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ABSTRACT

Modern machine learning systems leverage data and features from multiple modal-

ities to gain more predictive power. In most scenarios, the modalities are vastly

different and the acquired data are heterogeneous in nature. Consequently, building

highly effective fusion algorithms is at the core to achieve improved model robustness

and inferencing performance. This dissertation focuses on the representation learning

approaches as the fusion strategy. Specifically, the objective is to learn the shared

latent representation which jointly exploit the structural information encoded in all

modalities, such that a straightforward learning model can be adopted to obtain the

prediction.

We first consider sensor fusion, a typical multimodal fusion problem critical to

building a pervasive computing platform. A systematic fusion technique is described

to support both multiple sensors and descriptors for activity recognition. Targeted to

learn the optimal combination of kernels, Multiple Kernel Learning (MKL) algorithms

have been successfully applied to numerous fusion problems in computer vision etc.

Utilizing the MKL formulation, next we describe an auto-context algorithm for learning

image context via the fusion with low-level descriptors. Furthermore, a principled

fusion algorithm using deep learning to optimize kernel machines is developed. By

bridging deep architectures with kernel optimization, this approach leverages the

benefits of both paradigms and is applied to a wide variety of fusion problems.

In many real-world applications, the modalities exhibit highly specific data struc-

tures, such as time sequences and graphs, and consequently, special design of the

learning architecture is needed. In order to improve the temporal modeling for

multivariate sequences, we developed two architectures centered around attention

models. A novel clinical time series analysis model is proposed for several critical
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problems in healthcare. Another model coupled with triplet ranking loss as metric

learning framework is described to better solve speaker diarization. Compared to

state-of-the-art recurrent networks, these attention-based multivariate analysis tools

achieve improved performance while having a lower computational complexity. Finally,

in order to perform community detection on multilayer graphs, a fusion algorithm is

described to derive node embedding from word embedding techniques and also exploit

the complementary relational information contained in each layer of the graph.
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Chapter 1

INTRODUCTION

1.1 Multimodal Feature Fusion

In complex machine learning systems, data often originate from multiple disparate

modalities. The modalities can correspond to sensory channels such as images and

audio, multiple data sources such as activities on a social network and online purchase

history, or distinct descriptors derived from the same input source (e.g. spatial

and temporal descriptors on the same video clip). Due to significant variabilities in

format, structure, and complexity of the different modalities, machine learning in such

scenarios is very challenging, and hence naïve extensions of existing techniques for

single source analysis often lead to inferior results with multiple data sources. For

example, a simple strategy of handling multiple feature sets by concatenating them

will result in very high-dimensional representations that might suffer from the curse

of dimensionality and incur significantly higher computational complexity. Moreover,

the large discrepancy in the statistical characteristics of the different feature sources

are usually difficult to exploit for modeling techniques. In light of the above issues, in

multimodal learning, it is critical to develop a highly effective fusion model to jointly

consider the information contained in all modalities.

In this dissertation, the objective of multimodal feature fusion is to improve the

predictive power of the overall system, while comprehensively exploring the power of

each of the constituent modalities. The benefit of such fusion methodologies can be

attributed to the complementary or supplemental information provided by different

modalities. For example, in modern smartphones and wearables, a complex sensing
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system consists of abundant sensors: a compass, an accelerometer, a gyroscope and a

microphone, to name a few. Utilizing the heterogeneous signals from these modalities

can compensate for inherent limitations of such low-cost sensors, including large

measurement uncertainty and low signal-to-noise ratio (K. Liu et al. 2014; Gravina

et al. 2017). Such systems have been shown to be more robust and can achieve much

better accuracy when applied in activity recognition (Zhu and Sheng 2009) and health

monitoring (Orwat, Graefe, and Faulwasser 2008) applications. In speech recognition,

most existing systems perform modeling based solely on the audio signal. However,

the associated visual modality, when available, can provide the extra information to

help discriminate acoustics that are ambiguous to audio features. By coupling with

the lip movement from the videos, a multimodal neural network which learns a shared

representation can provide improved speech understanding (Ngiam et al. 2011).

In other scenarios where distinct descriptors of the data are utilized for fusion,

the gained performance improvement can result from combining the discriminative

power of different features when distinguishing certain examples. For instance, in

the classical bag-of-words approaches for visual recognition, more weighting on the

texture feature can help recognize crocodile images while the color feature could be

more critical for classifying the strawberry class (Bucak, Jin, and Jain 2014). Finally,

for both conventional Support Vector Machine classifier and the more recent deep

neural networks, it is observed that incorporating middle- and high-level abstractions

including image context descriptors is beneficial to image recognition and segmentation

tasks (Tu 2008; Park et al. 2016; Srinivas et al. 2016). In general, multiple descriptors

usually characterize salient aspects of the data and the effective fusion can boost the

model’s capability for discriminating a large number of classes, while being robust to

variations within a class.
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1.2 Why Learn Representations?

Broadly speaking, there are two classes of approaches to accomplish the fusion of

multimodal features. The first one is based on decision fusion, where each feature

set is used to train an independent model (e.g. classifier/regressor) and the decisions

from the models are aggregated using strategies such as majority voting. However,

more sophisticated techniques have been developed for decision fusion namely fuzzy

set theory (Hong and Choi 2000) and ensemble learning (Polikar 2006). In contrast,

the second class of approaches considers the commonalities and differences among the

modalities and builds a shared representation prior to the learning stage. Compared to

decision fusion, the representation learning strategy provides a unified feature set that

can be subsequently used with any chosen learning algorithm. This enables convenient

model selection and easy adoption to a variety of tasks. Furthermore, thanks to the

concise fused representation, inference can usually be carried out very efficiently.

A perhaps more significant advantage of representation learning based fusion

is its ability to perform end-to-end learning. Powered by the advances in deep

neural network optimization, this approach infers shared representations that draw

consensus across modalities, while simultaneously solving the task at hand. Until

recently, expert-designed, hand-engineered features have been prevalent in machine

learning community, for example scale-invariant feature transform (SIFT) (Lowe 1999)

and histogram of oriented gradients (HOG) (Dalal and Triggs 2005) for computer

vision and Mel-frequency cepstral coefficients (MFCC) for speech recognition and

audio analysis. However, despite the sophisticated design, hand-engineered features

rely almost entirely on prior knowledge on the degrees of freedom required to solve

a complex task, and can be grossly insufficient to automatically infers factors of

influence from large data corpora. The recent surge in representation learning provides
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a data-driven way to extract effective features and has revolutionized machine learning

and data analysis. In particular, the success of Deep Neural Networks (DNNs) in

a wide variety of computer vision tasks has emphasized the need of representation

learning (Nair and Hinton 2010; He et al. 2016) and end-to-end learning. By coupling

modern deep architectures with large datasets (Deng et al. 2009; Abu-El-Haija et al.

2016), efficient optimization strategies (Ioffe and Szegedy 2015; Srivastava et al. 2014)

and advanced hardware architectures, one can obtain multi-level abstractions from

data and highly effective predictive models with unprecedented success.

Due to the aforementioned advantages, in this dissertation, we focus on represen-

tation learning strategies for multimodal feature fusion. Nevertheless, it is important

to note that in real-world, the modalities can exhibit vastly different structures and

specific design of the fusion model is needed to achieve the desired performance. For

example, the generic fully connected neural network is widely utilized in autoencoder

(Hinton and Salakhutdinov 2006), but usually is not preferred in image modeling and

speech analysis tasks. Moreover, in relational data such as graphs, most existing DNN

architectures are not directly applicable. In the rest of the dissertation, we discuss

the fusion problem in broad domains ranging from time sequences, images to speech

and graphs and provide a suite of specific solutions.

1.3 Problem Statement

The problem of dealing with multi-modal or more generally multi-faceted data

is ubiquitous in several application domains. Furthermore, in each specific scenario,

there is often a critical need to adhere to the additional constraints (e.g. limited

availability of labeled data) or to exploit prior knowledge about the structure in

data (e.g. temporal and relational structure). This dissertation focuses on building

mathematical formulations and algorithms to solve the multimodal feature fusion

4



problem under these scenarios for applications including mobile activity analysis,

object recognition, clinical modeling, speech processing and network data analysis.

1.3.1 Multimodal Sensor Fusion and Ensemble Inference

The pervasive use of wearable sensors in activity and health monitoring presents

a huge potential for building novel multimodal fusion frameworks. In particular,

approaches that can harness data from a diverse set of low-cost sensors for recognition

are needed. Some of the commonly used sensors include the accelerometer, gyroscope

and magnetometer, to name a few. Though abundantly available, the data collected

from these cheap sensors are often very noisy and unreliable. Note that, the noise

and inaccuracies can be caused by the sensors themselves or due to arbitrary posi-

tion/movement of the devices during the activities. In the existing literature, in spite

of the availability of different sensors, activity recognition is often carried out solely

based on accelerometer data (Kwapisz, Weiss, and Moore 2011). An effective fusion

mechanism taking into account all modalities will be able to reduce the measurement

uncertainty and provide improved robustness, especially in the case of missing data or

modalities. This problem assumes access to multiple sensors, and multiple feature

descriptors for each of the sensors. Hence, the goal is to automatically fuse this

information with the overall objective of improving activity recognition performance.

1.3.2 Multiple Kernel Fusion for Visual Context Modeling

In image understanding, it is common practice to fuse features which describe

different aspects of objects including shape, color etc. A common characteristic of

several existing multimodal feature fusion algorithms is that features employed are

often low-level in nature i.e., they describe the local variabilities without taking

the global context into account. However, it is known that high-level information,
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referred to as the context, is crucial to object/scene understanding (Thiagarajan et al.

2014). Consequently, auto-context models (Tu 2008) have been developed, which can

approximate the posterior using an iterative, supervisory approach. More specifically,

these models integrate the low-level features with context information in the form

of probability maps, obtained using a series of classifiers. By enabling the classifier

to choose different supporting neighbors to modify the current probabilities towards

the ground truth, auto-context methods lead to better regularization. In the original

auto-context model, however, the combination of low-level image descriptors and

context feature is carried out by simple concatenation, which is insufficient when

each modality is non-linearly separable. The goal of this problem is to develop

a mathematical formalism that will support fusion of low-level feature descriptors

and high-level context characteristics, for example class assignment likelihoods in

multi-class classification problems.

1.3.3 Deep Kernel Machine Optimization

As described earlier, enabling data fusion with additional constraints or assump-

tions on the data domain is essential to employing fusion techniques in real-world

applications. Prior art in machine learning offers a multitude of solutions to deal

with different challenges, however rarely unified solutions exist that can be broadly

applicable to such constrained scenarios. In particular, as two significant learning

paradigms in machine learning, kernel methods and deep learning have each achieved

huge success across many domains in different periods of time. By using a composition

of multiple non-linear transformations, along with novel loss functions, DNNs can

approximate a large class of functions for prediction tasks. However, the increasing

complexity of the networks requires exhaustive tuning of several hyper-parameters in

the discrete space of network architectures, often resulting in sub-optimal solutions
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or model overfitting. This is particularly more common in applications characterized

by limited dataset sizes and complex dependencies in the input space. Despite the

advances in regularization techniques and data augmentation strategies (Krizhevsky,

Sutskever, and Hinton 2012), in many scenarios, it is challenging to obtain deep

architectures that provide significant performance improvements over conventional

machine learning solutions. In such cases, a popular alternative solution to building

effective, non-linear predictive models is to employ kernel machines. In recent years,

there is increased research interest to combine the advantages of the two methods.

Broadly speaking, the existing approaches either utilize kernel compositions to emulate

neural network layer stacking or facilitate the optimization of deep architectures with

data-specific kernels. Combining the advantages of these two paradigms of predictive

learning can potentially lead to new architectures and inference strategies.

1.3.4 Multivariate Sequence Modeling using Attention

The classical approach for sequential data analysis has been centered around

extracting hand-engineered features and building task-specific predictive models.

These models are often challenged by factors such as need for long-term dependencies,

irregular sampling and missing values. In the recent years, recurrent Neural Networks

(RNNs) based on Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber

1997) have become the de facto solution to deal with multivariate sequence data.

RNNs are designed to model varying-length data and have achieved state-of-the-art

results in sequence-to-sequence modeling (Sutskever, Vinyals, and Le 2014), image

captioning (Xu et al. 2015) and recently in clinical diagnosis (Lipton et al. 2015).

Furthermore, LSTMs are effective in exploiting long-range dependencies and handling

nonlinear dynamics. These recurrent architectures perform computations at each

position of the time sequence by generating a series of hidden states as a function of
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the previous hidden state and the input for current position. Such inherent sequential

nature makes parallelization challenging. Though efforts to improve the computational

efficiency of sequential modeling have recently surfaced, some of the limitations still

persist. The recent work of Vaswani et. al. (Vaswani et al. 2017) argues that attention

mechanisms, without any recurrence, can be effective in sequence-to-sequence modeling

tasks. Attention mechanisms are used to model dependencies in sequences without

regard for their actual distances in the sequence (Bahdanau, Cho, and Bengio 2014).

This characteristic is particularly suited for multivariate time sequence modeling,

where the complexity lies in both temporal modeling and fusion of the multi-variate

measurements. We consider two important problems in multivariate sequence modeling

where attention model can be applied to obtain improved sequence modeling: clinical

predictions with health records and unsupervised speaker diarization.

1.3.5 Node Embedding on Multilayer Graphs for Unsupervised Inference

Finally, exploiting prior knowledge about the structure in data, often represented

as geometric objects such as graphs or manifolds, while performing data fusion

will enable generalization of existing techniques to novel applications such as social

network modeling or brain network analysis. More specifically, using graphs to

represent and perform inferencing with relational data has become ubiquitous in data

mining and machine learning applications. We focus on the application of graphs for

unsupervised learning, in particular the graph mining task of clustering vertices into

homogeneous groups. Recently, there has been particular interest in adopting neural

word embeddings, which encode semantic relations in a continuous vector space with

a relatively small number of dimensions, to representation learning on graphs (Perozzi,

Al-Rfou, and Skiena 2014; Grover and Leskovec 2016). At its core, word embedding

algorithms build on the distributional hypothesis (Harris 1954) where similar contexts
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imply similar meanings, i.e., co-occurrences of words can be tied to their underlying

meanings. In real-world application, however, multiple relational information often

exist among the same set of graph vertices and such data structure is usually named

multilayer graphs. Originally proposed for representation learning, the graph node

embedding techniques are not directly application on multilayer graphs. We are

interested in extending node embedding to multilayer graphs in order to obtain fused

multimodal representations of the graph nodes. To achieve this goal, the intralayer

and interlayer node relations both have to be taken into account in the representation

learning process.

1.4 Contributions

In Chapter 3, a novel two-stage architecture for sensor fusion in activity recognition

is described. The algorithm supports data from multiple sensors on the same device

and also multiple feature extraction strategies on the same sensor. As mentioned

in Section 1.1, the straightforward fusion approach of simply concatenating feature

vectors derived from different sensors, for example in (Zhang and A. A Sawchuk 2013),

is known not to exploit the inherent geometry of the different feature domains. In our

architecture, the first stage performs sensor fusion, for each feature independently, using

a linearized variant of the multilayer graph consensus approach (K.N. Ramamurthy

et al. 2014). On the second stage, the two sets of consensus features are used to

build a reference-based ensemble classifier to make the final prediction. We tested

the proposed approach with real data collected from 32 subjects performing primitive

activities, and results show that the proposed two stage approach can improve the

performance significantly, when compared to using a single sensor. Methods and

results of the architecture described in this chapter have been published in (Song,

Thiagarajan, Ramamurthy, Spanias, and Turaga 2016).
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In Chapter 4, the idea of using multiple kernel learning to perform multimodal

fusion is introduced and an improved auto-context model under the RKHS setting is de-

veloped for image classification. In addition to providing the flexibility of auto-context

models, the proposed approach can build highly effective kernel models for object

recognition. Since auto-context probability maps cannot be directly incorporated into

the RKHS, we first estimate marginal probabilities using a classifier (e.g. Kernel Lo-

gistic Regression or Kernel SVM) and construct an auto-context kernel based on these

probabilities. For example, the marginalized kernel construction in (Tsuda, Kin, and

Asai 2002) can be used. Since any symmetric positive definite kernel defines a unique

RKHS, we can use other forms of kernels by treating the probability map for each

image as a feature vector directly. Interestingly, the process of fusing the auto-context

model with the image appearance can be viewed as Multiple Kernel Learning (see

Section 2.2), for which a variety of efficient solutions exist. We demonstrate using

standard object/scene classification datasets that the proposed approach results in

highly effective recognition systems. The algorithm and experiments reported in this

chapter can be found in (Song, Thiagarajan, Ramamurthy, and Spanias 2016).

Continuing the discussion on using kernel methods for multimodal fusion, in

Chapter 5, we utilize deep neural networks to enable end-to-end optimization of

multiple kernel fusion. The end-to-end Deep Kernel Machine Optimization (DKMO)

approach builds dense embeddings for data using kernel approximation, learns concise

representations and finally infers the predictive model for a given kernel. While

existing kernel approximation techniques make kernel learning efficient, utilizing deep

networks enables end-to-end inference with a task-specific objective. The extension of

DKMO to multiple kernels for multimodal fusion is straightforward and we show that,

with appropriate regularization, the proposed multiple kernel learning optimization
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is highly efficient, in terms of convergence characteristics. In contrast to approaches

such as (Mairal 2016; Mairal et al. 2014), which replace the conventional neural

network operations, e.g. convolutions, using equivalent computations in the RKHS,

we use the similarity kernel to construct dense embeddings for data and employ fully

connected neural networks to infer the predictive model. Consequently, our approach

is generic and not restricted to applications that can use only convolutional neural

networks. Similar to conventional kernel methods, our approach exploits the native

space of the chosen kernel during inference, thereby controlling the capacity of learned

models, and thus leading to improved generalization. Based on empirical studies with

a variety of datasets from cell biology, image classification and activity recognition, we

demonstrate the superiority of the proposed approaches in comparison to the baseline

kernel SVMs and the state-of-the-art MKL algorithms. This work have been published

in (Song et al. 2017; Song, Thiagarajan, Sattigeri, and Spanias 2018).

In Chapter 6, we develop improved multivariate time sequence modeling archi-

tectures based on the recent work of attention models. Specifically, we focus on

the clinical time series analysis and speaker diarization problems. For the first task,

we develop the SAnD (Simply Attend and Diagnose) architecture, which employs a

masked, self-attention mechanism, and uses positional encoding and dense interpola-

tion strategies for incorporating temporal order. Furthermore, we develop a multi-task

variant of SAnD to jointly infer models with multiple diagnosis tasks. Using the recent

MIMIC-III benchmark datasets, we demonstrate that the proposed approach achieves

state-of-the-art performance in all tasks, outperforming LSTM models and classical

baselines with hand-engineered features. Regarding the speaker diarization problem,

we investigate the importance of learning effective representations using attentions

directly under the metric learning pipelines for speaker diarization. More specifically,
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we propose to employ attention models to learn embeddings and the metric jointly in

an end-to-end fashion. Experiments are conducted on the CALLHOME conversational

speech corpus. The diarization results demonstrate that, besides providing a unified

model, the proposed approach achieves improved performance when compared against

existing approaches. The content of this chapter have been described in (Song, Rajan,

et al. 2018; Song, Willi, et al. 2018).

In Chapter 7, we utilize the recent advances as representation learning on graphs,

and extend it to multilayer graphs for community detection. A straightforward

extension could be performing random walks on each of the layers independently

and then merging the latent features. However, this approach does not exploit the

common factors or regularity in the community structures across the different layers.

Furthermore, the commonly adopted late fusion strategies such as concatenation do

not compensate for the uncertainties introduced by each of the layers while identifying

clusters. In order to circumvent the aforementioned challenges, we propose a deep

embedding approach that utilizes both an early fusion strategy based on supra

adjacency matrix construction for exploiting shared information across layers and a

late fusion strategy that builds a unified representation for nodes in the graph using

optimization with a deep clustering objective.
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Chapter 2

BACKGROUND

2.1 Canonical Correlation Analysis

As a traditional feature fusion method, Canonical Correlation Analysis (CCA)

analyses relationships between two sets of variables using the cross-covariance. It

seeks the two sets of linear projections such that the correlation between the variables

are maximized while the projections within each set are uncorrelated. As pointed

out in (Baltrušaitis, Ahuja, and Morency 2017), CCA can be regarded as obtaining

coordinated representations, where representations for each modality are learned

separately but are coordinated by the orthogonality constraint.

Given the feature domain X ⊂ Rd, we define the two matrices of n samples as

X1,X2. Denote the two covariances as Σ11,Σ22 and the cross-covariance Σ12. CCA

finds the linear projections w1X1,w2X2 which are maximally correlated:

w∗1,w
∗
2 = arg max corr(w1X1,w2X2)

= arg max
w1Σ12w2√

w1Σ11w1w2Σ22w2

The solution to the optimization problem can be readily obtained through eigen-

decompositions. Various extensions of CCA broadens its application areas. In (Correa

et al. 2010; Zhao et al. 2016), multiset CCA and hierarchical CCA applied on medical

modalities consisting of functional magnetic resonance imaging (fMRI), electroen-

cephalography (EEG) and structural MRI (sMRI) facilitates group inference on brain

functions and autism spectrum disorder (ASD) diagnosis. In financial engineering,
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CCA can be useful for combining historical closing prices and financial technical vari-

ables to better predict stock market (Guo et al. 2014). Among extensive research in

learning context-specific word representations for natural language processing (NLP),

CCA also helps by effectively merging past and future views of contexts (Dhillon,

Foster, and Ungar 2011).

Constrained by its simplistic form, the learning power of vanilla CCA is limited,

particularly when the optimal mapping is non-linear. Kernel methods, as will be

introduced in Section 2.2, can alleviate the limitation by extending the projection to

a reproducing kernel Hilbert space. In (Lai and Fyfe 2000), kernel CCA is proposed

to first nonlinearly transform data across modalities to a feature space and then

perform linear CCA in that space. More recently, deep learning technique, as will

be introduced in Section 2.3, is applied on CCA to further improve the scalability

and non-linear mapping (Andrew et al. 2013). By utilizing the advantages of neural

networks in flexible predictive modeling, this algorithm is able to learn representations

with significantly higher correlation.

