by a first-

order irreversible kinetic equation (Zhang et al., 2016) and is given by:  

 
0

,Ω   
Eat

RTt Ae dt


                                   (10) 
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where Ω(t) is the degree of tissue death (or damage integral), t is the ablation time (s), A is a 

frequency factor (s-1), Ea is the activation energy barrier (J/mol), R is the universal gas 

constant (8.314 J/mol K) and T is the tissue temperature inside the computational domain (K) 

at a specified time. A and Ea are the kinetic parameters that account for the morphological 

changes in the biological tissue due to the thermal degradation of proteins and their values are 

tremendously dependent on the type of tissue under consideration. In the context of tissue 

damage, a damage integral of Ω(t) = 1 corresponds to a probability of 63% cell death and 

damage integral of Ω(t) = 4.6 corresponds to a probability of 99% cell death at a specific 

location (Zhang et al., 2016).  

 Although the Arrhenius damage model has become a yardstick for comparing the 

efficacy of newly proposed damage models during the thermal ablative procedure (O’Neill et 

al., 2011, Pearce, 2013, Reddy et al., 2013, Wright, 2015), there are several limitations 

associated with it too. Importantly, the Arrhenius damage model considers only two states of 

biological tissues, viz., either all alive or all dead cells, and the transition between the two 

states is modelled with a single irreversible reaction. However, actual cell death mechanisms 

during thermal ablation can comprise of multiple reversible and interacting processes and 

accordingly several multi-parameter fit methods have also been employed for modelling cell 

survival data (Pearce, 2013, Reddy et al., 2013). A new three-state model has been proposed 

by (O’Neill et al., 2011) that also considers an intermediate stage between the completely 

alive and dead state of cells, i.e. vulnerable state representing the potential of cells to recover 

and return to the alive state. This three-state cell death model has been recently used in some 

of the computational studies of thermal ablation to more accurately quantify the protein 

denaturation within the biological tissue (Liu et al., 2017, Park et al., 2016, Qadri et al., 2017, 

Park et al., 2018). The model assumes that there are three states (viz., native (N), unfolded 

(U) and denatured (D)), and the cells in the unfolded state have the potential to recover and 

return in the native (or alive) state. The reaction equation, grouping all the different 

intermediates states into one overall state, is given by: 

1 2

3

,
k k

k

N U D                                   (11) 

where N, U, D are the proportion of cells that are in native (alive), unfolded (vulnerable) and 

denatured (dead) states, respectively, and ki’s are the reaction rates that describe the forward 

or backward rates of change in cell states and are assumed to be governed by first-order 

Arrhenius equation given by: 

( )   ,

Ei

RT
i ik T A e



                                   (12) 
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where Ai and ΔEi are the frequency factor and the activation energy, respectively, associated 

with different reaction rates (ki:= k1, k2, k3), R is the universal gas constant and  T is the 

temperature computed from bioheat transfer model. With the constraint that the sum of all the 

three states is equal to one (i.e., N+U+D=1), the three-state death model can be 

mathematically described by the following system of ordinary differential equations (Park et 

al., 2018): 

1 3 1 3 2 2; ; .
dN dU dD

k N k U k N k U k U k U
dt dt dt

            (13) 

To quantify the coagulation volume using the three-state cell death model, a tissue viability 

parameter G = N+U (or, 1-D) is determined that represents the proportion of the tissues that 

are not dead. Importantly, the tissue is considered to be completely destroyed in the 

computational models if the viability is less than the threshold value of 0.8 (O’Neill et al., 

2011, Qadri et al., 2017).  

 

3. Current trends in the improvements of mathematical models of RFA and MWA  

The continuous development in the area of computational modelling of minimally invasive 

thermal ablative procedures has contributed in a vital way to our better understanding of the 

nuances of bio-physical factors that help or hinder the efficacy of these procedures. In the 

past decade, numerous generalizations and model refinements have been made in the 

computational modelling approach of thermal ablative procedures, such as, 

consideration/inclusion of two-compartment models, temperature-dependent thermo-electric 

and bio-physical parameters, tissue vaporization models (beyond 100 oC), non-Fourier 

effects, mechanical deformations, solid-fluid interaction, porous media models etc. This 

section highlights some of these notable refinements and generalizations in the computational 

modelling approach, as applied to MWA and RFA, along with the associated challenges.  

 

3.1. Modelling of bio-physical parameters 

The accuracy of computational models of thermal ablation is tremendously dependent on the 

accuracy of modelling bio-physical parameters of the considered tissue. Several studies 

(Ahmed et al., 2008, Hall et al., 2015, Lopresto et al., 2017a, Sebek et al., 2016, Singh and 

Repaka, 2017c, Singh et al., 2019) have already highlighted the fact that consideration of 

temperature-dependent bio-physical parameters during the computational modelling of 

thermal ablation results is a more accurate and realistic prediction of treatment outcomes as 

compared to treating these parameters as constant.  
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The phase change occurrence due to vaporization of the water inside the biological 

tissue beyond 100 oC is frequently modelled using the apparent heat capacity model 

(Muhieddine et al., 2009, Xu et al., 2019). Incorporation of the water vaporization model in 

the computational model of thermal ablation would result in a more accurate prediction of the 

physical changes occurring during such procedures. The left-hand side term of bioheat 

transfer Eq. (1) is modified to take into account the dramatic increase in the thermal capacity 

of the biological tissue subjected to the evaporation of water when the temperature in the 

tissue approaches 100 oC as (Abraham and Sparrow, 2007, Yang et al., 2006, Yang et al., 

2007): 

0

0

0

0 99 C

  . 99 100 C ,

100 C

c T
l l

T T
c H C T

fgt t

c T
g g







 
  

  
   

   
 
 

              (14) 

where ρi and ci are the density and specific heat of tissue that varies due to phase-change, i.e., 

at temperatures below 100 oC (i = l refers to liquid tissue phase) and at temperature above 

100 oC (i = g refers to gas tissue phase), Hfg is the latent heat, i.e., the product of water latent 

heat of vaporization and water density at 100 oC, and C is the tissue water content inside the 

tissue.  

The temperature-dependent thermal conductivity of the tissue is mostly modelled as a 

linearly increasing function of temperature (up to 100 oC) in the computational models of 

thermal ablation and is given by 

0

0

0 0

0

( ) for 100
( ) ,

(100 ) for 100

ref

ref

k k T T T C
k T

k k C T T C

     
  

     

                        (15) 

where k0 (W/m/K) is the thermal conductivity of the tissue measured at baseline temperature 

Tref  = 37oC (core body temperature). 

Blood perfusion is one of the most critical parameters that significantly affect the 

accuracy of the computational model, especially with the Pennes bioheat transfer model that 

accounts for microvascular tissue perfusion in absence of the large blood vessels. In most of 

the computational studies on thermal ablation available in literature (Ewertowska et al., 

2018a, Ewertowska et al., 2018b, Ooi et al., 2018, Ooi et al., 2019, Qadri et al., 2017, Singh 

et al., 2019, Xu et al., 2019, Zhang et al., 2017), a thermal damage-dependent piecewise 

model of blood perfusion is used, whereby complete cessation of the blood perfusion rate is 

assumed to occur at the threshold of different damage models due to the collapse of 

microvasculature within the tissue (Hall et al., 2015) and is given by 
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,0 if damage is below the threshold value

0 beyond the threshold valueof damage

b

b




 
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 

                         (16) 

where ωb,0 is the baseline blood perfusion rate of the tissue.  

The effects of variation in the perfusion rates and perfusion models during 

computational studies of RFA were studied by Schutt and Haemmerich (Schutt and 

Haemmerich, 2008) considering: (a) piecewise model, (b) linear decreasing model, and (c) 

nonlinear decreasing model. It was found that the blood perfusion model significantly affects 

the final ablation zone dimensions of the computational model of RFA. The nonlinear 

decreasing model derived from the in vivo study in renal tissue, in which the blood perfusion 

initially increases due to hyperaemia and later decreases with coagulation due to damage to 

the microvasculature, was able to more accurately and realistically quantify the damage 

dependent variation in the blood perfusion rate during RFA. Thus, most of the recent studies 

reported in the literature have utilized a non-linear piecewise decreasing model of blood 

perfusion rate in the computational models of thermal ablation (Abraham and Sparrow, 2007, 

Shao et al., 2017a, Singh and Repaka, 2017c, Singh and Repaka, 2017a, Singh and Repaka, 

2018c), as given by  
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where ωb,0 is the baseline blood perfusion and Ω(t) is the induced thermal damage.  

Since RFA and MWA procedures are performed at different frequencies of 450-550 

kHz and 2.45 GHz (or 915 MHz), respectively, the electrical parameter’s value and its 

variation are different in both scenarios. Table 1 presents the electrical properties among 

various tissues at the frequency of RFA (500 kHz) and MWA (2.45 GHz) procedures 

(Hasgall et al., 2015). The relative permittivity and electrical conductivity of the biological 

tissue subjected to MWA are mostly modelled utilizing sigmoidal functions to include the 

effects of temperature dependence and water vaporization at the elevated temperatures (Ji and 

Brace, 2011, Liu and Brace, 2017, Lopresto et al., 2014) using Eqs. 18 and 19, respectively:  
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where s1-s4 and r1-r3 are the regression coefficients, refer (Ji and Brace, 2011, Liu and Brace, 

2017, Lopresto et al., 2014) for more details. 
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For computational modelling of RFA, various temperature-dependent models of 

electrical conductivity have been reported in the previous literature (Hall et al., 2014, Trujillo 

and Berjano, 2013, Hall et al., 2015). All of them describe a similar behavior with an increase 

in the electrical conductivity as a linear or exponential function of temperature until the tissue 

temperature reaches the threshold for water vaporization that is being followed by a rapid 

drop of two orders of magnitude due to the water vaporization and charring. Albeit some 

slight variations in the reported models of temperature-dependent electrical conductivity are 

present, but such variations have shown negligible effects on the predicted ablation volume 

during RFA. The most widely used model of temperature-dependent electrical conductivity 

during computational modelling of RFA is given by (Ewertowska et al., 2018b, González-

Suárez et al., 2018, Ooi et al., 2019)  
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                        (20) 

where σ0 (S/m) is the electrical conductivity of the tissue at baseline temperature Tref  = 37oC 

(core body temperature).  

 

3.2. Incorporation of non-Fourier effects 

The majority of studies available in earlier works on the computational modelling of thermal 

ablation utilizes the Pennes bioheat transfer model for predicting the thermal response. 

However, the Pennes bioheat equation has been developed based on the classical Fourier’s 

law of heat conduction [i.e., ( , )    ( , )q r rt k T t  ; where q is heat flux, k is thermal 

conductivity and T (r, t) is the temperature at point r at time t]. It presumes an infinitely fast 

propagation of thermal signals or equivalently, any thermal disturbance on a medium will be 

felt instantaneously throughout the medium. Such assumptions are reasonable in majority of 

the practical applications but fail, especially in particular heat conduction media having non-

homogenous inner structures such as biological tissues. Importantly, the heat conduction in a 

biological tissue always occurs with a lagging behaviour due to its anisotropic and 

heterogeneous structures, and suggests the existence of non-Fourier conduction. This leads to 

the propagation of thermal disturbance at a finite speed, i.e. results in a delayed response 

between the heat flux vector and the temperature gradient. The lagging behaviour induced 

due to non-Fourier behaviour has been incorporated in the linear extension of the Fourier heat 

transfer model by introducing a thermal relaxation time [i.e., ( , )    ( , )q r rqt k T t   : where 
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τq is the thermal relaxation time], as independently proposed by (Cattaneo, 1958) and 

(Vernotte, 1958). The introduced thermal relaxation time τq represents the time delay between 

the heat flux vector and the temperature gradient, and the constitutive relation is known as 

single-phase-lag (SPL) non-Fourier heat transfer model, as given by: 
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(Tzou, 1995) added another relaxation time τT [ ( , )    ( , )q r rq Tt k T t     ] known as a 

phase lag due to temperature gradient, to take into account the effects of micro-structural 

interaction along with fast transient effects of heat transport, an effect that was absent in the 

SPL non-Fourier heat transfer model. The constitutive model is referred to as the dual-phase-

lag (DPL) non-Fourier heat transfer model as given by: 
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Several pertinent models have been reported (Askarizadeh and Ahmadikia, 2014, Kumar et 

al., 2015, Kumar et al., 2016, Liu and Chen, 2010) and developed using first and second-

order Taylor expansions of the DPL non-Fourier heat transfer model proposed by Tzou 

(Tzou, 1995). The fully coupled thermo-mechanical models of hyperbolic thermoelasticity, 

studies in (Strunin et al., 2001), included also non-linear effects. 

