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Abstract

Embedding methods for searching latent representations of the data are very

important tools for unsupervised and supervised machine learning as well as informa-

tion visualisation. Over the years, such methods have continually progressed towards

the ability to capture and analyse the structure and latent characteristics of larger and

more complex data. In this thesis, we examine the problem of developing efficient

and reliable embedding methods for revealing, understanding, and exploiting the

different aspects of the relational data. We split our work into three pieces, where

each deals with a different relational data structure.

In the first part, we are handling with the weighted bipartite relational structure.

Based on the relational measurements between two groups of heterogeneous objects,

our goal is to generate low dimensional representations of these two different types

of objects in a unified common space. We propose a novel method that models the

embedding of each object type symmetrically to the other type, subject to flexible

scale constraints and weighting parameters. The embedding generation relies on an

efficient optimisation despatched using matrix decomposition. And we have also

proposed a simple way of measuring the conformity between the original object

relations and the ones re-estimated from the embeddings, in order to achieve model

selection by identifying the optimal model parameters with a simple search procedure.

We show that our proposed method achieves consistently better or on-par results on

multiple synthetic datasets and real world ones from the text mining domain when

compared with existing embedding generation approaches.

In the second part of this thesis, we focus on the multi-relational data, where

objects are interlinked by various relation types. Embedding approaches are very

popular in this field, they typically encode objects and relation types with hidden
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representations and use the operations between them to compute the positive scalars

corresponding to the linkages’ likelihood score. In this work, we aim at further

improving the existing embedding techniques by taking into account the multiple

facets of the different patterns and behaviours of each relation type. To the best of

our knowledge, this is the first latent representation model which considers relational

representations to be dependent on the objects they relate in this field. The multi-

modality of the relation type over different objects is effectively formulated as a

projection matrix over the space spanned by the object vectors. Two large benchmark

knowledge bases are used to evaluate the performance with respect to the link

prediction task. And a new test data partition scheme is proposed to offer a better

understanding of the behaviour of a link prediction model.

In the last part of this thesis, a much more complex relational structure is con-

sidered. In particular, we aim at developing novel embedding methods for jointly

modelling the linkage structure and objects’ attributes. Traditionally, link prediction

task is carried out on either the linkage structure or the objects’ attributes, which

does not aware of their semantic connections and is insufficient for handling the

complex link prediction task. Thus, our goal in this work is to build a reliable model

that can fuse both sources of information to improve the link prediction problem.

The key idea of our approach is to encode both the linkage validities and the nodes

neighbourhood information into embedding-based conditional probabilities. Another

important aspect of our proposed algorithm is that we utilise a margin-based con-

trastive training process for encoding the linkage structure, which relies on a more

appropriate assumption and dramatically reduces the number of training links. In the

experiments, our proposed method indeed improves the link prediction performance

on three citation/hyperlink datasets, when compared with those methods relying on

only the nodes’ attributes or the linkage structure, and it also achieves much better

performances compared with the state-of-arts.
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Chapter 1

Introduction

In many information domains, an object is usually characterised by a continuous

or discrete feature vector of attributes, e.g., a scientific paper can be represented

by its contextual words, references and key words; genes and gene products are

often characterised at multiple levels including mRNA expression levels, protein

abundance levels, cellular location and other factors; an image is characterised by its

pixel intensity of colour channels or its associated text descriptions. With the attribute

representations (or propositional representations [1]), traditional machine learning

algorithms are concerned with learning a mapping from the input feature vectors

to an output of interest, which may correspond to class labels, regression target

values, clustering identifiers or intrinsic latent representations. Although many such

attributes-oriented algorithms can generalise well (e.g., predict, learn the concepts) to

new data from the problem domain, the rich information regarding the relationships

between objects or attributes is ignored, which should be useful for uncovering,

understanding, and exploiting the intrinsic properties of the data. For example, in

natural language processing, the references for scientific papers are created with

different types of motivations (e.g., relevant works, empirical findings, background

reading), which are usually relevant to the central theme of the citing paper; in

biology, the activation of a subset of genes or the protein domain interactions in a

cellular compartment may correspond to a common functional process (e.g., cellular

differentiation processes, protein synthesis processes, protein-protein interactions); in

image processing and analysis, the visual contents in a scene are usually semantically
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Introduction 2

interacted, and the salient interactions in the image are interpreted by its associated

textual descriptions.

Indeed, learning to reason on the relationships is of vital importance in the physi-

cal and natural world. In physics, any of the four fundamental forces – gravitational,

electromagnetic, strong, and weak – are considered as the ways that individual parti-

cles interact with each other [2]. It turns out that all physical aspects of the universe

can be fully explained and linked together by these basic interactions. In a natural

world, the organisms and their physical environment are linked together through

processes of energy transfer and nutrient cycles. Understanding the vital connections

between plants and animals and the world around them can provide us information

about the benefits of ecosystems, manage our natural resources, and protect human

health [3]. Moreover, the relational data can be very helpful for understanding and

handling human generated big data, allowing one to infer and exploit latent properties,

classes and structures about objects. Taking the email network as an example, which

embodies the relations of sending and replying to messages, we are interested in

exploiting the relational aspects of this data to uncover various latent properties (e.g.,

roles, communities and preferences) of the instances.1 It can be noted that people

who frequently receive messages containing relational types of assistant requests

like photocopying, hotel bookings and meeting room arrangements are identified to

have the latent role "administrative assistant". As another example, real world knowl-

edge can be stored in a relational database, e.g., Semantic Web, Linked-Cloud and

knowledge bases, and an inference engine can reason about the existing knowledge

in the data to deduce new facts or highlight inconsistencies. Recently, the content of

relational data is growing rapidly with the development of various areas such as web

mining, bioinformatics, social network analysis and marketing.

Developing effective and reliable methods to deal with such unreliable, complex,

and large-scale relational structure has been considered as one of the greatest chal-

lenges for today’s machine learning. The first difficulty is that most relations are

inherently vague and ambiguous. For example, in a movie rating database, viewers

rate a movie via a score, of which the quantity is not precise at all for measuring

1We use the terms "instances", "entities" and "objects" interchangeably throughout this thesis.
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Introduction 3

their "degree" of inclination, but rather intuitive. And even if different people like

the same movie, the reasons behind their motivations are usually very different: i.e.,

Jo may like Top Gun because she loves 80s action movies, while Felix likes Top

Gun because he likes movies with Kenny Loggins soundtracks. So the fact that both

viewers watched and rated the movie highly does not necessarily mean they will

value the same set of other movies with high probabilities. On the other hand, most

relational data are incomplete, noisy and including false information, a problem that

is being aggravated due to the increasing usage of automatic information extraction

techniques. Thus, a relational learning model also needs to be considered for improv-

ing the quality of a relational database, such as predicting unknown relationships,

correcting existing relations, and detecting duplicate objects.

A worth mentioning field addressing the learning and inference from the uncertain

and complex relational data is called Statistical Relational Learning (SRL), which

relies on a variety of statistical models that target relational learning tasks. Early SRL

focuses on relational graphical models [1], which can be divided into two categories:

a) logic-based (i.e., rule-based) models and b) frame-based (i.e., object-oriented)

models. The logic-based models build upon combining the traditional inductive

logic programming [4] methods for representing knowledge in the first-logic setting

and graphical models for supporting probabilistic reasoning, i.e., Bayesian logic

programs [5], stochastic logic programs [6] and Markov logic networks [7]. Frame-

based models extend the traditional graphical models, such as Bayesian networks and

Markov networks, avoiding their underlying i.i.d. assumption by incorporating the

relational database models. For example, probability relational models [8, 9] define a

probability model based on a relational database. The directed acyclic probability

entity relationship model [10] adapts Bayesian analysis to entity-relationship database

representation [11]. The relational Markov network [12] and relational dependency

networks [13] are the relational extensions to the Markov networks. In these relational

graphical models, objects and attributes are encoded by random variables and the

statistical dependencies between these variables are either built from prior knowledge

or inferred from the data automatically. To enable effective training, a variety of

approximate inference methods has been utilised, such as variational inference,
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Introduction 4

loopy belief propagation and Markov Chain Monte Carlo (MCMC) methods [14–16].

However, these models still remain highly expensive to train since they require a

large number of statistical dependencies to build the dependency structure to link

together the objects. If the required dependency structure is unknown, it has to

be inferred automatically from the data, which is often very complex and time-

consuming [17–19]. Hence, it is impractical to apply these relational graphical

models to large-scale relational learning problems.

For effectively handling the relational structure, recent developments in SRL have

devoted to latent variable models [20–22]. Unlike the relational graphical model, the

statistical dependencies in these models are not solely explained using variables that

have been observed in the data. Latent variable models assume that there are hidden

causes for the observable data and model the probability of a particular relationship

via either random generation processes or simple operations on some latent variables,

i.e., variables that are not directly observed but are rather inferred from other observed

variables. Simultaneously, the dependency structure is defined through only a small

number of latent variables (e.g., group memberships, latent roles ). As a result, such

models do not suffer a loss of expressiveness and avoid the time-consuming structure

learning that is necessary for the functioning of the previous models.

Embedding methods are latent variable models in which each entity is represented

as a point in the latent space (e.g., Euclidean space), and a relation is modelled

as the mathematical operation between these entity vectors. In multi-relational

database [23, 24], they further assign each type of relationships to an operation

that is characterised by vectors, matrices or tensors. These approaches seek a

balance between the expressiveness and the complexity of their models and have been

successfully applied to a range of relational learning problems, especially for the

very large scale multi-relational data. Moreover, it has been shown that some latent

vectors learned by these models coincidentally relate to the semantic relationships

between entities. For an example, in text embedding [25], if you take the embedding

vector of Paris, subtract the embedding vector of France, and add the embedding

vector of Germany, the resulting embedding vector will be close to the embedding

vector of Berlin.
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In the following content of this chapter, we first provide a formal definition of

relational data with its categorisations, properties and relevant relational learning

tasks. Then we state our motivations and summarise the main contributions of this

thesis. At last, we briefly describe how our thesis is organised.

1.1 Relational Data

1.1.1 Representation

All sorts of real world systems can be represented in a relational structured format

in which the instances are linked (i.e., related) to each other. One could represent

relational structure as networks (also referred to as graphs), whose nodes represent

the objects and edges correspond to the connections between objects. Though the

network model is insufficient for representing all relational structures (e.g., ternary

relationships, n-ary relationships), it provides us a natural view of data by isolating

entities and relationships. For example, the Internet is a big worldwide communica-

tion network where the nodes are computers and the edges are physical (or wireless)

connections between the computers. The World Wide Web is a network where

the webpages are nodes and hyperlinks are edges. Other examples include social

networks of acquaintances, publication networks linked by citations, transportation

networks with the flow of vehicles and metabolic networks of metabolic pathways.

To illustrate the subtle details, we follow the mathematical definition of relational

data in this chapter, based on the entity-relationship model [11].

A relational data set contains a set of entities and relationships. An entity is a

"thing" which can be distinguished from other "things". It can exist physically or

logically, i.e., a specific object, event or concept is an example of an entity. We should

distinguish between an entity and an entity set, where an entity set is a category that

the entities belong to. In other words, an entity is an instance of a given entity set.

Let Ei denote the ith entity set. In general, the entity sets are not mutually disjoint.

For instance, an entity in the entity set ”male-person” must also belong to the entity

set ”person”. In this respect, entity set ”male-person” is a subset of the entity set

”person”.
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Consider associations among entities. An n-ary relationship set R, is a mathe-

matical relation among n entities, each taken from an entity set:

{(e1, e2, . . . , en) | e1 ∈ E1 ∧ . . . ∧ en ∈ En} (1.1.1)

and we refer to a single n-tuple (e1, e2, . . . , en) as a relationship2 between the entities

e1, e2, . . . , en. Note that a relation can exist between the same set of entities. For

example, a "marriage" is a relationship between two entities in the same entity set

”person”. And there may exist heterogeneous relations among the same set of entities.

For example, besides the "friendship" relation, there may also exist an "officemate"

relation between employees.

For an n-ary relation R, its characteristic mapping function is defined accordingly,

as

φR : E1 × E2 × . . .× En 7→ {0, 1} (1.1.2)

where × denote the Cartesian product of sets. Following this definitions, the boolean-

valued characteristic function φR gives true if and only if a particular relationship

exists. In other cases, φR can map each relationship to a real number, indicating

the strength of the associated linkage. There are also observations or measurements

information about the relationship or entity, which are usually expressed by a feature

vector of attributes. For example, a person can be described by different attributes,

such as inch, colour and height. Optionally, the relevant category information of

entities can also be provided as attributes in a relational data.

In this thesis, we are only interested in binary relations, which only occur between

two entity sets. Therefore, the characteristic mapping values of any particular relation

for all possible entity pairs can be represented by a matrix (we referred to it as a

characteristic matrix). For example, the ”friendship” relation between employees can

be represented by a matrix, where the ijth entry indicates whether employee i is a

friend of employee j or not. We denote the characteristic matrix for the kth relation

Rk as Ak, in the context of a single relation R, we overload it by a simple matrix A.

In general, a relational data can be very complex, e.g., including multiple relation

sets and entity sets, and each element of these sets may be described by different
2We distinguish "a relationship" and "a relation" in this thesis. A relationship refers to an n-ary

link between instances, while a relation refers to a set of relationships between the entity sets.
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1.1 Relational Data 7

attribute sets. Simultaneously handling all sorts of different information in a relational

data is a very challenge task since there may have multiple levels of uncertainty

about the data, i.e., uncertainty about the number of attributes, attribute’s type, and

the identity of an object as well as relationship membership, attribute and type.