2.2 Multiple Kernel Learning

Kernel methods have a long-standing success in machine learning, primarily due to

their well-developed theory, convex formulations, and their flexibility in incorporating

prior knowledge of the dependencies in the input space. In general, kernel methods

induce an implicit mapping into a reproducing kernel Hilbert space (RKHS), through

the construction of a positive definite similarity matrix between samples in the input

space, and enable model inference in that space. An appealing feature of this approach

is that even simple linear models inferred in the RKHS are highly effective compared

to their linear counterparts learned directly in the input space.

When applied to multimodal feature fusion, kernel methods provide a principled
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framework for fusing diverse descriptors into a unified feature space through the

technique of Multiple Kernel Learning (MKL) (Scholkopf and Smola 2001). In this

section, we first review the basic formulation of single kernels. We then describe in

detail the procedure to perform fusion under the MKL framework.

2.2.1 Kernel Methods

Given the d−dimensional input domain X , the kernel function k : X × X 7→ R

induces a RKHS Hk with the corresponding inner product < ., . >Hk and the norm

‖.‖Hk . For a set of data-label pairs {xi, yi}ni=1, where yi corresponds to the label of

the sample xi ∈ Rd, the problem of inferring a predictive model can be posed as the

following empirical risk minimization task (Andrew 2000):

fopt = arg min
f∈Hk

1

n

∑
i

L(yi, f(xi)) + λ‖f‖Hk , (2.1)

where L denotes a chosen loss function and λ is the regularization parameter. For

example, in kernel ridge regression L is chosen to be the `2 loss while kernel Support

Vector Machine (SVM) uses the hinge loss.

Kernel methods are versatile in that specifying a positive-definite kernel will enable

the use of this generic optimization framework for any data representation, such as

vectors, matrices, sequences or graphs. Consequently, a broad range both general

purpose and domain specific kernels have been proposed in the literature, e.g. radial

basis function (RBF) kernels, χ2 kernel (J. Zhang et al. 2007), string (Lodhi et al.

2002), and graph kernels (Vishwanathan et al. 2010). Furthermore, the classical

Representer Theorem allows the representation of any optimal function in Hk as

fopt(x) =
∑
i

αik(x,xi), (2.2)

thereby enabling construction of a dual optimization problem for Equation (2.1) based
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only on the kernel matrix and not the samples explicitly. This is commonly referred

as the kernel trick in the machine learning literature.

2.2.2 Fusion with Multiple Kernels

The objective of MKL is to learn a combination of base kernels k1, ..., kM and

perform empirical risk minimization simultaneously (Bach, Lanckriet, and Jordan 2004;

Gönen and Alpaydın 2011; Nilsback and Zisserman 2008; Gehler and Nowozin 2009;

Yeh et al. 2012). Conical (Sun et al. 2010) and convex combinations (Rakotomamonjy

et al. 2008) are commonly considered and efficient optimizers such as Sequential

Minimal Optimization (SMO) (Sun et al. 2010) and Spectral Projected Gradient

(SPG) (Jain, Vishwanathan, and Varma 2012) techniques have been developed. In

an extensive review of MKL algorithms (Gönen and Alpaydın 2011), Gonen et al.

showed that the formulation in (Cortes, Mohri, and Rostamizadeh 2009) achieved

consistently superior performance on several binary classification tasks. Most recent

research in MKL focus on improving the multi-class classification performance (Cortes,

Mohri, and Rostamizadeh 2013) and effectively handling training convergence and

complexity (Orabona, Jie, and Caputo 2012). In (F. Liu et al. 2014), the authors

solved the multiple kernel learning problem directly using its primal formulation, with

random Fourier features.

The kernel fusion schemes have been generalized further to create localized mul-

tiple kernel learning (LMKL) (Gönen and Alpaydin 2008; Kannao and Guha 2016;

Moeller, Swaminathan, and Venkatasubramanian 2016) and non-linear MKL algo-

rithms. In (Moeller, Swaminathan, and Venkatasubramanian 2016), Moeller et. al..

have formulated a unified view of LMKL algorithms:

kβ(xi,xj) =
∑
m

βm(xi,xj)km(xi,xj), (2.3)
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where βm is the gating function for kernel function km. In contrast to global MKL

formulations where the weight βm is constant across data, the gating function in

Equation (2.3) takes the data sample as an independent variable and is able to

characterize the underlying local structure in data. Several LMKL algorithms differ

in how βm is constructed and how the optimization is carried out. For example, in

(Gönen and Alpaydin 2008) βm is chosen to be separable into softmax functions. On

the other hand, non-linear MKL algorithms are based on the idea that non-linear

combination of base kernels could provide richer and more expressive representations

compared to linear mixing. For example, (Cortes, Mohri, and Rostamizadeh 2009)

considered polynomial combination of base kernels and (Zhuang, Tsang, and Hoi 2011)

utilized a two-layer neural network to construct a RBF kernel composition on top of

the linear combination.

Although MKL and LMKL provide additional parameters to obtain an optimal

RKHS for effective inference, the optimization (dual) is computationally more chal-

lenging, particularly with the increase in the number of kernels. More importantly, in

practice, the optimizations do not produce consistent performance improvements over

a simple baseline kernel constructed as the unweighted average of the base kernels

(Gehler and Nowozin 2009; Cortes, Mohri, and Rostamizadeh 2009). Furthermore,

extending MKL techniques, designed primarily for binary classification, to multi-class

classification problems is not straightforward. In contrast to the conventional one-

vs-rest approach, which decomposes the problem into multiple binary classification

problems, in MKL it is beneficial to obtain the weighting of base kernels with respect

to all classes (Zien and Ong 2007; Cortes, Mohri, and Rostamizadeh 2013).
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2.3 Multimodal Deep Learning

As a sophisticated representation learning paradigm, deep learning have shown

exceptional power when dealing with complex, high-dimensional data. This is ev-

idenced by the tremendous success of particular deep architectures in several key

application areas: Convolutional Neural Network (CNN) (Krizhevsky, Sutskever, and

Hinton 2012) and further improved architectures (Szegedy et al. 2015; He et al. 2016)

closed the gap with human on ImageNet (Deng et al. 2009) object recognition and

detection; Recurrent Neural Networks (RNN), particularly the ones based on Long

Short-Term Memory (LSTM) (Hochreiter and Schmidhuber 1997) have made big

strides in speech recognition (Graves, Mohamed, and Hinton 2013), NLP (Mikolov

et al. 2010; Sutskever, Vinyals, and Le 2014) and time series analysis (Lipton et al.

2015; Che et al. 2016).

2.3.1 Joint Representation Learning for Fusion

The strong representation learning capability of deep learning is also well suited for

solving the multi-modal fusion problems. As one of the earliest attempts to perform

multimodal deep learning, (Ngiam et al. 2011) constructed a multimodal autoencoder

to optimize the combined reconstruction error while (Srivastava and Salakhutdinov

2012) built a multimodal restricted Boltzmann machine to learn a joint density model

over the space of heterogeneous inputs. Applied on image-text and audio-video data,

such frameworks first construct separate fully connected networks on each modality

for individual representation learning and subsequently merge together the hidden

representations learned at mid-level or last several layers. A more flexible framework

proposed outside of these applications is (Zhao, Hu, and Zhou 2015), where Zhao et.al.

built sub-networks for each heterogeneous feature and relied on the Stacked Denoising
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Autoencoders to learn high-level homogeneous representations for feature integration.

Note that the above mentioned approaches learned the joint representations in an

unsupervised manner. Although such generic frameworks can be easily extended to a

wide range of problems and do not require annotated data, they fail to leverage the

end-to-end learning advantage of several specific deep architectures.

Two fusion settings with deep architecture were discussed in (Ngiam et al. 2011;

Srivastava and Salakhutdinov 2012): After joint training on two modalities, the

network is expected to predict from a single modality while the other one being

absent; When both modalities are present, the fused feature aims to better exploit

the complementary information contained across modalities. In this dissertation, we

mainly focus on the second case where all feature sources are accessible.

2.3.2 Joint End-to-End Learning for Fusion

The fusion power of deep learning can be better exploited when used under the

end-to-end learning setting. In several important application domains, it has been

shown that embeddings learned with deep neural networks can significantly boost

or even completely replace conventional hand-engineered features. For example, the

visual descriptors learned by CNN are largely preferred over the famous hand-crafted

SIFT and HOG features in object recognition and video analysis (Karpathy et al. 2014;

He et al. 2016). In audio analysis and speech modeling, RNN and LSTM can learn

rich temporal representations which supersede conventional MFCC feature (Graves,

Mohamed, and Hinton 2013; Sutskever, Vinyals, and Le 2014). Constructed with

carefully designed neural operations and the stacking of a large number of layers,

these networks automatically learn multiple levels of abstraction from data which are

also specific to the given task. The learning flexibility opens up huge opportunity for

fusion tasks.
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Existing work in computer vision consider fusing the representations learned from

either the same input or different data sources. Focused solely on image classification,

Lin et.al. utilized two CNNs as the learning model trained on the same set of images

(Lin, RoyChowdhury, and Maji 2015). While one network serves as the part detector,

the other CNN extracts hierarchical visual descriptors. Consequently, the fusion

operation becomes the core to the efficacy in exploiting the correlation between the

two sets of hidden representations. While in (Lin, RoyChowdhury, and Maji 2015) a

bilinear operation was directly carried out between the two feature matrices at each

image location, (Gao et al. 2016; Fukui et al. 2016) demonstrated that such bilinear

features are closely related to polynomial kernel and therefore, kernalized analysis can

be utilized to significantly simplify the calculation and reduce the fused dimensionality.

When multiple DNNs are trained on different feature sources, the system can

gain the capability to handle more complex dependencies in data. For example, in

order to handle the spatial-temporal dependencies in videos for action recognition,

Simonyan et.al. proposed a two-stream network (Simonyan and Zisserman 2014)

where one network learns the spatial features from RGB images and the other stream

is a temporal network learning on optical flow inputs extracted from the video. In

(Park et al. 2016), the authors extended this two-stream framework with specific fusion

strategies: a early fusion method to amplify the CNN intermediate representation

with the magnitude of the optical flow, and a late fusion mechanism to amplify or

suppress the activations of the two networks based on their agreement. The central

idea is for the CNN to draw cross-modality information from the temporal network in

earlier stages, for example, which part of the image is moving, in order to improve

its focusing regions of learning across time. In another application of heterogeneous

data consisting of continuous physiological signals and discrete events (Martinez and
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Yannakakis 2014), Martinez et.al. proposed a pooling fusion scheme which attenuates

the modality of densely sampled signals around the events in the discrete modality.

Deep networks are known to be difficult to train. Consequently, several highly

effective training strategies have been proposed to avoid model overfitting (Srivastava

et al. 2014), reduce covariate shift (Ioffe and Szegedy 2015) and alleviate the learning

degradation problem (He et al. 2016). When applying DNNs for fusion, specific

training strategies can improve the fusion performance as well. In (Neverova et al.

2016), a special multimodal dropout mechanism is designed to learn cross-modality

correlations while prohibiting false co-adaptations in order to improve the model

robustness for gesture recognition. Specifically, after joint training over the shared

layers across modalities, at each step each modality component is dropped with certain

probability.

2.3.3 Bridging Deep Learning with Kernel Methods

Despite these recent successes, deep architecture possesses several limitations too.

In particular, the increasing complexity of the networks requires exhaustive tuning

of several hyper-parameters in the discrete space of network architectures, often

resulting in sub-optimal solutions or model overfitting. This is especially common

in applications characterized by limited dataset sizes and complex dependencies

in the input space. Despite the advances in regularization techniques and data

augmentation strategies (Krizhevsky, Sutskever, and Hinton 2012), in many scenarios,

it is challenging to obtain deep architectures that provide significant performance

improvements over conventional machine learning solutions. In such cases, a popular

alternative solution to building effective, non-linear representation learning models

is to employ kernel machines, which is described in Section 2.2. This motivate a

recent wave of research efforts which attempt to incorporate ideas from deep learning
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into kernel machine optimization (Cho and Saul 2009; Zhuang, Tsang, and Hoi 2011;

Wiering and Schomaker 2014; Wilson et al. 2016; Mairal 2016).

One of the earliest approaches in this direction was developed by Cho et. al (Cho

and Saul 2009), in which a new arc-cosine kernel was defined. Based on the observation

that arc-cosine kernels possess characteristics similar to an infinite single-layer threshold

network, the authors proposed to emulate the behavior of DNN by composition of arc-

cosine kernels. The kernel composition idea using neural networks was then extended

to MKL by (Zhuang, Tsang, and Hoi 2011). The connection between kernel learning

and deep learning can also be drawn through Gaussian processes as demonstrated in

(Wilson et al. 2016), where Wilson et al. derived deep kernels through the Gaussian

process marginal likelihood. Another class of approaches directly incorporated kernel

machines into Deep Neural Network (DNN) architectures. For example, Wiering

et al. (Wiering and Schomaker 2014) constructed a multi-layer SVM by replacing

neurons in multi-layer perceptrons (MLP) with SVM units. More recently, in (Mairal

2016), kernel approximation is carried out using supervised subspace learning in the

RKHS, and backpropagation based training similar to convolutional neural network

(CNN) is adopted to optimize the parameters. The experimental results on image

reconstruction and super-resolution showed that the new type of network achieved

competitive and sometimes improved performance as compared to CNN.

2.4 Multivariate Analysis for Fusion on Sequential Data

Sequential data come in the form as sentences, time series and audio waveforms

etc. Capturing the short- and long-term dependencies is central to analyzing these

types of data and many of the aforementioned generic techniques are not specifically

designed to perform such temporal modeling. Furthermore, real-world sequential

signals in natural languages, healthcare and financial domain often contain multiple
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time series and the strong correlations between them cannot be neglected. As a result,

it is critical to adopt multivariate sequential analysis in order to build highly effective

predictive models. Depending on the applications, different multivariate modeling

techniques are needed to explore both the temporal and spatial dependencies. In this

section, with emphasis on the important applications of clinical time series analysis

and speech modeling, we describe several powerful tools for analyzing and fusing the

multivariate sequential data.

2.4.1 Multivariate State-Space Models

As classic sequence modeling techniques, state-space models have been successfully

applied to a wide range of problems in control systems and machine learning (Bishop

2006). The power of state-space models can be attributed to explicitly representing

the interactions between system hidden state and actual observations. Generally

speaking, a state-space model consists of a set of state equations which describe

the evolution of the system hidden state with respect to time and another set of

observation equations which describes at each time step how the observations depend

on the state. Although most state-space models were originally defined for univariate

sequences, the extensions to multivariate cases have been developed over the years

(Vlachos and Kugiumtzis 2008; Ryali et al. 2011).

For continuous latent variables, the notable examples of state-space models are

Kalman filter under the assumption of linear Gaussian latents. Aiming at solving the

filtering and forecasting equations of the state-space, Kalman filter is able to update

the state once a new observation is received without reprocess the entire dataset

(Sumway and Stoffer 2006). When the states are discrete-valued, one can typically use

Hidden Markov Model (HMM) assuming that the specific regimes inside the associated

Markov chain are unknown to the observer.
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One of the most important applications of state-space models are in clinical

modeling. For example, a hierarchical Kalman filter is defined in (Liu and Hauskrecht

2013) to model the linear transition between consecutive states for blood test data.

In order to solve the irregular sampling issue existing in clinical data, a secondary

Gaussian Process (GP) is further defined over time windows and used to control the

higher-level state-space model. In (Ghassemi et al. 2015), a multivariate dynamic

system model is derived to estimate the intrinsic causal interactions between distributed

brain areas. The state-space formulation allows the system to explore the underlying

neuronal activity given only the observed blood oxygen signals in functional MRI.

The parameters in both state-space models of (Liu and Hauskrecht 2013; Ghassemi

et al. 2015) are calculated using the Expectation-Maximization (EM) algorithm as

maximum likelihood estimates. Moreover, targeted specifically at the multivariate

nature of clinical measurements, a multi-task GP method is proposed in(Ghassemi

et al. 2015) to jointly transforms the measurements into a unified latent space.

Speech signals are another natural application of state-space models when consider-

ing, for instance, the audio waveform (or the extracted features on it) as observations

whereas the phonemes as the latent states. Many earlier approaches are centered

around using HMM for automatic speech recognition (Rabiner 1989; Gales and Young

2008). At its basic form, the HMM models the base phones as the hidden states and

the estimated transition probability is used to predict the next acoustic vector. Beyond

speech recognition, more sophisticated state-space models have been developed for

a wide range of speech modeling tasks including as speech enhancement (Varga and

Moore 1990) and speaker diarization (Fox et al. 2011).
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2.4.2 Deep Learning based Sequence Modeling

As described in Section 2.3, the learning techniques have been revolutionized by the

advances of deep architectures in many domains. Sequence modeling is no exception.

In recent years, RNN and LSTM architectures have become the de facto solution to

various temporal modeling tasks. Under the recurrent structure of RNN, output of

the network travels along the feedback loop and gets transmitted to the next time

step for modeling, thus allowing the sequential information to persist. RNN has been

shown to be effective at capturing short-term temporal correlation, but may suffer at

long-term dependencies. As comparison, LSTM assigns dedicated hidden layers to

selectively decides which part of the information flows through the system state, how

the state is updated and what output the system should generate (Hochreiter and

Schmidhuber 1997). The superior capability of modeling long-term dependencies has

made LSTM the sought-after solution for sequence modeling problems.

Recent efforts utilizing these deep learning based models have demonstrated much

improved performance over conventional feature-based models including state-space

model and logistic regression. In the clinical modeling area, the earliest work in this

direction was by Lipton et. al. (Lipton et al. 2015), which proposed to use LSTMs

with additional training strategies for diagnosis tasks. In (Lipton, Kale, and Wetzel

2016), RNNs are demonstrated to automatically deal with missing values when they

are simply marked by an indicator. In order to learn representations that preserve

spatial, spectral and temporal patterns, recurrent convolutional networks have been

used to model EEG data in (Bashivan et al. 2015). After the introduction of the

MIMIC-III datasets, (Harutyunyan et al. 2017) have rigorously benchmarked RNNs

on all four clinical prediction tasks and further improved the RNN modeling through

joint training on all tasks.
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In speech modeling tasks, LSTM networks with deeper layers (Graves, Mohamed,

and Hinton 2013; Sak, Senior, and Beaufays 2014) and special connections (Y. Zhang

et al. 2016) have made breakthrough in acoustic modeling and speech recognition

problems. Furthermore, by incorporating the strong temporal modeling capability

into new architectures in deep metric learning, one can build potentially more superior

models for capturing speaker identity information. This has huge implication for

several important speech modeling problems including speaker identification, speaker

verification and speaker diarization. For example, recently supervised metric learning

architectures, namely, siamese (Chopra, Hadsell, and LeCun 2005; Koch, Zemel,

and Salakhutdinov 2015) and triplet (Hoffer and Ailon 2015; Schroff, Kalenichenko,

and Philbin 2015) networks have been developed to automatically infer similarity

metrics to compare speech segments. Broadly speaking, these architectures infer a

non-linear mapping A(·), such that, in the resulting latent space the within-class

sample distances are minimized while the between-class distances are maximized based

on a certain margin. In (Le Lan et al. 2017), Lan et al. proposed to employ triplet

networks on i-vectors to infer a similarity metric, and achieved state-of-the-art results

over conventional metrics in the diarization literature. Despite its effectiveness, it is

important to note that the feature extraction process is disentangled from the metric

learning network and hence cannot support end-to-end inferencing. In (Garcia-Romero

et al. 2017), a joint learning is developed from the MFCC features directly under the

siamese network setting. However, compare to the triplet ranking loss, which requires

the margin to be satisfied only a each given inference sample, the siamese loss requires

a global margin for all negative samples and hence exhibits much less flexibility.

Among many recurrent realizations in the NLP domain, another important com-

ponent which is often employed along with LSTM is attention mechanism. As an
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integral part to achieve the superior performance, attention is often placed between

LSTM encoder and decoder in sequence to sequence architectures (Bahdanau, Cho,

and Bengio 2014; Xu et al. 2015; Vinyals et al. 2015; Hermann et al. 2015). How-

ever, recent research in language sequence generation indicates that by stacking the

blocks of solely attention computations, one can achieve similar performance as RNN

and LSTM (Vaswani et al. 2017). Besides providing significantly faster training,

attention networks demonstrate efficient modeling of long-term dependencies. These

recent advances illustrate the promising value of attention computations in sequential

modeling.

2.5 Multilayer Graphs for Fusion on Relational Data

In previous sections, we focus on building the fusion model from the data samples

directly. In many real-world applications, however, there usually exist important

relational information between the samples. Furthermore, in some cases, deriving

the features for each sample can be difficult whereas access to the relations is readily

available. Graph is a natural data structure to represent and analyze such relational

data and hence the modeling, fusion and inferecing on graph-structured data have

become central to a wide-range of machine learning problems.

The most common tool for handling graph structured data often represent data

as undirected graphs with vertices representing entities and edges describing the

relationships between the entities. For example, each account in a social network

can be represented as vertices whereas the connections and interactions are modeled

as edges. The edges can additionally be associated with weights indicating the

strength of the affinity, e.g. the frequency of conversation between the persons or the

number of topics they are commonly interested in. Another example is representing

the functional or structural regions of the brain as vertices of a graph and the
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relationships between the various regions as the edges. Modeling such relationships is

a critical step towards understanding, diagnosing and eventually treating a gamut of

neurological conditions including epilepsy, stroke, and autism (Kelly et al. 2008). Note

that while the edge weights are often considered as the important attributes, values

associated with vertices, such as the time-varying signals detected in each brain region,

can also enable encoding of additional properties about the entities (Shuman et al.

2013). These inherent modeling flexibility, the significance of the applications and the

development of large-scale intelligent algorithms have made graph-based inferencing

very attractive (Cook and Holder 2006).