The biological tissue consists of non-homogeneous media, containing microscopic 

inhomogeneities such as macromolecules and cell organelles organized in cellular structures, 

resulting in higher relaxation time compared to the engineering materials. Unfortunately, due 

to these associated complexities of biological materials, the exact value of thermal relaxation 

time for both the heat flux and the temperature gradient is still unclear. (Vedavarz et al., 

1994) estimated that the value of τq for biological tissues lies in the range of 1-100 s at room 

temperature. (Kaminski, 1990) found the relaxation time for heat flux in the range of 20-30 s 

for the meat products. (Mitra et al., 1995) found that in a processed meat τq  = 16 s and τT  = 

0.043 s, while (Roetzel et al., 2003) found τq  = 1.77 s. (Jaunich et al., 2008) found the values 

of thermal relaxation time in the range of 10-20 s on the inhomogeneous tissue phantoms that 

simulated skin tissue. (Liu and Chen, 2010) reported τq  = 7.4-8.9 s and τT  = 14.5-21.4 s, while 

(Sahoo et al., 2014) reported τq  = 2-8 s and τT  = 0.045 s. Thus, there prevails a huge 
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variability among the thermal relaxation time of biological tissues reported in previous 

literature. The comparison of different values of non-Fourier lags in biological tissues 

reported in the previous experimental studies has been presented in Table 2. Recently, 

(Maillet, 2019) reported a short review highlighting the shortcomings in the experimental 

validation of the non-Fourier models reported in previous literature. The study reported that 

one of the serious flaws of the reported studies was that the non-Fourier heat transfer models 

were not validated at the meso-scale in heterogeneous materials. Other shortcomings include, 

non-validation of the experimental boundary conditions by direct simulations along with 

uncertainty in the quantification of experimental source term, deviations in the origin of time 

reported for the experimental configuration, assumption of a uniform temperature field that is 

not confirmed by temperature measurement in experimental studies before time t = 0, errors 

in the thermo-physical parameters, ignorance of the modern parameter estimation techniques 

and non-existent or deficient analysis of the errors during experimental measurements. Thus, 

there remains a great demand of conducting more rigorous experimental studies on biological 

tissues with a very critical hindsight to validate the non-Fourier models on a sound basis and 

characterize the thermal relaxation times associated with such phenomena among different 

tissues. Although several computational studies have already been reported in literature 

utilizing the non-Fourier approach for highlighting the differences in the predicted 

temperature distribution and ablation volumes during percutaneous thermal ablative 

procedures (Askarizadeh and Ahmadikia, 2014, Kabiri and Talaee, 2019, Kumar et al., 2018, 

Kumar et al., 2015, Kumar et al., 2016, Li et al., 2017, López-Molina et al., 2008, Singh and 

Repaka, 2018e, Zhang et al., 2015). Hitherto, most of these studies are limited to 

computational modelling of RFA, with a very scarce application of non-Fourier phenomena 

in MWA (Kabiri and Talaee, 2019). At the same time, the consideration of non-Fourier 

behavior becomes more vital in MWA, where a high amount of energy is deposited within 

the biological tissues in shorter time spans as compared to RFA. It is also true for several 

other treatment modalities such as laser ablation. 

 

3.3. Incorporation of the mechanical deformation model 

The physical problem of mechanical deformation caused by the high-temperature during 

thermal ablation of soft biological tissues is mostly modelled using the stress-strain equation 

(Eq. 23) and the thermo-elastic wave equation (Eq. 24) (González‐Suárez et al., 2015, 

Keangin et al., 2011, Wongchadakul et al., 2018): 

 2 (3 2 ) ,th

ij ij kk ij ij                                  (23) 
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where  is the stress tensor and ε = [(∇uT+∇u)/2] is the strain tensor (i,j = 1,2,3 are the tensor 

indices representing geometry’s coordinate axes and  kk subindices indicate the trace of the 

strain tensor), μ = [E/2(1+υ)] and λ = [υE/(1+υ)(1-2υ)] are the Lame’s constants, E is the 

Young’s modulus, υ is the Poisson’s ratio, u is mechanical displacement vector, 

T

th

Tref

dT    is the thermal strain, α is the thermal expansion coefficient, T is the temperature 

computed from bioheat transfer model, Tref  is the baseline temperature, ρ is the density, t is 

the time, F is the body mechanical force vector and δ is the Kronecker delta function given 

by:  
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It is noteworthy to mention that both RFA and MWA utilizes elevated temperatures (> 60 oC) 

to attain cellular injury to the deceased tissue. The exposure of biological tissue to such high-

temperature results in thermo-elastic deformation, including both the mechanical deformation 

induced due to thermal expansion and the tissue shrinkage/contraction. Importantly, the tissue 

shrinkage is a consequence of many interlinked complex effects associated to occur at 

elevated temperatures during thermal ablation, viz., protein denaturation, contraction of 

collagen and dehydration. To date, the underlying mechanism of these processes that results 

in the shrinkage of biological tissues when exposed to high temperatures is not fully 

understood. Recently, there has been a significant increase in the research related to the 

quantification of the tissue shrinkage spatially or temporally among different organs during 

thermal ablative procedures (Liu and Brace, 2017). Notably, previous ex vivo thermal 

ablative studies have reported the ablation zone volume contraction up to 40-50% in liver, 

50-60% in lung and 26-42% in the kidney (Brace et al., 2010, Farina et al., 2014, Liu and 

Brace, 2014, Sommer et al., 2013). Furthermore, tissue shrinkage of up to 62% has also been 

observed in actual clinical studies on hepatic hemangiomas and renal cell carcinomas 

(Moreland et al., 2014, Ziemlewicz et al., 2014). Previously reported studies have highlighted 

that the relative shrinkage during thermal ablative modalities increases with increasing the 

exposed temperature and/or treatment time (Liu and Brace, 2017, Amabile et al., 2017, Farina 

et al., 2018, Rossmann et al., 2013). Moreover, this relative shrinkage has been found to be 

higher in the tissue closer to the applicator and is observed more frequently in MWA as 

compared to RFA (Liu and Brace, 2017, Amabile et al., 2017, Farina et al., 2018, Rossmann 

et al., 2013).  
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Most of the computational studies of thermal ablation available in the literature are 

based on coupled thermo-electric analysis (Barauskas et al., 2008, Ewertowska et al., 2018b, 

Ooi et al., 2018, Ooi et al., 2019, Qadri et al., 2017, Singh et al., 2016, Singh and Repaka, 

2017c, Zhang et al., 2017, Zhang et al., 2015, Zorbas and Samaras, 2014, Zorbas and 

Samaras, 2015) and clearly neglects or underestimates the induced thermo-elastic 

deformations due to elevated temperature within the biological tissue. As mentioned earlier, 

the exposure of biological tissue to elevated temperatures during thermal ablative procedures 

can result in mechanical deformations, including both contractions and expansions. Several 

computational studies have recently tried to capture such mechanical deformations but 

mainly focused on capturing mechanical deformations induced due to thermal expansion 

alone (González‐Suárez et al., 2015, Keangin et al., 2011, Wongchadakul et al., 2018, 

Chaichanyut and Tungjitkusolmun, 2016, Karaki et al., 2018, Keangin and Rattanadecho, 

2018, Li et al., 2014, Li et al., 2017). Importantly, ignoring the impact of tissue contraction 

could result in a significant underestimation of the ablation volume predicted by the 

computational models as compared to the actual dimensions of the destroyed tissue (Brace et 

al., 2010, Rossmann et al., 2013). Henceforth, incorporation of the thermally induced 

contraction phenomenon in the computational models of thermal ablation would warrant a 

more accurate prediction and assessment of the dimensions of ablation zone.  

More recently, few studies have also proposed mathematical models to predict the 

tissue shrinkage during thermal ablation (Liu and Brace, 2017, Rossmann et al., 2013), but 

the incorporation of such predictive models in the actual numerical simulations of the 

ablation procedures is still missing. (Rossmann et al., 2013) performed an ex vivo, isothermal 

shrinkage studies for quantifying the shrinkage dynamics in the porcine liver tissue subjected 

to 15 minutes of heating utilizing bipolar RF system. Five target temperatures were used from 

60 oC to a maximum temperature of 95 oC, so as to avoid explosive evaporation and 

combustion of the tissue samples. A 40 W power was applied for heating the samples until 

the pre-defined target temperature was reached and later manually controlled to maintain the 

tissue temperature to be constant. Two markers were inserted parallel in the center of the 

heating zone and their motion was recorded via digital video camera. The relative percentage 

shrinkage is thus defined by the movement of markers relative to their initial position after 15 

min of heating, and is given by:  
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                          (26) 

where L is the final distance between the markers and L0 is the initial distance between the 

markers.  After 15 minutes of heating, the estimated relative shrinkages were reported to be 



18 
 

12.3%, 13.8%, 16.6%, 19.2% and 21.7% at a temperature of 60, 65, 75, 85 and 95 oC, 

respectively. A mathematical model was further developed for predicting the time and 

temperature-dependent shrinkage dynamics of tissue, and is given by: 
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where ξij is the shrinkage for the jth observation of experiment i; a0, a1 and a2 are the material 

parameters; β3 and β4 accounts for time since sacrifice of the sample; bi accounts for the 

experiment level effect for experiment i; εij is the residual; I(days = k) is an indicator taking a 

value of 1 if it was k days since sacrifice for the sample in experiment i; T is the temperature, 

and t is the time. 

(Liu and Brace, 2014) reported an ex vivo study to analyze the spatio-temporal 

distribution of liver tissue contraction during MWA utilizing intraprocedural computed 

tomography (CT) imaging. A 10-minute MWA procedure was performed at 100 W and 2.45 

GHz on the bovine liver samples. In order to capture the contraction, a total of 46 aluminum 

fiducial markers were positioned around the microwave ablation antenna and CT data were 

acquired every 30 s during the MWA procedure. The tissue contraction and contraction rates 

were quantified from the fiducial motion posttreatment. It was found that after the MWA 

procedure, the ablation zone was ~20% smaller in the radial direction and ~10% smaller in 

the longitudinal direction as compared to the pretreatment dimensions. Accordingly, this 

leads to a reduction of around 45% of the ablation volume as compared to its pre-ablation 

volume. Further, the study reported that the greatest contraction occurred at the ablation zone 

center and the contraction rate peaks early and decays over time. In another study, (Liu and 

Brace, 2017) reported a numerical model that integrates the temperature and time-dependent 

model of tissue contraction with a negative thermal coefficient which is further coupled to the 

electromagnetic and heat transfer models for predicting the thermo-mechanical response 

during MWA. The proposed simulation model showed a good agreement of the temperature 

and contraction-induced displacement with the experimental in vitro results. More recently, 

(Liu and Brace, 2019) reported an experimental study on bovine liver to quantitatively 

analyze the tissue deformation during RFA and MWA. It was reported that the tissue 

dimensions contracted by 5% post RFA and 20-65% post MWA procedures. Thus, the 

present experimental ex vivo study proved that the mechanical deformations induced during 

thermal ablative procedures could underestimate the original ablation zone by 30-60 % with 

varying energy sources. (Park et al., 2016) developed and reported a mathematical framework 

to describe the protein denaturation that results in tissue contraction when exposed to 

elevated temperature during thermal ablation. A three-state model of globular protein with 
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first-order kinetics as described in Eqs. 11-13 was used for computing the shrinkage and a 

sensitivity analysis was performed for determining the different parameters of the model. The 

change in the protein state to tissue length was modelled assuming the total length of the 

tissue, L, to be equal to the linear sum of the different states of proteins (i.e. L = NLN + ULU + 

DLD). Assuming that all the protein is in the native state initially prior to the application of 

thermal ablative procedures, i.e. L0 = N, the relative shrinkage described in Eq. 24 can be 

rewritten as: 
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                           (28) 

where N, U, D are the proportion of cells that are in native (alive), unfolded (vulnerable) and 

denatured (dead) states, respectively, and L is the length of proteins with the subscripts 

representing different states. Thus, the proportions of proteins in each state, viz., native (N), 

unfolded (U) and denatured state (D), and the length ratios, LU/LN and LD/LN will affect the 

tissue length and thus the relative shrinkage within the tissue. The different parameters 

utilized in the study were derived from the previously reported ex vivo study on isothermal 

free shrinkage of bovine pericardium tissue samples. Utilizing this mathematical framework, 

(Park et al., 2018) recently reported a mathematical model of the thermo-elastic deformation 

for an elastic isotropic material coupled with a three-state thermal denaturation model to 

determine the contraction of tissue during thermal ablative modalities. The results reported in 

the study showed that the tissue displacement was not bound to the heated regions only and 

that both the tissue expansion and the contraction were observed at different stages of the 

thermal ablative procedures. Further, this study reports that the tissue displacement was 

significantly dependent on the Poisson’s ratio (i.e. the mechanical property of the tissue 

defined by the negative of the ratio of transverse strain to axial strain) and the applicator 

temperature during thermal ablation. It was found that the magnitude of the peak value of 

tissue contraction decreases with decreasing the Poisson’s ratio. More recently, (Singh and 

Melnik, 2019b) reported a coupled thermo-electro-mechanical model for more accurate 

prediction of the treatment outcomes during thermal ablative procedures. Importantly, the 

effects of heat relaxation time effects were also quantified considering both SPL and DPL 

models. The study reported significant deviations in the ablation volume predicted with and 

without mechanical coupling during MWA. These recent results have emphasized the need of 

incorporating the mechanical deformation model, considering both thermal expansion and 

tissue contraction, by coupling the solid mechanics model to the existing bio-electromagnetic 

and bioheat transfer models for more accurate and precise predictions of the ablation volume. 