Moreover, collecting a complete description of every entity and relationship in the

data is generally impractical. It is thus necessary and important to study only the

partially available information within a relational database. Therefore, relational data

is divided into simpler data formats, each of which is covered by different subfields

of relational learning. We address some important categories of the relational data as

following:

• Undirected graph: An undirected relation is symmetric in that its characteris-

tic matrix satisfies A(i, j) = A(j, i) for any entity pair i and j. For example, a

"marriage" relation is an undirected relation as if person i is married to person

j, person j is also married to person i. Similarity or dissimilarity information

can be viewed as undirected relations, given objects characterised by such

information, Multidimensional Scaling [26] and its variants attempt to model

such information as distances among points in a geometric space.

• Directed graph: A direct relation is asymmetric and it typically has an asym-

metric characteristic matrix A for describing directional relationships in a data

set. Examples include paper citation relations, hyperlink relations between

webpages and sending/replying relations in an email network. The directed net-

work data is usually served as the base information for more complex relational

data, it is thus very important to uncover the interdependency information

between observations in this simple network. For this type of data, a mixed-

membership model [22] is able to capture the multiple roles that objects exhibit

in interactions with others in a friendship network and a protein interaction

data.

• Bipartite graph: The relational measurements in a bipartite network are

between two groups of heterogeneous objects. It can be either undirected or

directed — such as co-occurrence rates of articles and words in text data or item
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ratings given by users in a recommendation system. Commonly co-occurrence

data learning approaches are topic modelling [27] and joint embeddings [28].

Collaborative filtering [29, 30] is a field for processing the preference (rating)

data that is collected from many users. In general, the propositional data can

also be generalised to bipartite relations if we treat the attributes as another set

of entities.

• Multi-relational data: Relational data typically consists of several types of

relations among entities. Handling multi-relations is essential for identifying

valid, novel, useful, and understandable patterns from large datasets. Recently,

a large number of works regarding multi-relational data learning have been

proposed (see [31] for a review), based on learning the semantic embeddings

of the structured text.

• Document Network: By document network, we refer to the kind of relational

data where the objects are described by a single type of relations associated

with objects’ feature representations. Specifically, the attributes for represent-

ing objects are fixed and defined in the same homogeneous set. As such, the

feature vectors for all the objects have the same dimensionality. The fusion of

these two sources of information has proven to enhance the models’ ability

for classification [32] and link prediction along with improved latent represen-

tations [33]. A small example of the document network data is provided in

Figure. 1.1.

There are other types of relational data with more components and more complex

dependency structure. For examples, [34, 35] included the relations’ associated text

to better identify the group memberships in a network. In [36, 37], the object labels

are utilised to derive a combined classification of the network data. Also, different

dependency patterns have been explored such as collaborations in co-authorship

networks, which are jointly modelled with the co-occurrence terms in a text body to

refine the discovery of abstract "topics" [38].
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Figure 1.1: In a document network, each document contains its contents (such

as figures, tables and text contents) as well as its linkages (or citations) to other

documents.

.

1.1.2 Properties

Unlike the propositional data representations, the objects in a relational structure

are inter-linked to each other. Without prior knowledge, such very complex interde-

pendence structures are very difficult to exploit. However, two primary patterns are

shown to prevail and structure the ties of many network data, namely, homophily

and stochastic equivalence, which should be useful for developing relational learning

algorithms. We describe these two patterns and illustrate how they can be exploited

by relational learning methods as below.

• Homophily: The principle of homophily indicates that the relationships be-

tween similar objects are stronger than the relationships among dissimilar

objects, which is also well-known as in the proverb "birds of a feather flock

together". For example, people tend to make friends with regards to similar

interests, ages, and analogous many other characteristics. It has been discov-

ered in a large-scale of literature from the analysis of social networks [39].

Homophily provides the predictive patterns for relational data, such as pre-

dicting the religion of a person from the religions of his or her friends in a

social network. In designing relational learning algorithms, the homophily is
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1.1 Relational Data 10

captured by either the similarity of observable/hidden object representations or

the connectivity patterns of nodes in a network.

• Stochastic Equivalence: Sometimes, the individual object may exhibit its

relationships to other objects that are characterised from the category member-

ships they belong to. All objects of the same group have similar relationships

to objects of other groups. This property is referred to as stochastic equivalence

in network analysis, where objects’ relationships are explained via relation-

ships between their associated group memberships. Analysis of stochastic

equivalence in relational data can be very helpful for predicting unknown

relationships between entities for which the memberships of these entities are

known. In relational learning models, this feature is either explicitly captured

by assigning latent classes or roles to entities in relational data or implicitly

conveyed through the clusters/locations of the entities’ latent representations.

1.1.3 Relational Learning Tasks

Various tasks can be brought for relational data learning, which are listed as

follows:

• Constructing Latent Representation: Inferring the latent representations

from the observed relational structure is a fundamentally important aspect

in many disciplines, including economics, medicine, bioinformatics, natural

language processing, management and social sciences. It serves to reduce the

dimensionality of the data and can help us to understand the observed data by

revealing its underlying concepts, i.e., sometimes latent variables correspond to

aspects of physical reality which could in principle be measured or correspond

to abstract concepts, like categories, functionalities and hidden states. In

particular, embedding objects, relations, or both in a two or three dimensional

geometric space allows us to gain a quick and intuitive summary of the data.

• Link Prediction: Link prediction concerns about learning the boolean-valued

characteristic function φR for determining the existence of certain relations. It
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require the relational learning algorithms to understand the observed data based

on entity attributes, relationships, and other information so that they can be

used to predict the likelihood of novel associations between entities. Moreover,

it has been shown in [33] that their model can even predict the existence of the

words given only the links to existing articles of an new one. Alternatively, the

link prediction problem has been transformed into an entity ranking task by

many relational learning methods [40, 41], which ranks the objects to a query

object according to their relatedness. Link prediction is central to almost all

types of relational data.

• Collective Classification/ Clustering: Classifying or labelling for objects is

a very important step in many application domains. These tasks are typically

carried out on each object independently in standard classification/clustering

setting, without considering the underlying relations between objects. While

relations undoubtedly provide valuable information for classification or clus-

tering, i.e., homophily in race and ethnicity naturally creates strong clustering

patterns in our social network. Thus, relational learning approaches have an

advantage over traditional approaches since they can improve the classification

accuracy or clustering quality by including the relevant relational structure

information. Numerous approaches [12, 36, 42–44] have brought clustering

and classification into a relational setting, and have been shown to improve the

learning results significantly.

• Object Identification: object identification is the problem of assigning an

object instance with a unique, unchanging identity. It is also known as record

linkage [45], entity resolution [46], instance matching [47] and data deduplica-

tion [48] in other naming conventions. Object identification clearly has many

applications. For example, in the context of word sense disambiguation, there

are eight senses of ”bass” in the large lexical database WordNet [49]. Given

this word in a text, object identification is find the correct choice of meaning

for it in that particular context. In the database domain, object identification is

required when sharing data and resources within and across organisations, as it
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may be the case due to their differences in record shape, storage location, or

curator style or preference. It is undeniable that entities are distinguishable via

their patterns of connections for the reason that identical entities are expected

to exhibit the same pattern of relations. Thus, object identification is made

collectively by integrating various information in the relational learning setting,

which has been researched in various data domains [50–53].

1.2 Motivation and Main Contributions

Methods for the generation of embeddings or pattern representations of data

objects in low-dimensional spaces have been widely studied in conventional machine

learning. Given the objects characterised by the feature vectors of attributes, nu-

merous dimensionality reduction approaches [54–57] can be employed to learn the

low-dimensional representation of these objects. Over the years, variants of these

classical methods have been developed towards the ability to capture and analyse

the structure and latent characteristics of larger and more complex datasets. For

example, the classical dimensionality reduction method Locality Linear Embedding

(LLE) [58] has been extended by [59] to process multiclass data, versions of dis-

criminant embedding generation [60, 61], and projection methods are developed for

processing multimodal data [62].

Embedding approaches have also been used for analysing various types of re-

lational data, such as Multidimensional Scaling [26] for preserving pairwise dis-

tances of the original patterns in the low-dimensional space, joint embedding meth-

ods [63,64] for heterogeneous bipartite data and many tensor factorisation [65–67] or

energy-based learning models [23, 24, 68, 69] for encoding the multi-relational data

into embedded points. Indeed, learning the representations of objects and relations in

a low dimensional space gives us an easy and flexible way for implementing various

relational learning tasks. In link prediction, link validities can be converted into

mathematical operations between these latent vector representations; classification

or clustering is simply conducted on the embedded points based on their pairwise

neighbourhood relationships; the likelihood that two entities are identical is derived
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from whether they are close enough in the latent embedding space.

Hence, embedding approaches provide an alternative way to solve the relational

learning tasks. One promising advantage for embedding methods compared with

aforementioned statistical models (e.g., relational graphical models, probabilistic

latent variable models) is that the optimisation of such methods can be delivered

efficiently and explicitly through either matrix decomposition or gradient-based

methods. In comparison, exact learning and inference are computationally intractable

in those statistical probability models for big data that they have to utilise various

approximate inference methods for achieving a reasonable computation time, which

comes at a cost in terms of the model stability and accuracy. In practical, relational

data may correspond to massive volumes of relations that it is prohibitive to apply

those expensive inference models for processing them. Therefore, it is necessary

to develop novel and efficient embedding algorithms for processing large-scale

relational datasets.

In this thesis, we take the embedding approaches for handling three different

relational data types — bipartite graph, multi-relational data and document network

(see Section 1.1.1). Accordingly, three new models are developed for processing

each data type and these models are briefly introduced as follows:

• Heterogeneous Object Co-Embeddings: In Chapter 3, we examine the prob-

lem of generating co-embeddings or pattern representations from two different

types of objects within a joint common space of controlled dimensionality,

where the only available information is assumed to be a set of pairwise rela-

tions or similarities between instances of the two groups (it is thus a weighted

bipartite graph). We propose a new method that models the embedding of each

object type symmetrically to the other type, subject to flexible scale constraints

and weighting parameters. The embedding generation relies on an efficient

optimisation despatched using matrix decomposition, that is also extended to

support multidimensional co-embeddings. We also propose a scheme of heuris-

tically reducing the parameters of the model, and a simple way of measuring

the conformity between the original object relations and the ones re-estimated

from the co-embeddings, in order to achieve model selection by identifying
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the optimal model parameters with a simple search procedure.

• Knowledge Graph Embedding: In Chapter 4, we consider to model the

Knowledge Graph (KG) [70], which is a particular type of multi-relational data.

A KG stores information in a graph structured format, such as a directed graph

whose nodes (entities) represent the objects and edges (links) correspond to the

relation types between objects. It has become a very important resource to sup-

port many AI related applications, i.e., word-sense disambiguation [71] [72],

search engine [73] [74], question answering [75]. Given that most KGs are

noisy and far from being complete, KG analysis and completion is required

to establish the likely truth of new facts and correct unlikely ones based on

the existing data within the KG. An effective way for tackling this is through

translation techniques which encode entities and links with hidden represen-

tations in embedding spaces. We aim at improving the existing translation

techniques by taking into account the multiple facets of the different patterns

and behaviours of each relation type. By considering relational representations

to be dependent on the entities they relate, the multi-modality of the relation

type over different entities is automatically and effectively formulated as a

projection matrix over the space spanned by the entity vectors. A new test

data partition scheme is also proposed to offer a better understanding of the

behaviour of a link prediction model.

• Link Prediction in Document Network Data: In Chapter 5, we deal with

the very imbalanced document network data. In the proposed approach, we

encode both the linkage validities and the nodes neighbourhood information

into embedding-based conditional probabilities. And the conformity between

the document network and the embedding-based conditional probabilities are

trained by combining two objective functions, one is a contrastive margin-

based criterion for aligning the conditional probability distribution with the

network structure, the other is a Kullback-Leibler divergence measuring the

mismatch between the attribute representation distribution and the embedding

data distribution. By combining the information of a linkage network and
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nodes’ attributes, our proposed method not only improves the link prediction

performance over methods using purely the nodes’ attribute data or the linkage

network data, but also gives good predictive performance when only the nodes’

attribute data is provided.

1.3 Thesis Outline and Related Publications

We organise the thesis as follows:

C H A P T E R 2 deals with the preliminaries by introducing various generic embed-

ding approaches for dimensionality reduction. The chosen methods studied in

this chapter represent the basic concepts and methodologies in this area. And

in fact, most existing works in relational data learning are largely based on

recognising some of these ideas and create novel extensions to them.

C H A P T E R 3 presents a co-embeddings generation model for the analysis of arbi-

trary relational information between heterogeneous objects (e.g., co-occurrence

rates between documents and terms). This model is highly efficient due to

simple matrix decomposition and a small set of parameters. The capabilities

of the proposed model are demonstrated for use in various machine learning

tasks, and are compared to existing algorithms with multiple synthetic and

real-world datasets from the text mining domain.

C H A P T E R 4 introduces an embedding model specifically for multi-relational data

analysis in the text domain. It is based on the hypothesis that the relationships

of the same type in a multi-relational graph should possess distinct but related

representations when associate with different node pairs. To reflect this hy-

pothesis, we encode every relationship as a translation vector between entities,

and relate every relationship vector to their associated relation label via simple

projection operators in the modelling. Our model requires only a minimal

parameterisation and provides a better model interpretability. Performance

comparison with the state-of-art relational learning algorithms and in-depth
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analysis of the algorithm It superiority is demonstrated in various performance

comparisons and deep analysis on two large KGs.