When the graph structure exists in multiple data sources or the extracted features,

it is beneficial to study the relationships as a whole in order to obtain an holistic

understanding. In such scenarios, the relationships can be easily represented by

multiple undirected graphs with the same set of vertices and edges arising from

different attributes. Depending on the research area, this type of data structure is

referred to as multilayer graph (Dong et al. 2012; Kivelä et al. 2014), multidimensional

network (Boutemine and Bouguessa 2017; Berlingerio et al. 2011) or multiplex network

(Mucha et al. 2010). To be consistent, we adopt the notation of multilayer graphs in

this dissertation, with each layer corresponding to one relational representation arising

from the attributes. The heterogeneity in the relationships, while providing richer

information, makes statistical inferencing challenging. Furthermore, the varying levels

of sparsity in different layers and the inherent uncertainties in neighborhood graphs,

e.g. noisy edges or outliers, add to the complexity of this problem. Consequently,

effective fusion mechanism of the heterogeneous relationships is necessary to construct

a high-fidelity inferencing model.
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2.5.1 Applications of Multilayer Graph Fusion

Multilayer graph fusion is very useful in a large number of machine learning

topics including node classification, link prediction and community detection. Node

classification is one of the most common applications. In this problem, each node is

assigned one class label (Bhagat, Cormode, and Muthukrishnan 2011; Kipf and Welling

2016) or multiple labels (i.e. multi-label classification) (Perozzi, Al-Rfou, and Skiena

2014; Grover and Leskovec 2016). The model can be learned either from the nodes on

the same graph as the testing nodes, or from nodes on entirely different graphs. These

specific problems are named transductive learning and inductive learning respectively

(Joachims 2003; Yang, Cohen, and Salakhutdinov 2016; Hamilton, Ying, and Leskovec

2017; Velicković et al. 2017). In general, node classification algorithms first extract the

graph embedding as vector representations for each node and then learn a classifier on

them. Some recent work unifies these two steps to learn the graph node representations

which are specific to the classification problem at hand (Kipf and Welling 2016; Monti

et al. 2017).

In contrary to node classification which perform inferencing on graph nodes, in link

prediction, the model is supposed to infer the graph edge correctly. This application

is useful particularly for social networks where some important connections between

friends have not been established. Interestingly, the graph embedding which are

usually learned for node classification have been proven helpful also for link prediction

(Liben-Nowell and Kleinberg 2007; W. Liu et al. 2017). The underlying reason is that

the learned representations capture rich graph structural information and different

orders of proximity such as the missing link can be effectively inferred.

Community detection is the problem of partitioning the graph vertices into several

groups such that the connections within each community is dense whereas the connec-
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tions across communities are sparse. As an unsupervised learning technique, it is an

extremely useful analysis tool for real-world large-scale networks where the ground-

truth node labeling is absent. In order to obtain desirable community structures, it has

been shown that the mesoscopic information is equally important as the lower-order

proximity captured by common graph embedding techniques (X. Wang et al. 2017;

Cavallari et al. 2017). In the case of multilayer graphs, each layer characterizes a

specific kind of relationship and they can be aggregated to better investigate the

community structure. For example, in the AUCS dataset (Magnani, Micenkova, and

Rossi 2013) and MIT reality mining dataset (Eagle and Pentland 2006), the nodes

correspond to persons and different layers represent their interactions at work, through

phone call connections and on social networks. By jointly exploiting these relational

information, we can obtain communities such as their department affiliation or study

interest groups. A comprehensive survey studying the community detection algorithms

and the multilayer graph datasets for this research can be found in (Kim and Lee

2015). In the following sections, we focus on the community detection problem and

describe in detail several important algorithms to tackle it.

2.5.2 Modularity-based Multilayer Community Detection

Many community detection algorithms depend on heuristic measures to define

good partitioning. A prominent measure used in the context of multilayer graphs

is multislice modularity (Mucha et al. 2010). Originally defined for single graphs,

modularity measures the difference between the number of edges running across groups

and the one as expected from random edge assignment. Formally modularity is defined

as (Newman 2006):
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Q =
1

2m

∑
i,j

(Aij −
kikj
2m

)δ(gi, gj) (2.4)

where Aij denotes the connection between node i and j, ki, kj denotes the degree for

node i and j respectively, m = 1
2

∑
i ki is the total number of edges and δ(·) is the

Kronecker delta function which equals one only when the community membership

for node i and j, namely gi and gj, is the same. It is clear that only the pairwise

relations of nodes belonging to the same community will contribute to modularity.

This contribution will be positive when the edge weight Aij is larger than the expected

edge weight kikj
2m

. Conversely, it will be negative when Aij <
kikj
2m

.

Some popular algorithms for solving the maximization of Q include spectral

decomposition (Newman 2006), greedy methods (Blondel et al. 2008), extremal

optimization (Duch and Arenas 2005) and mathematical programming (Agarwal and

Kempe 2008). For an extensive survey on existing optimization algorithms, please

refer to (Chen, Kuzmin, and Szymanski 2014). To extend these successful detection

algorithms to multigraphs, (Mucha et al. 2010) derived the multislice modularity

based on Laplacian dynamics. As a result, the conventional modularity maximization

algorithms can be conveniently adopted to this new measure to solve the multilayer

partitioning problem. According (Mucha et al. 2010), the multislice modularity can

be defined as:

Qmulti =
1

2µ

∑
i,j

∑
d,r

[(Adij − γd
kdi k

d
j

2md

)δ(d, r) + δ(i, j)σd,rj ]δ(gdi , g
r
j ) (2.5)

where µ is the normalization factor, γd is the resolution parameter for layer d, σd,rj is

the coupling parameter of node j between layer d and r, and other parameters are

simply the extensions from Equation (2.4) to layer d.
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As observed in Equation (2.5), Qmulti separates the contribution of intralayer

connections (first term) and interlayer coupling (second term). The intralayer mod-

ularity contribution is similar to Equation (2.4) whereas the interlayer contribution

measures the connectivity strength from node i to all its corresponding nodes in

other layers. As shown in (Mucha et al. 2010), by increasing the coupling parameter

σ, one obtains fewer communities from the multilayer graph and at the same time,

the average number of communities for each node reduces. Besides being successful

optimization objective measures, modularity and multi-slice modularity are widely

utilized as evaluation metrics for benchmarking community detection algorithms in

the literature (Almeida et al. 2011; Tagarelli, Amelio, and Gullo 2017; Boutemine and

Bouguessa 2017)

2.5.3 Graph Aggregation and Ensemble Clustering

Different from above algorithms which develop special strategies to tackle the

multiple relations from scratch, graph aggregation and ensemble clustering techniques

aim at deriving the fusion solution based on single graph clustering results. The

fusion procedure can be applied at different stages of the algorithm pipeline. In

graph aggregation, different layers are combined based on some metric into a single

graph which encompasses the holistic view of all types of relations. On the contrary,

ensemble clustering works directly on the pre-defined partitions of each layer and

aggregate them to construct a clustering consensus.

One of the earliest work on graph aggregation is (Berlingerio, Coscia, and Giannotti

2011), which develops heuristic rules to obtain fused edge weights. In the case of

binary aggregation, there will be an edge in the aggregated graph if the edge exists

in at least one layer. Another flattening rule is frequency-based: the resulting edge

weight is the number of edges connecting the two nodes in different layers, normalized

32



by a constant factor. Although these rule-based aggregation schemes are efficient and

easy to implement, they suffer from some serious drawbacks: both treat the weighting

of each layer equally and it is not clear which strategy should be adopted given a new

set of data. To tackle these issues, recent work focus on developing more sophisticated

flattening rules based on local relations. For example, in (Kun, Caceres, and Carter

2014), the aggregation rule is inspired by boosting: the edge weights in each layer

are treated as weak similarities and a reward system promoting presence of strong

associations and absence of week edges is developed. In (Kim, Lee, and Lim 2017), the

contribution of each layer is automatically determined by maximizing the clustering

coefficient computed from the combined graph. The resulting differential flattening

optimization is solved by interior point methods.

Ensemble clustering positions the fusion procedure in a late stage. Algorithms of

this type usually work directly on an ensemble of existing partitioning from every layer

and thus do not make assumption of the inherent clustering algorithm applied on each

graph. For example, based on the community structures of each layer, (Berlingerio,

Pinelli, and Calabrese 2013) builds a transaction list where each node is labeled

by a pair consisting of its dimension (layer) and the community it belongs on that

dimension. By drawing the analogy of the community membership as items and

the nodes as the transactions of these items, it applies the frequent closed itemset

mining algorithm to find communities with large overlap across different layers. Along

the same line of thinking is (Tagarelli, Amelio, and Gullo 2017), where an ensemble

clustering is derived based on the pre-defined partioning of each graph layer. Different

from conventional ensemble clustering algorithms which often solely rely on the co-

occurrence of community assignments across feature sources, in the case of multilayer

graph, the original relations between samples are known and can be exploited to
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achieve the optimal consensus. To this end, the authors proposed to derive the

consensus such that the topology of the multilayer graph is preserved by maximizing

the multilayer modularity. Starting from the consensus community structure provides

by conventional ensemble clustering, at each iteration, the algorithm refines the within-

community and across-community connectivity, possibly on different layers, in order

to increase the modularity score. It should be noted that although both ensemble

approaches mentioned here aim to fuse community structures from different layers,

their problem statements are different: (Tagarelli, Amelio, and Gullo 2017) gives a

single final partition of the graph nodes, whereas (Berlingerio, Pinelli, and Calabrese

2013) can discover different multilayer communities, i.e. each multilayer community

may reside on a subset of the layers and each node may belong to different multilayer

communities depending on the layer it is considered.

2.5.4 Representation Learning based Approaches

The objective of representation learning based approaches is to derive vector

representations for each node which capture the proximity and structural information,

such that conventional clustering algorithms e.g. k-means can be directly applied

to obtain the partition. The success of representation learning in other significant

domains ranging from natural language processing to computer vision has made such

topic very attractive for relational data. A popular example following this procedure

is spectral clustering, which infers a subspace representation from the eigen-spectrum

of the graph Laplacian and subsequently applies k-means clustering (Ng, Jordan,

and Weiss 2001). More recently, there has been particular interest in adopting

neural word embeddings, which encode semantic relations in a continuous vector

space with a relatively small number of dimensions, to the case of graphs. At its

core, word embedding algorithms build on the distributional hypothesis (Harris
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1954) where similar contexts imply similar meanings, i.e., co-occurrences of words

can be tied to their underlying meanings. Extending this principle to the case of

arbitrary networks requires the definition of the notion of co-occurrence between

vertices. Recent approaches such as DeepWalk (Perozzi, Al-Rfou, and Skiena 2014)

and Node2Vec (Grover and Leskovec 2016) address this challenge by creating a stream

of randomly generated walks between the vertices and generalize word embeddings

to graphs. The resulting latent representations are highly robust, can capture the

structural regularities and recover the community memberships.

In order to exploit and fuse the multiple relations, specific changes are needed

to extend above single graph representation learning to multilayer graphs. Several

existing approaches tackle this problem using factorization on the graph adjacency

matrices (Tang, Lu, and Dhillon 2009; Dong et al. 2012; Gligorijević, Panagakis, and

Zafeiriou 2016; Papalexakis, Akoglu, and Ience 2013). In (Tang, Lu, and Dhillon 2009;

Dong et al. 2012), either the adjacency matrix A(m) or the Laplacian matrix L(m)

corresponding to layer G(m) is decomposed into a set of shared eigenvectors among all

layers and layer-specific eigenvalues. In (Gligorijević, Panagakis, and Zafeiriou 2016),

the symmetric non-negative matrix tri-factorization algorithm is utilized and each

A(m) is factorized into 3 non-negative matrices including a shared cluster indicator

matrix. Its formulation for multilayer graph also deals with incomplete and missing

layers by only factorizing observed entries.

Utilizing the word-embedding based approaches to combine information from

multiple layers has not been explored yet in the literature. Based on DeepWalk or

Nede2Vec, one can obtain a straightforward extension to the case of multi-layer graph

for feature fusion: (a) Perform random walks on each of the layers independently and

infer the latent representations using deep neural embeddings, (b) Merge the latent
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features, e.g. concatenation, from all layers and use the resulting unified representation

for clustering tasks. However, by performing independent random walks, this approach

does not exploit the common factors or regularity in the community structures across

the different layers. Furthermore, the commonly adopted late fusion strategies such

as concatenation do not compensate for the uncertainties introduced by each of the

layers while identifying clusters.
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Chapter 3

MULTIMODAL SENSOR FUSION AND ENSEMBLE INFERENCE

The use of mobile devices and wearable sensors for activity monitoring has become

an important research problem in the recent years. The objective of the sensor based

intelligence system is to analyze the data collected using the inherent sensing modalities

and obtain predictive inferences using low complexity algorithms. The challenges in

building effective predictive algorithms for such mobile devices are twofold. On one

hand, though abundantly available, the data collected from these cheap sensors are

often very noisy and unreliable. On the other hand, it can be prohibitive in terms of

both time and resource availability, to employ complex machine learning techniques to

process this data. While there have been significant advances in activity recognition

using data from high-performance, stand-alone sensors attached to human body (Avci

et al. 2010; Zhang and A. A Sawchuk 2013), adapting them to the case of low-cost,

mobile sensors is not straightforward.

In spite of the availability of different sensors, activity recognition is often carried

out solely based on accelerometer data (Kwapisz, Weiss, and Moore 2011). Using data

from other sensors can potentially learn more effective representations, and make the

predictor highly robust to measurement inaccuracies. In this chapter, we propose a

two-stage systematic fusion framework in order to improve smartphone sensor based

activity recognition. One important feature of the proposed approach is the support

for both multiple sensing modalities and multiple feature extraction strategies.
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Figure 1: Proposed two-stage architecture for activity recognition on mobile devices.

3.1 Multi-modal Consensus Framework

As shown in Figure 1, the proposed framework consists of three steps: (a) extract

statistical and shape features from segments using windowing, (b) perform sensor

fusion for each feature type across all modalities based on multilayer graphs, and

(c) use ensemble reference-based classifier on the different types of fused feature for

recognition. The last two steps constitute the fusion stages.

3.1.1 Feature Extraction

We extract statistical features that have proved to be useful for activity recognition

(Zhang and A. A Sawchuk 2013; Kwapisz, Weiss, and Moore 2011; Zhang and A. A
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Sawchuk 2011), and investigate the time delay embedding of the activity signals and

propose to use a basic version of shape features.

The statistical features we extracted are: mean, median, standard deviation, kur-

tosis, skewness, total acceleration, mean-crossing rate, autoregressive (AR) coefficients

(Spanias 2014) and dominant frequency. Each activity signal was first windowed into 5

second non-overlapping segments. This length was chosen empirically such that there

is sufficient periodic structure in each segment. The AR coefficients were extracted

assuming each segment to be a stationary random signal (He and Jin 2008). The

model order was determined to be 3 based on the Akaike information criterion (Akaike

1974). The dominant frequency is defined as the frequency component having the

largest FFT magnitude (Zhang and A. A Sawchuk 2011). These statistical features

were extracted separately from signals corresponding to the three axes of each sensor

and then concatenated together. For both the accelerometer and gyroscope, the overall

dimension of the statistical features is 31.

Given a short sequence of measurements, time-delay embedding (TDE) (Sauer,

Yorke, and Casdagli 1991) is an approach for reconstructing the underlying system

dynamics. Two important parameters for calculating the TDE are: the dimension

of reconstruction space m and time delay τ . Given a time series o, the TDE can be

represented as a matrix O whose ith column is [oi, oi+τ , oi+2τ , ..., oi+(m−1)τ ]. Figure 2

visualizes the raw accelerometer signal for fast walking and its corresponding TDE

representation. In Figure 2(b), we cluster the samples in the 3-D PCA representation

of TDE and mark different clusters with specific colors. The corresponding activity

samples are then marked the same color and illustrated in Figure 2(a). Notice that

across the periods of the activity signal, the clusters map to very similar regions. This
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(a) (b)

Figure 2: Extracting shape features - (a) Raw accelerometer data, (b) 3-D PCA
representation of its delay embedding.

shows that TDE represents the periodic structure of the signal as desired and we can

derive suitable features from it for the classification task.

We extract a simple shape function based on the geometric distance property,

and use it to derive our feature. The shape function we consider measures the pair-

wise distance between samples in the TDE space, calculated as Sij = ‖oi − oj‖2

(Venkataraman et al. 2013). A histogram is constructed on these distances with

specified bin size to obtain the feature.

3.1.2 Sensor Fusion using Multilayer Graph

The goal of the sensor fusion is to obtain a unified feature for each activity segment

by fusing similar features from the two modalities (accelerometer and gyroscope). We

adapt the multilayer graph consensus approach in (K.N. Ramamurthy et al. 2014),

where each layer represents a single modality containing an intra- and inter-class

graph corresponding to the class relationships of the activities. We estimate linear

local discriminant embeddings (LDE) instead of kernel embeddings on the graphs to
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keep the process computationally simple. Figure 3 shows the overview of this process

for a given feature type. Note that we will obtain separate consensus projections for

the two feature types, namely statistical and shape.

Denote the T modalities in one feature type as {Xt}Tt=1, where the columns of

Xt ∈ RMt×N correspond to the features extracted from each activity segment. The

label for an activity segment i is denoted by li. We construct the intra- and inter-class

graphs for modality t and represent the adjacency matrices as Wt and W′
t, whose

elements are defined using the Gaussian RBF with parameter γ,

wt,ij =


e−γ‖xt,i−xt,j‖

2
, if li = lj,

0, otherwise,
(3.1)

w′t,ij =


e−γ‖xt,i−xt,j‖

2
, if li 6= lj,

0, otherwise.
(3.2)

The idea of linear LDE (Chen, Chang, and Liu 2005) is to construct the low-

dimensional embedding Vt = UT
t Xt, Ut ∈ RMt×D (D is the dimension of projection)

being the projection matrix, such that the neighboring points of same class in the

ambient space are still close, whereas the neighboring points from different classes are

distant. Defining the Laplacian matrices Lt = Dt −Wt, and L′t = D′t −W′
t, where

Dt and D
′
t are the respective diagonal degree matrices, the individual discriminant

projections can be computed as the trace-ratio maximization (Jia, Nie, and Zhang

2009),

Ut = arg max
Ut:UT

t Ut=I

Tr(UT
t XtL

′
tX

T
t Ut)

Tr(UT
t XtLtXT

t Ut)
. (3.3)

Since the individual projections belong to the Grassmann manifold, the consensus

projection U can be obtained as geometric mean of the individual projections with
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respect to the chordal distance (Ye and Lim 2014),

d2
proj = D −

T∑
t=1

Tr(UUTUtU
T
t ). (3.4)

We also require the consensus projection to be discriminative across all the modalities.

Combining this with (3.4), the final optimization is

min
U

T∑
t=1

Tr(UTXtLtX
T
t U)− α

T∑
t=1

Tr(UUTUtU
T
t )

s.t.
T∑
t=1

Tr(UTXtL
′
tX

T
t U) = c,UTU = I

where α is the trade-off parameter. This can be posed as the trace-ratio maximization,

max
U:UTU=I

Tr
(
UT

(∑T
t=1 XtL

′
tX

T
t

)
U
)

Tr
(
UT

(∑T
t=1 Xt (Lt − αUtUT

t ) XT
t

)
U
)

and solved using the decomposed Newton’s or the iterative trace ratio method (Jia,

Nie, and Zhang 2009). The out-of-sample projection for the test data {Yt}Tt=1 is

obtained as Z =
∑T

t=1 UTYt.

3.1.3 Ensemble Reference-Based Classification

Given different types of consensus features, it is important that the classification

mechanism can effectively combine them. We extend the reference-based classification

in (Q. Li et al. 2013) using an ensemble classification approach. Different from (Q. Li

et al. 2013), we use the whole training data as the reference set and we perform

inference directly based on the combined similarity matrix between a probe sample

and the reference set. This simplifies the classification and also takes into consideration

characteristics of both features. The detailed steps are:

1. Denote a probe sample as z and the F consensus features as {Vf}Ff=1. We

construct the similarity vector sf , where each element s is the similarity between
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Figure 3: Multilayer graph consensus algorithm for fusing features from two different
sensors.

the probe sample and one sample v in the training feature Vf (Q. Li et al. 2013),

s = 1 − γ( k
2
,
dvz
2

)

Γ( k
2

)
. Here dvz is the Euclidean distance between the probe sample

z and the reference sample v. Γ is the Gamma function and γ is the lower

incomplete Gamma function with parameter k.

2. Select the top K = 30 closest samples from every class and form the new

similarity vectors {s′f}Ff=1.

3. Denote the elements containing similarities to class c as (s
′

f)
c. We perform

the ensemble for measuring the closeness of the probe sample to class c as,

Sc =
∑

f

∑
n(s

′

f )
c. The inference can then be directly carried out by assigning

the label of the class having largest Sc value.
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Figure 4: Average confusion matrix of the proposed recongition algorithm.

3.2 Experimental Results

Human movement in daily activities are complex in nature. Even for the same

activity, the styles can be largely different among people. Hence, we collected data

from a set of 32 subjects with diversity in gender, age, weight, and height. The

statistics of these demographic factors are shown in Table 1. Each subject performed 5

different activities, - slow walking, fast walking, running, slow biking, and fast biking -

using a treadmill or biking machine. The first three activities were performed twice

with the subjects carrying the mobile phones first in their front pockets and then

in their back pockets, whereas biking activities were performed with mobile phone

only in front pockets. As a result, the dataset contains data from 8 classes in total.

The labeling also follows this order. The duration of each activity was 75 seconds

and the speeds were fixed. The Nexus 4 Android phone that we used had one 3-axis

accelerometer, and one 3-axis gyroscope to measure the amount of rotation. We set

the sampling rates of the sensors at 200Hz through the Android APK interface.
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Table 1: Demographic statistics of the subjects that
participated in our data collection experiment.

Statistics Mean STD Range
Age 30.5 7.8 20-52

Height (cm) 174.8 9.5 155-191
Weight (kg) 73.9 14.0 42-108

Table 2: Activity recognition performance obtained using different combinations of
sensors and features, in comparison to the proposed two stage architecture.