Such coupled thermo-electro-mechanical models take a significant step towards a more 



20 
 

realistic description of the biophysical phenomenon during thermal ablation and will reduce 

the mismatch between treatment outcomes obtained from the experimental and numerical 

findings.  

 

3.4. Solid-fluid interaction, blood vessel models and biological networks 

Several studies have been reported in the literature considering porous media theory for 

modelling the heat transport in the biological tissue (Chaichanyut and Tungjitkusolmun, 

2016, Karaki et al., 2018, Keangin and Rattanadecho, 2018, Keangin and Rattanadecho, 

2013, Khaled and Vafai, 2003, Nield and Bejan, 2017, Rattanadecho and Keangin, 2013). A 

typical description of such established models of porous media can be found, e.g., in (Khaled 

and Vafai, 2003, Nield and Bejan, 2017). Importantly, such studies consider the biological 

tissue as a complex porous structure that comprises of three compartments, viz., blood 

vessels, cells and interstitial space. For sake of simplicity, most of the previous studies have 

divided the biological tissue into two different regions, namely, the vascular region 

(comprising of blood vessels) and the extravascular region (comprising of cells and the 

interstitial space). Since such models require quite detailed anatomical information, their 

implementation is complex and tremendously dependent on the characterization of different 

values of interest among different tissues. The modelling of heat transfer utilizing a porous 

media approach results in fewer assumptions and hence better prediction of the temperature 

distribution as compared to the Pennes bioheat transfer equation. Further, two different 

formulations, i.e. local thermal equilibrium (LTE) and local thermal non-equilibrium (LTNE) 

are mostly used for predicting the heat transport through porous biological tissues (Keangin 

and Rattanadecho, 2018, Keangin and Rattanadecho, 2013, Rattanadecho and Keangin, 2013, 

Wang et al., 2015). The LTE formulation assumes that the temperature of the tissue phase is 

locally equal to that of the blood phase everywhere inside the porous medium. Such an 

assumption is only valid when the capillary bed of the tissue has a large number of smaller 

diameter micro-vessels along with a large area of heat transfer. Whereas, this assumption 

does not hold good for some physical situations where the fluid is flowing at a high speed 

through the porous medium and the temperature difference is not negligible between the two 

phases. Accordingly, for those cases, the LTNE formulation is utilized for investigating the 

changes in blood temperature as a result of convective heat exchange between the two 

phases. Some of the pioneer work in regard to modelling of MWA utilizing porous media 

approach with LTE and LTNE formulations has been reported by (Keangin and 

Rattanadecho, 2018, Keangin and Rattanadecho, 2013, Rattanadecho and Keangin, 2013). 

(Wang et al., 2015) developed an analytical model utilizing the LTNE formulation of porous 
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media theory for predicting the blood and tissue temperature distributions along with overall 

heat exchange correlations during RFA. The study also investigated the effects of 

physiological parameters, viz., metabolic heat generation, the volume fraction of the vascular 

space and effective blood to tissue conductivities, different biological media and the rate of 

heat exchange between the lumen and the tissue.  

We note also that the heat sink (or cooling) effect caused by the large blood vessel, 

e.g. in close proximity of tumor, can significantly influence the success rate of complete 

tumor eradication during thermal ablation (Fang et al., 2017, Pillai et al., 2015). Importantly, 

this effect is more pronounced for the blood vessel greater than 2 mm in diameter (Shih et al., 

2006), and is more significant in RFA as compared to MWA (Lopresto et al., 2017b, Ward et 

al., 2013). Several computational studies have been reported in the literature for evaluating 

the influence of heat sink effect caused by large blood vessels by coupling the additional fluid 

flow model (i.e. Navier-Stokes equations) to the existing bio-electromagnetic and bioheat 

transfer models of thermal ablation (Chaichanyut and Tungjitkusolmun, 2016, Haemmerich 

et al., 2003, Horng et al., 2007, Huang, 2013, Jain and Wolf, 2000, Rossmann et al., 2012, 

Singh et al., 2015, Wang et al., 2016, Zorbas and Samaras, 2015, Khademi et al., 2019, Shao 

et al., 2017a, Shao et al., 2017c). Importantly, in these studies, the blood vessel is 

incorporated by including a cylinder or a vascular tree within the computational domain, 

either derived from the patient image data or selected arbitrarily. (Hassanpour and Saboonchi, 

2016) reported a study to evaluate the role of small vessels on the heat transfer mechanism 

during intensive heating of biological tissue. The cylindrical small parallel vessels were 

modelled as a co- and counter-current vascular networks within the computational domain. 

Recently, (Audigier et al., 2017) reported a computational study of RFA for treating a liver 

tumor that incorporates the computational fluid dynamics (CFD) solver with the conventional 

electro-thermal model. In this study, the computational domain was derived from the realistic 

animal-specific models of pigs, inclusive of hepatic venous and arterial circulation systems, 

acquired from the computed tomography images. To address and avoid the anisotropic 

resolution issue of the segmented vessels obtained from the preoperative images along with 

an unstable solution of CFD solver, smooth vessel trees were generated in a piecewise 

fashion from the extracted centrelines and computed the mean radius of the vessels. 

Moreover, the inputs required for modelling the blood flow in the RFA model, such as blood 

flow entering the vena cava, the portal vein and the hepatic artery, were actually acquired 

from the phase-contrast magnetic resonance images, instead of fixing nominal values from 

the literature. Furthermore, the blood pressure inputs to be prescribed at the boundaries of the 

blood vessels were acquired from the invasive measurements in pigs. The developed model 
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not only considered the heat sink effect of all hepatic vessels (veins and arteries) during RFA 

procedures but also the blood flow within the parenchyma by utilizing the porous media 

approach. Figure 3 presents the schematic of blood vessels and bio-network modelling during 

RFA procedures (Audigier et al., 2017). (Salimpour and Shirani, 2017) reported a study to 

quantify the effects of thermally significant blood vessels on the temperature distribution in a 

skin subjected to thermal therapy. In this study, the counter-current multilevel vessel network 

of the circular cross-section was embedded within the three-dimensional triple-layered skin 

structure. The blood was modelled assuming a non-Newtonian power-law viscosity model 

and the study reported that both micro and macrovascular blood perfusions have an enormous 

effect on the tissue temperature distribution (i.e. a difference of 8 oC between the zero and 

maximum perfusion rate conditions at the end of the procedure). Importantly, the 

microvascular perfusion refers to the perfusion that occurs at the capillary level, while the 

macrovascular perfusion refers to the heat sink effect caused by the large blood vessels 

(Singh and Repaka, 2017b). The effects of boundary conditions, relaxation time, thermal 

properties, perfusion rate, metabolism and pulse heat flux on the temperature distribution 

were also investigated in (Salimpour and Shirani, 2017). Again, the major focus of such 

studies was only limited to evaluating the vascular cooling effect on RFA, since MWA is 

generally less susceptible to such heat sink effects as compared to RFA. 

 

3.5. Image-based multiscale modelling 

Traditionally, computational studies of the thermal ablation are performed on either one-

compartment (having homogeneous properties) or two-compartment models (e.g., having 

different properties for healthy and tumorous tissues). In these studies, instead of modelling 

the entire tissue, only a small control volume of the tissue is modelled with a simplified 

geometry, such as a cylinder or a sphere, in either three-dimensional or two-dimensional 

axisymmetric coordinates. This approach assumes that the target zone for performing thermal 

ablation is located far from the boundary of that organ, with the ablation zone dimensions 

significantly less than the actual size of that organ, such that any boundary effects are negated 

(Ooi et al., 2019). Figure 4 presents the reduction of tissue-level model to the simplified 

axisymmetric model along with associated boundary conditions for MWA and RFA 

procedures. The outer boundaries of the computational domain of thermal ablative models are 

specified with electrical and thermal boundary conditions. Most often, ground (to mimic the 

ground pad) and constant body temperature conditions (that assumes ablation zone to be 

sufficiently isolated from the surrounding healthy tissues such that normo-thermoregulation 

can maintain the external boundaries of the domain at body temperature) are prescribed as the 
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electrical and thermal boundary conditions, respectively (Ewertowska et al., 2018b, 

González-Suárez et al., 2018, Ooi et al., 2019, Singh and Repaka, 2017c, He et al., 2013). 

Some researchers have adopted other boundary conditions, such as, the Robin type electrical 

boundary conditions to mimic the outflow of electric current to an infinite space and the 

thermal insulation condition to allow temperature at external boundary to increase in response 

to the heating induced during thermal ablation, etc. (Altrogge et al., 2007, Kröger et al., 2010, 

Ooi et al., 2018, Qadri et al., 2017). Recently, (Ooi et al., 2019) reported a computational 

study of RFA for treating liver cancer by considering geometrically-accurate models of the 

liver. Importantly, in this study, the geometrically-accurate model of the liver was 

constructed using publically-available CT scan dataset of the liver in which ellipsoid shaped 

artificial tumor domain was inserted to represent the tumor. The prime motive of this study 

was to investigate the effects of different electrical and thermal boundary conditions 

prescribed at the outer boundaries of the computational domain of RFA models, specifically 

for cases where the tumor is located close to the liver boundary. The different types of 

boundary conditions considered for the electrical field were ground and Robin type, while 

constant body temperature and thermal insulation conditions were imposed for the thermal 

field. It was found that the different electrical and thermal boundary conditions imposed at 

the computational domain of RFA resulted in significant differences in the predicted 

electrical potential, temperature and coagulation volume distributions. The use of ground or 

body temperature conditions resulted in a reduction of the predicted coagulation volume as 

compared to the case when the Robin type or the thermal insulation condition is prescribed. 

Although this study could not firmly identify the correct boundary condition to be prescribed 

in RFA models, it certainly highlights the concern about the selection of proper boundary 

conditions at the outer domain of the computational models, e.g., when the tumor is located at 

the peripheral region of the liver. Furthermore, the consideration of the ambient room 

temperature conditions, by incorporating the convective cooling boundary condition at the 

outer surfaces of the computational domain, also becomes vital if the treated tissue is directly 

exposed to the ambience, such as for treating cancer in skin or breast (Singh and Repaka, 

2018e).  