C H A P T E R 5 studies the document network data. We propose an embedding-

based method that encodes both the linkage network and the nodes’ attribute

representations into conditional probabilities. This model utilises a pairwise

margin-based criterion that better respect the linkage structure and is consis-

tently shown to achieve the best link prediction performance among all the

comparing methods.

C H A P T E R 6 concludes the whole thesis. We underline the contribution of this

thesis, recapture the key ideas, and propose several potential directions for

future research.

The publications produced from this research work are listed as follows:

• Wu, Y., Mu, T., Liatsis, P. and Goulermas, J.Y., 2017. Computation of het-

erogeneous object co-embeddings from relational measurements. Pattern

Recognition, 65, pp.146-163.

• Wu, Y., Mu, T. and Goulermas, J.Y., 2017. Translating on pairwise entity space

for knowledge graph embedding. Neurocomputing, 260, pp. 411-419.
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Chapter 2

Generic Embedding Approaches

Embedding approaches give each datapoint a location in a lower dimensional

space while preserving as much of the significant structure of the original high-

dimensional data as possible. In this chapter, we explore the generic embedding

models since they are building blocks for developing more complicated methods or

to process more complex data structure. Almost all the relational learning algorithms

are implicitly developed based on these generic embedding methods. For example,

the methods present in Chapter 3 and Chapter 5 in this thesis are partly dependent

on the ideas of the two generic embedding methods in this chapter, i.e., Laplacian

Eigenmaps (LE) [56] and Stochastic Neighbour Embedding (SNE) [76]. Hence, it is

of vital importance to investigate these generic methods in great detail.

Notations: From Section 2.1 to Section 2.4, we are given a set of datapoints

(samples) {xi}ni=1 of dimension d, where xi = [xi1, . . . , xid]
>, the goal of these

dimensionality reduction methods is to generate a set of embeddings {zi}ni=1 of di-

mension k (k � d), where zi = [zi1, zi2, . . . , zik]
> so that the embedding datapoints

in matrix Z = [zij] capture as much intrinsic structure of the original datapoint matrix

X = [xij] as possible. For those methods in Section 2.5 and Section 2.6, different

notations are used.
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2.1 Principal Component Analysis

2.1.1 Model Construction

Principal Component Analysis (PCA) [77] is a linear method that seeks a pro-

jection from high dimensional data onto a lower dimensional space, such that the

variance of the projected data is maximised. To begin with, we shall consider the

simpler case of projecting the high dimensional data onto a line first. Let w be the

unit vector in the direction of this line. Each data point xi is projected onto this line

with the location given by the scalar w>xi. Note that the mean of the projected data

points is calculated by
1

n

n∑
i=1

w>xi = w>x̄, (2.1.1)

where the d dimensional vector x̄ = 1
n

∑n
i=1 xi is the sample set mean.

So the variance of the projected data is given by

1

n

n∑
i=1

(w>xi −w>x̄)2 =
1

n

n∑
i=1

w>(xi − x̄)(xi − x̄)>w

= w>
[

1

n
(X− 1

n
1n×nX)>(X− 1

n
1n×nX)

]
w

= w>Sw, (2.1.2)

where S is the empirical sample covariance matrix defined by

S =
1

n
(X− 1

n
1n×nX)>(X− 1

n
1n×nX). (2.1.3)

Thus, the projected variance along the direction on w is given by w>Sw. To

maximise it with regards to the projection vectorw, we are aware of the normalisation

constraint w>w = 1. So the Lagrangian function for this constrained optimisation

problem is defined as

L(w, λ1) = w>Sw + λ1(w>w − 1) (2.1.4)

By setting the derivative with respect to w equal to zero, we have

Sw = λ1w (2.1.5)
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Thus, all the stationary points (λ1,w) for this optimisation problem are eigen-

value and eigenvector pairs of the covariance matrix S. The associated maximal

quantity of the variance is

w>Sw = w>λ1w = λ1, (2.1.6)

so the variance will be maximised if w equals to the eigenvector corresponding to

the largest eigenvalue λ1, of the covariance matrix S. This eigenvector is known as

the first principal component.

2.1.2 Multidimensional Extension

In the above section, PCA only considers projecting data onto a one-dimensional

space while preserves as much data variance as possible. Now, suppose the data

sample is projected onto a k dimensional subspace, and assume that the columns of

Wk = [w1, . . . ,wk] forms an orthogonal basis for this subspace. This indicates that

W>
k Wk = Ik, (2.1.7)

where Ik is the identity matrix of size k.

Similar to the above section, PCA maximises a "projected variance" onto this

space which is defined as the sum of variances in each axis. As seen from Eq. (2.1.2),

it is given by

k∑
i=1

w>i Swi = Tr(W>
k SWk). (2.1.8)

Thus, the k dimensional linear space is found by solving the following optimisa-

tion problem

argmax
W>

k Wk=Ik,

Wk∈Rn×k

Tr(W>
k SWk) (2.1.9)

Notice that when k = n, we have Tr(W>
k SWk) = Tr(SWkW

>
k ) = Tr(S), it

indicates that the total variance of the data is invariant with respect to any other

orthogonal basis.
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2.1.3 Eigenvector Solution

The trace optimisation problem in Eq. (2.1.9) is a well-known result of linear

algebra that will be exploited repeatedly in this thesis. An overview of a variety of

such problems is discussed and solved in [78]. We give an effective proof to derive

the eigenvalue solution for this problem in this section.

Firstly, the empirical variance matrix S can be decomposed as

S = UΛU>, (2.1.10)

where Λ = Diag(λ1, . . . , λn) is a diagonal matrix whose entries are the eigenvalues

of S and U is an orthogonal matrix containing the associated eigenvectors. Here, we

assume λq decreases with increasing subscript q.

Let P = U>Wk, it is easy to see that the columns of P still forms an orthogonal

basis for a k dimensional subspace. We can equivalently rewrite the optimisation

problem Eq. (2.1.9) with respect to P as

argmax
P>P=Ik,
P∈Rn×k

Tr(P>ΛP). (2.1.11)

And for this trace quantity, we can further prove that

Tr(P>ΛP) =
n∑
i=1

λi(
k∑
j=1

p2
ij)

≤ λ1 + . . .+ λk. (2.1.12)

This inequality is an immediate consequence of
∑n

i=1(
∑k

j=1 p
2
ij) = Tr(P>P) =

Tr(Ik) = k and
∑k

j=1 p
2
ij = ‖P>ei‖2

2 ≤ ‖ei‖2
2 = 1 (ei is the standard basis vector

with 1 in the ith position), where the quantity ‖P>ei‖2
2 has to be smaller than the

squared length of ei since it is the squared length of the projection of ei onto the

column space of P. The equality sign holds if and only if the columns of P and the

set of standard basis vector {e1, . . . , ek} span the same subspace. Hence, Wk = UP

is an orthonormal basis of the eigenspace associated with the first k eigenvalues.

In fact, PCA aligns each principal component with the eigenvectors. Let u1,

u2, . . . ,uk be the eigenvectors corresponding to the k largest eigenvalues λ1, . . . , λk
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of S. The qth principal component is computed as the qth eigenvector uq. Con-

sequently, if we denote Uk = [u1, . . . ,uk], then the associated k dimensional

embedding is given by

Z = XUk. (2.1.13)

2.2 Laplacian Eigenmaps

2.2.1 Model Construction

LE [56] is a locality neighbourhood preserving method that constructs the lower

dimensional representation based on the data neighbourhood structure. It first builds

a weighted undirected graph G = (V,E) with edges connecting nearby points to

each other. The weighted adjacency matrix W = [wij] of this graph should reflect

the neighbourhood relationships between data points, which is chosen either as the

Heat kernel with parameter t

wij =

 e−
‖xi−xj‖

2

4t if ‖xi − xj‖ < ξ

0 otherwise
, (2.2.1)

or simply

wij =

{
1 if ‖xi − xj‖ < ξ

0 otherwise
. (2.2.2)

To keep the neighbouring data points staying as close together as possible, LE

chooses to minimise the following objective function

n∑
i=1

n∑
j=1

‖zi − zj‖2
2wij, (2.2.3)

under appropriate constraints. Intuitively, this objective function incurs a heavy

penalty for mapping close data points i, j far apart since closer points refers to larger

weight value wij . Thus, minimising such an objective function tends to keep the

mapped points close when their high dimensional counterparts are close.

Let D be the degree matrix of the graph G with its diagonal entries defined as

the column (or row, since W is symmetric) sums of W. And the Laplacian matrix

Yu Wu



2.2 Laplacian Eigenmaps 22

is L = D−W, which is positive semi-definite. It turns out that Eq. (2.2.3) can be

rewritten as
n∑
i=1

n∑
j=1

‖zi − zj‖2
2wij =

n∑
i=1

n∑
j=1

(zi − zj)>(zi − zj)wij

=
n∑
i

z>i zi(
n∑
j

wij) +
n∑
j

z>j zj(
n∑
i=1

wij)− 2
n∑
i=1

n∑
j=1

z>i zjwij

= 2Tr(Z>DZ)− 2Tr(Z>WZ)

= 2Tr(Z>LZ). (2.2.4)

We now minimised Eq. (2.2.4) with respect to the data embedding matrix Z.

Clearly, this has to a constrained minimisation to remove the arbitrary scaling factor

for the mapped points in Z. LE requires Z to be D-orthogonal

Z>DZ = I. (2.2.5)

Also, LE removes the arbitrary translation factor by centring the embedded points

with weights in D

Z>D1 = 0, (2.2.6)

where 1 is n-length the vector of ones.

Finally, the minimisation problem reduces to finding

argmin
Z>DZ=I,

Z>D1=0, Z∈Rn×k

Tr(Z>LZ). (2.2.7)

This optimisation problem can be solved in a similar manner to that of Eq. (2.1.9).

2.2.2 Solving the Constrained Optimisation Problem

We define the normalised graph Laplacian matrix L̃ = D−
1
2 LD−

1
2 , it is easy

to show that this real symmetric matrix is positive semi-definite. We denote its

eigendecomposition as L̃ = UΛU> with Λ = Diag(λ1, . . . , λn) the diagonal matrix

whose entries are the eigenvalues in ascending order and U is an orthogonal matrix

containing the associated eigenvectors. Here, we assume λq increases with increasing
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subscript q. At first, we show that D
1
2 1 is an eigenvector with eigenvalue 0 since

L̃(D
1
2 1) = D−

1
2 LD−

1
2 (D

1
2 1)

= D−
1
2 L1

= D−
1
2 (D−W)1

= 0. (2.2.8)

And it is the only eigenvector for eigenvalue 0 if we assume a connected graph

G [56].

Therefore, If we substitute P = U>D
1
2 Z into the Eq. (2.2.7), the condition of

Z>D1 = 0 is converted as

P>U>D
1
2 1 = P>e1 = 0, (2.2.9)

where e1 is a unit vector with 1 in the first position and we have made use of the fact

that λ1 = 0 and all eigenvectors are orthogonal to derive this. Thus, to satisfy the

condition Z>D1 = 0, we simply put the first row of P to be all zeros.

And Eq. (2.2.7) turns out to be

argmin
P>P=I,

P>e1=0, P∈Rn×k

Tr(P>ΛP) (2.2.10)

Again, we have
∑n

i=2(
∑k

j=1 p
2
ij) = Tr(P>P) = Tr(Ik) = k,

∑k
j=1 p

2
ij =

‖P>ei‖2
2 ≤ ‖ei‖2

2 = 1, λ1 = 0, the trace Tr(P>ΛP) can be rewritten as

Tr(P>ΛP) =
n∑
i=2

λi(
k∑
j=1

p2
ij)

≥ λ2 + . . .+ λk+1. (2.2.11)

The equality sign holds if and only if the columns of P and the set of standard

basis vectors {e2, . . . , ek+1} span the same subspace. Hence, D
1
2 Z = UP is an

orthonormal basis of the eigenspace associated with the 2nd to the (k+ 1)th smallest

eigenvalues.

Finally, let Uk be the eigenvector matrix correspond to the 2nd to the (k + 1)th

smallest eigenvalues of L̃, LE finds the k dimensional embedding as

Z = D−
1
2 Uk. (2.2.12)
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2.3 Locality Linear Embedding

2.3.1 Model Construction

LLE [79] also assumes the data are sampled from some smooth underlying

manifold, it then constructs the nonlinear neighbourhood preserving mapping by

approximately reconstructing the locally linear geometry of the manifold in the lower

dimensional space. Provided n points x1, . . . ,xn are well-sampled such that each

data point and its neighbours are lying on or close to a locally linear patch of the

manifold. In the formulation of LLE, the geometry of these patches are characterised

by minimising the following cost function

E(W) =
n∑
i=1

‖xi −
n∑
j=1

wijxj‖2
2, (2.3.1)

where the weight matrix W = [wij] is the linear coefficients that reconstruct each

data point from its neighbours. Two constraints are imposed on W: first, each data

point xi is reconstructed only from its neighbours, wij = 0 is enforced if xj does

not belong to this set; second, the rows of W must sum to one:
∑

j=1wij = 1. The

second restriction ensures that the optimal weights W to the cost function E(W)

is invariant to rotations, rescalings, and translations of the data. Consequently, the

weights in W can reflect the intrinsic geometric properties of the manifold rather

than properties that depend on a particular frame of reference.

After obtaining the optimal W that characterises the local geometry in the

original data space, LLE expects to use it to reconstruct the embedded points in a

lower dimensional space. In the same way to the previous cost function, the following

objective function is chosen to minimise

Φ(Z) =
n∑
i=1

‖zi −
n∑
j=1

wijzj‖2
2. (2.3.2)

While opposed to optimising weights wij in Eq. (2.3.1), here the weights wij are

fixed for finding the embedded points in Z.
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2.3.2 Computing the Weight Matrix

We first solve the constrained least squares problem for minimising E(W). In

fact, we can minimise each term in E(W) separately for calculating the optimal

weight matrix W row by row.