Sensor Feature Recognition
Rate

Accelerometer Shape (LDE) 57.8
Gyroscope Shape (LDE) 51.66

Shape (Consensus) 68.73
Accelerometer Stats (LDE) 70.05
Gyroscope Stats (LDE) 69.95

Stats (Consensus) 73.2
Two Stage Approach 80.14

We performed 5-fold cross-validation on this dataset by a random split of data

according to subject label. In other words, in each validation the training and testing

data do not come from the same subject. This setting increases the challenge of the

task but better simulates real-world applications.

Table 2 compares the recognition rates in each step of our framework, i.e., using

the two sensors independently with each of the features, consensus of the two sensors

for each of the features, and finally our two stage architecture. We observed that,

with both the feature extraction strategies, sensor fusion performs better than using

any sensor alone. However, using the ensemble classifier improves the performance

significantly, providing an improvement of around 10% over the best results obtained

with a single sensor. Figure 4 plots the confusion matrix for the 8 classes, obtained

using the proposed algorithm.
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Chapter 4

MULTIPLE KERNEL FUSION FOR VISUAL CONTEXT MODELING

In visual recognition, it is a common strategy to fuse multiple descriptors which

contain complementary information. However, most existing feature fusion algorithms

only employed low-level features, i.e., they describe the local variabilities without

taking the global context into account. It is known that high-level information, referred

to as the context, is crucial to object/scene understanding (Thiagarajan et al. 2014).

In general, building a context model is challenging due to both the computational

complexity in solving the MAP (Maximum A Posteriori) formulation and the difficulty

in modeling complex patterns using limited training data. Consequently, auto-context

models (Tu 2008) have been developed, which can approximate the posterior using

an iterative, supervisory approach. These models integrate the low-level features

with context information in the form of probability maps, obtained using a series

of classifiers. By enabling the classifier to choose different supporting neighbors to

modify the current probabilities towards the ground truth, auto-context methods lead

to better regularization.

In this chapter, we propose to adopt auto-context models under the RKHS setting.

In addition to providing the flexibility of auto-context models, the proposed approach

can build highly effective kernel models for object recognition. Since auto-context

probability maps cannot be directly incorporated into the RKHS, we first estimate

marginal probabilities using a classifier (e.g. Kernel Logistic Regression or Kernel

SVM) and construct an auto-context kernel based on these probabilities. For example,

the marginalized kernel construction in (Tsuda, Kin, and Asai 2002) can be used.
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Figure 5: Proposed approach for integrating auto-context with image features under
the RKHS setting (illustrated for two iterations). This problem is solved efficiently by
posing the fusion in each step as Multiple Kernel Learning (MKL).

Since any symmetric positive definite kernel defines a unique RKHS, we can use other

forms of kernels by treating the probability map for each image as a feature vector

directly. Interestingly, the process of fusing the auto-context model with the image

appearance can be viewed as multiple kernel learning, for which a variety of efficient

solutions exist. Figure 5 illustrates the proposed approach with two iterations. We

demonstrate using standard object/scene classification datasets that the proposed

approach results in highly effective recognition systems.

4.1 Formulation of Kernel Methods

Given the feature domain X ⊂ Rd, we define the matrix of n samples as X =

[xT1 , . . . ,x
T
n ]. A function k : X × X → R defines a valid kernel if it gives rise to a
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positive definite kernel matrix K satisfying Mercer’s condition (Schölkopf and Smola

2002). In this case, k also defines an implicit mapping ϕ to the RKHS Hk and an

inner product 〈·, ·〉 in Hk, such that k(xi,xj) = 〈ϕ(xi), ϕ(xj)〉Hk .

When data from two classes are not linearly separable, it is often beneficial to

transform them through the non-linear mapping ϕ to a higher-dimensional space

Hk, such that a non-linear decision boundary can be effectively learned using linear

classifiers. For example, the RBF kernel maps data into an infinite dimensional RKHS

and admits a large class of decision functions, referred as the native space (Thiagarajan,

Bremer, and Ramamurthy 2014). A crucial advantage of kernel methods is that they

do not require an explicit definition of the mapping ϕ and utilize the dual formulation

of optimization problem defined solely based on the kernel matrix K (Andrew 2000).

For example, the kernel SVM formulation can be expressed as

max
α

∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyjk(xi,xj)

s.t. 0 ≤ αi ≤ C, ∀i;
∑
i

αiyi = 0.

(4.1)

where αi are the Lagrangian multipliers, C is the misclassification trade-off parameter

and the kernel k is pre-defined by the user.

Since choosing the right kernel for an application is not straightforward, it is

common to consider multiple kernels based on different kernel similarity constructions

or feature sources for the data. In such scenarios, there is a need to optimally combine

the kernels to perform improved inference. Referred to as Multiple Kernel Learning,

this process supports a wide variety of strategies for combining, with the most common

choice being the convex combination:

k(xi,xj) =
∑
m

βmkm(xi,xj) (4.2)
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with
∑
βm = 1 and β � 0. In MKL, we optimize for the kernel weights while reducing

the empirical risk. The dual formulation for multiple kernel learning can hence be

obtained as

min
β

max
α

∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyj
∑
m

βmkm(xi,xj)

s.t.
∑
i

αiyi = 0; 0 ≤ αi ≤ C, ∀i;
∑
m

βm = 1,β � 0.

(4.3)

4.2 Proposed Approach

In this section, we describe the proposed approach for building an auto-context

model in the RKHS, which is comprised of two main steps: (a) constructing the auto-

context kernel, (b) integrating image features and the context model using multiple

kernel learning.

4.2.1 Constructing the Data Kernel

Denote the dataset of N samples belonging to M different classes by

{(x(n), y(n)), n = 1, ..., N}, where x(n) and y(n) ∈ {1, ...,M} are the feature vec-

tor and the class label of the image n respectively. For simplicity, we adopt the

popular bag-of-words model for building the feature representation. Assuming

that there are S diverse descriptors, the visual word dictionaries of sizes d1, ..., dS

are learned using k-means clustering from the extracted descriptors. For a given

image In, its feature representation is x(n) = (x
(n)
1 , ..., x

(n)
d ), where d =

∑
s ds is the

feature dimension. Each feature component x(n)
j represents the normalized occurrence

frequency of the j-th visual word (which is from the s-th dictionary) in the image

n. We then construct the data kernel as the Radial Basis Function (RBF) kernel:

kF (xi,xj) = e−
‖xi−xj‖2

2σ2 , where σ is the tuning parameter.
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4.2.2 Constructing the Auto-Context Kernel

Context information can be defined in different ways based on the specific task

in hand. We focus on image classification problem and use the posterior probability

map with respect to class labels in the construction of the auto-context kernel. In

particular, we begin by estimating the probability map for each image using a kernel

SVM classifier in the RKHS. In general, SVM classifiers predict only the class label

without providing the probability information explicitly. Given M classes of data, for

any example x, the goal is to estimate: pi = P (y = i|x), i ∈ {1, 2 · · ·M}.

Adopting the one-vs-one classification scheme, we first estimate pairwise class

probabilities rij by fitting a Logistic Regression model (Chang and Lin 2011):

rij =
1

1 + e−γT f̂
,

where f̂ is the decision value at x. The parameter γ is optimized by minimizing the

negative log-likelihood of the training data. Upon estimation of the probabilities for

all pairs of classes, we can consider the formulation in (Wu, Lin, and Weng 2003) to

estimate the probabilities pi.

min
p

1

2

M∑
i=1

∑
j 6=i

(rijpi − rijpj)2 s.t. pi ≥ 0,
M∑
i=1

pi = 1. (4.4)

This can be efficiently solved by considering its dual problem and using the iterative

strategy proposed in (Wu, Lin, and Weng 2003). Given the estimated posterior

probabilities, p(y|x), for each image, we build the auto-context kernel following the

idea of marginalized kernel (Fernando et al. 2012)

kAC(xi,xj) = φ(xi)
Tφ(xj),

=
∑
y

∑
y′

p(y|xi,γy)p(y′|xj,γy′)S(y, y′), (4.5)
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Data: Image feature set {(x(n), y(n)), n = 1, ..., N}, where y(n) ∈ {1, ...,M},
tmax

Result: Set of trained classifiers {Ht}tmaxt=1

Build image feature kernel KF using RBF;
Initialize p(y|x) with uniform distribution and t = 1; while t ≤ tmax, i.e., until
preset number of iterations is not reached do
1. Construct the auto-context kernel Kt

AC based on the marginal
probabilities using (4.5);

2. Perform MKL to obtain the classifier parameters using (4.6) and store
them in Ht;

3. For each example, calculate the decision function and estimate the
probability map {pi}Mi=1 by solving (4.4);

4. Set t→ t+ 1;
end
Return the set of classifiers {Ht}tmaxt=1 ;

Algorithm 1: Proposed algorithm for iterative estimation of auto-context in a
RKHS setting.

where S(y, y′) denotes the similarity between the classes. Note, kAC(xi,xj) will result

in a large similarity when the conditional probabilities that xi and xj belong to a class

y is high. When the weighting term S(y, y′) is ignored, (4.5) corresponds to computing

the linear kernel for the probability maps. Alternately, we can also construct a RBF

kernel for the marginals.

4.2.3 Algorithm

With the context information defined inside (4.5), the auto-context kernel measures

how close the probability maps are from the ground truth. Consequently, this high-

level information can effectively complement the image appearance information in

recognition. Integrating the auto-context model into the feature kernel of the observed

data is equivalent to fusing the two kernels, and we propose to solve this using multiple

kernel learning. Denoting the RKHS corresponding to the image features and context
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by kF (., .) and kAC(., .) respectively, the MKL formulation can be written as

k(xi,xj) = βFkF (xi,xj) + βACkAC(xi,xj), (4.6)

where βF , βAC ≥ 0 and βF + βAC = 1. We use the SimpleMKL (Rakotomamonjy

et al. 2008) algorithm to obtain the optimal coefficients and classifier parameters.

SimpleMKL performs optimization based on gradient descent on the SVM objective

through a dual formulation. The overall iterative algorithm is described in Algorithm

1. Initially it is assumed that there is a uniform distribution on x for all classes, and

hence auto-context kernel has no useful information to improve the discrimination.

As the algorithm iterates, the auto-context model can be progressively improved by

learning the series of kernel classifiers using MKL. In each iteration, the marginal

probabilities are estimated in the fused RKHS from the image feature kernel and the

auto-context kernel from the previous iteration. Note that after the MKL optimization

is completed, there is no need to explicitly calculate the combined kernel result as in

(4.6). The marginal probabilities propagate the context information through iterations.

4.3 Experiments

In this section, we evaluate the proposed approach using standard visual recognition

datasets and study the impact of auto-context modeling. The baseline comparison

includes the case of using the feature kernel, and the auto-context kernel independently.

Before we present the performance evaluation, we demonstrate the convergence

behavior of the proposed algorithm in improving the marginal probabilities using the

auto-context model.
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Figure 6: Illustration of the convergence behavior of the proposed algorithm. Left
axis shows the conditional probability of an example training sample, with ground
truth y = 1, estimated by the kernel SVM classifier. Right axis shows the ratio of the
importances between the auto-context kernel and the image feature kernel respectively.

4.3.1 Demonstration

The initial context model is equivalent to a uniform probability map with respect

to all classes and hence the classification performance solely depends on the feature

kernel. As the algorithm progresses, the auto context kernel will attempt to push the

class probabilities closer to the ground truth using a series of classifiers. To illustrate

this behavior, we consider a binary classification problem using a subset of the Soccer

dataset (details in the next section).

Figure 6 illustrates how the relative importance of the auto-context kernel changes

over the iterations, with respect to the image feature kernel. More specifically, we

consider a training example with ground truth y = 1 and analyze the ratio of the

weights, βtAC/βtF . In addition, we plot the probability estimate from the kernel

SVM, p(y = 1|x). In the first iteration, the uniform context provides no additional

information and hence the classifier is solely based on the feature kernel. However,
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as our algorithm proceeds, the auto-context kernel enables better discrimination

between the two classes and hence βAC becomes large. Interestingly, the marginal

probability for the sample also changes from 0.55 after iteration 1 to 0.96 after iteration

6 indicating that the auto-context model leads to a more effective classifier.

4.3.2 Performance Evaluation

Soccer Dataset: This dataset contains images belonging to 7 soccer teams, comprised

of 40 images per class. We used 25 images from each class for training and the 15

remaining images for testing. We extracted bag-of-words features based on both the

shape and color cues. More specifically, the shape information was characterized by the

SIFT descriptors computed at the set of keypoints determined by the Harris-Laplace

point detector (Lowe 1999). The Hue-histogram (Van De Weijer and Schmid 2006),

which described the color information, was evaluated at the same set of keypoints.

Both descriptors are concatenated to construct the image appearance representation.

The dictionary sizes for the SIFT and Hue descriptors were fixed at 400 and 300. We

constructed the RBF kernel for this image feature set with the parameter σ = 50. The

kernel SVM classifier was designed with the parameter C = 10. Furthermore, the cost

parameter and `2 regularization parameter for multiple kernel learning were set to 15

and 10 respectively. Table 3 shows the performance of our algorithm in comparison to

baseline results obtained using only the feature kernel and the one-step auto-context

kernel respectively. As the results indicate, the auto-context information enables the

marginal probabilities to better match the ground truth in a few iterations, thereby

leading to an improved recognition performance.

UCI Image Segmentation Dataset: This dataset contains 2310 samples which

were drawn randomly from a database of 7 outdoor images. The images were hand-

segmented to create a classification for every pixel. Each sample corresponds to a
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Table 3: Object recognition performance (% Accuracy) for standard datasets. We
compare the performance of our algorithm against that obtained using only the image
feature kernel and one step auto-context kernel.

Dataset kF+SVM kAC+SVM Ours
Soccer 76.2 76.2 81.9

UCI Segmentation 86.9 85 87.9

3× 3 regions. For the classification task, we use the provided 19 different attributes

corresponding to the intensity statistics and construct a RBF kernel with σ = 10. For

multiple kernel learning, the `2 regularization was fixed at 0.1. As Table 3 indicates,

incorporating the auto-context model improves the performance marginally. Note

that, this dataset is comparatively easier to classify since the marginal probabilities of

the training samples were close to the ground truth even after a single iteration.
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Chapter 5

DEEP KERNEL MACHINE OPTIMIZATION - A PRINCIPLED FRAMEWORK

FOR FEATURE FUSION

As discussed in Section 2.2 and 2.3, as two significant representation learning and

predictive models in machine learning, kernel methods and deep learning both possess

particular advantages and limitations. On one hand, kernel machines and Multiple

Kernel Learning are highly effective in learning robust models given even a small

set of data. They also generalize to a wide range of problems easily. However, the

size of kernel matrices and the complexity of solving the optimization problem scales

roughly quadratic with respect to the size of data. This prohibits their applications

on large scale datasets. On the other hand, deep learning demonstrated exceptional

power in learning multi-level abstractions and flexible complex model. However, in

problems characterized by limited dataset sizes and complex dependencies in the input

space, deep architecture can get sub-optimal performance due to the requirement of

exhaustive tuning of several hyper-parameters.

Inspired by the recent advances which attempt to incorporate ideas from deep

learning into kernel machine optimization (see Section 2.3.3), we develop a principled

framework to facilitate kernel learning and feature fusion utilize the power of deep

architectures. The overall framework is illustrated in Figure 7. Viewed from bottom

to top, we first extract multiple dense embeddings from a precomputed kernel matrix

K and optionally the feature domain X if accessible during training. On top of each

embedding, we build a fully connected neural network for representation learning.

Given the inferred latent spaces from representation learning, we stack another layer
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Kernel K

Fusion Layer with Kernel Dropout

Softmax
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Figure 7: DKMO - Proposed approach for optimizing kernel machines using deep
neural networks. For a given kernel, we generate multiple dense embeddings using
kernel approximation techniques, and fuse them in a fully connected deep neural
network. The architecture utilizes fully connected networks with kernel dropout
regularization during the fusion stage. Our approach can handle scenarios when both
the feature sources and the kernel matrix are available during training or when only
the kernel similarities can be accessed.

which is responsible for combining them and obtaining a concise representation for

inference tasks. Finally, we use a softmax layer at the top to perform classification,

or an appropriate dense layer for multiple regression tasks. Note that, similar to

random Fourier feature based techniques in kernel methods, we learn a mapping to

the Euclidean space, based on the kernel similarity matrix. However, in contrast, the

representation learning phase is not decoupled from the actual task, and hence can

lead to higher fidelity predictive models.
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5.1 Background on Kernel Approximation

Broadly speaking, there are two class of approaches commonly used by researchers

to alleviate the scalability issue of kernel methods. First, kernel approximation strate-

gies can be used to reduce both computational and memory complexity of kernel

methods, e.g. the Nyström method (Drineas and Mahoney 2005). The crucial compo-

nent in Nyström method is to select a subset of the kernel matrix for approximation.

Straightforward uniform sampling has been demonstrated to provide reasonable perfor-

mance in many cases (Kumar, Mohri, and Talwalkar 2012). In (Zhang and Kwok 2010),

the authors proposed an improved variant of Nyström approximation, that employs

k-means clustering to obtain landmark points in order to construct a subspace in the

RKHS. Interestingly, the authors proved that the approximation error is bounded by

the quantization error of coding each sample using its closest landmark. In (Kumar,

Mohri, and Talwalkar 2009), Kumar et. al. generate an ensemble of approximations

by repeating Nyström random sampling multiple times for improving the quality of

the approximation. Second, in the case of shift-invariant kernels, random Fourier

features can be used to design scalable kernel machines (Rahimi and Recht 2008; Le,

Sarlos, and Smola 2013). Instead of using the implicit feature mapping in the kernel

trick, the authors in (Rahimi and Recht 2008) proposed a random feature method

for approximating kernel evaluation. The idea is to explicitly map the data to an

Euclidean inner product space using randomized feature maps, such that kernels can

be approximated using Euclidean inner products. Using random Fourier features,

Huang et. al. (Huang et al. 2014) showed that shallow kernel machines matched

the performance of deep networks in speech recognition, while being computationally

efficient.

Consider the kernel Gram matrix K ∈ Rn×n, where Ki,j = k(xi,xj). Operating
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with kernel matrices makes kernel methods highly ineffective in large-scale problems.

Consequently, there is a need to significantly reduce the computational and memory

complexity for scaling kernel methods. In kernel approximation, the objective is

to find an approximate kernel map L ∈ Rn×r, such that K ' LLT where r � n.

Truncated Singular Value Decomposition (SVD) factorizes K to UKΛKUT
K, where

ΛK = diag(σ1, . . . , σn) contains the eigenvalues in non-increasing order and UK

contains the corresponding eigenvectors. Subsequently, a rank-r approximation K̃r is

constructed using the top eigenvectors, i.e. K̃r =
∑r

i=1 σ
−1
i U

(i)
K U

(i)
K

T
. This procedure

provides the optimal rank-r approximation in terms of the Frobenius norm; however

this incurs O(n3) time complexity making it infeasible in practice. While several

kernel approximation methods exist, Nyström methods outperform other existing

greedy and random sampling approaches (Drineas and Mahoney 2005) and hence we

choose them as an important building block.

In the Nyström method, a subset of s columns are selected from K to approximate

the eigen-system of the kernel matrix. Denote W ∈ Rs×s as the intersection of the

selected columns and corresponding rows on K and E ∈ Rn×s containing the selected

columns. The rank-r approximation K̃r of K is computed as:

K̃r = EW̃rE
T (5.1)

where r ≤ s and W̃r is the optimal rank-r approximation of W obtained using

truncated SVD. As can be observed, the time complexity of the approximation reduces

to O(s3), which corresponds to performing SVD on W. This can be further reduced

by randomized SVD algorithms as shown in (M. Li et al. 2015). The approximate

mapping function L can then be obtained by

L = E(UW̃r
Λ
−1/2

W̃r
) (5.2)
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where UW̃r
and ΛW̃r

are top r eigenvalues and eigenvectors of W.

5.2 Deep Kernel Machine Optimization

5.2.1 Dense Embedding Layer

From Figure 7 it can be seen that the components of representation learning and

fusion of hidden features are generic, i.e., they are separate from the input data or

kernel. Consequently, the dense embedding layer is the key component that bridges

kernel representations with the DNN training, thereby enabling an end-to-end training.

Motivation: onsider the kernel Gram matrix K ∈ Rn×n, where Ki,j = k(xi,xj).

The j-th column encodes the relevance between sample xj to all other samples xi in

the training set, and hence this can be viewed as an embedding for xj. As a result,

these naive embeddings can potentially be used in the input layer of the network.

However, kj has large values at location corresponding to training samples belonging

to the same class as xj and small values close to zero at others. The sparsity and high

dimensionality of these embeddings make them unsuitable for inference tasks.

A natural approach to alleviate this challenge is to adopt kernel matrix factor-

ization strategies, which transform the original embedding into a more tractable,

low-dimensional representation. As shown in Section, this procedure can be viewed as

kernel approximation with truncated SVD or Nyström methods. Furthermore, this is

conceptually similar to the process of obtaining dense word embeddings in natural

language processing. For example, Levy et.al (Levy and Goldberg 2014) have showed

that the popular skip-gram with negative sampling (SGNS) model in language model-

ing is implicitly factorizing the Pointwise Mutual Information matrix, whose entries

measure the association between pairs of words. Interestingly, they demonstrated
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that alternate word embeddings obtained using the truncated SVD method are more

effective than SGNS on some word modeling tasks (Levy and Goldberg 2014).

In existing deep kernel learning approaches such as the convolutional kernel

networks (Mairal 2016), the key idea is to construct multiple reproducing kernel

Hilbert spaces at different layers of the network, with a sequence of pooling operations

between the layers to facilitate kernel design for different sub-region sizes. However,

this approach cannot generalize to scenarios where the kernels are not constructed from

images, for example, in the case of biological sequences. Consequently, we propose to

obtain multiple approximate mappings from the feature set or the kernel matrix using

Nyström methods, and utilize the DNN as both representation learning and feature

fusion mechanisms to obtain an explicit representation for data in the Euclidean space.