The ultimate goal of the computational models is to reach a stage where these tools 

can be easily integrated into the clinical workflow in such a way that based on the individual 

patient imaging data an optimal heating protocol can be readily provided in advance of the 

therapy. The attainment of this goal is tremendously dependent on the combination of 

mathematical modelling, computational efficiency and accurate image analysis (Payne et al., 

2011). Moreover, extensive validation of the developed models is required before it can be 
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integrated into clinical settings in order to provide precise treatment outcomes with 

confidence. Image-based multiscale modelling is the next step to attain the goal of complete 

transformation of computational models of MWA and RFA into clinical practices. In a 

nutshell, the image-based computational modelling of thermal ablation can typically be 

subdivided into three main steps: (a) generation of patient-specific model, (b) computation of 

electromagnetic power deposited within the tissue, and (c) prediction of the temperature 

distribution and damage volume for better planning and optimization of the treatment 

protocols (Paulides et al., 2013). The first step is most challenging and time-consuming task 

whereby a three-dimensional patient-specific model is built by segmenting the medical 

images captured using the computed tomography (CT) or magnetic resonance image (MRI) 

of the patient (Wu et al., 2017, Wu et al., 2016, Zhang et al., 2018). The accurate and quick 

reconstruction of the three-dimensional surface models from CT and/or MRI data 

significantly relies on the advanced segmentation algorithms (Audigier et al., 2017, Lebre et 

al., 2019, Neal and Kerckhoffs, 2009, Schumann et al., 2010, Soler et al., 2014, Zygomalas 

and Kehagias, 2019). The next step is related to the percutaneous insertion of the 

electrode/applicator within the target tissue. Importantly, the precise and accurate insertion of 

the electrode during clinical practices is tremendously dependent on the personal experience 

(e.g., excellent hand-eye coordination) of the clinicians. To address this issue and assist the 

clinicians in a better way, use of computer-assisted electrode trajectory planning techniques 

has also been extensively explored, particularly for reducing the number of re-insertion 

attempts (Seitel et al., 2011, Singh and Repaka, 2018d). Recently, (Zhang et al., 2019b) 

reported an extensive review on computer-assisted needle trajectory planning for RFA and 

MWA of liver tumors, highlighting different algorithms used for needle trajectory planning 

along with their shortcomings. The last step in a computational modelling approach of 

thermal ablation is the prediction of the heating protocol outcome (i.e. ablation volume). This 

outcome is generally predicted utilizing the coupled thermo-electro-mechanical simulations 

and is based on the input requirements of the heating profile, blood flow field, bioheat 

transfer model and thermal damage model. The practical difficulties associated with choosing 

different parameter values have been discussed in a review article by Payne et al. (Payne et 

al., 2010). 

Several studies have been reported in the past on the three-dimensional image-based 

patient-specific model of RFA for treating tumor (Audigier et al., 2017, Audigier et al., 2015, 

Audigier et al., 2013, Payne et al., 2011, Payne et al., 2010, Rieder et al., 2011, Chen et al., 

2018, Mariappan et al., 2017, Reinhardt et al., 2017, Voglreiter et al., 2018, Zorbas and 

Samaras, 2014, Jin et al., 2014, Moche et al., 2020). Figure 6 presents a generalized technical 
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workflow adopted during the patient-specific modelling and simulation of RFA for treating 

liver tumor (Voglreiter et al., 2018). (Payne et al., 2011) developed a multiscale mathematical 

model for simulating the RFA process in treating liver tumors based on patient-specific data 

and images. In this study, a split-volume porous bioheat transfer model has been used for 

modelling the heat transfer in the vascularized tissue instead of using uniformly distributed 

blood perfusion rate within the whole tissue. This modelling approach was adopted to avoid 

the deviations between the Pennes model predictions and the actual temperature fields. 

Further, the heat sink effect caused by the large blood vessels, having a diameter greater than 

10 mm, was quantified by modelling the convective heat transfer on the vessel wall using 

Newton’s law of cooling. While, the cooling effects caused by small blood vessels (having a 

diameter less than 0.1 mm) was neglected due to their minor contribution to the vasculature 

cooling. Moreover, to mimic the blood flow in the patient-specific vascular geometry, 

continuum porous media flow field was constructed by applying the appropriate sources and 

sinks at the boundaries of the blood vessel tree that was reconstructed from a vessel-enhanced 

X-ray CT image. Furthermore, the outcomes of the developed simulation tool kit were 

compared with the in vivo outcomes of RFA in pig animal and the likely sources of error 

along with routes towards their clinical implementations were discussed. The greatest sources 

of error were associated with the thermo-electric and bio-physical properties considered in 

the model that can have huge variability not only among different patients but also spatially 

within the considered tissue. Further, the material properties can vary significantly with a 

disease (for e.g., cirrhosis of the liver can strongly affect the flow field). In addition, the 

blood flow within the tumor is highly abnormal and any incorrect assumptions on the blood 

flow velocity within the computational model can significantly overestimate the heat sink 

effect thereby predicting an incorrect lesion volume. Moreover, tumor hypoxia is an 

additional factor that can lead to the tumor response quite different as compared to that of the 

surrounding healthy tissue. Further, toxins are released as the tumor cells die during thermal 

ablation that can also significantly affect the remainder of the tumor. The study further 

highlights that the importance of conducting a sensitivity analysis for examining the effects 

of such errors on the treatment outcome of the computational model, once the accurate 

clinical data from the human patients is available. (Zorbas and Samaras, 2014) 

computationally simulated the RFA treatment employing realistic anatomy of three different 

body sites, namely, liver, lung and kidney, with an embedded spherical tumor. These 

anatomically realistic computational domains of different tissues were actually derived from 

the high-resolution region-specific models developed by IT’IS Foundation (Christ et al., 

2009). The study reports significant deviations in the treatment outcomes of RFA while 
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considering the complex tissue anatomical model as compared to the infinite homogeneous 

tissue model. (Audigier et al., 2017) reported a computational framework for the validation of 

a subject-specific multi-physics model of RFA for treating the liver tumor. In this study, a 

comprehensive experimental setup was utilized by combining the multimodal, pre- and 

postoperative anatomical and functional images along with the interventional monitoring of 

intra-operative signals, namely, temperature and delivered power. In order to validate the 

proposed framework, twelve experimental ablations were performed on the pig liver. Further, 

the computational model of RFA was developed taking into account the main biophysical 

phenomena, viz., heat transfer, cellular necrosis, hepatic blood flow and the advection effect 

of porous circulation. (Voglreiter et al., 2018) reported a software framework for the high-

performance patient-specific simulation of RFA for treating liver tumors. The graphics 

processing unit (GPU) based software was reported to provide a fast and accurate prediction 

of the treatment outcomes along with their advanced visualization during RFA intervention. 

This was attained by combining a large number of high-performance image processing, 

biomechanical simulation and visualization techniques into the generalized clinical workflow.  

 

4. Application of laser ablation to biological tissues, neural interfaces, multiphysics and 

smaller-scale effects 

Like radiofrequency and microwave energy, laser also induces electromagnetic heating to 

elevate the tissue temperature to cytotoxic level within the biological tissues. Laser 

irradiation is monochromatic, coherent and collimated, and has vast application in the 

biomedical engineering, in particular thermal therapies (Makropoulou et al., 2019). Lasers 

have been widely and successfully used over the past three decades for therapeutic treatment 

of the superficial cancers (typically, basal cell skin cancer) and the early stages of cervical, 

vaginal, penile, vulvar and non-small cell lung cancer . Importantly, the interaction of lasers 

with the biological tissues can be characterized into several mechanisms, viz., photo-thermal, 

photo-mechanical (or photo-acoustical), photo-chemical and plasma-mediated ablation 

(photo-ablation) (Okuno et al., 2013, Jaunich et al., 2008). Amongst these four mechanisms, 

the photo-thermal effect is the most commonly observed and easily quantified mechanism 

that has been successfully used in the localized heating of cancerous tissues during laser-

induced interstitial thermotherapy (LITT), laser-induced hyperthermia (HT) and interstitial 

laser photocoagulation therapy (ILP). The application of lasers utilizing the (NIR) region 

(750-100 nm) of electromagnetic spectrum has been extensively used by the researchers in 

clinical diagnosis and thermal therapies. Laser ablation is performed utilizing either 

continuous and/or pulsed mode, whereby the absorptivity of laser energy within the 
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biological tissue is significantly dependent on the optical properties of the target tumor and 

surrounding healthy tissue (Mooney et al., 2017, Stafford et al., 2010). Selection of the proper 

delivery technique of laser beam within the target tissue plays a vital role in initiating the 

photo-thermal or photo-ablative effects for attaining successful ablation (Jaunich et al., 2008). 

Particularly for treating deep-rooted tumors, the laser beam (either collimated or diffused) 

with a high optical penetration depth is delivered using a fiber-optic delivery system. While, 

for treating skin or subsurface tumors there is no need of perforation as instead of the fiber-

optic system, a converging laser beam is used that is directly focused at the target site. 

Furthermore, treatment outcomes of the laser therapy procedures are significantly dependent 

on the tissue properties along with the irradiation time, intensity and spot size of the laser 

(Jaunich et al., 2008).  

One of the major limitations of laser ablation is the non-specific overheating of the 

surrounding healthy tissue. A recent improvement in the laser ablation strategies has shown 

that this problem can be effectively tackled by incorporating the nanoparticles within the 

target tissue. Importantly, the localization of the nanoparticles within the tumor increases the 

absorption of light within them, leading to more selective and pronounced heating of the 

target tissue along with minimizing the morbidity caused by off-target heating. The efficacy 

of different types of nanoparticles, namely, gold, carbon and graphene with different shapes 

(e.g., nanospheres, nanorods and nanoshells) have been previously explored during the laser 

ablative procedures (Mooney et al., 2017). The major focus has been given to the gold 

nanoparticles due to their chemical stability and higher compatibility with the biomaterial 

(Paul et al., 2016). Several studies have been reported to improve the efficacy of gold 

nanoparticles mediated laser ablation by developing new materials, overcoming their toxicity 

concerns and improving their intra-tumoral distribution (Feng et al., 2015, Khlebtsov and 

Dykman, 2011, Mooney et al., 2014, Zhao et al., 2015).  Although, the early reported results 

utilizing different types of nanoparticles in collaboration with the laser ablation are quite 

promising, further progress needs to be made through the close research collaboration 

between the clinical experts, physicists, bioengineers and material scientists to improve and 

translate this research to the clinical practices (Almekkawy et al., 2019, Chen et al., 2019, 

Schena et al., 2017, Sheng et al., 2017).  

More recently, the application of minimally invasive laser ablation therapy has also 

been explored in treating the variety of neurosurgical conditions, e.g., deep-seated gliomas, 

brain metastasis, epilepsy, radiation necrosis, pediatric brain tumors as well as other lesional 

intracranial pathologies (Ashraf et al., 2018, Medvid et al., 2015, Missios et al., 2015, 

Rahmathulla et al., 2014, Silva et al., 2016, Silva et al., 2017, Shukla et al., 2017, Lagman et 
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al., 2017). Importantly, the adoption of laser ablation in neurosurgery is the result of recent 

advances in the probe design, cooling mechanism and real-time magnetic resonance 

thermography that have resulted in addressing the earlier technical difficulties related to the 

inability to precisely monitor and control the extent of thermal damage (Ashraf et al., 2018). 

Although with the advent of real-time monitoring and thermal damage estimation, laser 

therapy has gained ground as an appealing treatment option in neurosurgery (Ashraf et al., 

2018), there is an immediate need of further investigation by performing the large scale 

studies and clinical trials for developing standardized protocols and demonstrate their safety 

and efficacy over the traditional approaches.  

The role of neural interfaces in the field of thermal ablation is crucial. The use of 

minimally invasive monitoring techniques utilizing the biocompatible micro/nano electrodes 

has also been extensively explored in neurotechnology (Woeppel et al., 2017). Importantly, 

such non-invasive monitoring techniques using the neural electrodes can significantly assist 

in enhancing the understanding of nuances of the electrophysiological response of neural 

tissue during nonpharmacological treatments of neurological disorders. A recent review 

article reported by (Won et al., 2018) provides the latest advances in the materials, devices 

and systems for the neural interfaces. 

Several mathematical studies have been reported in the past on thermal therapies 

utilizing the laser (Bhowmik et al., 2014, Bhowmik et al., 2016, Kumar and Srivastava, 2015, 

Nirgudkar et al., 2017, Truong et al., 2018, Wang et al., 2006a, Wang et al., 2006b, Zhang et 

al., 2008, Li et al., 2020). Importantly, the source term of bioheat transfer model is modified 

by either Beer-Lambert’s law or diffusion approximation while modelling the laser ablation. 