Therefore, we only need to consider a single patch with a data point x, its K

nearest neighbours η1, . . . ,ηK and the reconstruction weights w = [wj] that sum to

one. The cost for this patch is written as

ξ = ‖x−
K∑
j=1

wjηj‖2
2

= ‖
K∑
j=1

wj(x− ηj)‖2
2

=
K∑
j=1

K∑
l=1

wjwl(x− ηj)>(x− ηl)

= w>Cw, (2.3.3)

where we have introduced the local covariance matrix C = [cjl],

C =


(x− η1)>

...

(x− η1)>

[(x− η1), . . . , (x− η1)
]
. (2.3.4)

From its construction, we see that this covariance matrix is symmetric and positive

semidefinite.

To enforce the constraint 1>w = 1 (1 is the vector with 1 in each position), the

Lagrangian function is defined as

L(w, µ) = w>Cw − µ(1>w − 1), (2.3.5)

where µ is the associated Lagrange multiplier.

Differential L(w, µ) with respect to µ, we have

Cw =
µ

2
1 (2.3.6)
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Thus, w can be computed through

w =
µ

2
(C + αI)−11, (2.3.7)

where α > 0 is a regularisation term to avoid invertibility and singularity problems.

The Lagrange multiplier µ = 2/
[
1>(C + αI)−11

]
is picked to properly normalise

w.

2.3.3 Computing the Embedding Coordinates

The embedding coordinates need to be found by minimising Φ(Z) in Eq. (2.3.2),

which reduces to finding

Φ(Z) =
n∑
i=1

‖zi −
n∑
j=1

wijzj‖2
2

=
n∑
i=1

z>i zi −
n∑
i=1

n∑
j=1

wijz
>
i zj +

n∑
i=1

n∑
j=1

wijz
>
j zi +

n∑
i=1

(
n∑
j=1

wijzj)
>(

n∑
l=1

wilzl)

= Tr
(
Z>(I−W −W> + W>W)Z

)
. (2.3.8)

Define the n × n matrix M = I −W −W> + W>W. Notice that the above

calculation also shows that M is positive semidefinite. And

Φ(Z) = Tr(Z>MZ). (2.3.9)

This looks very familiar since we have already dealt similar trace optimisation

problem of this in Section 2.1 and Section 2.2. Proceeding as we did with LE, we

add a constraint on the embedded points to remove an arbitrary scale factor

Z>Z = I, (2.3.10)

and removes the degree of arbitrary translation by requiring the datapoints to be

centred on the origin

Z>1 = 0, (2.3.11)

where 1 is defined similarly as a vector of all ones.

Using the same optimisation technique for solving the minimisation problem of

Eq. (2.2.7), the embedded points are given by the eigenvector matrix Uk correspond
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to the 2nd and (k + 1)th smallest eigenvalues of M. Formally, LLE finds the k

dimensional embedding points as

Z = Uk. (2.3.12)

2.4 Stochastic Neighbour Embedding

2.4.1 Model Construction

SNE [76] is a stochastic dimensionality reduction technique that tries to place

the objects in a low dimensional space so as to optimally preserve the potential

neighbours of the objects. It starts by encoding the high dimensional data structure

into conditional or joint probabilities. Specifically, the conditional probability, pj|i,

that xi would pick xj as its neighbour, is defined as

pj|i =
exp (−‖xi − xj‖2

2/2σ
2
i )∑

l 6=i exp (−‖xi − xl‖2
2/2σ

2
i )
, pi|i = 0, (2.4.1)

where a reasonable σi should enforce pj|i to be relatively high for nearby datapoints

and low for widely separated datapoints. We will present the method for determining

σi in the later section.

For the low dimensional mapping, it is possible to compute a similar conditional

probability, qj|i, as

qj|i =
exp (−‖zi − zj‖2

2/2σ
2)∑

l 6=i exp (−‖zi − zl‖2
2/2σ

2)
. (2.4.2)

For simplicity, SNE does not employ different values of σ for every datapoint in its

low dimensional map and it is set to 1√
2

1.

The aim of SNE is to find the low-dimensional embeddings z1, . . . ,zn to match

the corresponding distributions qj|i and pj|i as well as possible. This is carried out

through minimising a sum of Kullback-Leibler divergence between the conditional

distributions Pi = {pj|i} and Qi = {qj|i} over all the datapoints:

C =
n∑
i=1

KL(Pi‖Qi) =
n∑
i=1

n∑
j=1

pj|i log
pj|i
qj|i

. (2.4.3)

1Setting σ to another value will only rescale the final map.
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Notice that this cost function focuses on retaining the local structure of the data:

it incurs a large cost for using distant mapped points to represent nearby datapoints

(i.e., for using a small qj|i to model a large pj|i); whereas the cost for using nearby

mapped points to represent distant datapoints is almost infinitesimal.

DifferentialC with respect to the embedding point zi has a surprisingly interesting

form
∂C

∂zi
= 2

∑
j

(pj|i − qj|i + pi|j − qi|j)(zi − zj), (2.4.4)

where the mismatch (pj|i − qj|i + pi|j − qi|j) between the pairwise similarities of

the datapoints and mapped points can be interpreted as creating forces that repel or

attract zi and zj . Therefore, the minimisation problem of Eq. (2.4.3) can be solved

via gradient-based optimisation methods.

2.4.2 Setting the Model Parameters

The remaining problem is to select the parameter σi to derive a proper probability

distribution Pi. Since any probability distribution Pi needs to be informative to drive

the learning process, it is natural to employ entropy as a measure of the randomness

of this information. Let the Shannon entropy H(Pi) to be measured in bits

H(Pi) = −
n∑
j=1

pj|i log2(pj|i). (2.4.5)

SNE searches for the value of σi that makes the entropy of each distribution Pi equals

to log2(K), where K is a hyperparameter set by hand.

Next, σi need to be unique for any presetting K > 0. We prove this by noticing

that the entropy of the distribution Pi increases monotonically with the parameter

σi. Consider a distribution P = {pj} controlled by t as a simplified version to that

distribution in Eq. (2.4.1)

pj =
exp(−aj/t)∑
k exp(−ak/t)

, (2.4.6)

where the positive scalars {a1, a2, . . . an} are surrogate variables for the Euclidean

distances in Eqs.(2.4.1) and t represents σ2
i , is non-negative.
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Differential the Shannon entropy H(P ) with respect to t, we have

∂H

∂t
= −

∂
[∑

j(pj log2 pj)
]

∂t

= −
∑
j

∂(pj log2 pj)

∂pj

∂pj
∂t

= −
∑
j

∂pj
∂t

log2pj + ln 2
∂
∑

j pj

∂t
(
∂
∑

j pj

t
=
∂1

t
= 0)

= −t−2
∑
j

[
ajpj − (

∑
k

akpk)pj
]
log2pj

= −t−2
∑
j

[
ajpj − (

∑
k

akpk)pj
][
log2[exp(−aj/t)]− log2(

∑
k

exp(−ak/t))
]

= −t−2
∑
j

[
ajpj − (

∑
k

akpk)pj
]
log2[exp(−aj/t)]

= t−3 ln 2
[∑

j

a2
jpj − (

∑
j

ajpj)
2
]

= t−3 ln 2
[∑

j

a2
jpj
∑

pj − (
∑
j

ajpj)
2
]
≥ 0. (Cauchy-Schwarz inequality)

Thus, since we have ∂H(P )
σ2 ≥ 0, the entropy H(P ) must increase monotonously with

σ.

2.5 Canonical Correlation Analysis

2.5.1 Theoretical Foundations

Canonical Correlation Analysis (CCA) [80] [81] extracts the lower dimensional

representations from two sets of correlated multidimensional variables, e.g., two

views of the same semantic object, such that the strong relationships between these

two sets of multidimensional variables are revealed. In particular, it projects the two

sets of variables onto a common semantic space, and maximises the correlations their

transformed data co-ordinates.

Formally, the input to CCA is a set of high dimensional datapoints S = {(x1,y1),

. . . , (xn,yn)} of two random variables {x,y}, where each pair of measurements xi
(of dimension d1) and yi (of dimension d2) are supposed to have a strong association.
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We represent the x measurements {x1, . . . ,xn} as rows in a n× d1 matrix X and

the y measurements in n× d2 matrix Y.

CCA defines two directions wx and wy for projecting the measurements onto

the same axis, with the new coordinates given as zx = Xwx and zy = Ywy, which

can be viewed as sample measurements of the two transformed random variables

x′ = x>wx and y′ = y>wy. The correlation coefficient between the two new

random variables are computed as

ρ = corr(x′, y′)

=
E [(x′ − E(x′)(y′ − E(y′)]

σx′σy′

=
E
[
(x>wx − x̄>wx)(y

>wy − ȳ>wy))
]√

E [(x>wx − x̄>wx)2] E [(y>wy − ȳ>wy)2]
, (2.5.1)

where E is the expected value operator, σx′ and σy′ are standard deviation of random

variables x′ and y′. x̄ and ȳ are the expected value of random variables x and y,

respectively.

CCA aims to find the directions wx and wy that maximises the the sample

correlation of the embedded measurements, which is written as

ρ̄(wx,wy) =
Ê
[
w>x (x− x̄)(y − ȳ)>wy

]√
Ê [w>x (x− x̄)(x− x̄)>wx] Ê

[
w>y (y − ȳ)(y − ȳ)>wy

]
=

w>x Ê
[
(x− x̄)(y − ȳ)>

]
wy√

w>x Ê [(x− x̄)(x− x̄)>]wxw>y Ê [(y − ȳ)(y − ȳ)>]wy

,

where Ê is the empirical expectation operator.

Note that Ê
[
(x− x̄)(y − ȳ)>

]
, Ê
[
(x− x̄)(y − ȳ)>

]
and Ê

[
(y − ȳ)(y − ȳ)>

]
are sample covariance matrices, their analytic forms can be calculated similarly as in

Eq. (2.1.3). Following the convention of [81], we denote these matrices as Cxy,Cxx

and Cyy, respectively.

Hence, the optimisation problem for CCA can be rewritten as

argmax
wx,wy

ρ̄(wx,wy) =
w>x Cxywy√

w>x Cxxwxw>y Cyywy

,
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To make the optimisation problem well-posed, CCA imposes two constraints as

w>x Cxxwx = 1, (2.5.2)

w>y Cyywy = 1. (2.5.3)

It can be noticed that Cxx and Cyy are real, symmetric and positive semidefinite

matrix.

2.5.2 Multidimensional Extension

From the above definition of CCA, only one maximally correlated axis is recov-

ered. The additional axes can be computed to be that which maximises the correlation

amongst all possible directions non-redundant to those already considered. Therefore,

CCA formulates the problem of finding the k maximally correlated axes as follows,

argmax{Wx,Wy} Tr
(
W>

x CxyWy

)
s.t. W>

x CxxWx = Ik, W>
y CyyWy = Ik,

and Off
(
W>

x CxyWy

)
= 0.

(2.5.4)

Where Off (·) = 0 means all off-diagonal elements of the associated matrix are zeros.

Again, this is a trace optimisation problem that can be dealt in a similar manner

as those in Section 2.1 and Section 2.2. Let matrix C
− 1

2
xx CxyC

− 1
2

yy to be decomposed

as UΣV>, where columns of U and V contain the left and right singular vectors,

the diagonal entries {σi}min(d1,d2)
i=1 of Σ are the non-negative real singular values.

Substitute P = U>C
1
2
xxWx and Q = V>C

1
2
yyWy into the above optimisation

problem, it follows that

argmin{P,Q} Tr
(
P>ΣQ

)
s.t. P>P = Ik, Q>Q = Ik,

and Off
(
P>ΣQ

)
= 0.

(2.5.5)

Since we have

Tr
(
P>ΣQ

)
= Tr

(
P>ΣQ

)
=

min (d1,d2)∑
i=1

σi

k∑
j=1

pijqij (2.5.6)
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We show that

k∑
j=1

pijqij ≤

√√√√(
k∑
j=1

p2
ij)(

k∑
l=1

q2
il) (Cauchy-Schwarz inequality)

=
√
‖P>ei‖2

2‖Q>ei‖2
2

≤
√
‖ei‖2

2‖ei‖2
2 = 1 (2.5.7)

and

min(d1,d2)∑
i

k∑
j=1

pijqij ≤
min(d1,d2)∑

i=1

√√√√(
k∑
j=1

p2
ij)(

k∑
l=1

q2
il) (Cauchy-Schwarz inequality)

≤

√√√√(

min(d1,d2)∑
i=1

k∑
j=1

p2
ij)(

min(d1,d2)∑
i=1

k∑
l=1

q2
il)

(Cauchy-Schwarz inequality)

≤

√√√√(

d1∑
i=1

k∑
j=1

p2
ij)(

d2∑
i=1

k∑
l=1

q2
il)

=
√

Tr (P>P) Tr (Q>Q) = k (2.5.8)

Thus, we conclude that

Tr
(
W>

x CxyWy

)
= Tr

(
P>ΣQ

)
≤

k∑
i=1

σi, (2.5.9)

and CCA chooses the projection matrices Wx and Wy as

Wx = C
− 1

2
xx Uk, (2.5.10)

Wy = C
− 1

2
yy Vk, (2.5.11)

where the columns of Uk and Vk are the left and right singular vectors corresponding

to the k largest singular values of the normalised covariance matrix C
− 1

2
xx CxyC

− 1
2

yy .