Dense Embeddings using Nyström Approximation: In order to be flexible

with different application-specific constraints, we consider two different pipelines for

constructing the dense embeddings based on Nyström approximation: I) When the

input data is constructed from pre-defined feature sources, we employ the clustered

Nyström method (Zhang and Kwok 2010), which identifies a subspace in the RKHS

using clustering algorithms, and explicitly project the feature mappings in RKHS

onto the subspace. In this case, the dense embeddings can be obtained without

constructing the complete kernel matrix for the dataset. II) In many applications

involving DNA sequences and graphs, obtaining the kernel matrices is often easier

than extracting effective features for inference tasks. Furthermore, for many existing

datasets, pair-wise distance matrices are already formed and can be easily converted

into kernel matrices. In such scenarios, we use the conventional Nyström method

shown in Section 5.1 to calculate the dense embeddings. Next, we discuss in detail

the two strategies:
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1. Clustered Nyström approximations on feature set: Following the ap-

proach in (Zhang and Kwok 2010), k-means cluster centroids can be utilized as

the set of the landmark points from X. Denoting the matrix of landmark points

by Z = [z1, . . . , zr] and the subspace they span by F = span(ϕ(z1), . . . , ϕ(zr)),

the projection of the samples ϕ(x1), . . . , ϕ(xn) in Hk onto its subspace F is

equivalent to the following Nyström approximation (we refer to Appendix of

(Mairal 2016) for detailed derivation):

LZ = EZW
−1/2
Z . (5.3)

where (EZ)i,j = k(xi, zj) and (WZ)i,j = k(zi, zj). As it can be observed in

the above expression, only kernel matrices WZ ∈ Rr×r and EZ ∈ Rn×r need

to be constructed, which are computationally efficient since r � n. Note that,

comparing Equations (5.3) and (5.2) one can notice that LZ is directly related

to L by a linear transformation when r = s, since

W
−1/2
Z = UZΛ

−1/2
Z UT

Z, (5.4)

where UZ and ΛZ are eigenvectors and the associated eigenvalues of WZ respec-

tively.

With different sets of clustering centroids spanning distinct subspaces {Fi},

the projections will result in completely different representations. Since the

performance of our end-to-end learning approach is heavily influenced by the

construction of subspaces in the RKHS, we propose to infer an ensemble of

multiple subspace approximations for a given kernel. The differences in the

representations of the projected features will be exploited in the deep learning

fusion architecture to model the characteristics in different regions of the input

space. To this end, we repeat the landmark selection process with different
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clusterings techniques, such as the k-means, k-medians, k-medoids, agglomerative

clustering (Kaufman and Rousseeuw 2009) and spectral clustering based on

k nearest neighbors (Von Luxburg 2007). Note that, additional clustering

algorithms or a single clustering algorithm with different parameterizations can

be utilized as well. For algorithms which only perform partitioning and do not

provide cluster centroids (e.g. spectral clustering), we calculate the centroid of

a cluster as the means of the features in that cluster. In summary, based on

P different landmark matrices Z1, . . . ,ZP , we obtain P different embeddings

L1, . . . ,LP for the feature set using Equation (5.3).

2. Conventional Nyström approximations on kernel: In contrast to the pre-

vious case, in applications where the feature sources are not directly accessible,

we need to construct dense embeddings from the kernel matrix. In order to

achieve this, we extract an ensemble of kernel approximate mappings through

different random sampling sets of the kernel matrix. From K, we randomly select

s× P columns without replacement, and then divide it into P sets containing

s columns each. The resulting matrices W1, . . . ,WP , along with the matrices

E1, . . . ,EP defined in Section 5.1, provide the dense embeddings L1, . . . ,LP

following Equation (5.2). This is conceptually similar to (Kumar, Mohri, and

Talwalkar 2009), in which an ensemble of multiple Nyström approximations are

inferred to construct an approximation of the kernel. However, our approach

works directly with the approximate mappings instead of kernels and the map-

pings are further coupled with the task-specific optimization enabled by the

deep architecture.
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Figure 8: Effects of kernel dropout on the DKMO training process: We compare
the convergence characteristics obtained with the inclusion of the kernel dropout
regularization in the fusion layer in comparison to the non-regularized version. Note,
we show the results obtained with two different merging strategies - concatenation
and summation. We observe that the kernel dropout regularization leads to improved
convergence and lower classification error for both the merging styles.

5.2.2 Representation Learning

Given the kernel-specific dense embeddings, for each embedding, we perform repre-

sentation learning using a multi-layer fully connected network to obtain more concise

representation for subsequent fusion and prediction stages. Note that, though strate-

gies for sharing weights across the different dense embeddings can be employed, in our

implementation we make the networks independent. Following the common practice

in deep learning systems, at each hidden layer, dropout regularization (Srivastava

et al. 2014) is used to prevent overfitting and batch normalization (Ioffe and Szegedy

2015) is adopted to accelerate training.
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5.2.3 Fusion Layer with Kernel Dropout

The fusion layer receives the latent representations for each of the kernel approx-

imated mappings and can admit a variety of fusion strategies to obtain the final

representation for prediction tasks. Common merging strategies include concatenation,

summation, averaging, multiplication etc. The back propagation algorithm can then

be used to optimize both the parameters of the representation learning and those of

the fusion layer jointly to improve the classification accuracy. Given the large number

of parameters and the richness of different kernel representations, the training process

can lead to overfitting. In order to alleviate this, we propose to impose a kernel

dropout regularization in addition to the activation dropout in the representation

learning phase.

In the typical dropout regularization (Srivastava et al. 2014) for training large neural

networks, neurons are randomly chosen to be removed from the network along with

their incoming and outgoing connections. The process can be viewed as sampling from

a large set of possible network architectures with shared weights. In our context, given

the ensemble of dense embeddings L1, . . . ,LP , an effective regularization mechanism

is needed to prevent the network training from overfitting to certain subspaces in

the RKHS. More specifically, we propose to regularize the fusion layer by dropping

the entire representations learned from some randomly chosen dense embeddings.

Denoting the hidden layer representations before the fusion as H = {hp}Pp=1 and

a vector t associated with P independent Bernoulli trials, the representation hp is

dropped from the fusion layer if tp is 0. The feed-forward operation can be expressed
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as:

tp ∼ Bernoulli(P )

H̃ = {h | h ∈ H and tp > 0}

h̃ = (hi),hi ∈ H̃

ỹi = f(wih̃ + bi),

where wi are the weights for hidden unit i, (·) denotes vector concatenation and f

is the softmax activation function. In Figure 8, we illustrate the effects of kernel

dropout on the convergence speed and classification performance of the network.

The results shown are obtained using one of the kernels used in protein subcellular

localization (details in Section 5.4.2). We observe that, for both the merging strategies

(concatenation and summation), using the proposed regularization leads to improved

convergence and produces lower classification error, thereby evidencing improved

generalization of kernel machines trained using the proposed approach.

5.3 M-DKMO: Extension to Multiple Kernel Learning

Extending kernel learning techniques to the case of multiple kernels is crucial to

enabling automated kernel selection and fusion of multiple feature sources. The latter

is particularly common in complex recognition tasks where the different feature sources

characterize distinct aspects of data and contain complementary information. Unlike

the traditional kernel construction procedures, the problem of multiple kernel learning

is optimized with a task-specific objective, for example hinge loss in classification.

In this section, we describe the multiple kernel variant of the deep kernel machine

optimization (M-DKMO) presented in the previous section.

In order to optimize kernel machines with multiple kernels {K}Mm=1 (optionally
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Feature Set XM

or Kernel KM
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or Kernel K1

DKMO for Single 

Kernel
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Softmax

Feature Set X2

or Kernel K2
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Figure 9: M-DKMO - Extending the proposed deep kernel optimization approach to
the case of multiple kernels. Each of the kernels are first independently trained with
the DKMO algorithm and then combined using a global fusion layer. The parameters
of the global fusion layer and the individual DKMO networks are fine-tuned in an
end-to-end learning fashion.

feature sets {X}Mm=1), we begin by employing the DKMO approach to each of the

kernels independently. As we will demonstrate with the experimental results, the rep-

resentations for the individual kernels obtained using the proposed approach produce

superior class separation compared to conventional kernel machine optimization (e.g.

Kernel SVM). Consequently, the hidden representations from the learned networks can

be used to subsequently obtain more effective features by exploiting the correlations

across multiple kernels. Figure illustrates the M-DKMO algorithm for multiple kernel

learning. As shown in the figure, an end-to-end learning network is constructed based

on a set of pre-trained DKMO models corresponding to the different kernels and a

global fusion layer that combines the hidden features from those networks. Similar to

the DKMO architecture in Figure 7, the global fusion layer can admit any merging

strategy and can optionally include additional fully connected layers before the softmax

layer.
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Note that, after pre-training the DKMO network for each of the kernels with

a softmax layer, we ignore the final softmax layer and use the optimized network

parameters to initialize the M-DKMO network in Figure. Furthermore, we adopt the

kernel dropout strategy described in 5.2.3 in the global fusion layer before applying the

merge strategy. This regularization process guards against overfitting of the predictive

model to any specific kernel and provides much improved generalization. From our

empirical studies, we observed that both our initialization and regularization strategies

enable consistently fast convergence.

5.4 Experimental Results

In this section, we demonstrate the features and performance of the proposed

framework using 3-fold experiments on real-world datasets:

1. In Section 5.4.1, we compare with single kernel optimization (kernel SVM) and

MKL to demonstrate that the proposed methods are advantageous to the existing

algorithms based on kernel methods. To this end, we utilize the standard flowers

image classification datasets with pre-computed features. A sample set of images

from this dataset are shown in Figure 10(a).

2. In Section 5.4.2, we emphasize the effectiveness of proposed architectures when

only pair-wise similarities are available from raw data. In subcellular localization,

a typical problem in bioinformatics, the data is in the form of protein sequences

(as shown in Figure 10(b)) and as a result, DNN cannot be directly applied for

representation learning. In this experiment, we compare with decomposition

based feature extraction (Decomp) and existing MKL techniques.

3. In Section 5.4.3, we focus on the performance of the proposed architecture

when limited training data is available. As a representative application, sensor
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(a) Images from different classes in the flowers102 dataset

Cytosolic and Nuclear Sequences

MVTPALQMKKPKQFCRRMGQKKQRPARAGQPHS…

MPARGGSARPGRGSLKPVSVTLLPDTEQPPFLGRA…

MFLEVADLKDGLWVWKVVFLQVCIEASGWGAEV…

Mitochondrion Sequences

MLRATLARLEMAPKVTHIQEKLLINGKFVPAVSGK…

MLRAALSTARRGPRLSRLLSAAATSAVPAPNQQPE…

MYRRLGEVLLLSRAGPAALGSAAADSAALLGWAR…

Secretory Pathway Sequences

MVEMLPTAILLVLAVSVVAKDNATCDGPCGLRFRQNPQG…

MQLLRCFSIFSVIASVLAQELTTICEQIPSPTLESTPYSLST…

MIQGLESIMNQGTKRILLAATLAATPWQVYGSIEQPSLLP…

(b) Sequences belonging to 3 different classes in the non-plant dataset for protein subcellular
localization

(c) Accelerometer measurements characterizing different activities from the USC-HAD
dataset

Figure 10: Example samples from the datasets used in our experiments. The feature
sources and kernels are designed based on state-of-the-art practices. The varied nature
of the data representations are readily handled by the proposed approach and kernel
machines are trained for single and multiple kernel cases.

based activity recognition requires often laborious data acquisition from human

subjects. The difficulty in obtaining large amounts of clean and labeled data can

69



be further complicated by sensor failure, human error and incomplete coverage

of the demographic diversity (Kwapisz, Weiss, and Moore 2011; Zhang and

A. A. Sawchuk 2012; Song, Thiagarajan, Ramamurthy, Spanias, and Turaga

2016). Therefore, it is significant to have a model which has strong extrapolation

ability given even very limited training data. When features are accessible, an

alternative general-purpose algorithm is fully connected neural networks (FCN )

coupled with feature fusion. In this section, we compare the performance of

our approach with both FCN and state-of-the-art kernel learning algorithms. A

demonstrative set of time-varying measurements are presented in Figure 10(c).

As can be seen, the underlying data representations considered in our experiments

are vastly different, i.e., images, biological sequences and time-series respectively. The

flexibility of the proposed approach enables its use in all these cases without additional

pre-processing or architecture fine-tuning. Besides, depending on the application we

might have access to the different feature sources or to only the kernel similarities.

As described in Section 5.2.1, the proposed DKMO algorithm can handle both these

scenarios by constructing the dense embeddings suitably.

We summarize all methods used in our comparative studies and the details of the

parameters used in our experiments below:

Kernel SVM. A single kernel SVM is applied on each of the kernels. Following

(Chapelle and Zien 2005), the optimal C parameters for kernel SVM were obtained

based on a grid search on [10−1, 100, 101, 102] × C∗ through cross-validation on the

training set, where the default value C∗ was calculated as C∗ = 1/( 1
n

∑
i Ki,i −

1
n2

∑
ij Ki,j), which is the inverse of the empirical variance of data in the input space.

Uniform. Simple averaging of base kernels has been shown to be a strong baseline
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(a) Flowers17

(b) Flowers102 - 20 (c) Flowers102 - 30

Figure 11: Single Kernel Performance on Flowers Datasets

in comparison to MKL (Gehler and Nowozin 2009; Cortes, Mohri, and Rostamizadeh

2009). We then apply kernel SVM on the averaged kernel.

UFO-MKL. We compare with this state-of-the-art multiple kernel learning algo-

rithm (Orabona and Jie 2011). The optimal C parameters were cross-validated on

the grid [10−1, 100, 101, 102, 103].

Decomp. When only kernel similarities are directly accessible (Section 5.4.2), we

71



compute decomposition based features using truncated SVD. A linear SVM is then

learned on the features with similar parameter selection procedure as in kernel SVM.

Concat. In order to extend Decomp to the multiple kernel case, we concatenate all

Decomp features before learning a classifier.

FCN. We construct a fully connected network for each feature set (using Decomp

feature if only kernels are available) consisting of 4 hidden layers with sizes 256−512−

256− 128 respectively. For the multiple kernel case, a concatenation layer merges all

FCN built on each set. In the training process, batch normalization and dropout with

fixed rate of 0.5 are used after every hidden layer. The optimization was carried out

using the Adam optimizer, with the learning rate set at 0.001.

DKMO and M-DKMO. For all the datasets, we first applied the DKMO approach

to each of the kernels (as in Figure 7) with the same network size as in FCN. Based

on the discussion in Section 5.2.1, for datasets that allow access to explicit feature

sources, we extracted 5 dense embeddings corresponding to the 5 landmark point sets

obtained using different clustering algorithms. On the other hand, for datasets with

only kernel similarity matrices between the samples, we constructed 6 different dense

embeddings with varying subset sizes and approximation ranks. We performed kernel

dropout regularization with summation merging for the fusion layer in the DKMO

architecture. The kernel dropout rate was fixed at 0.5. For multiple kernel fusion

using the M-DKMO approach, we normalize each kernel as K̄i,j = Ki,j/
√

Ki,iKj,j,

so that K̄i,i = 1. Similar to the DKMO case, we set the kernel dropout rate at 0.5

and used summation based merging at the global fusion layer in M-DKMO. Other

network learning parameters were same as the ones in the FCN method. All network

architectures were implemented using the Keras library (Chollet 2015) with the

TensorFlow backend and trained on a single GTX 1070 GPU.
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5.4.1 Image Classification - Comparisons with Kernel Optimization and Multiple

Kernel Learning

In this section, we consider the performance of the proposed approach in image

classification tasks, using datasets which have had proven success with kernel methods.

More specifically, we compare DKMO with kernel SVM, and M-DKMO with Uniform

and UFO-MKL respectively to demonstrate that one can achieve better performance

by replacing the conventional kernel learning strategies with the proposed deep

optimization. We adopt flowers17 and flowers102 1, two standard benchmarking

datasets for image classification with kernel methods. Both datasets are comprised of

flower images belonging to 17 and 102 categories respectively. The precomputed χ2

distance matrices were calculated based on bag of visual words of features such as

HOG, HSV, SIFT etc. The variety of attributes enables the evaluation of different

fusion algorithms: a large class of features that characterize colors, shapes and textures

can be exploited while discriminating between different image categories (Jhuo and Lee

2010; Thiagarajan et al. 2014; Bucak, Jin, and Jain 2014; Karthikeyan Ramamurthy

et al. 2016).

We construct χ2 kernels from these distance matrices as k(xi,xj) = e−γl(xi,xj),

where l denotes the distance between xi and xj . Following (Orabona, Jie, and Caputo

2012), the γ value is empirically estimated as the inverse of the average pairwise

distances. To be consistent with the setting from (Qi et al. 2014) on the flowers102

dataset, we consider training on both 20 samples per class and 30 samples per class

respectively. The experimental results for single kernels are shown in Figure 11

and results for multiple kernel fusion are shown in Table 4, where we measure the

1www.robots.ox.ac.uk/~vgg/data/flowers
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classification accuracy as the averaged fraction of correctly predicted labels among all

classes. As can be seen, DKMO achieves competitive or better accuracy on all single

kernel cases and M-DKMO consistently outperforms UFO-MKL. In many cases the

improvements are significant, for example kernel 6 in the flowers17 dataset, kernel 1 in

the flowers102 dataset and the multiple kernel fusion result for the flowers17 dataset.

5.4.2 Protein Subcellular Localization - Lack of Explicit Feature Sources

(a) Plant (b) Non-plant

(c) Psort+ (d) Psort−

Figure 12: Single Kernel Performance on Protein Subcellular Datasets
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Table 4: Multiple Kernel Fusion Performance on Flowers Datasets

Uniform UFO-MKL M-DKMO
Flowers17, n = 1360

85.3 87.1 90.6
Flowers102 - 20, n = 8189

69.9 75.7 76.5
Flowers102 - 30, n = 8189

73.0 80.4 80.7

In this section, we consider the case where features are not directly available

from data. This is a common scenario for many problems in bioinformatics, where

conventional kernel methods have been successfully applied (Ong and Zien 2008; Ding

and Dubchak 2001; Andreeva et al. 2014). More specifically, we focus on predicting

the protein subcellular localization from protein sequences. We use 4 datasets from

(Ong and Zien 2008) 2: plant, non-plant, psort+ and psort− belonging to 3− 5 classes.

Among the 69 sequence motif kernels, we sub-select 6, which encompass all 5 patterns

for each substring format (except for psort−, where one invalid kernel is removed).

Following standard practice, a 50− 50 random split is performed to obtain the train

and test sets. Since explicit feature sources are not available, the dense embeddings

are obtained using the conventional Nyström sampling method.

The experimental results are shown in Figure 12 and Table 5. The first obser-

vation is that for Decomp, although the optimal decomposition is used to obtain

the features, the results are still inferior and inconsistent. This demonstrates that

under such circumstances when features are not accessible, it is necessary to work

directly from kernels and build the model. Second, we observe that on all datasets,

DKMO consistently produces improved or at least similar classification accuracies in

2www.raetschlab.org/suppl/protsubloc
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(a) Base kernel (b) Proposed DKMO

(c) Uniform multiple kernel fusion (d) Proposed M-DKMO

Figure 13: 2D T-SNE visualizations of the representations obtained for the non-plant
dataset using the base kernel (Kernel 5), uniform multiple kernel fusion, and the
learned representations from DKMO and M-DKMO approaches. The samples are
colored by their corresponding class associations.

comparison to the baseline kernel SVM. For the few cases where DKMO is inferior,

for example kernel 2 in non-plant, the quality of the Nyström approximation seemed

to be the reason. By adopting more sophisticated approximations, or increasing the

size of the ensemble, one can possibly make DKMO more effective in such scenarios.

Furthermore, in the multiple kernel learning case, the proposed M-DKMO approach

produces improved performance consistently.
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DKMO

Accelerometer Signals

Statistics feature 
+ RBF kernel

Shape feature 
+ 𝜒 kernel

Correlation kernel

Fusion Layer

DKMO

DKMO

M-DKMO

Figure 14: Visualization of proposed framework applied on USD-HAD dataset: we
show the raw 3-axis accelerometer signal and extracted 3 distinct types of features:
the time-series statistics, topological structure where we extract TDE descriptors
and the correlation kernel. Furthermore, we show the t-SNE visualization of the
representations learned by DKMO and M-DKMO, where all points are classes coded
according to the colorbar.

Finally, in order to understand the behavior of the representations generated by

different approaches, we employ the t-SNE algorithm (Maaten and Hinton 2008) and

obtain 2-D visualizations of the considered baselines and the proposed approaches

(Figure 24). For demonstration, we consider the representation from Decomp of kernel

5 and Decomp of the kernel from Uniform in the non-plant dataset. In both DKMO

and M-DKMO, we performed t-SNE on the representation obtained from the fusion

layers. The comparisons in the Figure 24 show that the proposed single kernel learning

and kernel fusion methods produce highly discriminative representations than the

corresponding conventional approaches.
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Table 5: Multiple Kernel Fusion Performance on Protein Subcellular Datasets

Concat Uniform UFO-MKL M-DKMO
Plant, n = 940

90.4 90.3 90.4 90.9
Non-plant, n = 2732

88.4 91.1 90.3 93.8
Psort+, n = 541

80.6 80.1 82.8 82.4
Psort−, n = 1444

82.5 85.7 89.1 87.2

5.4.3 Sensor-based Activity Recognition - Limited Data Case

Figure 15: Single Kernel Performance on USC-HAD Datasets

In this section, we focus on evaluating the performance of proposed architectures

where training data are limited. A typical example under this scenario is sensor-based

activity recognition, where the sensor time-series data have to be obtained from

human subjects through long-term physical activities. For evaluation, we compare

(M)-DKMO with both FCN and kernel learning algorithms.

78



Recent advances in activity recognition have demonstrated promising results in

fitness monitoring and assisted living (Zhang and A. A. Sawchuk 2012; S. Zhang

et al. 2016, 2018). However, when applied to smartphone sensors and wearables,

existing algorithms still have limitations dealing with the measurement inaccuracies

and noise. In (Song, Thiagarajan, Ramamurthy, Spanias, and Turaga 2016), the

authors proposed to address this challenge by performing sensor fusion, wherein each

sensor is characterized by multiple feature sources, which naturally enables multiple

kernel learning schemes.