Recently, (Wongchadakul et al., 2018) reported a thermo-mechanical model to simulate the 

laser-induced thermotherapy by incorporating the coupled heat transfer and mechanical 

deformation model of biological tissue. Also, the effects of laser irradiation time, wavelength, 

laser intensity, laser beam radius and blood perfusion rate on the treatment outcomes were 

systematically investigated. (Kessentini and Barchiesi, 2012) reported a numerical study to 

optimize the absorption efficiency of silica-gold nanoshell, hollow nanosphere and nanorod 

utilizing the particle swarm optimization algorithm. (Soni et al., 2015a, Soni et al., 2015b) 

reported several studies to quantify the heat confinement and the effects of tumor blood 

perfusion variability during nanoparticle-assisted laser therapy. (Paul et al., 2014) reported a 

parametric study to investigate the thermal effects of large blood vessels on the temperature 

evolution within the tissue during laser-assisted thermal therapy. Both single vessel and 

countercurrent vessel transisting tissue were considered and the effects of blood vessels 

depth, tissue blood perfusion rate and laser specifications on the tissue surface temperature 
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were analysed. In another study reported by (Paul et al., 2016), subsurface thermal behaviour 

of tissue phantom embedded with the large blood vessels subjected to plasmonic 

photothermal therapy was investigated, considering gold mesoflowers and graphene 

nanostructures. The study reported that the spatio-temporal temperature distribution was 

significantly dependent on the presence of the nanoparticles and the position of blood vessel. 

Importantly, the gold nanostructures resulted in the temperature rise of 9 oC, while graphene 

nanostructures resulted in the temperature rise of 18 oC, as compared to bare tissue without 

nanoparticles. It was further reported that the addition of nanostructures can significantly 

compensate the heat sink effect caused by large blood vessels. (Ren et al., 2017) studied the 

laser-tissue interaction involved in the process of gold nanoparticle enhanced photothermal 

therapy. In this study, Monte Carlo and Beer’s law methods were used to compute the heat 

generation of tissue and gold nanoparticles irradiated by the laser. Furthermore, the influence 

of period heating, gold nanoparticle volume fraction, laser irradiation and tumor aspect ratio 

on the treatment outcomes were also investigated. (Sahoo et al., 2018) reported a study to 

quantify the rise in the internal temperature of the tissue subjected to photothermal therapy, 

with and without the application of gold nanostructures. Both the numerical and experimental 

findings of this study highlighted the importance of consideration of micro-scale non-Fourier 

heat transfer model for accurate prediction of the temperature within the bio-tissue mimicking 

tumor that is incubated with the plasmonic nanostructures. Recently, (Paul and Paul, 2018) 

reported a computational study to analyse the effect of intratumoral and intravenous loading 

scheme of the silica-gold nanoshells during laser-assisted thermal therapy. In addition, the 

heat sink effect caused by the large blood vessel and dual-phase-lag non-Fourier effects were 

also investigated. More recently, (Wang et al., 2018a) employed a two-energy equation 

model (i.e. porous media model) to numerically compute the temperature distribution within 

the biological tissue exposed to gold nanoparticles assisted thermal therapy. In this study, the 

effects of incident light intensity, gold nanoparticle volume fraction, periodic heating and 

cooling time, and incident light position on the temperature distributions of the multi-layer 

structure of human skin were also investigated. With regards to the application of laser 

therapy in neurosurgery, (Fahrenholtz et al., 2018) recently reported a computational study 

for predicting and optimizing the maximum extent of ablation during the surgical planning of 

magnetic resonance-guided laser ablation in brain. (Mitchell et al., 2018) reported a study to 

model magnetic resonance-guided laser therapy in heterogeneous tissue, considering four 

different tissue types with independent optical properties, for predicting the treatment 

outcomes in brain.  
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Furthermore, the elevated temperature produced within the biological tissue during 

thermal ablative procedures can also result in the induction of painful sensation. The 

sensation of nociceptive pain simulated due to mechanical (~0.2 MPa), chemical and/or 

thermal (~43 oC) energy is transducted through the nociceptors, the first cells in the series of 

the neuron that resides at the end of long axons. Basically, nociceptors are one of the three 

kinds of peripheral nerves: myelinated afferent Aδ and Aα fibers, and unmyelinated C-fibers. 

The thermal pain sensation is mainly mediated by the relatively fast myelinated Aδ fiber, and 

relatively slow and thin unmyelinated C-fibers (Zhu and Lu, 2010). There have been a rapid 

surge in the development of mathematical models and theoretical frameworks for 

transduction, transmission, perception and modulation of pain at different levels: molecular, 

cellular and neuron networks (Argüello et al., 2015, Kucyi and Davis, 2015, Moayedi and 

Davis, 2012, Ortiz-Catalan, 2018, Seth and de Gray, 2016, Tiemann et al., 2018).  

(Xu et al., 2010, Xu et al., 2008) developed the mathematical model for quantifying 

the skin thermal pain sensation during thermal therapies by coupling the thermal model to the 

neural model of nociceptors. The developed thermo-neural model was used for the prediction 

of thermal pain intensity induced due to the high temperature attained during thermal 

therapies and accordingly the treatment was classified to be painful or not. (Dezhdar et al., 

2015) proposed a probabilistic model taking into account the associated uncertainties and 

potential noise in the system for providing the estimates of depth and threshold temperature 

of C-fiber nociceptors during the transduction of thermal pain in the skin. The proposed 

model predicted the realistic estimates of both, the threshold and the depth at which 

transduction happens within the skin for all measured neurons, when compared with the in 

vitro data, even without detailed knowledge of the bio-thermal properties of the system. 

Recently, (Lin et al., 2017) proposed a three-state model for simulating the kinetics of 

temperature-sensitive ion channels for understanding the molecular basis of nociceptor 

signalling during thermal pain sensation in a heated dental tooth. The mathematical model 

was developed by coupling the nociceptor transduction with irreversible thermal 

desensitization of the ion channels. It was found that the proposed model was capable enough 

to capture the prediction of postoperative pain that is comparable to the essence of 

experimental in vivo observations. These findings can assist the medical practitioners in 

designing local anesthesia regimens during the thermal ablative procedures, so that the 

treatment can be performed with reduced anesthesia.  

 

5. Modelling of non-invasive thermal ablation utilizing nanoparticles 
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Each thermal ablative modalities possess their individual advantages and limitations and have 

already met with some success based on the initial clinical trials and feasibility studies 

reported in the past several decades. However, one of the underlying problem associated with 

most of the available thermal ablative modalities is that they are still minimally invasive (not 

completely non-invasive). Furthermore, these therapies may also lead to collateral thermal 

damage to the surrounding healthy tissue and critical structures in close proximity of tumor, 

specifically for deep-seated tumors (LeBrun and Zhu, 2018). Thus, there is a tremendous 

need for exploring methods that can provide better control and confine heating only to the 

tumorous tissue, sparing the surrounding healthy tissue.  

The use of nanoparticle technology in oncologic applications has opened many new 

doors in this field of cancer research. One such growing area of interest is the application of 

magnetic nanoparticle hyperthermia (developed in the 1950s for treating lymph nodes in 

recurrent breast cancer) that has emerged as a promising non-invasive heating method, 

overcoming the associated limitations of traditional hyperthermia methods (Deatsch and 

Evans, 2014). Importantly, this approach uses biocompatible iron-based magnetic 

nanoparticles that ranges from 10 to 100 nm in diameter (i.e. approximately 1000 times 

smaller than most human cells) for inducing localized heating within the target tumor by the 

application of an external alternating magnetic field. The iron-based nanoparticles are often 

mixed with a suspending medium such as water (forming a ferrofluid) for delivery within the 

target tumorous tissue using either intravenous or intra-tumoral injections (LeBrun and Zhu, 

2018). Furthermore, these nanoparticles can be coated depending on the application, for e.g., 

during intravenous delivery these nanoparticles are often coated with antibodies (i.e. drugs or 

proteins) that have an affiliation for cancer cells. These nanoparticles are also coated with a 

surfactant so as to prevent particle agglomeration within the target tissue (LeBrun and Zhu, 

2018). The major mechanisms by virtue of which heat is generated during magnetic 

nanoparticles assisted hyperthermia include Néel relaxation and Brownian motion of the 

particles. Apart from these, other mechanisms may also contribute to heating such as 

hysteresis and eddy currents, based on the effective diameter of nanoparticles (Deatsch and 

Evans, 2014, Dennis and Ivkov, 2013, Kumar and Mohammad, 2011). Furthermore, it has 

been well documented that the concentration of iron-based nanoparticles typically used 

during magnetic hyperthermia will not lead to any toxicity within the human body, since after 

treatment the majority of the injected nanoparticles are cleared by the body within several 

weeks (LeBrun and Zhu, 2018). Moreover, clinical and animal studies previously reported in 

literature utilizing magnetic nanoparticles assisted hyperthermia have shown significant 

temperature rise above the baseline temperature (Attaluri et al., 2011, Evans et al., 2018, 
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LeBrun et al., 2016a, Ma et al., 2018, Salloum et al., 2008a, Salloum et al., 2008b). Previous 

investigations have also demonstrated that the amount of heat generated during magnetic 

nanoparticles assisted hyperthermia is tremendously dependent on the magnetic field strength 

and frequency, spatial distribution of the nanoparticles, size and coating, etc. (Attaluri et al., 

2011, Evans et al., 2018, LeBrun et al., 2016a, Ma et al., 2018, Salloum et al., 2008a, 

Salloum et al., 2008b, Deatsch and Evans, 2014, LeBrun and Zhu, 2018). Furthermore, 

magnetic nanoparticles assisted hyperthermia can also be useful for treating deep-seated 

tumors even with irregular geometries, since the heating induced due to magnetic field is only 

confined to the region having nanoparticle, which was difficult to attain during traditional 

hyperthermia methods.  

Despite the great potential and numerous advantages over current cancer treatment 

options, magnetic nanoparticle assisted hyperthermia is still not a standard treatment protocol 

for treating cancer. There are a number of associated challenges that need to be thoroughly 

addressed for this modality to become more clinically acceptable for treating cancer. 

Importantly, these challenges are associated with: (a) controlling and repeating the 

nanoparticles deposition patterns to the desired location (as nanoparticle dispersion patterns 

are often non-uniform and uncontrollable), and (b) accurately predicting the temperature-time 

history for estimating the appropriate thermal dosage. The uncertainty of nanoparticle 

deposition patterns can basically result in poor treatment outcomes owing to inadequate 

temperature elevations within the target tissue and/or overheating of the surrounding healthy 

tissue, which can further lead to tumor recurrence and/or metastasis post-treatment (LeBrun 

and Zhu, 2018). Such variations can be easily tackled by developing mathematical models of 

magnetic nanoparticle assisted hyperthermia. Importantly, the heat transfer during such 

procedures can be quantified using the Pennes bioheat transfer model given by Eq. 1, 

whereby the heat source Qp (W/m3) induced due to magnetic hyperthermia is computed as: 
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where f is the density of the ferrofluid (kg/m3), cf is the specific heat of the ferrofluid 
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T

t




 represents the initial slope of time-dependent rise in the temperature obtained from 
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of SAR. For a single-domain nanoparticles exposed to an alternating magnetic field, SLP is 

computed as (LeBrun and Zhu, 2018): 
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where Fe is the density of iron nanoparticles, ϕ is the volume fraction, Md is the domain 

magnetization of the suspended particle (Md = Ms/ϕ where Ms is the saturation magnetization 

of the ferrofluid), Hm and f represents the magnitude and frequency of magnetic field applied 

to the magnetic nanoparticles, respectively, Vm is the volume of each particle, T is the 

absolute temperature of magnetic nanoparticles, kB is the Boltzmann constant and τ is the 

relaxation time of magnetic nanoparticles that depends upon the nanoparticle size for given 

values of anisotropy constant, temperature and viscosity of the magnetic suspensions. Eq. 

(30) provides a theoretical basis for optimizing the nanoparticles material, size, applied 

magnetic field strength and frequency for attaining a desirable heat generation rate within a  

non-interacting and monodispersed particles (Deatsch and Evans, 2014, LeBrun and Zhu, 

2018). 