Setting k = 1, the directions wx and wy in the previous section are derived.
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2.6 Restricted Boltzmann Machine

2.6.1 Theoretical Foundations

Restricted Boltzmann Machine (RBM) is an undirected graphical model [82]

associated with a bipartite conditional independence structure as shown in Figure

2.1. The nodes of this bipartite are divided into two disjoint sets – so called visible

and hidden units – the visible units correspond to the observable components (e.g.,

attributes, features) of the data, whereas the hidden units are never observed and are

expected to extract relevant hidden features from the data. Because of its specific

dependence structure (only have visible-hidden connections), the inferences on RBMs

are much easier and faster than general undirected graphical models.

v1 v2 v3 v4

h1 h2 h3

Figure 2.1: A graphical depiction of an RBM with 4 visible and 3 hidden units.

Let d visible random variables to be {v1, . . . , vd} and k hidden variables denoted

as {h1, . . . , hk}. And suppose the observed training data are given in set D =

{v(1), . . . ,v(n)}. Here, We focus on the commonly studied cases of using binary

units where vj and hi ∈ {0, 1}. The joint probability distribution under this model is

expressed as exponentials

p(v,h) =
1

Z
exp{−E(v,h)}, (2.6.1)

with the linear energy function E(v,h) to be defined as:

E(v,h) = −b>v − c>h− h>Wv, (2.6.2)
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where W represents the weights connecting hidden and visible units and b, c are the

offsets for the visible and hidden nodes respectively. Z is the partition function that

is used to normalise the probability distribution p(v,h).

In RBMs, visible and hidden units are conditional independent given one-another

since there are no visible-visible and hidden-hidden connections. Using this property,

we can write the decomposition of the conditional probability as:

p(h|v) =
k∏
i

p(hi|v), (2.6.3)

p(v|h) =
d∏
j

p(vj|h). (2.6.4)

Also, it is easy to verify that

P (hi = 1|v) = σ(ci + Wi·v), (2.6.5)

P (vj = 1|h) = σ(bj + h>W·j), (2.6.6)

where σ(x) = 1/(1 + e−x) is the sigmoid activation function, Wi· and W·j are the

ith row and jth column of the weight matrix W, respectively.

From Eqs. (2.6.3-2.6.6), we see that computing p(h|v) and p(v|h) given the

free parameters W, b and c are surprisingly simple. Consequently, the samples in

the joint probability distribution p(v,h) of an RMB is easy to obtain: block Gibbs

sampling can be performed by sampling the new state h for the hidden units based

on p(h|v) and sampling new state v for the visible units based on p(v|h). This is

beneficial for approximating the negative log-likelihood gradient as we will see in

the following.

2.6.2 Approximations of Negative Log-likelihood Gradient

For training an RBM model, we are interested in its marginal distribution of

observed samples

p(v) =
1

Z

∑
h

p(v,h) =
1

Z

∑
h

e−E(v,h)

=
1

Z
e−F(v), (2.6.7)
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where the free energy F(v) is defined as

F(v) = − log
∑
h

e−E(v,h), (2.6.8)

and the partition function Z can be expressed as Z =
∑

v,h e
−E(v,h) =

∑
v e
−F(v).

As for the RBM, it can be simplifies to

F(v) = −b>v −
∑
i

log(1 + e(ci+Wi·v)). (2.6.9)

An RBM model is learnt by minimising the empirical negative log-likelihood of

the training data, which is expressed as

`(W, b, c,D) = − 1

n

∑
v(i)∈D

log p(v(i))

= − 1

n

∑
v(i)∈D

[
F(v(i)) + log(

∑
v

e−F(v))

]
(2.6.10)

Then, the data negative log-likelihood gradient with respect to any of the free

parameters W, b or c has the form

− ∂log p(v(i))

∂θ
=
∂F(v(i))

∂θ
−
∑
v̂

p(v̂)
∂F(v̂)

∂θ
, (2.6.11)

where θ refers to either W, b or c.

It is usually difficult to determine this gradient analytically, as it has to compute

the term Ep[
∂F(v)
∂θ

], which is an expectation over all possible configurations of the

multivariate random variable v under the marginal distribution p(v) formed by the

model. But we can approximate it as the expectation over a fixed number of model

samples, which are denoted as N. And the gradient can then be approximated as:

− ∂log p(v(i))

∂θ
=
∂F(v(i))

∂θ
− 1

|N|
∑
v̂∈N

∂F(v̂)

∂θ
(2.6.12)

where the elements v̂ can be sampled according to the block Gibbs sampling proce-

dure mentioned in the above section. With the gradient practical to compute, RBM

models are learnt by gradient based optimisation methods, such as stochastic gradient

descent.
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2.7 Conclusion

In this chapter, we have scrutinised the a number of machine learning algorithms

in the field of dimensionality reduction. These generic algorithms lay the foundations

for developing new embedding approaches and their key ideas are repeatedly used

and developed in the whole field of machine learning. We summarise their main

ideas here: a) PCA uses an orthogonal transformation to convert a set of observation

variables into a set of variables called principle components. In this procedure, PCA

aims to maintain as much of the variability in the data as possible. b) LE, LLE and

SNE are all locality preserving methods. They differ from one another in their ways of

encoding the locality information, i.e., making the use of neighbourhood graphs, local

linear structures or probability distributions. c) CCA explores relationships between

two sets of multivariate variables, and maximises the correlation between pairs of

transformed versions of these variables. d) An RBM is a instance of generative

stochastic models. It defines a parametric probability distribution over its set of

inputs and the learning is carried out by minimising the mismatch between the input

and the probability distribution.

We have come across the trace optimisation problem on numerous occasions

(such as in Eqs. (2.1.9, 2.2.7, 2.3.9, 2.5.4)). This problem is important to almost

all the matrix factorisation methods, and due to its convexity the analytic form of

solution can be given directly. In this chapter, we have closely studied various forms

of this trace optimisation problem and clarifying its mathematic formulation and

solution will certainly be helpful to new algorithm designs (e.g., properly imposing

constraints).

From next chapters we will present our consecutive works in order. It should be

noted that our proposed methods in Chapters 3 and 5 rely heavily on the formulations

of LE and SNE, respectively. It is encouraged to compare them with the LE and SNE

demonstrated in this chapter.
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Chapter 3

Heterogeneous Object

Co-embeddings from Relational

Measurements

3.1 Introduction

In Chapter 2, we have reviewed some of the conventional embedding methods

that build the low dimensional mappings from the high dimensional feature repre-

sentations. Such methods are valuable tools for data preprocessing, data analysis

and information visualisation. However, these techniques only embed homogeneous

(i.e., of a single type) data objects into a low-dimensional space given their higher

dimensional feature representations. While in many real-world applications, data

may come from heterogeneous sources, such as genes and symptoms, documents

and words or images, review articles from different domains. It could therefore be

useful to simultaneously handle heterogeneous types of data, by mapping them into

a single common space.

Various data processing methods have been proposed to address the problem of

handling heterogeneous types of data. Examples include methods targeting specific

applications, such as biological networks [83, 84], semantic analysis [64, 85] and in-

formation retrieval [86, 87]. Heterogeneous data analysis has also been performed by
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more generic methods. For instance, Correspondence Analysis (CA) [88] represents

the rows and columns of a data matrix as points in a space of low-dimensionality.

Latent Semantic Indexing [89] is a popular information retrieval embedding method,

frequently used to embed documents and words in a common space [90]. CCA [91]

attempts to maximise the correlation between two sets of measurements. Similarly,

variations of nonmetric Mutidimensional Scaling [64] have been used to place the

corresponding reference data as close as possible, so that the patterns are aligned in

the common space. More recent methods [92] can learn the joint representation from

multiple datasets that lie on multiple manifolds. However, most of these techniques

require the availability of pattern information from the different data representations.

The heterogeneous embedding problem considered in this work, only assumes

the existence of a relational similarity matrix (correspond to the bipartite relations

in Section 1.1.1) between two sets of objects of possibly differing cardinality. This

is also known as joint embedding or co-embedding [28, 86, 93]. The goal is to

generate co-embeddings, where both groups of objects are embedded in a joint space.

Various stochastic methods have been previously proposed to achieve this, such as

Parametric Embedding [93], Co-occurrence Data Embedding (CODE) [63], Bayesian

Co-occurrence Data Embedding [86], as well as a dynamic embedding model that

processes a sequence of co-occurrence data changing over time [94]. These algo-

rithms treat the co-occurrence object pairs as being generated by a Gaussian mixture

in the embedding space, and then recover the embedding that maximises the like-

lihood of the observed data. An alternative strategy for computing co-embeddings

from similarities between heterogeneous objects is Automatic Co-embedding with

Adaptive Shaping (ACAS) [28] based on matrix factorisation, which generalises

ideas from embedding algorithms such as [88,89,95,96], and controls the factors that

generate different shapes and distributions of column and row objects in the common

space. There are also methods that are specialised at learning embeddings from

a binary relation matrix between two groups of objects. For instance, Maximum-

Margin Matrix Factorization [97] attempts to fit a binary target matrix with a low-rank

inner product matrix between the embedding vectors of the row and column objects.

Another method estimates the data distribution of the row and column objects from

Yu Wu



3.2 Related Methods 39

binary co-occurrence data using a Deep Embedding Model [98].

In this work, to generate heterogeneous patterns into a unified embedding space,

we propose a new method that models the embedding of each group with respect

to the other group using suitable weightings. We only assume the availability of

the relational similarity information between representatives from each group. The

co-embedding generation relies on an efficient joint model optimisation based on

a matrix decomposition, accompanied by heuristics that permit a drastic reduction

of the scaling parameters. The proposed method is compared with state of the art

methods using multiple synthetic and real-world datasets.

We organise the rest of this chapter as follows. Section 3.2 briefly reviews

some related heterogeneous embedding algorithms. In Section 3.3, we introduce

the proposed algorithm, its model, optimisation scheme, as well as its parameter

identification mechanism. The experimental results and comparative analyses are

reported in Section 3.4, while Section 3.5 concludes the work.

3.2 Related Methods

In the following subsections, we summarise existing algorithms to generate the

heterogeneous co-embeddings from a relational similarity matrix. Before that, we

introduce the mathematical definition and the objective of the problem.

We are given an m× n input matrix R = [rij], which is assumed to be nonneg-

ative and without the existence of rows or columns made entirely of zero entries.

These entries represent relations (similarities) between the m (row) objects {xi}mi=1

from group X and n (column) objects {yj}nj=1 from group Y. Such objects can be

heterogeneous and are not assumed to be explicitly representable. The objective is

to find a joint embedding of these objects in a common space of dimensionality k,

whereby the incurred geometry reflects reasonably well the similarities between the

row and column objects. We represent these heterogeneous embeddings through

the m × k embedding matrix Zx and the n × k matrix Zy, for the row and the

column objects, respectively. The embedded patterns are the rows of these matri-

ces, and correspond to the vectors z(x)
i = [z

(x)
1i , z

(x)
2i , . . . , z

(x)
ki ]> for objects xi, and
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z
(y)
j = [z

(y)
1j , z

(y)
2j , . . . , z

(y)
kj ]> for objects yj .

3.2.1 Co-occurrence Data Embedding

CODE [63] is based on a statistical model which interprets ijth element of the

input matrix R as empirical joint probabilities. That is, the set of object pairs {xi, yj}
are assumed to be drawn from a discrete joint distribution p(X, Y ) of random variable

X ∈ {x1, . . . , xm} and Y ∈ {y1, . . . , yn}. And the empirical joint distribution

p̄(X, Y ) is obtained by dividing the observed relation matrix by its grand total

rij/(
∑m

i=1

∑n
j=1 rij). Then CODE relates the unknown joint distribution p(X, Y )

to the underlying low dimensional points {z(x)
i }mi=1 and {z(y)

j }nj in such a way that

a pair of objects that are embedded as two nearby points in the map have a higher

statistical interaction than a pair that is embedded as two distant points. Formally, the

squared Euclidean distance between the embedding points z(x)
i and z(y)

j is denoted

by

d2
i,j = ‖z(x)

i − z
(y)
j ‖2

2 =
k∑
q=1

(z
(x)
qi − z

(y)
qj )2. (3.2.1)

To model the statistical relationships between objects, CODE transforms the

squared Euclidean distances into probabilities via the exponential form e−d
2
i,j . It

either construct the joint distribution symmetrically via

p(xi, yj) ≡
1

h(z
(x)
i , z

(y)
j )

p̄(xi)p̄(yj)e
−d2i,j , (3.2.2)

or asymmetrically as

p(xi, yj) = p̄(xi)p(yj|xi) ≡
1

h(z
(x)
i )

p̄(xi)p̄(yj)e
−d2i,j , (3.2.3)

where h(z
(x)
i , z

(y)
j ) =

∑m
i=1

∑n
j=1 p̄(xi)p̄(yj)e

−d2i,j and h(z
(x)
i ) =

∑n
j=1 p̄(yj)e

−d2i,j

are the normalisation terms, p̄(xi) =
∑n

j=1 p̄(xi, yj) and p̄(yj) =
∑m

i=1 p̄(xi, yj) are

the empirical margins. In fact, these models are constructed by requiring the ratio

r̄p =
p(xi,yj)

p̄(xi)p̄(yj)
to be proportional to e−d

2
i,j . They have been shown to outperform other

models which do not address both margins p̄(X) and p̄(Y ).

The degree of the correspondence between input distributions p̄(X, Y ) and para-

metric distributions p(X, Y ) is then measured using the negative log-likelihood
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function

`(Zx,Zy) = −
m∑
i=1

n∑
j=1

p̄(xi, yj) log p(xi, yj) (3.2.4)

The negative log-likelihood in this case is a non-concave function, one can simply

find the local optimum by using a standard conjugate gradient descend algorithm.