We evaluate the performance of our framework using the USC-HAD dataset 3,

which contains 12 different daily activities performed by each of the subjects. The

measurements are obtained using a 3-axis accelerometer at a sampling rate of 100Hz.

Following the standard experiment methodology, we extract non-overlapping frames

of 5 seconds each, creating a total of 5353 frames. We perform a 80 − 20 random

split on the data to generate the train and test sets. In order to characterize distinct

aspects of the time-series signals, we consider 3 sets of features:

1. Statistics feature including mean, median, standard deviation, kurtosis, skewness,

total acceleration, mean-crossing rate and dominant frequency. These features

encode the statistical characteristics of the signals in both time and frequency

domains.

2. Shape feature derived from Time Delay Embeddings (TDE) to model the un-

derlying dynamical system (Frank, Mannor, and Precup 2010). The TDEs

of a time-series signal x can be defined as a matrix S whose ith row is

si = [xi, xi+τ , . . . , xt+(d′−1)τ ], where d′ is number of samples and τ is the de-

3sipi.usc.edu/HAD
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Table 6: Multiple Kernel Fusion Performance on USC-HAD Datasets

Uniform UFO-MKL FCN M-DKMO
USC-HAD, n = 5353

89.0 87.1 85.9 90.4

lay parameter. The time-delayed observation samples can be considered as

points in Rd′ , which is referred as the delay embedding space. In this experiment,

the delay parameter τ is fixed to 10 and embedding dimension d′ is chosen

to be 8. Following the approach in (Frank, Mannor, and Precup 2010), we

use Principle Component Analysis (PCA) to project the embedding to 3-D for

noise reduction. To model the topology of the delayed observations in 3-D, we

measure the pair-wise distances between samples as ‖si − sj‖2 (Venkataraman

and Turaga 2016) and build the distance histogram feature with a pre-specified

bin size.

3. Correlation features characterizing the dependence between time-series signals.

We calculate the absolute value of the Pearson correlation coefficient. To account

for shift between the two signals, the maximum absolute coefficient for a small

range of shift values is identified. We ensure that the correlation matrix is a valid

kernel by removing the negative eigenvalues. Given the eigen-decomposition

of the correlation matrix R = URΛRUT
R, where ΛR = diag(σ1, . . . , σn) and

σ1 ≥ · · · ≥ σr ≥ 0 ≥ σr+1 ≥ ... ≥ σn, the correlation kernel is constructed as

K = URΛ̂RUT
R, where Λ̂R = diag(σ1, . . . , σr, 0, ..., 0).

Figure 14 illustrates the overall pipeline of this experiment. As it can be observed,

the statistics and shape representations are explicit feature sources and hence the

dense embeddings can be constructed using the clustered Nyström method (through
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RBF and χ2 kernel formulations respectively). On the other hand, the correlation

representation is obtained directly based on the similarity metric and hence we employ

the conventional Nyström approximations on the kernel. However, regardless of

the difference in dense embedding construction, the kernel learning procedure is the

same for both cases. From the t-SNE visualizations in Figure 14, we notice that the

classes Sitting, Standing, Elevator Up and Elevator Down are difficult to discriminate

using any of the individual kernels. In comparison, the fused representation obtained

using the M-DKMO algorithm results in a much improved class separation, thereby

demonstrating the effectiveness of the proposed kernel fusion architecture.

From the classification results in Figure 15, we observe that although FCN obtains

better result on the set of statistics features, it has inferior performance on shape and

correlation features. On the contrary, DKMO improves on kernel SVM significantly

for each individual feature set and is more consistent than FCN. In the case of multiple

kernel fusion in Table 6, we have striking observations: 1) For FCN, the fusion

performance is in fact dragged down by the poor performance on shape and correlation

features as in Figure 15. 2) The uniform merging of kernels is a very strong baseline

and the state-of-the-art UFO-MKL achieves lesser performance. 3) The proposed

M-DKMO framework further improves over uniform merging, thus evidencing its

effectiveness in optimizing with multiple feature sources.
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Chapter 6

MULTIVARIATE TIME SEQUENCE ANALYSIS USING ATTENTION MODELS

6.1 Multivariate clinical data analysis

Healthcare is one of the prominent applications of data mining and machine learn-

ing, and it has witnessed tremendous growth in research interest recently. This can be

directly attributed to both the abundance of digital clinical data, primarily due to the

widespread adoption of electronic health records (EHR), and advances in data-driven

inferencing methodologies. Clinical data, for example intensive care unit (ICU) mea-

surements, is often comprised of multi-variate, time-series observations corresponding

to sensor measurements, test results and subjective assessments. Potential inferencing

tasks using such data include classifying diagnoses accurately, estimating length of

stay, and predicting future illness, or mortality.

The classical approach for healthcare data analysis has been centered around

extracting hand-engineered features and building task-specific predictive models.

Machine learning models are often challenged by factors such as need for long-term

dependencies, irregular sampling and missing values. In the recent years, recurrent

Neural Networks (RNNs) based on Long Short-Term Memory (LSTM) (Hochreiter

and Schmidhuber 1997) have become the de facto solution to deal with clinical time-

series data. RNNs are designed to model varying-length data and have achieved

state-of-the-art results in sequence-to-sequence modeling (Sutskever, Vinyals, and Le

2014), image captioning (Xu et al. 2015) and recently in clinical diagnosis (Lipton

et al. 2015). Furthermore, LSTMs are effective in exploiting long-range dependencies

and handling nonlinear dynamics.
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RNNs perform computations at each position of the time-series by generating a

sequence of hidden states as a function of the previous hidden state and the input for

current position. This inherent sequential nature makes parallelization challenging.

Though efforts to improve the computational efficiency of sequential modeling have

recently surfaced, some of the limitations still persist. The recent work of Vaswani

et. al. argues that attention mechanisms, without any recurrence, can be effective

in sequence-to-sequence modeling tasks. Attention mechanisms are used to model

dependencies in sequences without regard for their actual distances in the sequence

(Bahdanau, Cho, and Bengio 2014).

Another important factor that has challenged machine learning research towards

clinical diagnosis is the lack of universally accepted benchmarks to rigorously evaluate

the modeling techniques. Consequently, in an effort to standardize research in this

field, in (Harutyunyan et al. 2017), the authors proposed public benchmarks for four

different clinical tasks: mortality prediction, detection of physiologic decompensation,

forecasting length of stay, and phenotyping. Interestingly, these benchmarks are

supported by the Medical Information Mart for Intensive Care (MIMIC-III) database

(Johnson et al. 2016), the largest publicly available repository of rich clinical data

currently available. These datasets exhibit characteristics that are typical of any

large-scale clinical data, including varying-length sequences, skewed distributions

and missing values. In (Lipton et al. 2015; Harutyunyan et al. 2017), the authors

established that RNNs with LSTM cells outperformed all existing baselines including

methods with engineered features.

In this section, we develop SAnD (Simply Attend and Diagnose), a new approach

for clinical time-series analysis, which is solely based on attention mechanisms. In

contrast to sequence-to-sequence modeling in NLP, we propose to use self-attention
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Figure 16: An overview of the proposed approach for clinical time-series analysis.
In contrast to state-of-the-art approaches, this does not utilize any recurrence or
convolutions for sequence modeling. Instead, it employs a simple self-attention
mechanism coupled with a dense interpolation strategy to enable sequence modeling.
The attention module is comprised of N identical layers, which in turn contain the
attention mechanism and a feed-forward sub-layer, along with residue connections.

that models dependencies within a single sequence. In particular, we adopt the multi-

head attention mechanism similar to (Vaswani et al. 2017), with an additional masking

to enable causality. In order to incorporate temporal order into the representation

learning, we propose to utilize both positional encoding and a dense interpolation

embedding technique. Our evaluation of SAnD on all MIMIC-III benchmark tasks and

show that it is highly competitive, and in most cases outperforms the state-of-the-art

LSTM based RNNs. Both superior performance and computational efficiency clearly

demonstrate the importance of attention mechanisms in clinical data.

6.1.1 Proposed Approach

The effectiveness of LSTMs have been established in a wide-range of clinical

prediction tasks. In here, we are interested in studying the efficacy of attention

models in similar problems, dispensing recurrence entirely. While core components
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from the Transformer model (Vaswani et al. 2017) can be adopted, key architectural

modifications are needed to solve multivariate time-series inference problems.

The motivation for using attention models in clinical modeling is three-fold: (i)

Memory : While LSTMs are effective in sequence modeling, lengths of clinical sequences

are often very long and in many cases they rely solely on short-term memory to make

predictions. Attention mechanisms will enable us to understand the amount of

memory modeling needed in benchmark tasks for medical data; (ii) Optimization:

The mathematical simplicity of attention models will enable the use of additional

constraints, e.g. explicit modeling of correlations between different measurements in

data, through inter-attention; (iii) Computation: Parallelization of sequence model

training is challenging, while attention models are fully parallelizable.

Our architecture is inspired by the recent Transformer model for sequence trans-

duction (Vaswani et al. 2017), where the encoder and decoder modules were comprised

solely of an attention mechanism. The Transformer architecture achieves superior

performance on machine translation benchmarks, while being significantly faster in

training when compared to LSTM-based recurrent networks (Sutskever, Vinyals, and

Le 2014; Wu et al. 2016). Given a sequence of symbol representations (e.g. words)

(x1, . . . , xT ), the encoder transforms them into a continuous representation z and then

the decoder produces the output sequence (y1, . . . , yT ) of symbols.

Given a sequence of clinical measurements (x1, . . . ,xT ), xt ∈ RR where R denotes

the number of variables, our objective is to generate a sequence-level prediction. The

type of prediction depends on the specific task and can be denoted as a discrete scalar

y for multi-class classification, a discrete vector y for multi-label classification and a

continuous value y for regression problems. The proposed architecture is shown in

Figure 16. In the rest of this section, we describe each of the components in detail.
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Input Embedding: Given the R measurements at every time step t, the first

step in our architecture is to generate an embedding that captures the dependencies

across different variables without considering the temporal information. This is

conceptually similar to the input embedding step in most NLP architectures, where

the words in a sentence are mapped into a high-dimensional vector space to facilitate

the actual sequence modeling (Kim 2014). To this end, we employ a 1D convolutional

layer to obtain the d-dimensional (d > R) embeddings for each t. Denoting the

convolution filter coefficients as w ∈ RT×h, where h is the kernel size, we obtain the

input embedding: w · xi:i+h−1 for the measurement position i.

Positional Encoding: Since our architecture contains no recurrence, in order

to incorporate information about the order of the sequence, we include information

about the relative or absolute position of the time-steps in the sequence. In particular,

we add positional encodings to the input embeddings of the sequence. The encoding

is performed by mapping time step t to the same randomized lookup table during

both training and prediction. The d-dimensional positional embedding is then added

to the input embedding with the same dimension. Note that, there are alternative

approaches to positional encoding, including the sinusoidal functions in (Vaswani et al.

2017). However, the proposed strategy is highly effective in all our tasks.

Attention Module: Unlike transduction tasks in NLP, our inferencing tasks often

require classification or regression architectures. Consequently, SAnD relies almost

entirely on self-attention mechanisms. Self-attention, also referred as intra-attention,

is designed to capture dependencies of a single sequence. Self-attention has been used

successfully in a variety of NLP tasks including reading comprehension (Cui et al.

2016) and abstractive summarization (Paulus, Xiong, and Socher 2017). As we will

describe later, we utilize a restricted self-attention that imposes causality, i.e., considers
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information only from positions earlier than the current position being analyzed. In

addition, depending on the task we also determine the range of dependency to consider.

For example, we will show in our experiments that phenotyping tasks require a longer

range dependency compared to mortality prediction.

In general, an attention function can be defined as mapping a query q and a

set of key-value pairs {k,v} to an output o. For each position t, we compute the

attention weighting as the inner product between qt and keys at every other position

in the sequence (within the restricted set) {kt′}t−1
t′=t−r, where r is the mask size.

Using these attention weights, we compute o as weighted combination of the value

vectors {vt′}t−1
t′=t−r and pass o through a feed-forward network to obtain the vector

representation for t. Mathematically, the attention computation can be expressed as

follows:

Attention(Q,K,V) = softmax
(

QKT

√
d

)
V, (6.1)

where Q,K,V are the matrices formed by query, key and value vectors respectively,

and d is the dimension of the key vectors. This mechanism is often referred to as the

scalar dot-product attention. Since we use only self-attention, Q,K,V all correspond

to input embeddings of the sequence (with position encoding). Additionally, we

mask the sequence to specify how far the attention models can look into the past for

obtaining the representation for each position. Hence, to be precise, we refer to this

as masked self-attention.

Implicitly, self-attention creates a graph structure for the sequence, where edges

indicate the temporal dependencies. Instead of computing a single attention graph,

we can actually create multiple attention graphs each of which is defined by different

parameters. Each of these attention graphs can be interpreted to encode different

types of edges and hence can provide complementary information about different
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types of dependencies. Hence, we use “multi-head attention” similar to (Vaswani et al.

2017), where 8 heads are used to create multiple attention graphs and the resulting

weighted representations are concatenated and linearly projected to obtain the final

representation. The second component in the attention module is 1D convolutional

sub-layers with kernel size 1, similar to the input embedding. Internally, we use two

of these 1D convolutional sub-layers with ReLU (rectified linear unit) activation in

between. Note that, we include residue connections in both the sub-layers.

Since we stack the attention module N times, we perform the actual prediction

task using representations obtained at the final attention module. Unlike transduction

tasks, we do not make predictions at each time step in all cases. Hence, there is

a need to create a concise representation for the entire sequence using the learned

representations, for which we employ a dense interpolated embedding scheme, that

encodes partial temporal ordering.

Dense Interpolation for Encoding Order: The simplest approach to obtain a

unified representation for a sequence, while preserving order, is to simply concatenate

embeddings at every time step. However, in our case, this can lead to a very high-

dimensional, “cursed” representation which is not suitable for learning and inference.

Consequently, we propose to utilize a dense interpolation algorithm from language

modeling. Besides providing a concise representation, (Trask, Gilmore, and Russell

2015) demonstrated that the dense interpolated embeddings better encode word

structures which are useful in detecting syntactic features. In our architecture, dense

interpolation embeddings, along with the positional encoding module, are highly

effective in capturing enough temporal structure required for even challenging clinical

prediction tasks.
The pseudocode to perform dense interpolation for a given sequence is shown

in Algorithm 2. Denoting the hidden representation at time t, from the attention
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Dense Interpolation Embedding
Input : Steps t of the time series and length of the sequence T , embeddings at

step t as st, factor M .
Output :Dense interpolated vector representation u.
for t = 1 to T do

s = M ∗ t/T
for m = 1 to M do

w = pow(1− abs(s−m)/M, 2) um = um + w ∗ st
end

end
Algorithm 2: Dense interpolation embedding with partial order for a given
sequence.

model, as st ∈ Rd, the interpolated embedding vector will have dimension d ×M ,

where M is the dense interpolation factor. Note that when M = T , it reduces to the

concatenation case. The main idea of this scheme is to determine weights w, denoting

the contribution of st to the position m of the final vector representation u. As we

iterate through the time-steps of a sequence, we obtain s, the relative position of

time step t in the final representation u and w is computed as w = (1− |s−m|
M

)2. We

visualize the dense interpolation process in Figure 17 for the toy case of T = 5,M = 3.

The larger weights in w are indicated by darker edges while the lighter edges indicates

lesser influence. In practice, dense interpolation is implemented efficiently by caching

w’s into a matrix W ∈ RT×M and then performing the following matrix multiplication:

U = S×W, where S = [s1, . . . , sT ]. Finally we can obtain u by stacking columns of

U.

Linear and Softmax layers: After obtaining a single vector representation from

dense interpolation, we utilize a linear layer to obtain the logits. The final layer

depends on the specific task. We can use a softmax layer for the binary classification

problems, a sigmoid layer for multi-label classification since the classes are not mutually
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Figure 17: Visualizing the dense interpolation module, for the case when T = 5 and
M = 3.

exclusive and a ReLU layer for regression problems. The corresponding loss functions

are:

• Binary classification: −(y · log(ŷ)) + (1− y) · log(1− ŷ), where y and ŷ are the

true and predicted labels.

• Multi-label classification: 1
K

∑K
k=1−(yk · log(ŷk) + (1− yk) · log(1− ŷk)), where

K denotes the total number of labels in the dataset.

• Regression:
∑T

t=1(lt− l̂t)2, where lt and l̂t denote the true and predicted response

variables at time-step t.

Regularization: In the proposed approach, we apply the following regularization

strategies during training: (i) We apply dropout to the output of each sub-layer in

the attention module prior to residual connections and normalize the outputs. We

include an additional dropout layer after adding the positional encoding to the input

embeddings, (ii) We also perform attention dropout, similar to (Vaswani et al. 2017),

after computing the self-attention weights.
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Complexity: Learning long-range dependencies is a key challenge in many se-

quence modeling tasks. Another notion of complexity is the amount of computation

that can be parallelized, measured as the minimum number of sequential operations

required. Recurrent models require O(T ) sequential operations with a total O(T · d2)

computations in each layer. In comparison, the proposed approach requires a con-

stant O(1) sequential operations (entirely parallelizable) with a total O(T · r · d)

computations per layer, where r denotes the size of the mask for self-attention. In

all our implementations, d is fixed at 256 and r � d, and as a result our approach is

significantly faster than RNN training.

6.1.2 MIMIC-III Benchmarks & Formulation

In this section, we describe the MIMIC-III benchmark tasks and the application

of the SAnD framework to these tasks, along with a joint multi-task formulation.

The MIMIC-III database consists of de-identified information about patients

admitted to critical care units between 2001 and 2012 (Johnson et al. 2016). It

encompasses an array of data types such as diagnostic codes, survival rates, and

more. Following (Harutyunyan et al. 2017), we used the cohort of 33, 798 unique

patients with a total of 42, 276 hospital admissions and ICU stays. Using raw data

from Physionet, each patient’s data has been divided into separate episodes containing

both time-series of events, and episode-level outcomes (Harutyunyan et al. 2017). The

time-series measurements were then transformed into a 76-dimensional vector at each

time-step. The size of the benchmark dataset for each task is highlighted in Table 7.

In Hospital Mortality: Mortality prediction is vital during rapid triage and

risk/severity assessment. In Hospital Mortality is defined as the outcome of whether

a patient dies during the period of hospital admission or lives to be discharged. This

problem is posed as a binary classification one where each data sample spans a 24-hour
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time window. True mortality labels were curated by comparing date of death (DOD)

with hospital admission and discharge times. The mortality rate within the benchmark

cohort is only 13%.

Decompensation: Another aspect that affects treatment planning is deterio-

ration of organ functionality during hospitalization. Physiologic decompensation is

formulated as a problem of predicting if a patient would die within the next 24 hours

by continuously monitoring the patient within fixed time-windows. Therefore, the

benchmark dataset for this task requires prediction at each time-step. True decom-

pensation labels were curated based on occurrence of patient’s DOD within the next

24 hours, and only about 4.2% of samples are positive in the benchmark.

Length of Stay: Forecasting length of a patient’s stay is important in healthcare

management. Such an estimation is carried out by analyzing events occurring within

a fixed time-window, once every hour from the time of admission. As part of the

benchmark, hourly remaining length of stay values are provided for every patient.

These true range of values were then transformed into ten buckets to repose this into

a classification task, namely: a bucket for less than a day, seven one day long buckets

for each day of the 1st week, and two outlier buckets-one for stays more than a week

but less than two weeks, and one for stays greater than two weeks (Harutyunyan et al.

2017).

Phenotyping: Given information about a patient’s ICU stay, one can retrospec-

tively predict the likely disease conditions. This process is referred to as acute care

phenotyping. The benchmark dataset deals with 25 disease conditions of which 12

are critical such as respiratory/renal failure, 8 conditions are chronic such as dia-

betes, atherosclerosis, and 5 are ’mixed’ conditions such as liver infections. Typically,
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Table 7: Task-specific sample sizes of MIMIC-III dataset.

Benchmark Train Validation Test

Mortality 14,659 3,244 3,236
Decompensation 2,396,001 512,413 523,208
Length of Stay 2,392,950 532,484 525,912
Phenotyping 29,152 6,469 6,281

a patient is diagnosed with multiple conditions and hence this can be posed as a

multi-label classification problem.

6.1.3 Applying SAnD to MIMIC-III Tasks

In order to solve the afore-mentioned benchmark tasks with SAnD, we need to

make a few key parameter choices for effective modeling. These include: size of the

self-attention mask (r), dense interpolation factor (M) and the number of attention

blocks (N). While attention models are computationally more efficient than RNNs,

their memory requirements can be quite high when N is significantly large. However,

in practice, we are able to produce state-of-the-art results with small values of N .

As described in the previous section, the total number of computations directly

relies on the size of the mask, r and interestingly our experiments show that smaller

mask sizes are sufficient to capture all required dependencies in 3 out of 4 tasks,

except phenotyping, which needed modeling of much longer-range dependencies. The

dependency of performance on the dense interpolation factor, M is more challenging

to understand, since it relies directly on the amount of variability in the measurements

across the sequence. The other hyperparameters of network such as the learning rate,

batch size and embedding sizes were determined using the validation data. Note,

in all cases, we used the Adam optimizer (Kingma and Ba 2014) with parameters

β1 = 0.9, β2 = 0.98 and ε = 10−8. The training was particularly challenging for
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the decompensation and length of stay tasks because of the large training sizes.

Consequently, training was done by dividing the data into chunks of 20000 samples

and convergence was observed with just 20-30 randomly chosen chunks. Furthermore,

due to the imbalance in the label distribution, using a larger batch size (256) helped

in some of the cases.

Multi-task Learning: In several recent results from the deep learning community,

it has been observed that joint inferencing with multiple related tasks can lead to

superior performance in each of the individual tasks, while drastically improving

the training behavior. Hence, similar to the approach in (Harutyunyan et al. 2017),

we implemented a multi-task version of our approach, SAnD-Multi, that uses a loss

function that jointly evaluates the performance of all tasks, which can be expressed as

follows:

`mt = λp`ph + λi`ihm + λd`dc + λl`los, (6.2)

where `ph, `ihm, `dc, `los correspond to the losses for the four tasks. The input embedding

and attention modules are shared across the tasks, while the final representations and

the prediction layers are unique to each task. Our approach allows the use of different

mask sizes and interpolation factors for each task, but requires the use of the same N .