Unfortunately due to the uncontrollable nature and the practical difficulties associated 

with the exact quantification of the nanoparticle deposition distribution within the target 

tissue during magnetic nanoparticle assisted hyperthermia, the early attempts for predicting 

the spatio-temporal temperature distributions have shown significant deviation between the 

numerically simulated and experimentally measured results obtained from animal and clinical 

trials (LeBrun and Zhu, 2018). The major reason for such deviation could be related to the 

consideration of simplified tumor geometries that results in different nanoparticle distribution 

(often difficult to accurately quantify) as compared to actual clinical scenarios and the 

idealized heat generation rate assumptions of the nanoparticles that are fed into the multi-

scale model of magnetic nanoparticles assisted hyperthermia. Furthermore, strong evidence 

about the unpredictability of nanoparticle distributions within tumors has been recently 

reported based on the microCT imaging-based experimental studies (LeBrun et al., 2016a, 

LeBrun et al., 2016b). The nanoparticles distribution has been found to be tremendously 

dependent on the heterogeneous microstructure of different shapes and sizes of tumors that 

includes, vascular permeability, local blood perfusion, tumor porosity, random nature of 

nanoparticle interactions and aggregation (LeBrun and Zhu, 2018). Thus, it becomes 

extremely important to develop more accurate numerical models of magnetic nanoparticles 

assisted hyperthermia based on the image-generated tumor geometry and nanoparticle 
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distribution. Such numerical models would provide more precise a priori estimate of the 

spatio-temporal temperature distribution, so as to assist the clinical practitioners in optimizing 

the thermal dosage that will further lead to designing tumor-specific treatment planning of 

magnetic nanoparticles assisted hyperthermia and its successful clinical translation.  

Among the different percutaneous thermal ablative modalities, RFA has already 

proven to be an effective therapy for the treatment of various soft tissue tumors. However, 

minimally invasive RFA has a number of limitations including the requirement for painful 

procedure of invasive needle placement, precise image-guidance, size of tumor and collateral 

damage to adjacent healthy regions and surrounding tissues. Therefore, tremendous attention 

has been given to replace invasive needle placements by injecting metallic nanoparticles into 

the cancerous tumor. This concept was demonstrated by the scientists by utilizing the well-

known ‘Kanzius machine’, where radiofrequency (RF) current passes through a medium 

without physical contact between the medium and the transmitter-receiver pair but at higher 

frequencies (13.56 MHz) as compared to that being used in conventional RFA (450-500 kHz) 

(Cardinal et al., 2008). Later, few in vitro studies attempted to utilize the non-invasive RFA 

approach with promising results (Cherukuri and Curley, 2010, Corr et al., 2013, Curley et al., 

2014a, Curley et al., 2014b, Gannon et al., 2007, Gannon et al., 2008, Glazer et al., 2010a, 

Glazer et al., 2010b, Raoof et al., 2012, Raoof et al., 2014, Raoof and Curley, 2011, Rejinold 

et al., 2016, Rejinold et al., 2015, Rejinold et al., 2014a, Rejinold et al., 2014b). Importantly, 

during such non-invasive RFA procedures, the RF responsive nanobiomaterials, viz., gold 

(Au-NPs), iron oxide, cobalt, carbon-based nanomaterials, and QDs (Quantum dots) are 

directly injected into the tumor (Rejinold et al., 2015). Radiofrequency field is applied over 

the injection site that dramatically increases absorption of RF energy that is dissipated in the 

form of heat, thus killing the tumor injected with nanoparticles. An increase in RF generator 

output power and exposure time can further increase the amount of heat dissipated by the 

nanoparticles (Cardinal et al., 2008). RF fields readily penetrate through human body with 

minimal perturbations and side-effects (as compared to Laser and X-rays) until the RF fields 

interact with nanoparticles that absorb RF energy and quickly release heat to the surrounding 

region. Due to the size and quantum characteristics, nanoparticles (specifically metal 

nanoparticles) can absorb even more energy (and release even more heat) (Glazer and Curley, 

2011). Hence, these nanotechnology-based localized, targeted cancer modalities have 

potential advantages such as enhanced efficacy, improved cosmesis, reduced side effects, and 

improved quality of patient life. The computational modelling approach for modelling such 

therapies will involve the integration of nanoparticle model with the previously reported 

thermo-electric models for quantifying the temperature distribution and thermal damage to 
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both the tumorous and the surrounding healthy tissue during RFA procedures. Importantly, 

the effective thermal conductivity and the heat capacity of the target tissue embedded with 

spherical nanoparticles during nanoparticles assisted RFA can be easily quantified using Eqs. 

31 and 32, respectively (Leong et al., 2006, Shao et al., 2017b): 
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where η is the content of nanoparticle volume and the subscript eff, p, t represents the 

effective value, loaded particle and biological tissue, respectively. 

Moreover, the effective thermal conductivity of biological tissue injected with non-

spherical particles nanoparticles (e.g. carbon nanotubes (CNT)) can be quantified from 

(Glory et al., 2008, Shao et al., 2017b): 
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where η is the content of nanoparticle volume and n (= 3/ψ) is the empirical shape factor, ψ 

represents the particle sphericity (i.e. the ratio of the surface area of the sphere with its 

volume equivalent to the non-spherical particle to surface area of particle). For nanotubes n 

can be computed from: [n = (12L/d)1/3], where d is diameter and L is the length of nanotubes. 

The effective electrical conductivity of the biological tissue injected with nanoparticles 

during RFA procedure can be computed from (Ganguly et al., 2009, Shao et al., 2017b): 
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where η is the content of nanoparticle volume and σeff, σt, σp are the effective value of 

electrical conductivities, biological tissue and nanoparticles, respectively. 

 

6. Modelling of RFA application in treating chronic pain 

The application of RF (radiofrequency) is well pronounced for treating different types of 

tumors in liver, kidney, lung, prostate, bones and breast. Moreover, RF has also been gaining 

increasing popularity among the pain management therapists for mitigating various types of 

chronic pain, namely, low back pain, knee pain, hip pain and migraine, etc. The power 

delivery during the RF application in pain management is usually done using either 

continuous or pulsed modes (Chua et al., 2011). In the conventional continuous power 

delivery mode, RF generator delivers the high-frequency alternating current to the electrode 

placed close to the target nerve for heating the neural tissue (80-90 oC). This process stops the 



36 
 

transmission of nociceptive signals from the periphery of nerve by causing protein 

denaturation and destruction of the axons. In the another approach of pulsed RF utilized in 

the clinical practices for treating chronic pain, brief ‘pulses’ of RF signals are applied to the 

neural tissue from the RF generator that is followed by the silent phases for allowing time for 

heat dissemination. Figure 5 presents the different components of the pulsed RF procedure 

utilized for management of chronic neural pain (Chua et al., 2011). Moreover, the pulsed RF 

can produce far stronger electrical fields (5-10 times more) as compared to the continuous RF 

(Cosman Jr and Cosman Sr, 2005). Initially, the pulsed RF procedure was thought to be a 

completely non-destructive in nature, but recent research advances suggests the occurrence of 

both the thermal and non-thermal effects during such procedures (Chua et al., 2011, Soloman 

et al., 2010). Although, the exact explanation of the complete mechanisms of action involved 

in the pulsed RF still remains elusive, some associated effects have been speculated 

(Calodney et al., 2016, Chang, 2018). What currently known is that, the electric field 

generated during pulsed RF results in structural changes in the neural cells, along with 

genetic changes and inhibition of nociceptive firing. Importantly, the pulsed RF procedure is 

less destructive when compared to the continuous RF, as there have been no previous reports 

of the associated neurological side effects (Erdine et al., 2009).  

A very limited progress has been made in this direction utilizing a computational 

modelling approach. (Cosman Jr and Cosman Sr, 2005) reported the numerical study to 

quantify the electric and thermal field distributions in the tissue around the RF electrode 

utilizing continuous and pulsed RF applications during pain therapy. The results obtained 

with numerical studies were found to closely reproduce the thermal and electrical features of 

both continuous and pulsed RF when compared with ex vivo studies on liver and egg-white 

phantom. In another study by (Cosman Jr et al., 2014), the comparison of the lesion size 

produced with different configurations of RF electrodes and different generator settings were 

reported during interventional pain management. The heat lesions produced with monopolar 

configuration were found to be significantly affected by the cannula diameters, active tip 

lengths, set temperatures and set times. The study revealed that the average lesion width 

increases by 58-65 % (3-4 mm) with increase of the cannula diameter from 22 to 16 gauge at 

preset temperature and time of 80 oC and 2 minutes, respectively. It was further reported that 

with increase in preset temperature from 60 oC to 90 oC, the average lesion width increases 

by 108-152 % after 2 minutes of RFA procedure. (Pérez et al., 2014) reported a 

computational study for quantifying the thermal and electrical field distributions during 

bipolar pulsed RF application for pain relief. This study highlighted the noteworthy 

differences between the electrical and thermal performance of the bipolar pulsed RF as 
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compared to the bipolar continuous RF for pain relief. Importantly, in this study a coupled 

thermo-electric model was developed to assess the damage caused due to both thermal 

ablative (induced due to temperature spikes) and possible electroporation effects (induced 

due to electrical field) during bipolar pulsed RF. The effects of changing electrode 

dimensions (length and diameter), inter-electrode distance, a relative position between 

electrodes (offset and angle), treatment time and blood perfusion rate were thoroughly 

discussed from both the thermal and electrical performance aspects. The results obtained 

from the computational models were compared with the previous experimental studies 

reported in literature and a reasonable agreement among them was found. The study reported 

that shorter the distance between the two electrodes, higher will be the temperature spike 

amplitude during pulsed RF procedure. The temperature distribution around the electrodes 

was found to be completely different for short distances (2 and 5 mm) whereby the tissue 

between the electrode become quite heated and leads to considerable thermal ablation as 

compared to longer distances (10, 15 and 20 mm), where the heating was confined only 

around the tip of the electrode. Further, it was found that the maximum temperature attained 

within the tissue increases from 45.6 oC to 49.1 oC as the electrode dimensions were reduced 

from 18 gauge to 22 gauge. It was also reported that the accidental change in electrodes 

intertip angle and intertip offset has negligible effect on the temperature spike, but can alter 

the ablation volume between the electrodes. A comparative study was also conducted for 

analyzing the deviations between the continuous and pulsed RF at the same energy level and 

it was found that the damage volume is same for both the cases but with lower temperature 

value for continuous RF. Furthermore, it was found that the inclusion of blood perfusion term 

in the bioheat transfer model results in 1.5 oC drop in the maximum temperature during 

pulsed bipolar RF procedure. It was also reported that the electric field distribution was 

exclusively dependent on the maximum value of the applied voltage and is not altered by 

procedure duration. Moreover, the results suggested that the possible irreversible 

electroporation zone during the pulsed RF procedure was confined only to a very small zone 

of tissue around the electrode tip. Recently, (Ewertowska et al., 2018a) reported a computer 

modelling study of the RF application in pain relief to quantify the effect of applied voltage, 

duration and repetition frequency of RF pulses on the temperature spikes and electrical field 

distributions. Importantly, a computational model was developed to compare the thermal and 

electrical performance of the standard clinical protocol typically used during the pulsed RF 

procedures (i.e., 45 V pulses, 20 ms duration and 2 Hz repetition frequency) with a new 

protocol having higher applied electric field (55 V instead of 45 V), shorter pulses (5 ms 

instead of 20 ms) and higher pulse frequency repetition (5 Hz instead of 2 Hz). The study 
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reported that the new protocol of the pulsed RF increased the electric field magnitude by 

20%, without increasing the temperature and thus can be more effective in providing chronic 

pain relief. Furthermore, the effect of incorporation of the temperature controller was also 

studied and it was found that the temperature controller can play vital role in minimizing the 

thermal damage to the tissue by keeping the electric field magnitude at same level by 

reducing the total number of delivered pulses by around 67 %. The developed model was 

further validated utilizing an in vitro agar-based experimental model and was found to match 

moderately well with the experimental findings. More recently, (Singh and Melnik, 2019a, 

Singh and Melnik, 2019d, Singh and Melnik, 2019c) reported the first preliminary results 

highlighting the importance of consideration of heterogeneous surroundings in the 

computational domain during continuous and pulsed RF application for mitigating chronic 

pain. A comparative analysis was conducted to highlight the deviations in the treatment 

outcome of the continuous RF considering a three-dimensional computational domain. 

Importantly, computational simulations were performed for three cases, viz., (a) completely 

homogenous domain comprising of only muscle tissue (similar to most of the studies reported 

in literature), (b) computational domain comprising of muscle and target nerve, and (c) 

completely heterogeneous domain comprising of muscle, nerve and bone tissues to model 

more realistic scenario. The results reported in the study highlighted 30.64 % decline in the 

ablation volume for completely heterogeneous domain comprising of muscle, target nerve 

and bone tissue as compared to homogeneous domain comprising of muscle alone. Further, 

the results revealed a strong dependence of the ablation volume on the target nerve location 

from the bone and it was found that the ablation volume decreases for the target nerve located 

closer to bone and vice versa.  