However, since the joint probabilities p(X, Y ) depends only on the squared Euclidean

distances between points in X and in Y, i.e. , considering the asymmetrical model in

Eq. (3.2.3), the negative log-likelihood can be rewritten as

`(Zx,Zy) = −
m∑
i=1

n∑
j=1

p̄(xi, yj)(−d2
ij − log h(z

(x)
i ) + log p̄(xi) + log p̄(yj))

=
m∑
i=1

n∑
j=1

p̄(xi, yj)d
2
ij +

m∑
i=1

log h(z
(x)
i ) + const

=
m∑
i=1

n∑
j=1

p̄(xi, yj)d
2
ij +

m∑
i=1

log
n∑
j=1

p̄(yj)e
−d2i,j + const (3.2.5)

where const = −
∑m

i=1 log p̄(xi) +
∑n

j=1 log p̄(yj) is a constant term that does not

depend on model parameters Zx and Zy.

This allows CODE to reformulate the problem as constrained convex optimisation

over the cone of Positive Semi-Definite (PSD) matrices, i.e., the symmetric PSD

Gram matrix G ≡

[
Zx

Zy

] [
Z>x Z>y

]
. By the fact that the embedding distances are

linear functions of the elements of G as d2
ij = gi,i + gm+j,m+j − 2gi,j+m, we can

write the negative log-likelihood `(Zx,Zy) as function of G only. Such as

f(G) =
m∑
i=1

n∑
j=1

p̄(xi, yj)(gi,i + gm+j,m+j − 2gi,j+m)

+
m∑
i=1

log
n∑
j=1

p̄(yj) exp (−gi,i − gm+j,m+j + 2gi,j+m),

(3.2.6)

where the constant additive terms are ignored.

Thus, CODE reduces the problem to finding the positive semidefinite matrix G

argminG f(G) + λTr(G)

s.t. G � 0.
(3.2.7)

Yu Wu



3.2 Related Methods 42

where the regularisation term λTr(G) with some positive constant λ is added so as

to learn a sparse set of eigenvalues of G. As a result, the low embedding points can

be obtained by factorisation of the PSD matrix G = Z>Z.

Note that in this formulation, the minimising function f(G) + λTr(G) is convex.

Since the first term in f(G) and the regularisation term λTr(G) are linear functions

of elements in G; the second term in G is a sum of convex terms log
∑

exp of an

affine expression in the PSD matrix G [99]. This constrained convex optimisation

problem is solved via projected gradient algorithm with the use of an Armijo

rule [100] to select proper step size in CODE method.

3.2.2 Bipartite Graph Partitioning

Bipartite Graph Partitioning (BGP) [95] consider the problem of simultaneous

or co-clustering of a set of heterogeneous objects, e.g., documents and words when

processing a corpus. It converts the dual clustering problem — clustering documents

based upon their word distributions and clustering word by their co-occurrence in

documents — to finding minimum cut vertex partitions in a bipartite graph between

documents and words. Given k disjoint row clusters X1,X2, . . . ,Xk, the association

that a column object yi with the column cluster Ym is measured by the sum of edge-

weights to all row objects in the cluster Xm. And it belongs to cluster Ym if and only

if its association to cluster Xm is greater than any other row clusters

Ym =

{
yi :

∑
j∈Xm

rij ≥
∑
j∈Xl

rij, ∀ l = 1, . . . , k

}
. (3.2.8)

Symmetrically, the cluster assignment of row object xi is determined by its

association to column clusters Y1,Y2, . . . ,Yk

Xm =

{
xj :

∑
i∈Ym

rij ≥
∑
i∈Yl

rij, ∀ l = 1, . . . , k

}
. (3.2.9)

From this viewpoint, the "best" row and column clustering would correspond to

a graph partitioning such that the crossing edges between partitions have minimum

weight. To build such a bipartite graph, BGP sets the (m+ n)× (m+ n) adjacency
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matrix of the graph as

A =

[
0 R

RT 0

]
, (3.2.10)

where the vertices are ordered such that the first m vertices index the row objects in

X group while the last n index the column objects in Y group.

Thus, for any k partitioning V1,V2, . . . ,Vk of the bipartite graph vertices in

V = X ∪ Y, the minimum cut problem is defined as

argmin
V1,...,Vk

cut(V1, . . . ,Vk) = argmin
V1,...,Vk

∑
i<j

∑
p∈Vi,q∈Vj

apq, (3.2.11)

where apq is the edge weight between vertices p, q in the bipartite graph.

Finding a globally optimal solution to such a graph partition problem is NP-

complete, therefore BGP seeks an effective heuristic method that is introduced as

spectral graph partitioning [101]. We introduce the spectral graph partition heuristic

and show their connections to a real approximation solution using singular value

decomposition as follows.

For any bipartitioning of V into V1 and V2, let g be the associated partition vector

given by

gi =

{
+1, i ∈ V1,

−1, i ∈ V2.
(3.2.12)

then, the edge-weight between vertices V1 and V2 can be expressed as

cut(V1,V2) =
∑

i∈V1,j∈V2

aij

=
1

4

∑
i,j

aij(gi − gj)2

=
1

4
g>Lg (3.2.13)

where L is the Laplacian matrix with the ijth elements to be

lij =


∑

k aik, i = j

−aij, i 6= j and there is an edge {i, j}
0 otherwise.

(3.2.14)
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BGP further extends the graph cut objective, by associating each vertex i a positive

weight, denoted by weight(i), to "balance" the clustering size. Let W = [wij] be the

diagonal matrix of the vertex weights, and the weight for a subset of vertices Vl is

given by weight(Vl) =
∑

i∈Vl wii, then the generalised graph cut objective is defined

as

Q(V1,V2) =
cut(V1,V2)

weight(V1)
+

cut(V1,V2)

weight(V2)
. (3.2.15)

Given two different partitionings with the same cut value, minimising the above

objective function will favour the "balanced" one, which corresponds to near-equal

weight values on subsets V1 and V2.

In the BGP model, the weight of each vertex is chosen to equal the sum of the

edge weights on it, i.e., weight(i) =
∑

k aik. As a result, the vertex weight matrix

W equals the degree matrix of the graph, and wii = weight(i) =
∑

k aik.

Again, any partition pattern can be represented by the generalised partition vector

h with elements

hi =

 +
√

η2
η1
, i ∈ V1,

−
√

η1
η2
, i ∈ V2,

(3.2.16)

where η1 = weight(V1) and η2 = weight(V2).

Let e be the vector with all components 1. It can be seen that h satisfies h>We =√
η2
η1

∑
i∈V1

weight(i) −
√

η1
η2

∑
i∈V2

weight(i) = 0 and h>Wh =
∑m+n

i=1 wiih
2
i

= η1 + η2 = weight(V).

Thus, Eq. (3.2.15) can be written as

Q(V1,V2) = (
1

η1

+
1

η2

) · cut(V1,V2)

= (
1

η1

+
1

η2

) ·
∑

i∈V1,j∈V2

aij

= (
1

η1

+
1

η2

) · η1η2

(η1 + η2)2
·
∑
i,j

aij(hi − hj)2

=
1

η1 + η2

·
∑
i,j

aij(hi − hj)2

=
h>Lh

h>Wh
. (3.2.17)
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Computing the optimal generalised partition vector h is still NP-complete for

the above equation, instead, BGP finds a real relaxation solution to this two valued

vector.

Finally, the graph cut problem is recast as calculating the real valued vector z

such that

min
z 6=0

z>Lz

z>Wz
, subject to z>We = 0. (3.2.18)

It is solved when z is the eigenvector corresponding to the 2nd smallest eigenvalue

λ2 of the generalised eigenvalue problem,

Lz = λWz. (3.2.19)

For multidimensional extension, the eigenvectors corresponding to the 2nd to (k+1)th

largest eigenvalues are taken as the co-embeddings.

Letting Dx be the m×m diagonal matrix formed by the vector of the row sums

of R, and Dy the n× n diagonal matrix formed similarly by the column sums, the

optimal co-embeddings are equivalently given as

Zx = D
− 1

2
x Uk, (3.2.20)

Zy = D
− 1

2
y Vk, (3.2.21)

where Uk and Vk are the matrices containing the left and right singular vectors

matrices of D
1
2
xRD

− 1
2

y , corresponding to the 2nd to (k + 1)th largest singular values

σ2 ≥ σ3 ≥ . . . ≥ σk.

The co-embeddings given by Eqs. (3.2.20, 3.2.21) is the same solution to Eq.

(3.2.19), which is justified by the following[
Dx −R

−R> Dy

][
Z

(q)
x

Z
(q)
y

]
=

[
DxZ

(q)
x −RZ

(q)
y

−R>Z
(q)
x + DyZ

(q)
y

]

=

[
DxZ

(q)
x − µq+1DxZ

q
x

−µq+1DyZ
q
y + DyZ

(q)
y

]

= (1− µq+1)

[
Dx 0

0 Dy

][
Z

(q)
x

Z
(q)
y

]
, (3.2.22)

where superscript (q) denote the qth column of the associated matrix.
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3.2.3 Correspondence Analysis

CA [88] was original created to analyse contingency tables – the joint embeddings

are computed via the decomposition of the chi-squared statistic associated with this

table. To begin with, CA first derives the correspondence matrix P from R by

dividing its elements by the total sum of entries:

P = [pij] =
[rij
s

]
, where s =

m∑
i

n∑
j

rij (3.2.23)

Then, the differences between distributions of the rows and columns in the table

are measured by so-called χ2 distances, which are weighted Euclidean distances

between normalised rows/columns (calculated by dividing row/column entries by

their respective row/column total). In symbols, if we denote by ri the ith row sum of

P, and by cj its jth column sum, the χ2 distance between the ith and the kth rows

can be given by

d2
ik =

n∑
j=1

1

cj

(
pij
ri
− pkj

rk

)2

. (3.2.24)

It measures the difference between the sample frequencies, with weights inversely

proportional to the column totals. Here, the weight of a column total reflects the

information this column provides to the identification of a given row, i.e., we consider

columns that are used often do not provide much information as those columns that

used rarely.

As the name suggests, χ2 distances are closely related to the χ2 statistic X2,

which measures how far the set of samples are spread out from their average value. It

is given by

X2 = s
m∑
i

n∑
j

(pij − ricj)2

ricj
(3.2.25)

where ricj is the expected value for the entry pij when assuming independence of

rows and columns in the table.

The square roots of the terms in χ2 statistic can be conveniently expressed as

Ω =

[
pij − ricj√

ricj

]
= D

− 1
2

x (P− rcT )D
− 1

2
y (3.2.26)
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where r = [r1, r2, . . . , rm]> and c = [c1, c2, . . . , cn]> are vectors comprising the row

and column sums respectively. And Dx and Dy are the associated diagonal matrices

formed by the vector of r and c.

Let ei, ek to be the ith and kth column of the m×m identity matrix respectively.

In matrix form, we derive the CA representations for preserving the χ2 distances in

Eq. (3.2.24) by

d2
ik = (ei − ek)>D−1

x (P− rc>)D−1
y (P− rc>)>D−1

x (ei − ek)

= (ei − ek)>D
− 1

2
x (D

− 1
2

x (P− rc>)D
− 1

2
y )(D

− 1
2

y (P− rc>)>D
− 1

2
x )D

− 1
2

x (ei − ek)

= ‖(ei − ek)>D
− 1

2
x UΣ‖2

2 (3.2.27)

where U, V and Σ are the matrices containing the left and right singular vectors, and

the ordered positive singular values (σ1 ≥ σ2 ≥ . . .), respectively, of the χ2 statistic

matrix Ω (other variations [102] of CA compute the output matrices equivalently

from the SVD of D
− 1

2
x RD

− 1
2

y ).

Hence, the χ2 distances between any row objects in R can be reconstructed

exactly by the associated Euclidean distances between rows of D
− 1

2
x UΣ. In the other

words, taking the row embedding according to

Ẑx = D
− 1

2
x UΣ, (3.2.28)

can preserve the row objects distances perfectly in the original space.

Similarly, the column χ2 distances are retained by taking the embedding matrix

as

Ẑy = D
− 1

2
y VΣ. (3.2.29)

In fact, CA computes the optimal k dimensional embedding as

Zx = D
− 1

2
x UkΣk, (3.2.30)

Zy = D
− 1

2
y VkΣk, (3.2.31)

where the subscript on U, V and Σ indicates the k columns in U, V and the

fist k rows and columns of Σ are used. This representation captures quantities
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of χ2 statistics (or inertia, see details in [88] [103]) in the sense of least squares

approximation since

‖D
1
2
xZx‖2

2 = ‖UkΣk‖2
2 =

k∑
i=1

µ2
i ≤ ‖Ω‖F =

X2

s
,

‖D
1
2
y Zy‖2

2 = ‖VkΣk‖2
2 =

k∑
i=1

µ2
i ≤ ‖Ω‖F =

X2

s
,

where ‖.‖F represent the Frobenius norm of a matrix.

The CA algorithm is also summarised in Table 3.1.