6.1.4 Performance Evaluation

In this section we evaluate the proposed SAnD framework on the benchmark tasks

and present comparisons to the state-of-the-art RNNs based on LSTM (Harutyunyan

et al. 2017), and baseline logistic regression (LR) with hand-engineered features. To

this end, we discuss the evaluation metrics and the choice of algorithm parameters. In

particular, we analyze the impact of the choice of number of attention layers N , the

dense interpolation factor M , and the mask size of the self-attention mechanism r on
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Figure 18: Applying SAnD to MIMIC-III benchmark tasks - We illustrate the training
behavior and impact of the choice of the attention mask size, number of attention
layers and dense interpolation factor on test performance.
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Table 8: Performance Comparison for the MIMIC-III benchmark tasks, using both
single-task and multi-task strategies.

Method
Metrics

LR LSTM SAnD LSTM-Multi SAnD-Multi

Task 1: Phenotyping

Micro AUC 0.801 0.821 0.816 0.817 0.819
Macro AUC 0.741 0.77 0.766 0.766 0.771

Weighted AUC 0.732 0.757 0.754 0.753 0.759

Task 2: In Hospital Mortality

AUROC 0.845 0.854 0.857 0.863 0.859
AUPRC 0.472 0.516 0.518 0.517 0.519

min(Se, P+) 0.469 0.491 0.5 0.499 0.504

Task 3: Decompensation

AUROC 0.87 0.895 0.895 0.900 0.908

AUPRC 0.2132 0.298 0.316 0.319 0.327

min(Se, P+) 0.269 0.344 0.354 0.348 0.358

Task 4: Length of Stay

Kappa 0.402 0.427 0.429 0.426 0.429

MSE 63385 42165 40373 42131 39918

MAPE 573.5 235.9 167.3 188.5 157.8

the test performance. Finally, we report the performance of the mutli-task variants of

both RNN and proposed approaches on all tasks.

6.1.4.1 Single-Task Case

Phenotyping: This multi-label classification problem involves retrospectively

predicting acute disease conditions. Following (Lipton et al. 2015) and (Harutyunyan

et al. 2017), we use the following metrics to evaluate the different approaches on

this task: (i) macro-averaged Area Under the ROC Curve (AUROC), which averages

per-label AUROC, (ii) micro-averaged AUROC, which computes single AUROC score
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for all classes together, (iii) weighted AUROC, which takes disease prevalence into

account. The learning rate was set to 0.0005, batch size was fixed at 128 and a residue

dropout probability of 0.4 was used. First, we observe that the proposed attention

model based architecture demonstrates good convergence characteristics as shown in

Figure 18a. Given the uneven distribution of the class labels, it tends to overfit to the

training data. However, with both attention and residue dropout regularizations, it

generalizes well to the validation and test sets. Since, the complexity of the proposed

approach relies directly on the attention mask size (r), we studied the impact of r on

test performance. As shown in Figure 18b, this task requires long-term dependencies

in order to make accurate predictions. Though all performance metrics improve upon

the increase of r, there is no significant improvement beyond r = 96 which is still

lower than the feature dimensionality 256. As shown in Figure 18c, using a grid search

on the parameters N (number of attention layers) and M (dense interpolation factor),

we identified the optimal values. As described earlier, lowering the value of N reduces

the memory requirements of SAnD. In this task, we observe that the values N = 2

and M = 120 produced the best performance, and as shown in Table 8, it is highly

competitive to the state-of-the-art results.

In Hospital Mortality: In this binary classification task, we used the following

metrics for evaluation: (i) Area under Receiver Operator Curve (AUROC), (ii) Area

under Precision-Recall Curve (AUPRC), and (iii) minimum of precision and sensitivity

(Min(Se,P+)). In this case, we set the batch size to 256, residue dropout to 0.3 and

the learning rate at 0.0005. Since the prediction is carried out using measurements

from the last 24 hours, we did not apply any additional masking in the attention

module, except for ensuring causality. From Figure 18d, we observe that the best

performance was obtained at N = 4 and M = 12. In addition, even for the optimal
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N the performance drops with further increase in M , indicating signs of overfitting.

From Table 8, it is apparent that SAnD outperforms both the baseline methods.

Decompensation: Evaluation metrics for this task are the same as the previous

case of binary classification. Though we are interested in making predictions at every

time step of the sequence, we obtained highly effective models with r = 24 and as a

result our architecture is significantly more efficient for training on this large-scale

data when compared to an LSTM model. Our best results were obtained from training

merely on about 25 chunks (batch size = 128, learning rate = 0.001) , when N = 1

and M = 10 (see Figure 18e), indicating that increasing the capacity of the model

easily leads to overfitting. This can be attributed to the heavy bias in the training

set towards the negative class. Results for this task (Table 8) are significantly better

than the state-of-the-art, thus evidencing the effectiveness of SAnD.

Length of Stay: Since this problem is solved as a multi-class classification task,

we measure the inter-agreement between true and predicted labels using the Cohen’s

linear weighted kappa metric. Further, we assign the mean length of stay from

each bin to the samples assigned to that class, and use conventional metrics such as

mean squared error (MSE) and mean absolute percentage error (MAPE). The grid

search on the parameters revealed that the best results were obtained at N = 3 and

M = 12, with no further improvements with larger N (Figure 18f). Similar to the

decompensation case, superior results were obtained using r = 24 when compared

with the LSTM performance, in terms of all the evaluation metrics.

6.1.4.2 Multi-Task Case

We finally evaluate the performance of SAnD-Multi by jointly inferring the model

parameters with the multi-task loss function in Eq (6.2). We used the weights

λp = 0.8, λi = 0.5, λd = 1.1, λl = 0.8. Interestingly, in the multi-task case, the best
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Audio Track:

Diarization Result:

Speaker A Speaker ASpeaker B Speaker C Speaker C

Figure 19: Illustration of the speaker diarization problem.

results for phenotyping were obtained with a much lower mask size (72), thereby

making the training more efficient. The set of hyperparameters were set at batch size

= 128, learning rate = 0.0001, N = 2, M = 36 for phenotyping and M = 12 for the

other three cases. As shown in Table 8, this approach produces the best performance

in almost all cases, with respect to all the evaluation metrics.

6.2 Speaker diarization using triplet network

With the ever-increasing volume of multimedia content on the Internet, there

is a crucial need for tools that can automatically index and organize the content.

In particular, speaker diarization deals with the problem of indexing speakers in a

collection of recordings, without a priori knowledge about the speaker identities. As

illustrated in Figure 19, in scenarios where the single-speaker assumption of recognition

systems is violated, it is critical to first separate speech segments from different speakers

prior to downstream processing. Note that diarization is treated as an unsupervised

learning problem, in contrary to speaker identification, which requires training on

extensive labeled data, and speaker verification, which solely returns yes/no for a
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Figure 20: Conventional diarization approach based on i-vectors.

certain speaker (Reynolds 1995). Typical challenges in speaker diarization include the

need to deal with similarities between a large set of speakers, differences in acoustic

conditions, and the adaptation of a trained system to new speaker sets.

An important class of diarization approaches rely on extracting i-vectors to repre-

sent speech segments, and then scoring similarities between i-vectors using pre-defined

similarity metrics (e.g. cosine distance) to achieve speaker discrimination. Despite its

widespread use, it is well known that the i-vector extraction process requires extensive

training of a Gaussian Mixture Model based Universal Background Model (GMM-

UBM) and estimation of the total variability matrix (i-vector extractor) beforehand

using large corpora of speech recordings. While several choices for the similarity metric

currently exist, likelihood ratios obtained through a separately trained Probabilistic

Linear Discriminant Analysis (PLDA) model are commonly utilized (Khoury et al.

2014). The process of such i-vector based approaches are demonstrated in Figure 20.

More recently, with the advent of modern representation learning paradigms,

designing effective metrics for comparing i-vectors has become an active research

direction. In particular, inspired by its success in computer vision tasks (Schroff,

Kalenichenko, and Philbin 2015; Lin et al. 2015; Hoffer and Ailon 2015), many recent
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efforts formulate the diarization problem as deep metric learning (Le Lan et al. 2017;

Garcia-Romero et al. 2017; Bredin 2017b). For instance, a triplet network that

builds latent spaces, wherein a simple Euclidean distance metric is highly effective at

separating different classes, is a widely adopted architecture. However, in contrast to its

application in vision tasks, metric learning is carried out on the i-vector representations

instead of the raw data (Le Lan et al. 2017). Consequently, the first stage of the

diarization pipeline stays intact, while the second stage is restricted to using fully

connected networks. Though this modification produced state-of-the-art results in

diarization and outperformed conventional scoring strategies, it does not support joint

representation and task-based learning, which has become the modus operandi in

deep learning. On the other hand, Garcia-Romero et al. (Garcia-Romero et al. 2017)

propose to perform joint embedding and metric learning, but use siamese networks

for metric learning, which have generally shown poorer performance when compared

to triplet networks (Hoffer and Ailon 2015).

In this section, we propose to explore the use of joint representation learning

and similarity metric learning with triplet loss in speaker diarization, while entirely

dispensing the need for i-vector extraction. Encouraged by the recent success of

self-attention mechanism in sequence modeling tasks (Vaswani et al. 2017; Song,

Rajan, et al. 2018), for the first time, we leverage attention networks to model the

temporal characteristics of speech segments. Experimental results on the CALLHOME

corpus demonstrate that, with an appropriate embedding architecture, triplet network

applied on raw audio features from a comparatively smaller dataset outperforms the

same applied on i-vectors, wherein the GMM-UBM was trained using a much larger

corpus.

101



Test 
Embeddings

Training Data
TEDLIUM

( ≈ 200 hours )

Test Data
CALLHOME

Fully Connected 

Network
Triplet Loss

Clustering

Diarization Output

UBM, !
Train and 

Test i-vectors

UBM
Training Data

NIST SRE 04’-08’

( ≈ 1000 hours )

Training Data
NIST SRE 04’-08’,

Fisher English, Switchboard

( ≈ 9000 hours )

i-vector 

Extractor

(a) Baseline approach: (top) i-vectors are extracted using a large corpus
of recordings with GMM-UBM and i-vector extractor modules; (bottom)
Similarity metric is trained using a triple network trained on the i-vectors.
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Figure 21: Comparison of diarization strategies and training data requirements for
the baseline approach in (Le Lan et al. 2017) and the proposed approach.
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6.2.1 Proposed Approach

As shown in Figure 26(b), the proposed approach works directly with raw temporal

speech features to learn a similarity metric for diarization. Compared to the baseline

in Figure 26(a), the two-stage training process is simplified into a single end-to-end

learning strategy, wherein deep attention models are used for embedding computation

and the triplet loss is used to infer the metric. Similar to existing diarization paradigms,

we first train our network using out-of-domain labeled corpus, and then perform

diarization on a target dataset using unsupervised clustering. In the rest of this

section, we describe the proposed approach in detail.

6.2.1.1 Temporal Segmentation and Feature Extraction

For the speech recordings, we first perform non-overlapping temporal segmentation

into 2-second segments. Following the Voice Biometry Standardization (VBS) 4, we

extract MFCC features using 25ms Hamming windows with 15ms overlap. After

adding delta and double-delta coefficients, we obtain 60-dimensional feature vectors

at every frame. Consequently, each data sample corresponds to a temporal sequence

feature xi ∈ RT×d, where T is the number of frames in each segment and d = 60 is

the feature dimension.

6.2.1.2 Embeddings using Attention Models

As described earlier, we use attention models to learn embeddings directly from

MFCC features for the subsequent metric learning task. The attention model used in

our architecture is illustrated in Figure 22. The module comprised of a multi-head,

self-attention mechanism is the core component of the attention model (Vaswani et al.

4http://voicebiometry.org/
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Figure 22: Illustration of the attention model used for computing embeddings from
MFCC features of speech segments.

2017). More specifically, denoting the input representation at layer ` as {h`−1
t }Tt=1, we

can obtain the hidden representation at time step i based on attention as follows:

h`i =
T∑
t=1

w
(i)
t h`−1

t , 1 ≤ i ≤ T, (6.3)

w
(i)
t = softmax

(
h`−1
i · h`−1

t√
D

)
, (6.4)

h`i = F(h`i), (6.5)

Here, D = 256 refers to the size of the hidden layer and F denotes a feed-forward

neural network. The attention weight in equation (6.4) denotes the interaction between

temporal positions i and t. During the computation of hidden representation at time

step i, w(i)
t weights the contribution from other temporal positions. Note that, these

representations are processed by F before connecting to the next attention module, as

shown in Figure 22. We employ a 1D convolutional layer (kernel size is 1) with ReLU

activation (Nair and Hinton 2010) for F . Finally, the attention module is stacked L

times to learn increasingly deeper representations.

Attention-based representations in equation (6.3) are computed within each speech

segment independently and hence this process is referred to as self-attention. Fur-

thermore, the hidden representations h`t are computed using H different network

parameterizations, denoted as heads, and the resulting H attention representations

are concatenated together. This can be loosely interpreted as an ensemble of repre-
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sentations. Such a multi-head operation facilitates dramatically different temporal

parameterizations and significantly expands the modeling power. Our current imple-

mentation sets L = 2 and H = 8.

Although attention computation explicitly models the temporal interactions, it

does not encode the crucial ordering information contained in speech. The front-end

positional encoding block handles this problem by mapping every relative frame

position t in the segment to fixed locations in a random lookup table. As shown

in Figure 22, the encoded representation is subsequently added up with the input

embedding (obtained also from a 1D CNN layer). Finally, we include a temporal

pooling layer to reduce the final representation hL ∈ RT×D into a D-dimensional

vector by averaging along the time-axis.

6.2.1.3 Metric Learning with Triplet Loss

The representations from the deep attention model are then used to learn a similar-

ity metric with the triplet ranking loss. Note that the attention model parameters and

the metric learner are optimized jointly using back-propagation. In a triplet network,

each input is constructed as a set of 3 samples x = {xp,xr,xn}, where xr denotes

an anchor, xp denotes a positive sample belonging to the same class as xr and xn a

negative sample from a different class. Each of the samples in x are processed using

the attention model (Section 3.2) A(·) : RT×d 7→ RD and distances are computed in

the resulting latent spaces:

Drp = ‖A(xr)−A(xp)‖2

Drn = ‖A(xr)−A(xn)‖2

The triplet loss is defined as

l(xp,xr,xn) = max(0, D2
rp −D2

rn + α) (6.6)
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where α is the margin and the objective is to achieve D2
rn ≥ D2

rp + α. In comparison,

the contrastive loss used in (Garcia-Romero et al. 2017) includes the hinge term

max(0, α −Dij) for different-class samples xi and xj, and hence requires α to be a

global margin. Such a formulation significantly restricts the model flexibility and

expressive power.

Given a large number of samples N , the computation of equation (6.6) is infeasible

among the O(N3) triplet space. It is tempting to greedily select the most effective

triplets, which maximizes Drp and minimizes Drn. Instead of performing such hard

sampling, we follow (Schroff, Kalenichenko, and Philbin 2015) to sample all possible xp

and only selecting semi-hard xn: the negative samples satisfying D2
rp ≤ D2

rn ≤ D2
rp+α.

Additionally, we adopt an online sampling strategy that restricts the sampling space to

the current mini-batch during training. All sampled triplets are gathered to compute

the loss in equation (6.6).

For the online sampling scheme, the mini-batch construction step is crucial. Ideally,

each batch should cover both a large number of speakers and sufficient samples per

speaker. However, we are constrained by the GPU memory (8GB) and only able

to set maximum batch size B = 256. We preset M as the number of speakers per

batch and when sampling each mini-batch, M speakers are first sampled and B/M

speech segments are then sampled for every speaker. As a result, the parameter M

represents the trade-off between modeling more speakers each time, and covering

sufficient samples for those speakers. In our experiments, M was tuned based on the

performance on the development set, as will be discussed in Section 6.2.2.1.

6.2.2 Experiments

In this section, we discuss the training process for our approach and evaluate its

performance on the CALLHOME corpus.
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(a) NMI score from the speaker clustering results.
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Figure 23: Parameter tuning on TEDLIUM development set for triplet margin α and
number of speakers per batch M . Curves for M = 8 and 32 are omitted for clarity.

6.2.2.1 Triplet Network Training

The proposed model was trained on the TEDLIUM corpus which consists of 1495

audio recordings. After ignoring speakers with less than 45 transcribed segments, we

have a set of 1211 speakers with an average recording length of 10.2 minutes. All

recordings were down-sampled to 8kHz to match the target CALLHOME corpus. The

temporal segmentation and MFCC extraction were carried out as discussed in Section

6.2.1.1.

For the proposed approach, there are two important training parameters that

need to be selected, i.e. triplet margin α and the number of speakers per mini-batch

M . In order to quickly configure the parameters, we build a training subset by

randomly selecting 20% of the total recordings and a development set by taking

50 recordings from the original TEDLIUM train, dev and test sets. At every 200

iterations of training on the subset, we extract the embeddings for the development set

and perform speaker clustering using k-Means, with a known number of speakers. The
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Figure 24: 2D t-SNE visualization of the first 20 speakers from TEDLIUM development
set. Each point corresponds to one speech segment and they are color coded by the
speaker.

clustering performance is evaluated by the standard Normalized Mutual Information

(NMI) and Purity scores. Based on this procedure, we jointly tuned both parameters

by performing a grid search on α = [0.4, 0.8, 1.6] and M = [8, 16, 32, 64]. As shown in

Figure 23, having a higher M value consistently provides better clustering results and

alleviates model overfitting. Additionally, a lower triplet margin generally helps the

training process. Based on these observations, we configured α = 0.8,M = 64 to train

our model on the entire TEDLIUM corpus.

To study the embeddings from the attention model and the impact of triplet

loss, we show the 2D t-SNE visualization (Van Der Maaten 2014) of samples in the

development set in Figure 24. It is observed that the model is highly effective at

separating unseen speakers and provides little distinction on segments from the same

speakers. These embeddings achieve 0.94 score on both NMI and Purity, with k-Means

clustering for the development set.
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Results

Ground truth:

Prediction:

true speaker A true speaker B

predicted speaker 1 predicted speaker 2

Figure 25: Diarization result on an example speech recording.

6.2.2.2 Diarization Results

The trained model is evaluated on the CALLHOME corpus for diarization per-

formance. CALLHOME consists of telephone conversations in 6 languages: Arabic,

Chinese, English, German, Japanese and Spanish. In total, there are 780 transcribed

conversations containing 2 to 7 speakers. After obtaining the embeddings through

the proposed approach, we perform x-means (Pelleg and Moore 2000) to estimate the

number of speakers and then use k-means clustering with the estimation. We force

x-means to split at least 2 clusters by initializing it with 2 centroids. Note that there

are usually multiple moving parts on complete diarization systems in the literature. In

particular, more sophisticated clustering algorithms (Q. Wang et al. 2017), overlapping

test segments and calibration (Sell and Garcia-Romero 2014) can be incorporated

to improve the overall diarization performance. However, in this work we focus on

investigating the efficacy of the DNN modeling and fix the other components in their

basic configurations.

We first visually demonstrate the diarization result obtained by our proposed

algorithm. As shown in Figure 25, the algorithm is able to successfully pick up

the transition of speaker around the middle of the recording, while confusing the

speaker identify only on a few speech segments. In order to quantitatively compare

the diarization performance, we utilize the metric of Diarization Error Rate (DER)

calculated by pyannote.metric (Bredin 2017a). Although DER collectively considers
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Table 9: Diarization Results on CALLHOME Corpus.

System DER (%)

i-vector
cosine 18.7

PLDA (Khoury et al. 2014) 17.6

Triplet with FCN (Le Lan et al. 2017) 13.4

Proposed Approach 12.7

false alarms, missed detections and confusion errors, most existing systems evaluated

on CALLHOME (Sell and Garcia-Romero 2014; Garcia-Romero et al. 2017) accounts

for only the confusion rate and ignores overlapping segments. Following this convention,

we use the oracle speech activity regions and use only the non-overlapping sections.

Additionally, there is a collar tolerance of 250ms at both beginning and end of each

segment. We compare the proposed approach with the following baseline systems:

Baseline 1: i-vector + cosine/PLDA scoring. We utilize VBS pre-trained

models for i-vector extraction on CALLHOME corpus. The specific GMM-UBM and

i-vector extractor training data are shown in Figure 26(a). Though different from

ours, the training corpus is significantly more comprehensive than the TEDLIUM set

we used. The GMM-UBM consists of 2048 Gaussian components and the i-vectors

are 600−dimensional. We also used the backend LDA model contained in VBS for

i-vector pre-processing. In the actual clustering, cosine or PLDA scores are used to

calculate the sample-to-centroid similarities at each iteration.

Baseline 2: i-vector + triplet with FCN training. This baseline is very

similar to (Le Lan et al. 2017) except for 2 modifications: 1) We do not consider the

speaker linking procedure as there are very few repeated speakers in CALLHOME. 2)

We use a larger FCN network than (Le Lan et al. 2017) to allow a fair comparison

to the proposed approach. The hidden layers have size 512− 1024− 512− 256 and
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batch normalization (Ioffe and Szegedy 2015) is applied at each layer after the ReLU

activation. Further, i-vectors are extracted on TEDLIUM based on the transcribed

speech sections with average length of 8.6 seconds. The triplet network is tuned in

a similar procedure as in Section 6.2.2.1 and the best parameters were found to be

α = 0.4,M = 16.

The comparison between the proposed approach and the baselines is shown in

Table 9. It is observed that baseline 2 indeed exceeds both conventional i-vector

scoring methods. However, our unified learning approach trained on a much smaller

TEDLIUM corpus achieves better performance, this evidencing the effectiveness of

end-to-end learning.
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Chapter 7

NODE EMBEDDING ON MULTI-LAYER GRAPHS FOR COMMUNITY

DETECTION

When the graph structure exists in multiple data sources, it is beneficial to consider

the fusion strategy under the multilayer graph setting. In this chapter, we focus on

the crucial problem of community detection in graph mining. Inside the multilayer

graph structure, each layer characterizes specific kind of relationship and the whole

graph is a comprehensive representation of the overall relationships. Inspired by the

recent advances which adopted neural word embedding to graphs for representation

learning (see Section 2.5), we propose a systematic fusion approach to extend graph

embedding to the case of multilayer graphs for improved community detection.