 

7. Multiscale modelling of neurological disorders and machine learning algorithms 

A wide interest has been growing in the scientific community for developing computational 

models of thermal ablation for treating different types of neurological disorders. Such 

computational models of the brain and the nervous system not only assist in explaining the 

data or bio-physical behaviour that already exist but also helps in predicting the behaviour of 

a system under new conditions and generating new hypothesis (Gerardo-Giorda and Kroos, 

2017, Holt and Netoff, 2013, Jirsa et al., 2017, Miga, 2016).  Importantly, the associated 

complexity of linkages that produces pathophysiology in neurology requires a multiscale 

modelling for combining the molecular and cellular-level processes occurring at the neuron 

level (microscopic scale) to the whole brain tissue (macroscopic scale). For e.g., epilepsy is a 

multiscale disease that involves changes at multiple spatial and temporal scales, i.e., changes 
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in cellular level (microscale) can bring about seizures that actually occurs at a macroscopic 

scale and is actually identified by a patient’s behaviour and recorded with 

electroencephalography (EEG) (Holt and Netoff, 2013, Lytton et al., 2017). Thus, a 

multiscale approach in computational modelling is often required to bridge the gap between 

different scales, like, cellular, network, cortical region and brain scales, such as in the case of 

modelling epilepsy. More recently, a review article has been reported highlighting the 

perspective, challenges and opportunities of integration of machine learning and multiscale 

modelling in biomedical, biomedical and behavioural sciences (Alber et al., 2019). Although, 

simulation and analysis methods utilizing multiscale models have recently made a major leap 

forward, determining the relevant scales for a particular problem and their efficient coupling 

still remains challenging (Widmer and Stelling, 2018). 

 The application of machine learning algorithms and models have also been explored 

in the thermal ablative procedures, either for the accurate and precise placement of the 

electrode or for the real-time monitoring of ablation volume (Besler et al., 2019a, Li et al., 

2019, Lötsch and Ultsch, 2018, Wang et al., 2018b, Yildiz and Özdemir, 2019, Zhang et al., 

2019a, Besler et al., 2019b, Hajimolahoseini et al., 2018, Negro et al., 2019, Zhang and 

Chauhan, 2019). (Wang et al., 2018b) reported the application of an artificial neural network 

(ANN) for real-time estimation of the lesion depth and control of RFA within ex vivo animal 

tissue. Recently, (Besler et al., 2019a), reported a machine learning approach for prediction of 

the lesion depth during RFA utilizing a Random Forest and Adaptive Boosting model to 

reduce the monitoring time as compared to conventional methods. (Li et al., 2019) reported a 

study that incorporates the machine learning techniques with computer-assisted planning for 

optimizing the electrode trajectory during laser therapy of neurological disorder. Figure 7 

presents the complete flowchart generally adopted in the clinical practices utilizing machine 

learning algorithms for optimizing the electrode trajectory during laser-assisted thermal 

therapy of brain disorder (Li et al., 2019). More recently, (Yildiz and Özdemir, 2019) 

reported an ANN modelling of the laser-induced thermal damage on ex vivo liver. 

Importantly, in this study feedforward ANN models with different learning algorithms were 

developed and compared for finding the optimum structure for prediction of the thermal 

damage degree as a function of laser parameters, viz., treatment time, power, laser spot size, 

penetration depth and wavelength. (Lötsch and Ultsch, 2018) reported a review highlighting 

the recent applications and the associated challenges of machine learning in pain research. 

Thus, the application of machine learning could play a vital role in optimizing the needle 

trajectory and thermal dosage to be delivered in the target tissue, so as to ensure safe and 

reliable treatment outcomes. However, the development of effective and efficient machine 
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learning algorithms are based on the availability of quality data from clinical studies which at 

least at this stage is quite scarce for the research pertaining to thermal ablation. More 

recently, the application of machine learning-based reversed modelling approach has been 

presented in (Surleraux et al., 2020) for rapid tool shape optimization during thermal ablation 

process. Although this study was related to the application of thermal ablation in the field of 

manufacturing science, such approaches can be readily integrated in the field of biomedical 

engineering, especially thermal therapies. 

 

8. Current challenges and future perspectives in modelling of RFA and MWA 

Thermal ablative therapies have demonstrated rapid progress over the past decade in 

providing a viable and safe alternative to surgery. Among different hyperthermic ablative 

modalities that utilize electromagnetic heating, RFA is a well-established and extensively 

studied modality for treating: (a) different types of cancer (e.g., liver, kidney, bone, lung, 

breast, prostate and adrenal), (b) cardiac arrhythmia and some types of atrial fibrillation, and 

(c) chronic nerve pain by providing rapid pain relief. While, MWA and nanoparticles 

mediated laser therapy being rapidly progressing modalities mainly focused on treating 

tumors. Additionally, the application of laser therapy has also been explored in neurosurgery 

for treating different types of pathological disorders in brain. Computational modelling has 

become an important tool that not only assists in providing a priori estimates of the treatment 

outcomes with better visualizations but can also be used for educational purposes, e.g., 

providing training and online support to the physicians.  

Among others, numerous computational studies have been published in the last 

decades on mathematical modelling of RFA for treating tumors. The models available in 

literature are either one-compartment models or two-compartment models, utilizing different 

protocols of RF energy delivery, viz., continuous (Barauskas et al., 2008, Zorbas and 

Samaras, 2013, Singh et al., 2016, Singh and Repaka, 2015), temperature-controlled (Shao et 

al., 2017a, Singh, 2018, Singh and Repaka, 2017a, Singh and Repaka, 2018a, Singh and 

Repaka, 2018c, Singh and Repaka, 2018b, Zhang et al., 2017, Singh and Repaka, 2016) and 

impedance-controlled (Cheong et al., 2019, Trujillo et al., 2017, Trujillo et al., 2016). 

Further, modifications in the electrode design have also been reported in the quest for 

attaining an increase in the coagulation volume during RFA procedures. Such modifications 

include the use of multi-tine electrodes, bipolar electrodes and saline-infused cooled 

electrodes. However, most of the available computational studies of RFA for treating tumor 

are mainly limited to the treatment of early-stage of tumor only (e.g., for liver it is less than 3 

cm in diameter). The need to address the issues related to incorporation and evaluation of the 
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impact of inhomogeneity on the treatment outcomes among different biological tissues is still 

prevalent in this direction. These typical shortcomings can be effectively tackled by 

incorporating the image-based realistic geometries along with consideration of the 

temperature-dependent electrical and thermal properties during modelling of RFA for treating 

tumor in different tissues and sites. Further, to guarantee a more accurate prediction of the 

treatment outcomes during RFA procedure, the incorporation of convective cooling between 

the heated tissue and the nearby large blood vessels become quite essential, apart from 

incorporating the porous media model for modelling the heat transport at microscale. Another 

future direction in the computational modelling of RFA would be the development and 

realization of models for the fast prediction of treatment outcomes as compared to the 

frequently used finite element models that require long computation times limiting their 

usage in clinical practices (see, e.g., (Audigier et al., 2017, Chen et al., 2018, Voglreiter et al., 

2018)). Moreover, the combination of RFA with conventional treatment, viz., chemotherapy 

and radiotherapy for attaining higher ablation volume have also been explored (Rao and 

Deng, 2010, Zhang et al., 2016). The development of mathematical models can be explored 

in this research direction as well to understand the underlying physics and conducting 

parametric studies for quantifying the effects of various critical parameters on treatment 

outcomes. 

 Further, most of the computational studies on the application of RF in treating chronic 

pain reported till date have been conducted on homogeneous tissues (Ewertowska et al., 

2018a, Pérez et al., 2014, Singh and Melnik, 2019a). It often means that although the goal 

during such procedures was to attain nerve ablation, the nerve itself was not part of the 

computational domain. Although, the reported computational studies of pain management 

utilizing RF currents have resulted in addressing different concerns and in progressing the 

field by providing a quantitative prediction of electrical and thermal fields along with the 

damage volume, some of them could have resulted in introducing severe inaccuracies in the 

simulated model. To address these concerns, computational models with heterogeneous 

surroundings need to be developed, incorporating the muscle, nerve and bones along with 

other critical structures, to provide more qualitative prediction of the treatment outcomes 

during RF application in treating chronic pain. Recently, a preliminary study, highlighting the 

deviations in the treatment outcomes during the continuous RF procedure has been reported 

in (Singh and Melnik, 2019d), when the target nerve was considered in the computational 

domain of chronic pain models. Further refinements in the chronic pain management models 

can be attained by using multiscale modelling approaches, whereby the damage caused due to 

high-alternating electric current can be quantified at a cellular level. This can be 
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accomplished by integrating the Hodgkin-Huxley neural model with the thermo-electro-

mechanical model of RFA. The incorporation of such models in the computational analysis 

will assist in providing a better understanding of the molecular changes affecting the neuronal 

behaviour during the development of corresponding treatment therapies. More realistic 

models can be made by integrating the actual physiological geometries of the neuron along 

with modelling the biophysical phenomena at the membrane layer (e.g., modelling changes in 

sodium, potassium, calcium and magnesium concentrations (Kosik-Bogacka et al., 2018, 

Kroos et al., 2017, Li et al., 2016, Mercadal et al., 2018, Srebro et al., 2017)). A more 

accurate future modelling strategy would be incorporating other multiphysics effects, such as 

piezoelectric (e.g., (Mahapatra and Melnik, 2006, Melnik and Melnik, 1998, Melnik, 2000, 

Mosgaard et al., 2015, Lee et al., 2017)). Note that the well-posedness of mathematical 

models of coupled piezoelectricity, along with rigorous energy bounds, were derived in a 

series of earlier papers (Melnik, 2000). This was done for the first time in a general dynamic 

setting. Recently, one such study (although with a different application) has been reported by 

(Cinelli et al., 2017) that proposed an electro-thermal equivalent three-dimensional model of 

a single neuron whereby the nerve membrane was modelled as a piezoelectric material. 

 There has been a tremendous focus on improving the computational models of MWA. 

These improvements include: temperature-dependent dielectric and thermal properties, 

incorporation of water vaporization and tissue contraction model, etc. Such improvements 

have significantly benefited the design, optimization and characterization of new microwave 

antenna applicators, apart from providing the optimal microwave power to be radiated from 

antenna for attaining complete destruction of tumor with minimum damage to the 

surrounding healthy tissue and critical structures. But, again most of these reported 

computational studies of MWA have been performed on the homogenous tissue (Cavagnaro 

et al., 2015a, Cavagnaro et al., 2015b, Keangin and Rattanadecho, 2013, Liu and Brace, 2017, 

Rattanadecho and Keangin, 2013, Sebek et al., 2016, Singh et al., 2019, Xu et al., 2019), with 

very limited studies reported considering both the tumorous and healthy tissue (Chaichanyut 

and Tungjitkusolmun, 2016, Keangin and Rattanadecho, 2018). The consideration of the 

tumor in the tissue could significantly influence the treatment outcomes of the MWA 

procedure. Thus, there seems to be a great need of developing the computational models of 

MWA utilizing the image-based patient-specific models among different tissues to bridge the 

gap between the results predicted from computational models and the clinically obtained 

results.  
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 Although, RFA (and recently MWA) applications in clinical practices is more wide-

spread compared to laser ablation for treating a tumor in soft tissues, recently there has been a 

surge in the application of laser therapy for treating different types of neurological disorders, 

e.g., brain tumors, epilepsy. Importantly, the application of magnetic resonance (MR)-guided 

laser therapy in treating brain disorders results in higher efficacy, improved real-time 

intraoperative monitoring of the ablation zone, low risk of complications, shorter 

hospitalization time and no damage of the tissue beyond the ablation zone as compared to the 

conventional treatments (Mitchell et al., 2018). The computational modelling utilizing 

multiscale approaches in laser therapy for treating neurological disorders can significantly 

assist in better treatment planning by providing a priori information about the optimal 

trajectory of the needle placement along with the optimal radiation dosage to minimize the 

damage to the critical structures of brain. Incorporation of Artificial Intelligence (AI) and 

machine learning algorithms can further assist in bridging the different scales of the 

multiscale model of brain during MR-guided laser therapy.  