3.2.4 Automatic Co-embedding with Adaptive Shaping

ACAS [28] is a parametric matrix factorisation method based on exploiting the

commonalities amongst the existing models of CA, Latent Semantic Indexing and

other methods proposed in [95], [96]. Formally, it firstly scales the relational matrix

according to

R̂ = S
− 1

2
x RS

− 1
2

y , (3.2.32)

where the scaling matrices Sx and Sy are generalisations to the row sum diagonal

matrix Dx and column sum diagonal matrix Dy. Specifically, the ith diagonal

element s(x)
i of Sx and the jth diagonal elements s(y)

j of Sy are controlled by a model

variable p as

s
(x)
i =


1, if p = 0,(∑n

j=1 r
p
ij

) 1
p
, if p ≥ 1,

max(ri1, ri2, . . . , rin), if p =∞,

(3.2.33)

and

s
(y)
j =


1, if p = 0,(∑m

i=1 r
p
ij

) 1
p , if p ≥ 1,

max(r1j, r2j, . . . , rmj), if p =∞.

(3.2.34)

Then, the co-embeddings Zx and Zy are controlled by model variables α > 0 and

β via

Zx = S−αx UkΣ
β
k , (3.2.35)

Zy = S−αy VkΣ
β
k , (3.2.36)
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where Uk, Vk and Σk are as defined before.

To see why ACAS is constructed in this way, we compare it with various co-

embedding methods in terms of the matrix on which Singular Value Decomposition

(SVD) is performed and the co-embeddings computations in Table 3.1. It can be seen

that all the existing co-embedding algorithms listed in Table 3.1 can be generated

by the ACAS model by using different values for model parameters p, α and β. For

example, with p = 1, α = 1
2

and β = 0, we obtain the BGP model, while setting

p = 0, α = 0 and β = 1 yields the Latent Semantic Indexing model (LSI).

Table 3.1: A summary of different co-embeddings methods, the second column

shows the matrix on which SVD is performed, and the co-embedding computations

are listed in the third and fourth columns. This table is taken from [28].

Method SVD Zx Zy

LSI [104], CFRM [105] R Uk Vk

BGP D
− 1

2
x RD

− 1
2

y D
− 1

2
x Uk D

− 1
2

y Vk

CA D
− 1

2
x RD

− 1
2

y D
− 1

2
x UkΣk D

− 1
2

y VkΣk

CORT [28] R Uk (Σk + Σ2
k)

1
2 Vk (Σk + Σ2

k)
1
2

ACAS [28] S
− 1

2
x RS

− 1
2

y S−αx UkΣ
β
k S−αy UkΣ

β
k

With only three model variables p, α and β, ACAS flexibly adapts the shape

of the computed co-embeddings to the given input measurements in R. But the

model parameters have to be learned from only the input information. Thus, ACAS

identifies its optimal parameters by maximising the conformity between the ground-

truth matrix R and an approximate relation matrix Rz = {r(z)
ij }. Rz is computed

from the model’s output co-embeddings Zx and Zy as

r
(z)
ij = exp

 −
∥∥∥z(x)

i − z
(y)
j

∥∥∥2

2

1
mn

∑m
i=1

∑n
j=1

∥∥∥z(x)
i − z

(y)
j

∥∥∥2

2

 . (3.2.37)

The mismatch between R and Rz is measured by a quantisation-based criterion

min
p,α,β

DQ(R,Rz) = ‖Q(R)−Q(Rz))‖F , (3.2.38)
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where ‖·‖F is the Frobenius norm, andQ(·) is a quantisation function that transforms

the element values in a relational matrix R into a fixed set of quantities. Specifically,

the quantisation employed by ACAS relies on the q-quantiles of all the values

within R, denoted by p = [p1, . . . , pq−1]>. It then quantiles each ijth element of R

according to

Q(rij) =


1, if rij ≤ p1

t, if pt−1 ≤ rij ≤ pt, t = 2, . . . , q − 1

q, if pq−1 < rij.

(3.2.39)

Finally, this model is trained by a very simple optimisation procedure, such as

grid search, genetic algorithm, or simulated annealing, with the predefined searching

ranges of model parameters.

3.3 The Proposed Framework

3.3.1 Model Construction

We first consider the simpler problem of mapping the pairwise relationships

contained in matrix R to a line. We let zx = [zx1 , . . . , zxm ]> and zy = [zy1 , . . . , zyn ]>

be the maps of the m row objects {xi}mi=1 in group X and the n column objects

{yj}nj=1 in Y, respectively. Assuming that the coordinates of the embedding zx are

known, then a generic criterion for choosing a good map for the points zy is to

minimise a series of cost functions for all objects xi, each expressed as

fxi(zy) = (zxi − zy1)2wi1 + (zxi − zy2)2wi2 + . . .+ (zxi − zyn)2win. (3.3.1)

This criterion is similar to embedding methods, such as the LE [56], where the

distances between the embedded points are driven to correspond to those of the

original patterns through similarity weights wij . In Eq.(3.3.1), the distances between

the embedded {yj}nj=1 and xi, and the weights wij should be suitably restricted, by,

for example, having wij < wik when (zxi − zyj)2 > (zxi − zyk)2. Based on this,

we can define normalised weights wij = rij/
∑n

j=1 rij , such that if objects yj have
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high similarity to objects xi, then their embedded counterparts zyj and zxi will be

proximate.

Applying Eq.(3.3.1) to all embedded points {zxi}mi=1, generates m different

minimising functions {fxi(zy)}mi=1. Since the row sum
∑n

j=1 rij is an indicator of

the overall similarity level of object xi to all objects {yj}nj=1 within Y, it can be taken

into account in the optimisation through an aggregate cost function

F̂(zy) =
m∑
i=1

( n∑
j=1

rij

)η1
fxi(zy), (3.3.2)

where η1 ≥ 0 is a parameter that controls the row sum weight
∑n

j=1 rij which scales

each objective fxi . The higher this weight is, the more emphasis is given to the

minimisation of the particular fxi(zy), in order to keep the embedded points zyj close

to zxi . If we then apply the above normalised weights estimated from R to Eq.(3.3.1)

and substitute in Eq.(3.3.2) we have

F̂(zy) =
m∑
i=1

( n∑
j=1

rij

)η1 n∑
j=1

(zxi − zyj)2wij

=
m∑
i=1

( n∑
j=1

rij

)η1 n∑
j=1

(zxi − zyj)2 rij∑n
j=1 rij

=
m∑
i=1

n∑
j=1

(zxi − zyj)2r
(x)
ij , (3.3.3)

where r(x)
ij = rij(

∑n
j=1 rij)

η1−1. This global cost function is, however, subject to

knowing the optimal {zxi}mi=1 coordinates in zx.

Reversing the above, and assuming that zy is given and that we seek to recover

zx, we can define a symmetric to F̂ aggregate cost function, as

Ĝ(zx) =
n∑
j=1

m∑
i=1

(zyj − zxi)2r
(y)
ij , (3.3.4)

where r(y)
ij = rij(

∑m
i=1 rij)

η2−1 and η2 ≥ 0. A trivial solution to the above is when all

zxi and zyj collapse to a single coordinate, and this corresponds to F̂(zy) = Ĝ(zx) =

0. The exclusion of degenerate solutions during the optimisation is discussed in

Section 3.3.2.
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The minimisation problems in Eqs.(3.3.3,3.3.4) can be expressed in matrix forms

as

F̂(zy) = z>x Dr,xzx + z>y Dc,xzy − 2z>x Rxzy, (3.3.5)

Ĝ(zx) = z>x Dr,yzx + z>y Dc,yzy − 2z>x Ryzy, (3.3.6)

where Rx =
[
r

(x)
ij

]
, Ry =

[
r

(y)
ij

]
. Dr,x and Dc,x are the diagonal row and column

sum matrices of Rx, respectively, and similarly, Dr,y and Dc,y are the diagonal

row and column sum matrices of Ry. After removing the constant terms from

Eqs.(3.3.5,3.3.6) we have the equivalent objective functions

F(zy) = z>y Dc,xzy − 2z>x Rxzy, (3.3.7)

G(zx) = z>x Dr,yzx − 2z>x Ryzy. (3.3.8)

The above can be simplified by setting Dr and Dc to be the diagonal row and

column sum matrix of R, so that

Rx =

rij ( n∑
j=1

rij

)η1−1
 = Dη1−1

r R = Dηr
r R, (3.3.9)

Ry =

rij ( m∑
i=1

rij

)η2−1
 = RDη2−1

c = RDηc
c , (3.3.10)

where ηr = η1 − 1 and ηc = η2 − 1.

Given a vector zx, the minimisation of F(zy) produces an embedding z∗y which

best complies with information in R, and similarly, given zy, the minimisation of

G(zx) produces an optimally compliant embedding z∗x. If there exists a pair (z∗x, z
∗
y)

that mutually satisfies both optimisations, then it can constitute an acceptable joint

co-embedding for the row and column objects.

To avoid the collapse of the solutions zx and zy, we need to impose the two

following scale constraints

z>x Dr,yzx = 1, (3.3.11)

z>y Dc,xzy = ζ. (3.3.12)

The parameter ζ ≥ 0 controls the relative scale between the embeddings zx and zy,

as their relative magnitudes need to be taken into account in the geometry of the

recovered co-embeddings.
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3.3.2 Co-Embedding Generation

Considering the optimisation problem related to variable zy only, the Lagrangian

function for F(zy) is defined as

L(zy, µ1) = z>y Dc,xzy − 2z>x Rxzy − µ1(z>y Dc,xzy − ζ)

= (1− µ1)z>y Dc,xzy − 2z>x Rxzy + µ1ζ, (3.3.13)

where µ1 is the multiplier for the associated constraint. Differentiating with respect

to the embedding zy, gives the following condition for stationarity

∂L(zy, µ1)

∂zy
= 2(1− µ1)Dc,xzy − 2R>x zx = 0. (3.3.14)

Combining Eqs.(3.3.12,3.3.14), yields

zy = ±α(zx)D
−1
c,xR

>
x zx, (3.3.15)

where we use the shorthand α(zx) =
√

ζ

z>x RxD
−1
c,xR>x zx

, defined as a function of the

given embedding zx of the row objects. The above expression for zy provides the set

of possible solutions. Substituting this into Eq.(3.3.7), leads to a simpler expression

given by

F(zy) = ζ ∓ 2α(zx)z
>
x RxD

−1
c,xR

>
x zx

= ζ ∓ 2α(zx)
ζ

α(zx)2
= ζ ∓ 2ζ

α(zx)
. (3.3.16)

It can therefore be seen that, since ζ− 2ζ
α(zx)

< ζ+ 2ζ
α(zx)

, the minimising embedding

is obtained by the positive branch of Eq.(3.3.15) as

z∗y = argmin
zy∈Rn,

z>y Dc,xzy=ζ

F(zy) = α(zx)D
−1
c,xR

>
x zx. (3.3.17)

We now consider the minimisation of G(zx), given the embedding zy for the

column objects, under the constraint Eq.(3.3.11). The associated Lagrangian is

L(zx, µ2) = z>x Dr,yzx − 2z>x Ryzy − µ2(z>x Dr,yzx − 1)

= (1− µ2)z>x Dr,yzx − 2z>x Ryzy + µ2, (3.3.18)
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where µ2 is the multiplier. Similarly to the previous development, we can find that

the minimising embedding is given as

z∗x = argmin
zx∈Rm,

z>x Dr,yzx=1

G(zx) = β(zy)D
−1
r,yRyzy, (3.3.19)

where β(zy) = 1√
z>y R>y D−1

r,yRyzy
is defined to be a function of the given embedding

zy of the column objects.

As mentioned in Section 3.3.1, a desired co-embedding (z∗x, z
∗
y) should mutually

satisfy both optimisation problems. Consequently, using Eqs.(3.3.17,3.3.19), we can

explicitly make use of this interdependency to express z∗x via

z∗x = β(z∗y)D
−1
r,yRy α(z∗x)D

−1
c,xR

>
x z
∗
x = α(z∗x)β(z∗y)Tz

∗
x, (3.3.20)

where T = D−1
r,yRyD

−1
c,xR

>
x is an m × m matrix defined here to simplify the no-

tation. From Eq.(3.3.20), we can see that z∗x should be an eigenvector of T with
1

α(z∗x)β(z∗y)
being the corresponding eigenvalue. Assuming the eigen-decomposition

TΨ = ΨΛ, with Ψ = [ψ1,ψ2, . . . ,ψm] being the eigenvector matrix and Λ =

diag([λ1, λ2, . . . , λm]) the diagonal matrix of eigenvalues, we can take the sought

embedding to be

z∗x =
1√

ψ>q Dr,yψq
ψq, (3.3.21)

where the solving eigenvector ψq (the choice of q is addressed in Section 3.3.2) is

scaled accordingly to satisfy the constraint in Eq.(3.3.11). Subsequently, the paired

embedding for the column objects can be calculated directly from Eq.(3.3.17) as

z∗y = α(z∗x)D
−1
c,xR

>
x z
∗
x.

It has to be noted that the above assumes that 1
α(z∗x)β(z∗y)

corresponds to an eigen-

value λq of T. This can be verified through the following steps

α(z∗x)
2β(z∗y)

2 =
1(

1
α(z∗x)

z∗y

)>
R>y D−1

r,yRy

(
1

α(z∗x)
z∗y

)
=

1

(z∗>x RxD−1
c,x) R>y D−1

r,yRy (D−1
c,xR

>
x z
∗
x)

=
1

z∗>x T>Dr,yTz∗x
=

1

λ2
qz
∗>
x Dr,yz∗x

=
1

λ2
q

, (3.3.22)
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which rely on Eqs.(3.3.17,3.3.21).