7.1 Background on Neural Embedding for Graph Vertices

In this section, we review the DeepWalk algorithm proposed by Perozzi et al. in

(Perozzi, Al-Rfou, and Skiena 2014) for obtaining dense embeddings of nodes in a

graph, which can be subsequently used for inferencing tasks such as clustering.

The DeepWalk algorithm utilizes neural optimization techniques originally de-

signed for language modeling to obtain dense, low-dimensional embeddings for nodes

in a graph. In language modeling, the goal is to learn a low-dimensional vector

representation for natural word, based on the context, from a large corpus. The latent

representations are known to reveal rich semantic information and can estimate the

likelihood of specific sequence of words appearing in the corpus. Similar to word

embeddings in the NLP literature, the distances latent dimensions provide a convenient

metric for understanding similarities between nodes in the network. Furthermore,
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such continuous vector spaces enable the definition of smooth decision boundaries

between different communities and groups with homogeneous behavior. Given a graph

G and the binary adjacency matrix of size |V| × |V|, the goal is to generate latent

representations, X ∈ R|V|×d, where d is the number of dimensions of the embedding

and |V| indicates the cardinality of the vertex set.

The central idea of the DeepWalk algorithm is to use short streams of randomly-

generated walks to define the notion of context for each of the vertices. Random walk

based methods have had long-standing success in quantifying similarities between

entities in graph structured data, for example community detection. Formally, a

random walk is a stochastic process with a set of random variables defined as vertices

chosen at random from the neighbors of each vertex in the sequence. The ability

of random walk to reveal the local structure makes it a natural tool for extracting

information from graphs. Let us consider a simple metric walk Wt in step t, which is

rooted at the vertex vi. The transition probability between the nodes vi and vj can

be expressed as

P (Wt = vj|Wt−1 = vi) = h(‖xi − xj‖2/σ), (7.1)

where ‖xi − xj‖2 indicates the similarity metric between the two vertices in the latent

space to be recovered and h is a linking function that connects the vertex similarity to

the actual co-occurrence probability. Interestingly, with appropriate choice of length

of the walks, the true metric can be recovered accurately from the co-occurrence

statistics constructed using random walks. Furthermore, in (Perozzi, Al-Rfou, and

Skiena 2014), the authors note that the frequency which vertices appear in the short

random walks follows a power-law distribution, similar to words in natural language

corpora. This naturally motivates the use of ideas from neural language modeling.

Given a sequence of words of length k, (w0, w1, · · · , wk), where wi denotes a word
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in the vocabulary, neural word embeddings attempt to obtain vector spaces that can

recover the likelihood of observing a word given its context, i.e., P (wk|w0, w1, · · · , wk−1)

over all sequences in the training corpus. Extending this idea to the case of graphs,

a random walk on the nodes, starting from the node vi produces the sequence W,

analogous to sentences in language data. In particular, a simple uniform sampling

method can be employed to select the next vertex in the sequence, based on the

neighbors of the current vertex. They start with a node at random say vi, which is the

current node, then randomly select another node vj from the neighbors of vi. Now,

vj is the current node and this process is repeated till a desired length is reached.

Alternately, more sophisticated weighting strategies based on graph traversal can

also be used (Grover and Leskovec 2016) vk given the set of previously visited nodes,

(v1, v2, · · · , vk−1).

To briefly summarize the the DeepWalk algorithm, it begins by generating a large

stream of random walk for a given G based on uniform random sampling at each

vertex. Given all the sequences, DeepWalk treats them as meaningful instances from a

language and directly employs skipgram or the hierarchical softmax language models

to obtain dense embeddings for the nodes.

7.2 Proposed approach

In this section, we start by presenting an overview of the proposed approach

for generating unified, latent representations from multilayer graphs. Then we will

describe in detail the early fusion and late fusion stages. Assume that we have access

to M different attributes for defining the edge sets between a set of nodes V . While

naive approaches such as the integration of the edge affinities, or concatenation of

latent representations for each of the nodes can be used to merge the information
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Figure 26: Proposed approach for extracting deep embeddings from multi-layer graphs.
While the early fusion stage constructs a supra adjacency matrix by computing
transition probabilities across the different layers, the late fusion stage employs a deep
embedding framework that fuses the latent representations from the different layers
and optimizes the network parameters using a deep clustering objective.

from different layers, we argue that a systematic approach for extracting deep, unified

embeddings can lead to significant improvements in the subsequent inferencing tasks.

As illustrated in Figure 26, our approach takes as input the set of graphs

(G(m),V , E (m)),∀m = 1, · · · ,M and provides d-dimensional latent representations

for each of the nodes in V . If the input graphs contain weighted edges, one common

practice is to employ a simple thresholding scheme to binarize the edge weights. Note

that, when the DeepWalk algorithm is applied on real-world graphs after thresholding,

the information about the varying density of edges in different regions of the data

domain are lost, thereby leading to sub-optimal performances.

The first stage of our approach performs early fusion prior to obtaining the

latent representations. More specifically, we merge the information across layers by

constructing a supra adjacency matrix encoding multilayer transitions, similar to

the approach in (Kuncheva and Montana 2015). In this process, the nodes with
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Figure 27: Early fusion: We introduce edges between a node and its counterparts
in different layers to exploit the shared local structure for inferring robust latent
representations. Here, we illustrate the supra graph construction process for an
example case with 7 nodes and 3 layers. While the block diagonals correspond to
the adjacency matrices of the individual layers, the off-diagonal entries encode the
inter-layer edges.

similar local community structured are tied across different layers. Following this,

the DeepWalk algorithm is employed directly on the supra graph, which produces

M different embeddings for each of the nodes in V. While concatenating the latent

representations from different layers is the widely adopted strategy in multi-modal

fusion tasks, we show that a principled late fusion strategy can produce more effective

unified representations for the nodes. In particular, we develop a deep embedding

architecture based on a recently proposed clustering objective (Xie, Girshick, and

Farhadi 2016), and utilize a multi-input multi-output autoenoder to initialize the

parameters of the network. From our experimental results, we observe that the

proposed two-stage approach produces highly robust latent representations and hence

improved clustering performance.
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Figure 28: Visualization of the latent representations obtained for the nodes in the
Cora citation dataset, using the words and citation attributes respectively. The 2-D
embeddings for the latent features were created using the t-SNE algorithm and the
nodes are colored by their true cluster label. Using the early fusion strategy exploits
the local community structure and leads to tighter grouping of communities (e.g. blue
cluster in (b) and cyan cluster in (d)).

7.2.1 Early Fusion - DeepWalk with Supra Graphs

The early fusion step aims at modifying the graph structure to both exploit the

community structure shared across different layers and benefit the subsequent late

fusion stage. Since the quality of the random walks are crucial to the deep feature

extraction process, and the walks are entirely determined by the graph structure,

this step is critical in the overall approach. For example, let us consider the problem
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of detecting communities from a network. When nodes in a multilayer graph form

communities, there can be two scenarios: (a) the nodes across all or a subset of the

layers constitute a shared community, and (b) the nodes form a community only in

a specific layer and this community is not present in other layers. Applying these

observations to the DeepWalk algorithm, we incorporate the following criteria while

generating the random walks: For a shared community, the walks should encompass

nodes located in different layers where the community resides. Whereas for a layer-

specific community, the walks should be constrained in the same layer so that the

learned representations will not be confused with communities in other layers. In

order to achieve this, we introduce inter-layer edges based on the similarities between

local community structures nodes. For a set of nodes vi and vj belonging to the layers

m and n respectively, we construct inter-layer edges as follows:

E
(m)(n)
ij = 0, i 6= j,

E
(m)(n)
ii =

|N (m)
i ∩N (n)

i |
|N (m)

i ∪N (n)
i |

,
(7.2)

where E(m)(n)
ij denotes the edge weight between node i of layer m and node j of

layer n. N (m)
i , N

(n)
i are the neighborhoods of node i at layer m and node i at layer

n respectively. Note that, the edge weight is computed as the Jaccard coefficient

of the agreement in the neighbor list between the two layers. The intuition is that

each node in a layer can only be connected to its counterpart in another layer and

similar neighborhoods across layers is a strong indication that they may form a shared

community. The random walks which are able to encompass nodes at different layers

according to Equation (7.2) will exploit both shared and layer-specific communities

automatically.

We illustrate the multilayer graph with locally adaptive inter-layer connections and

its corresponding supra adjacency matrix in Figure 27. In the supra adjacency matrix,
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Layer 1 Representation Layer 2 Representation
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Cluster	
Assignment KL-Divergence 
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Figure 29: Late fusion - We construct a multi-input, multi-output autoencoder to
obtain a unified feature space and fine-tune the encoder parameters based on a
discriminative clustering objective. The resulting unified feature can then used with
conventional clustering techniques to perform unsupervised tasks such as community
detection.

each diagonal block matrix is the adjacency matrix corresponding to each of the layers.

For each off-diagonal block, the diagonal entries have 1 where E(m)(n)
ii is larger than a

certain threshold whereas all off-diagonal entries are all 0. Using the supra adjacency

matrix defined in this way, we generate random walks for the DeepWalk algorithm

using a uniform sampling strategy. Note that, the total number of nodes in the supra

graph M × |V| and hence produces M different representations for each of the nodes.

A simple concatenation of the latent representations corresponding to different layers

serves as the popularly adopted form of late fusion. However, we propose a more

powerful fusion approach that takes the underlying task of clustering into account.

We will describe this fusion strategy in the next section.

In Figure 28, we demonstrate the behavior of the proposed early fusion strategy

using the words layer in the Cora citation dataset. We visualize the latent spaces

inferred for the citation and word layers using the DeepWalk algorithm before and
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after introducing inter-layer edges to exploit the shared community structure. As it

can be observed in the 2D t-SNE embeddings in Figure 28, the proposed early fusion

strategy reveals cohesive communities in the graph by leveraging information across

different layers. Consequently, the blue cluster in the words layer and the cyan cluster

in the citations layer are more cohesive compared to their counterparts without the

early fusion.

7.2.2 Late Fusion - Unified Deep Embedding for Clustering

Following the generation of latent features for the different layers using DeepWalk,

we propose to employ a deep embedding technique for obtaining a unified representation

for clustering tasks. This late fusion strategy is based on a recently proposed approach

for deep clustering (Xie, Girshick, and Farhadi 2016), where the underlying idea

is to adopt a data driven approach to infer the features and cluster assignments

jointly. Such a joint optimization approach is particularly suited for our problem

since we not only need to infer a unified representation for each of the nodes based

on their latent features in each layer, but also attempt to ensure that the unified

representation is optimal for the clustering task. In this approach, we first build a

multi-input, multi-output autoencoder architecture to obtain the network parameters

for constructing a unified feature space. Following this, we extract the multi-input

encoder part of the network, fine-tune the parameters with an optimization objective

similar to (Xie, Girshick, and Farhadi 2016). Figure 29 shows an overview of this

approach.

First, in order to create a unified feature space for nodes in a multilayer graph, we

build a multi-input, multi-output autoencoder where each input corresponds to the

latent representation of each layer. As shown in Figure 29, a single input autoencoder

is constructed for each feature set, outputs of which are merged using a concatenation
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layer. In order to obtain a highly effective initialization, we first train a conventional

single input autoencoder for each of the layers. Then the multi-input multi-output

autoencoder is trained with the network parameters initialized from the previous

training results.

After training the autoencoder, we discard the decoder part and fine-tune the

parameters of the multi-input encoder for improved clustering performance. We adopt

an approach similar to (Xie, Girshick, and Farhadi 2016) and it is comprised of two

steps: (a) calculating the soft assignment probabilities and (b) jointly optimizing for

both cluster centroids and feature embedding. We provide the algorithm outline here

and the detailed description can be found in (Xie, Girshick, and Farhadi 2016).

Denoting the fusion and mapping function from M feature sets to the unified

embedding space by fθ : Φ(1) × · · · × Φ(M) → Z, where Φ(1), . . . ,Φ(M) are the latent

representations fromM layers of {G(m)} obtained using DeepWalk after early fusion, θ

are the network parameters of the multi-input encoder and Z is the embedding space.

We begin by estimating the clustering the nodes using the initial unified features

and calculating similarity between the nodes and the cluster centroids in the unified

embedding space using a strategy similar to stochastic neighborhood embedding

algorithm (Xie, Girshick, and Farhadi 2016):

qij =
(1 + ‖zi − µj‖2/α)−

α+1
2∑

j′(1 + ‖zi − µj′‖2/α)−
α+1
2

(7.3)

These similarities can be interpreted as soft clustering assignments for the nodes.

Assuming that the parameters θ are properly initialized and that this initialization is

accurate in regions of low uncertainty, a reasonable clustering objective is to iteratively

refine the clustering assignment by learning from the regions of low uncertainty.

Interestingly, this is conceptually similar to discriminative clustering algorithms ()

that iteratively perform clustering (e.g. k-Means) to obtain cluster assignments
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for data samples and supervised dimensionality reduction (e.g. linear discriminant

analysis) based on current cluster labels to identify the discriminant function for

maximal linear separability. In order to perform iterative, discriminative clustering

with deep architectures, we adopt the optimization objective in (Xie, Girshick, and

Farhadi 2016) that defines an auxiliary distribution, pij =
q2ij/fj∑
j′ q

2
ij′/fj′

, which is a peaked

variant of the original distribution q. Here, fj =
∑

i qij are the soft cluster frequencies.

Note, by constructing this auxiliary distribution, we identify a target distribution for

the deep architecture to match, such that each node is assigned to one of the clusters

with high certainty. Consequently, the joint optimization with respect to θ and Z is

performed by minimizing the KL-divergence loss between the true distribution p and

the target q for each of the nodes:

L = KL(P ||Q) =
∑
i

∑
j

pij log(
pij
qij

) (7.4)

The optimization is carried out using Stochastic Gradient Descent (SGD). After this

step, the algorithm updates q again according to Equation (7.3) and repeats this

discriminative clustering procedure until convergence, in terms of cluster assignment.

7.3 Experimental Results

We begin by describing the datasets that were used to evaluate the proposed

approach for inferencing from multilayer graphs. Subsequently, we will report results

obtained using our method in comparison to the individual layers and conventional

fusion strategies.

We consider a bibliographic datasets, Cora 5. The Cora dataset consists of 2708

research papers focusing on machine learning from 7 different categories: case based,

genetic algorithms, neural networks, probabilistic methods, reinforcement learning,

5www.cs.umd.edu/~sen/lbc-proj/LBC.html
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Table 10: Clustering performance evaluation on the Cora citation dataset obtained
using the proposed multilayer graph fusion strategies. The best results are marked in
boldface.

Graph Layers DeepWalk Early Late Accuracy NMI Purity

Words N N N 0.33 0.13 0.35
Citations N N N 0.32 0.1 0.33
Words Y N N 0.49 0.26 0.5

Citations Y N N 0.42 0.32 0.52
Words + Citations Y Y N 0.58 0.43 0.67
Words + Citations Y Y Y 0.69 0.48 0.69

rule learning and theory. We used the category label as the ground truth for evaluating

the clustering performance. In both pre-processed datasets, every paper cites or is

cited by at least once. After the removal of trivial and infrequent words, Cora dataset

has 1433 unique words.

We constructed two layers of graphs from data for our experiments: (a) Based on

the binary features for word occurrence which indicates the presence (1) or absence

(0) of each word, we calculated the pair-wise cosine similarity. Following common

practice, the similarities are then converted to unweighted edges, i.e. binary edges,

based on predefined thresholds; (b) We designed the citation layer describing the

citation relation. If paper a cites paper b or paper a is cited by paper b, then a and b

are connected by an undirected edge in the graph.

We employed the proposed multilayer inferencing algorithm on the Cora citation

dataset for clustering the nodes into meaningful communities. We then used the

ground truth cluster labels to evaluate the clustering accuracy based on the three

following metrics: accuracy, purity and normalized mutual information. As it can be

observed in Table 10, the individual layers produce highly sub-optimal performance

with features obtained using the conventional spectral embedding approach. When
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we employed the DeepWalk algorithm to infer latent features for the two layers, the

accuracies improve significantly. Incorporating the early fusion strategy leads to

further improvements to both the layers. Note that in this case, we employed the

standard late fusion strategy of simply concatenating the features prior to performing

k-Means clustering. Finally including the late fusion strategy produces the best

performance, as expected. The improvements in the inferencing performance can be

directly attributed to the advanced fusion strategies that we employed.
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Chapter 8

SUMMARY AND FUTURE WORK

8.1 Summary

In this dissertation, we discussed the representation learning based strategies

in multimodal feature fusion. According to the application domain, we developed

specific fusion solutions and demonstrated the improved performance as compared to

state-of-the-art algorithms.

We described a novel approach for activity recognition by fusing multiple distinct

features from multiple sensors. In particular, we presented a linearized variant of

the multilayer graph consensus technique and effectively combined the discriminative

capabilities of multiple sensors. Also we adopted a simple, reference-based classifier

and fused the decisions from two distinct feature sets. We observed from our results

that the framework can produce high quality recognition performances. Though

we demonstrated our setup with this particular choice of sensors and features, the

proposed two stage architecture is generally enough to be adapted to other applications

as well.

By utilizing the kernel learning formulation, we presented a new approach for

incorporating context modeling into low-level image kernel and showed that the

fusion can be viewed as a MKL formulation. By building a series of classifiers to

approximate the target posterior probabilities in the RKHS setting, we demonstrated

improvements in the recognition performance. The presented framework is general

enough to be adapted to other applications by utilizing appropriate context features.

125



Other kernel combination classifiers such as Multiple Kernel Logistic Regression

(Kobayashi, Watanabe, and Otsu 2013) can also be incorporated to replace MKL.

We developed a principled approach to multimodal feature fusion by performing

kernel learning using deep architectures. The proposed algorithm utilizes the similarity

kernel matrix to generate an ensemble of dense embeddings for the data samples and

employs end-to-end deep learning to infer task-specific representations. By enabling

the neural network to exploit the native space of a pre-defined kernel, we obtain models

with much improved generalization. Furthermore, the kernel dropout process allows

the predictive model to exploit the complementary nature of the different subspaces

and emulate the behavior of kernel fusion using a backpropagation based optimization

setting. Using these improved representations, one can also perform multiple kernel

learning efficiently. In addition to showing good convergence characteristics, the

M-DKMO approach consistently outperforms state-of-the-art MKL methods. The

empirical results clearly evidence the usefulness of using deep networks as an alternative

approach to building kernel machines.

We described two novel temporal modeling approaches for multivariate sequence

analysis. The proposed approach to model clinical time-series data is solely based on

masked self-attention and dispenses recurrence completely. Further, temporal order

is incorporated into the sequence representation using both positional encoding and

dense interpolation embedding techniques. The training process is efficient and the

representations are highly effective for a wide-range of clinical diagnosis tasks. This

is evidenced by the superior performance on the challenging MIMIC-III benchmark

datasets. The second developed architecture studies the role of learning embeddings

under a triplet ranking loss for speaker diarization. By utilizing a similar attention

architecture, we combined the two steps of GMM-UBM training and a separate triplet
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training into a single end-to-end model. Results on the CALLHOME corpus show

that this joint training process achieves improved diarization performance with less

training efforts.

In order to tackle graph-structured data for multimodal representation learning, we

extended the DeepWalk node embedding algorithm to multilayer graphs and developed

systematic fusion procedures which incorporate both intralayer and interlayer informa-

tion. Focusing on the community detection problem, we demonstrated improvement

partitioning capability of the proposed algorithm as compared to straightforward

fusion methods.

8.2 Future Work

There are abundant opportunities to further extend the described fusion algorithms.

We describe several promising directions as future work:

In the DKMO and M-DKMO approach, we focused on utilizing deep learning to

optimize kernel machines. From another viewpoint, similar to the recent approaches

such as the convolutional kernel networks (Mairal 2016), principles from kernel

learning theory can enable the design of novel training strategies for neural networks.

In particular, incorporating kernel formulations into the deep architecture itself could

provide better regularization of the DNN learning. Potentially, this can be effective in

applications that employ fully connected networks and in scenarios where training

data is limited, wherein bridging these two paradigms can lead to capacity-controlled

modeling for better generalization.

Attention networks are recently proposed approaches for sequence to sequence

problem in NLP. Based the findings in our works for clinical time series and speech

data, attention networks have huge potential in a wide range of temporal modeling
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applications. Moving forward, we plan to investigate the role of attentions in Generative

Adversarial Networks (GANs) and in multilayer graph mining.

Due to the sensitive nature of clinical time series data, its access is typically

very restricted and carefully controlled. This prohibits the successful adoption of

deep learning models, which require large amount of data to learn complex structures

without overfitting. In order to overcome this limitation, very recent research (Esteban,

Hyland, and Rätsch 2017) proposes to use Generative Adversarial Networks (GANs)

to generate realistic synthetic medical data. GANs have shown remarkable success

in producing realistic-looking images and in order to adopt them to multivariate

time-series data, (Esteban, Hyland, and Rätsch 2017) substituted both the generator

and discriminator with LSTMs. Inspired by the success of attention models in clinical

modeling, we are interested in how attentions can be used in the synthesis of clinical

time series with GANs. Besides replacing LSTM RNNs with attention models, new

training strategies and special handling of the matrix representations need to be

investigated.

Recently, attention models have been shown to be effective on graph-structured

data as well. As reported in (Velicković et al. 2017), leveraging the self-attention

mechanism enables implicitly specifying different weights for nodes in a neighborhood.

Similar to the problem we have addressed in Chapter 7, multiple relations often exist

in real-world applications and in this scenario, interlayer attention needs to be properly

derived to construct a predictive model on multilayer graphs.

In terms of speech modeling including speaker diarization, we are interested in

investigating new metric learning techniques and applications on speech. Specifically,

future work will investigate more sophisticated sampling strategies and novel loss
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functions under the siamese and triplet network settings (Manmatha et al. 2017; Chen

et al. 2017).
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