 Furthermore, the accuracy of the computational models of thermal ablation is 

significantly dependent on the tissue’s biophysical parameters and thus accurate 

characterization of such parameters. However, accurate characterization of these biophysical 

properties is an extremely challenging task due to the associated variability among patients, 

tissue/disease state and non-linear changes associated with the elevated temperature during 

thermal ablative procedures (Lopresto et al., 2014, Lopresto et al., 2017a, Zhang et al., 2016). 

Henceforth, there is a strong need in developing characterization techniques for estimating 

these biophysical properties that can be readily integrated with the therapeutic procedure 

workflow. The computational models should also focus on addressing and reporting the 

associated uncertainty in the treatment outcomes by virtue of these varying biophysical 

properties, so as to provide more concrete evidence for integrating the computational models 

of thermal ablation into the clinical practices.  

 Further, it is extremely important to experimentally validate the developed 

computational models to evaluate their accuracy and efficacy. The validation studies of 

thermal ablation available in the previous studies have been generally conducted performing 

the ex vivo procedures on the excised biological tissue. In most of such studies, the ablation 

zone dimensions obtained by the macroscopic visual inspection post-procedure are compared 

with the numerically predicted dimensions of the ablation zone for quantifying the aptness of 

the developed model. Studies have also been reported incorporating the histological analysis, 

viz., microscopic examination, enzyme histochemistry and transmission electron microscopy, 
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for providing a more accurate comparison between computationally predicted and 

experimental obtained ablation zone, apart from providing distinct zones of ablation 

(Amabile et al., 2017, Chiang et al., 2013, Zhang et al., 2016). Alternative to the experimental 

validation based on ablation zone quantification, studies have also been reported on the 

comparison between the spatio-temporal temperature distribution utilizing an array of 

thermocouples, thermistors or fibre-optic based sensors around the applicator. Importantly, 

there has been tremendous research focus on developing thermometric (both invasive and 

non-invasive) techniques for real-time visualization/monitoring of the tissue temperature and 

ablation volume during thermal ablative procedures (Eyerly et al., 2015, Almekkawy et al., 

2019, Gao et al., 2019b, Gao et al., 2019c, Quirk and Lu, 2019). However, special care 

should be taken to address the mechanical deformation induced by the elevated temperatures 

during the thermal ablative procedures. This can be done by either recalibrating the 

evaluation points of temperature measurements or incorporating the mechanical deformation 

model for providing an accurate comparison between the temperature distributions obtained 

from computational and experimental studies (Liu and Brace, 2017). The assessment of the 

minimally invasive 3D dosimetry during hyperthermic ablation based on patient-specific 

temperature simulations and sensory feedback has been presented in (Verhaart et al., 2015), 

highlighting the importance of both the patient-specific tissue properties and models for 

enhancing the accuracy of temperature prediction. Recently, a new parameter feedback 

method based on sensitivity analysis and single-thermometry measurements has been 

reported in (Gao et al., 2019a) for improving the accuracy of temperature predictions for 

MWA simulations. 

One of the severe limitations of utilizing the ex vivo experimental validation study is 

the absence of the blood perfusion rate that can significantly influence the predicted ablation 

zone or temperature distribution. The next step could be conducting the in vivo experimental 

studies for accounting the effect of blood perfusion rate on the ablation zone or the 

temperature distribution and consequently addressing the discrepancies between the 

numerical and experimental findings. The conjugation of the imaging techniques such as CT 

scan or MRI in the experimental validation studies would definitely result in establishing 

broader applicability of the computational models and raising the faith among clinicians 

about the predicted treatment outcomes. This would result in clinical translation of the 

developed models to patient-specific planning by assisting the physicians in decision-making 

process such as the need of repositioning the applicator or terminating the ablative procedure 

at critical point to avoid any procedural complications. Thus, the AI and machine learning 
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algorithms can play a significant role during such decision-making processes and treatment 

planning stage of the thermal ablative procedures.  

 

9. Conclusions 

The purpose of this paper is to provide a current state-of-the-art review in the computational 

modelling of the most widely applied thermal ablative techniques in clinical practices, in 

particular, RFA and MWA, with a touch upon on different avenues of laser ablation, non-

invasive nanoparticle assisted hyperthermic ablation and RF application for treating chronic 

pain. The different complexities associated with the modelling of these hyperthermic ablative 

techniques have also been highlighted. We emphasize multiscale, multiphysics nature of the 

models and related challenges. Finally, future promising research directions on improving the 

existing computational models of RFA and MWA have been provided. The authors believe 

that the continuous expansion of the interdisciplinary research in the area of thermal ablation 

that includes medical, engineering, computational, mathematical and biological sciences is 

very timely for the success of clinical translation and further adaptation of the thermal 

ablative modalities in actual clinical practices worldwide. 
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Table 1. Comparison of electrical properties of different tissues at 500 kHz and 2.45 GHz. 

Tissue Type 

@ 500 kHz 

Electrical 

conductivity 

(S/m) 

@ 2.45 GHz 

Electrical 

conductivity 

(S/m) 

Relative 

permittivity 

Adipose (fat) 0.0438 0.268 10.8 

Bone (cortical) 0.0222 0.394 11.4 

Blood 0.748 2.54 58.3 

Breast 0.566 1.97 57.2 

Kidney 0.228 2.43 52.7 

Liver  0.148 1.69 43.0 

Lung (inflated) 0.123 0.804 20.5 

Muscle 0.446 1.74 52.7 

Nerve 0.111 1.09 30.1 
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Table 2. Magnitudes of thermal relaxation time for biological tissues reported in previous 

experimental studies. 

Reference Biological tissues   Source of heating 
τq 

[s] 

τT 

[s] 

Mitraa et al. (Mitra 

et al., 1995) 
Processed meat 

Instantaneous contact of identical 

meat samples maintained at 

different initial temperatures 

16 0.043 

Roetzel et al. 

(Roetzel et al., 

2003) 

Processed meat Planar Peltier heating and cooling 1.77 – 

Jaunich et al. 

(Jaunich et al., 

2008) 

Tissue phantom Laser ablation 10-20 – 

Liu and Chen (Liu 

and Chen, 2010) 

Muscle tissue of a 

cow 
RFA 7.4-8.9 14.5-21.4 

Sahoo et al. 

(Sahoo et al., 

2014) 

Collagen gel 

embedded with 

gold nanoparticles 

Laser ablation 2-8 0.045 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



63 
 

 
 

Figure 1. Different types of image-guided thermal ablative procedures. 
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(c) 

Figure 2. (a) Schematic of a generic thermal ablative system for treating tumors, (b) 

underlying mechanism of heat generation for the MWA and RFA procedures, and (c) the 

effects of coagulative necrosis on biological tissue during hyperthermic ablation (Figure 2(b) 

was reproduced from (Kim, 2018) with permission from Future Oncology as agreed by 

Future Medicine Ltd. and Figure 2(c) is reproduced with permission from (Chu and Dupuy, 

2014)). 
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Figure 3. (a) Segmentation of liver (magenta), arterial vessels (red), portal networks (light 

blue), hepatic network (dark blue), surrogate tumor (dark green) and gall bladder (light green) 

from the preoperative CT image of pig, (b) Variation of blood velocity with respect to trigger 

time in the vena cava of pig on left and image of phase-contrast MRI of pig on right (vena 

cava in green; portal vein in blue and aorta in yellow), and (c) Simulated lesion (in yellow) 

during RFA procedure utilizing multitine probe on left and orthogonal slice depicting the 

comparison between the simulated and the actual postoperative lesion on right (color of 

boxes corresponds to the color of respective region) (reproduced with permission from 

(Audigier et al., 2017)). 
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Figure 4. Reduction of computational domain from tissue level to axisymmetric model 

during thermal ablative procedure. (a) Whole tissue-level model, (b) Three-dimensional 

model derived from selected control volume, and (c) simplified axisymmetric model of 

MWA and RFA along with associated boundary conditions.  
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Figure 5. Components of pulsed radiofrequency procedure for chronic pain relief (Chua et 

al., 2011) (This image is reproduced under the terms of an open access license, Copyright © 

2018, Springer Nature) 
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Figure 6. The technical workflow for computational modelling and simulation of thermal 

ablative procedure comprising of three different phases. The first phase is the pre-

interventional stage in which the image-guided patient-specific anatomical models are 

generated. The second phase is the peri-interventional stage where the high-performance 

simulations are conducted utilizing user-defined bio-physical properties and parameters of 

electrode/applicator. The last and final phase is the post-interventional stage where a priori 

estimates are predicted for optimizing the treatment outcomes, so as to perform safe and 

reliable thermal ablative procedure in patient’s (Voglreiter et al., 2018) (This image is 

reproduced under the terms of the Creative Commons Attribution 4.0 International License 

(http://creativecommons.org/licenses/by/4.0/), Copyright © 2018, Springer Nature) 
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Figure 7. Flowchart for optimization of the catheter trajectory utilizing computational models 

and machine learning algorithms during laser interstitial thermal therapy (LITT) in brain. 

Initially, three-dimensional models are generated utilizing the segmentation of important 

structures using geodesic information flow (GIF) from the single T1 image. The automated 

trajectories are then calculated using EpiNav (epilepsy navigation), an image integration 

software, based on all the possible combinations of entry region, target region and 

amygdalohippocampal complex (AHC) erosion. The computed composited scores for each 

trajectory are then compared with that predicted from machine learning for 50% training set 

and subsequently the machine learning parameters are used to optimize the safety metrics 

such as laser catheter intracerebral length, drilling angle to skull, risk score, and distance 

from the brainstem and mesial hippocampal head (MHH) remnant (Li et al., 2019) (This 

image is reproduced under the terms of the Creative Commons Attribution 4.0 International 

License (http://creativecommons.org/licenses/by/4.0/), Copyright © 2018, Springer Nature) 
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Table Captions 

Table 1. Comparison of electrical properties of different tissues at 500 kHz and 2.45 GHz. 

Table 2. Magnitudes of thermal relaxation time for biological tissues reported in previous 

experimental studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



71 
 

Figure Captions 

 

Figure 1. Different types of image-guided minimally invasive thermal ablative procedures. 
 

Figure 2. (a) Schematic of a generic thermal ablative system for treating tumors, (b) 

underlying mechanism of heat generation for the MWA and RFA procedures, and (c) the 

effects of coagulative necrosis on biological tissue during hyperthermic ablation (Figure 2(b) 

was reproduced from (Kim, 2018) with permission from Future Oncology as agreed by 

Future Medicine Ltd. and Figure 2(c) is reproduced with permission from (Chu and Dupuy, 

2014)). 
 

Figure 3. (a) Segmentation of liver (magenta), arterial vessels (red), portal networks (light 

blue), hepatic network (dark blue), surrogate tumor (dark green) and gall bladder (light green) 

from the preoperative CT image of pig, (b) Variation of blood velocity with respect to trigger 

time in the vena cava of pig on left and image of phase-contrast MRI of pig on right (vena 

cava in green; portal vein in blue and aorta in yellow), and (c) Simulated lesion (in yellow) 

during RFA procedure utilizing multitine probe on left and orthogonal slice depicting the 

comparison between the simulated and the actual postoperative lesion on right (color of 

boxes corresponds to the color of respective region) (reproduced with permission from 

(Audigier et al., 2017)). 

 

Figure 4. Reduction of computational domain from tissue level to axisymmetric model 

during thermal ablative procedure. (a) Whole tissue-level model, (b) Three-dimensional 

model derived from selected control volume, and (c) simplified axisymmetric model of 

MWA and RFA along with associated boundary conditions.  
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Figure 7. Flowchart for optimization of the catheter trajectory utilizing computational models 

and machine learning algorithms during laser interstitial thermal therapy (LITT) in brain. 

Initially, three-dimensional models are generated utilizing the segmentation of important 

structures using geodesic information flow (GIF) from the single T1 image. The automated 

trajectories are then calculated using EpiNav (epilepsy navigation), an image integration 

software, based on all the possible combinations of entry region, target region and 

amygdalohippocampal complex (AHC) erosion. The computed composited scores for each 

trajectory are then compared with that predicted from machine learning for 50% training set 

and subsequently the machine learning parameters are used to optimize the safety metrics 

such as laser catheter intracerebral length, drilling angle to skull, risk score, and distance 
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from the brainstem and mesial hippocampal head (MHH) remnant (Li et al., 2019) (This 

image is reproduced under the terms of the Creative Commons Attribution 4.0 International 

License (http://creativecommons.org/licenses/by/4.0/), Copyright © 2018, Springer Nature) 
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