884 research outputs found

    Computation of Heterogeneous Object Co-embeddings from Relational Measurements

    Get PDF
    Dimensionality reduction and data embedding methods generate low dimensional representations of a single type of homogeneous data objects. In this work, we examine the problem of generating co-embeddings or pattern representations from two different types of objects within a joint common space of controlled dimensionality, where the only available information is assumed to be a set of pairwise relations or similarities between instances of the two groups. We propose a new method that models the embedding of each object type symmetrically to the other type, subject to flexible scale constraints and weighting parameters. The embedding generation relies on an efficient optimization dispatched using matrix decomposition, that is also extended to support multidimensional co-embeddings. We also propose a scheme of heuristically reducing the parameters of the model, and a simple way of measuring the conformity between the original object relations and the ones re-estimated from the co-embeddings, in order to achieve model selection by identifying the optimal model parameters with a simple search procedure. The capabilities of the proposed method are demonstrated with multiple synthetic and real-world datasets from the text mining domain. The experimental results and comparative analyses indicate that the proposed algorithm outperforms existing methods for co-embedding generation

    Embedding Approaches for Relational Data

    Get PDF
    ​Embedding methods for searching latent representations of the data are very important tools for unsupervised and supervised machine learning as well as information visualisation. Over the years, such methods have continually progressed towards the ability to capture and analyse the structure and latent characteristics of larger and more complex data. In this thesis, we examine the problem of developing efficient and reliable embedding methods for revealing, understanding, and exploiting the different aspects of the relational data. We split our work into three pieces, where each deals with a different relational data structure. In the first part, we are handling with the weighted bipartite relational structure. Based on the relational measurements between two groups of heterogeneous objects, our goal is to generate low dimensional representations of these two different types of objects in a unified common space. We propose a novel method that models the embedding of each object type symmetrically to the other type, subject to flexible scale constraints and weighting parameters. The embedding generation relies on an efficient optimisation despatched using matrix decomposition. And we have also proposed a simple way of measuring the conformity between the original object relations and the ones re-estimated from the embeddings, in order to achieve model selection by identifying the optimal model parameters with a simple search procedure. We show that our proposed method achieves consistently better or on-par results on multiple synthetic datasets and real world ones from the text mining domain when compared with existing embedding generation approaches. In the second part of this thesis, we focus on the multi-relational data, where objects are interlinked by various relation types. Embedding approaches are very popular in this field, they typically encode objects and relation types with hidden representations and use the operations between them to compute the positive scalars corresponding to the linkages' likelihood score. In this work, we aim at further improving the existing embedding techniques by taking into account the multiple facets of the different patterns and behaviours of each relation type. To the best of our knowledge, this is the first latent representation model which considers relational representations to be dependent on the objects they relate in this field. The multi-modality of the relation type over different objects is effectively formulated as a projection matrix over the space spanned by the object vectors. Two large benchmark knowledge bases are used to evaluate the performance with respect to the link prediction task. And a new test data partition scheme is proposed to offer a better understanding of the behaviour of a link prediction model. In the last part of this thesis, a much more complex relational structure is considered. In particular, we aim at developing novel embedding methods for jointly modelling the linkage structure and objects' attributes. Traditionally, link prediction task is carried out on either the linkage structure or the objects' attributes, which does not aware of their semantic connections and is insufficient for handling the complex link prediction task. Thus, our goal in this work is to build a reliable model that can fuse both sources of information to improve the link prediction problem. The key idea of our approach is to encode both the linkage validities and the nodes neighbourhood information into embedding-based conditional probabilities. Another important aspect of our proposed algorithm is that we utilise a margin-based contrastive training process for encoding the linkage structure, which relies on a more appropriate assumption and dramatically reduces the number of training links. In the experiments, our proposed method indeed improves the link prediction performance on three citation/hyperlink datasets, when compared with those methods relying on only the nodes' attributes or the linkage structure, and it also achieves much better performances compared with the state-of-arts

    Data-Driven Representation Learning in Multimodal Feature Fusion

    Get PDF
    abstract: Modern machine learning systems leverage data and features from multiple modalities to gain more predictive power. In most scenarios, the modalities are vastly different and the acquired data are heterogeneous in nature. Consequently, building highly effective fusion algorithms is at the core to achieve improved model robustness and inferencing performance. This dissertation focuses on the representation learning approaches as the fusion strategy. Specifically, the objective is to learn the shared latent representation which jointly exploit the structural information encoded in all modalities, such that a straightforward learning model can be adopted to obtain the prediction. We first consider sensor fusion, a typical multimodal fusion problem critical to building a pervasive computing platform. A systematic fusion technique is described to support both multiple sensors and descriptors for activity recognition. Targeted to learn the optimal combination of kernels, Multiple Kernel Learning (MKL) algorithms have been successfully applied to numerous fusion problems in computer vision etc. Utilizing the MKL formulation, next we describe an auto-context algorithm for learning image context via the fusion with low-level descriptors. Furthermore, a principled fusion algorithm using deep learning to optimize kernel machines is developed. By bridging deep architectures with kernel optimization, this approach leverages the benefits of both paradigms and is applied to a wide variety of fusion problems. In many real-world applications, the modalities exhibit highly specific data structures, such as time sequences and graphs, and consequently, special design of the learning architecture is needed. In order to improve the temporal modeling for multivariate sequences, we developed two architectures centered around attention models. A novel clinical time series analysis model is proposed for several critical problems in healthcare. Another model coupled with triplet ranking loss as metric learning framework is described to better solve speaker diarization. Compared to state-of-the-art recurrent networks, these attention-based multivariate analysis tools achieve improved performance while having a lower computational complexity. Finally, in order to perform community detection on multilayer graphs, a fusion algorithm is described to derive node embedding from word embedding techniques and also exploit the complementary relational information contained in each layer of the graph.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Approaches to Sequence Similarity Representation

    Get PDF
    We discuss several approaches to similarity preserving coding of symbol sequences and possible connections of their distributed versions to metric embeddings. Interpreting sequence representation methods with embeddings can help develop an approach to their analysis and may lead to discovering useful properties

    Semantic-guided predictive modeling and relational learning within industrial knowledge graphs

    Get PDF
    The ubiquitous availability of data in today’s manufacturing environments, mainly driven by the extended usage of software and built-in sensing capabilities in automation systems, enables companies to embrace more advanced predictive modeling and analysis in order to optimize processes and usage of equipment. While the potential insight gained from such analysis is high, it often remains untapped, since integration and analysis of data silos from different production domains requires high manual effort and is therefore not economic. Addressing these challenges, digital representations of production equipment, so-called digital twins, have emerged leading the way to semantic interoperability across systems in different domains. From a data modeling point of view, digital twins can be seen as industrial knowledge graphs, which are used as semantic backbone of manufacturing software systems and data analytics. Due to the prevalent historically grown and scattered manufacturing software system landscape that is comprising of numerous proprietary information models, data sources are highly heterogeneous. Therefore, there is an increasing need for semi-automatic support in data modeling, enabling end-user engineers to model their domain and maintain a unified semantic knowledge graph across the company. Once the data modeling and integration is done, further challenges arise, since there has been little research on how knowledge graphs can contribute to the simplification and abstraction of statistical analysis and predictive modeling, especially in manufacturing. In this thesis, new approaches for modeling and maintaining industrial knowledge graphs with focus on the application of statistical models are presented. First, concerning data modeling, we discuss requirements from several existing standard information models and analytic use cases in the manufacturing and automation system domains and derive a fragment of the OWL 2 language that is expressive enough to cover the required semantics for a broad range of use cases. The prototypical implementation enables domain end-users, i.e. engineers, to extend the basis ontology model with intuitive semantics. Furthermore it supports efficient reasoning and constraint checking via translation to rule-based representations. Based on these models, we propose an architecture for the end-user facilitated application of statistical models using ontological concepts and ontology-based data access paradigms. In addition to that we present an approach for domain knowledge-driven preparation of predictive models in terms of feature selection and show how schema-level reasoning in the OWL 2 language can be employed for this task within knowledge graphs of industrial automation systems. A production cycle time prediction model in an example application scenario serves as a proof of concept and demonstrates that axiomatized domain knowledge about features can give competitive performance compared to purely data-driven ones. In the case of high-dimensional data with small sample size, we show that graph kernels of domain ontologies can provide additional information on the degree of variable dependence. Furthermore, a special application of feature selection in graph-structured data is presented and we develop a method that allows to incorporate domain constraints derived from meta-paths in knowledge graphs in a branch-and-bound pattern enumeration algorithm. Lastly, we discuss maintenance of facts in large-scale industrial knowledge graphs focused on latent variable models for the automated population and completion of missing facts. State-of-the art approaches can not deal with time-series data in form of events that naturally occur in industrial applications. Therefore we present an extension of learning knowledge graph embeddings in conjunction with data in form of event logs. Finally, we design several use case scenarios of missing information and evaluate our embedding approach on data coming from a real-world factory environment. We draw the conclusion that industrial knowledge graphs are a powerful tool that can be used by end-users in the manufacturing domain for data modeling and model validation. They are especially suitable in terms of the facilitated application of statistical models in conjunction with background domain knowledge by providing information about features upfront. Furthermore, relational learning approaches showed great potential to semi-automatically infer missing facts and provide recommendations to production operators on how to keep stored facts in synch with the real world

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters
    corecore