A final issue concerning the feasibility of the above, is that T = D−1
r,yRyD

−1
c,xR

>
x

must have real and nonnegative eigenvalues λq. This can be shown to be the case,

because from Eqs.(3.3.9,3.3.10), we have Rx = Dηr
r R and Ry = RDηc

c , and hence,

the matrix T can be written as

T = D−1
r,yRDηc

c D−1
c,xR

>Dηr
r

= D
− ηr

2
r D−1

r,yD
ηr
2
r RD

ηc
2
c D−1

c,xD
ηc
2
c R>D

ηr
2
r D

ηr
2
r

= D
− ηr

2
r D

− 1
2

r,y

(
D
− 1

2
r,y D

ηr
2
r RD

ηc
2
c D

− 1
2

c,x

)(
D
− 1

2
c,x D

ηc
2
c R>D

ηr
2
r D

− 1
2

r,y

)
D

1
2
r,yD

ηr
2
r

= P−1A>AP, (3.3.23)

where P = D
1
2
r,yD

ηr
2
r is a nonsingular diagonal matrix, and A = D

− 1
2

c,x D
ηc
2
c R>D

ηr
2
r D

− 1
2

r,y .

Therefore, T is similar to the positive semidefinite matrix A>A, and consequently,

it has the same eigenvalues.

Eigenvector selection

So far we have shown the form of the sought co-embedding (z∗x, z
∗
y) from Eqs.

(3.3.17,3.3.21). Because of the interdependency between the two sets of objects, we

must minimise the two objective functions F(zy) and G(zx) simultaneously. From

Eq.(3.3.16), we can see that the minimum value of F(zy) is ζ − 2ζ
α(z∗x)

. Similarly, for

G(zx), we can find that its minimum corresponds to 1− 2
β(z∗y)

. These two quantities

obtain their smallest values when the denominators α(z∗x) and β(z∗y) are as small

as possible. Since they are both nonnegative, when α(z∗x) and β(z∗y) achieve their

minimum values, their product α(z∗x)β(z∗y) also is minimised. The latter is equivalent

to choosing that eigenvector ψq of T that corresponds to the largest eigenvalue λq, in

order to compute z∗x using Eq.(3.3.21).

It can be seen that the largest eigenvalue of T is the unity with an associated

eigenvector proportional to 1m (the m-length vector of ones). Firstly, since Dc,x =

diag(R>x 1m) and Dr,y = diag(Ry1n), we have

T1m = D−1
r,yRyD

−1
c,xR

>
x 1m = D−1

r,yRy1n = 1m, (3.3.24)
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which shows that (1,1m) is an eigenpair. Further, from the fact that the spectral

radius ρ(·) of any square matrix cannot exceed any of the norms for that matrix, we

have ρ(T) ≤ ‖T‖∞ = 1. The last equality holds because T is a row stochastic

matrix, that is, it has nonnegative elements, and from Eq.(3.3.24) its rows sum to one.

Hence, we have ρ(T) = 1 and no other eigenvalue greater than one exists.

However, we cannot select this largest eigenvalue, because its associated eigen-

vector 1m will produce via Eq.(3.3.21) an embedding z∗x where all points collapse to

a single coordinate. This leads the embedding z∗y of the other group to also assume

a single location. This degenerate solution relates to the case described in Section

3.3.1, where all embedded patterns coincide to yield the smallest possible aggregate

costs, but here the scale constraints are also in force. Consequently, to avoid such so-

lutions, we select the eigenvector ψq corresponding to the second largest eigenvalue

λq. Note, that when R or a suitable permutation of it contain blocks of disconnected

components, then T has a repeated semisimple eigenvalue of one. In this case, all

the associated eigenvectors can be ignored as they map the different groups of the

elements of z∗x to constant coordinates. However, this situation may not correspond

to a practically useful relational representation in R and the different blocks can be

processed separately.

3.3.3 Multidimensional Extension

Although, so far we have focused on the estimation of a unidimensional co-

embedding (zx, zy), it is more practical for the purposes of visualisation or su-

pervised pattern analysis to generate k-dimensional (with k >1) co-embeddings

(Zx,Zy) ∈ Rm×k×Rn×k. In analogy to the previous section, the additional axes

can be recovered by processing the remaining eigenvectors of T. Specifically, by

assuming decreasing λq with increasing index q, and ignoring λ1 = 1, we choose

k eigenvectors ψq+1 with q = 1, . . . , k. It has to be noted, that since T is rank

deficient and the quantity 1
α(z∗x)β(z∗y)

is not defined for zero eigenvalues, we have

k ≤ rank(T) − 1 ≤ min (m,n) − 1. However, in practice a small number of the

available dimensions is utilised.

In the computed co-embedding, the scale constraints of Eqs.(3.3.11,3.3.12) need
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to be maintained for all axes, as

diag(Z>x Dr,yZx) = 1k, (3.3.25)

diag(Z>y Dc,xZy) = ζ. (3.3.26)

The vector ζ = [ζ1, ζ2, . . . , ζk]
> contains the parameters that control the relative

scale between the embedded patterns from the row and column objects at each

axis. In order for the k axes to represent different and non-redundant coordinate

information, the eigenvectors ψq+1 must be independent. It turns out, that this is

the case here due to the problem formulation and without additional constraints in

the optimisation. Specifically, from Eq.(3.3.23), we have T = P−1A>AP, where

P = D
1
2
r,yD

ηr
2
r is diagonal. Then, the decomposition TΨ = ΨΛ can be written

as P−1A>APΨ = ΨΛ or A>A(PΨ) = (PΨ)Λ. This shows that PΨ contains

the eigenvectors of a symmetric matrix, and therefore, PΨ is orthogonal. This is

equivalent to Ψ>P2Ψ being diagonal, that is, all the eigenvectors of T are orthogonal

with respect to the scaling matrix Dr,yD
ηr
r .

Finally, the qth columns of Zx and of Zy are taken to be

Z(q)
x =

1√
ψ>q+1Dr,yψq+1

ψq+1, (3.3.27)

Z(q)
y = α(Z(q)

x , ζq) D−1
c,xR

>
x Z(q)

x , (3.3.28)

where the quantity α(·) is as defined for Eq.(3.3.15), but it now depends also on the

qth scale parameter and is equal to
√

ζq

Z
(q)>
x RxD

−1
c,xR>x Z

(q)
x

.

Parameter reduction heuristics

The optimal selection for the proposed model, depends on the dimensionality k,

the k embedding scaling parameters ζq, and the two data weighting parameters ηr
and ηc (the latter two parameters were introduced in Section 3.3.1 to scale the objec-

tives, and as they indirectly parameterise matrix T they cannot vary with each qth

dimension). The mechanism and the objective function that drive the model selection

will be described in Section 3.3.4. Here, we show that in the absence of additional

information for the relative scales between the row and column embeddings, we can
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make use of certain heuristics that reduce the number of parameters which need to

be identified.

Specifically, we experimentally observed that the identification of multiple ζq can

be sensitive to the search resolution, and it is more robust to look instead for surrogate

parameters ξq > 0 that can be defined as α(z∗x)
√
λq+1 or equivalently

√
α(z∗x)√
β(z∗y)

. From

the last ratio, it can be intuitively understood that when no scale information about

R is available, ξq can be searched within intervals around the value of one. This

is because we can assume that the two objective functions F(zy) and G(zx) are of

equal importance and that the two sets of embedded objects are in relative scale by

having ζq ≈ 1, which would make the quantities α(z∗x) and β(z∗y) to be close to

each other. Using this new quantity, and substituting for α(z∗x), the equation for the

column embedded points can be written as z∗y = ξq√
λq+1

D−1
c,xR

>
x z
∗
x. Searching for the

surrogate parameters ξq is easier and more efficient for the model identification.

The above can facilitate a parameter reduction based on the following. We firstly

simplify the model by replacing all k parameters ξq with a single scalar parameter ξ.

Although this speeds up model search significantly, it also removes the flexibility for

scale variation between the different axes. To compensate for this, we introduce a

second scaling parameter γ ≥ 0 that indirectly adjusts the scale between the different

axes through the eigenvalue ratio for a particular iteration. Specifically, the row

embedded points z∗x are adjusted by a factor of
(
λq+1

λ2

)γ
. This is useful because

eigenvalues correspond to model costs at each step, and with the introduced weighted

ratio we can achieve some degree of scale variation across the coordinates. We have

experimentally validated the usefulness and practicality of the proposed parameter

reduction heuristics. In summary, the final co-embedding is calculated according to

Z(q)
x =

(
λq+1

λ2

)γ
1√

ψ>q+1Dr,yψq+1

ψq+1, (3.3.29)

Z(q)
y =

ξ√
λq+1

D−1
c,xR

>
x Z(q)

x . (3.3.30)
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3.3.4 Model Identification

Computing a suitable co-embedding involves the identification of the four model

parameters η1, η2, ξ and γ. A simple search procedure, such as a grid search,

simulated annealing or a genetic algorithm can be used. However, given an input

relational matrix R, we need to define a suitable objective function that drives this

search. In line with previous work [28], such an objective should compare the

original input R against a re-estimated source based on the generated co-embedding

(Zx,Zy). This can be done, for example, by computing a between-group Euclidean

distance matrix Q ∈ Rm×n between the rows of Zx and Zy. Then, a possibility

would be to simply minimise the normalised sum of the element-wise products
Tr(RQ>)√

Tr (RR>) Tr (QQ>)
between R and Q. However, this procedure was found to be

unreliable due to disproportionate error contributions from the different entries.

Alternative but more complex schemes based on quantisation have previously been

used in the evaluation of ACAS [28].

In this work, we evaluate the conformity between R and Q using the local

structural information of the between-group similarities and dissimilarities they

represent. Specifically, we capture the local neighbourhoods between the member

patterns of the generated co-embedding, by defining a binary matrix K(R). Each of

its ijth element is one, if and only if the ith row object is within the first kr neighbours

of the jth column object (that is among the kr largest entries in the jth column), and

at the same time the jth column object is within the first kc neighbours of the ith row

object. The neighbourhood is established by using the raw similarities within R, and

the parameters kr and kc which can be pre-assigned or set to be a small percentage

of the cardinalities m and n, respectively. The quantity K(Q) is similarly defined

using the distance information within matrix Q (the neighbours here are based on

the smallest entries in the columns or rows).

This type of mutual neighbourhood information can reveal useful structural

characteristics that enable the comparison between R and Q. For example, it can

detect co-clustering arrangements between heterogeneous object types, without

being sensitive to large error contributions from element-wise comparisons and the

discrepant type of information represented by the original R and the re-estimated
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Q. Finally, the model parameters η1, η2, ξ and γ are identified by minimising the

quantity

Γ(R,Q) = 1>m
(
K(R)−K(Q)�K(R)

)
1n, (3.3.31)

where � denotes the Hadamard matrix multiplication, and Q depends on the co-

embedding (Zx,Zy), which in turn depends on the four search parameters. From

the definition of Γ(·), it can be seen that it is a sum of the unity errors, defined

only at the ijth matrix elements which correspond to object pairs (i, j) that are in

mutual local neighbourhoods in R but not Q. The measure assumes that loss of local

neighbourhood structure from the original similarity matrix breaks down the initial

requirement for the co-embedding to preserve local proximity information.

The overall set of operations for the proposed method is summarised in Algorithm 1.

It can be seen that the most complex step for the model identification is the eigen-

decomposition of matrix T. This is typically of O(min(m,n)3), by swapping con-

veniently the roles of groups X and Y. The construction of T ignoring scaling

operations is of O(min(m,n)2max(m,n)). The number of decompositions depends

on the number of iterations of the adopted search procedure. However, as T de-

pends only on η1 and η2, and not on ξ and γ, a new decomposition is needed only

when the former two parameters are updated during the search. For each possible

co-embedding, the calculation of Q is of O(mnk), finding K(Q) of O(mkr + nkc),

and Γ(R,Q) of O(mn).

3.4 Experimental Analysis and Results

In this section, we compare the co-embedding generation capabilities of the

proposed algorithm with existing state of the art methods, including CA, ACAS,

CODE and the recently developed Multiple Kernel Preserving Embedding (MKPE)

algorithm to preserve similarity between heterogeneous groups of data [106]. We ex-

amine both qualitative and quantitative aspects of the comparison, which correspond

to effectiveness in data visualisation and supervised machine learning. We split the

experimentation into three main parts, solving three different data visualisation and

analysis tasks using a total of 15 datasets:
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Algorithm 1 Description of the proposed algorithm using a generic type of search

for the identification of the optimal co-embedding and the model parameters.
Input: An m × n input matrix R representing similarities between the m row

objects and the n column objects, the co-embedding dimension k, and the local

neighbourhood control parameters kr, kc.

Initialisation:

1: Set restrictions on the search range of the model parameters, as: η1, η2 ∈ [0, 10],

ξ ∈ (0, 3], and γ ∈ [0, 3].

2: Set some starting values for these model parameters (depending on the search

method employed).

Main loop: (repeated as long as step (10) cannot reduce the model cost Γ(R,Q)

any further):

1: Set Dr = diag(R1n) and Dc = diag(R>1m).

2: Calculate Rx = Dη1−1
r R and Ry = RDη2−1

c , as in Eqs.(3.3.9,3.3.10).

3: Set Dr,y = diag(Ry1n) and Dc,x = diag(R>x 1m).

4: Construct the matrix T = D−1
r,yRyD

−1
c,xR

>
x .

5: Perform an eigen-decomposition of T, where Ψ = [ψ1, . . . ,ψm] is the eigenvec-

tor matrix and Λ = diag([λ1, . . . , λm]) contains the eigenvalues in descending

order.

6: Calculate each qth column (where q = 1, . . . , k) of Zx and of Zy using

Eqs.(3.3.29,3.3.30).

7: Use the resulting co-embedding (Zx,Zy) ∈ Rm×k×Rn×k, to estimate a between-

group Euclidean distance matrix Q ∈ Rm×n.

8: Calculate the neighbourhood indicator structures K(R) and K(Q), as defined

in Section 3.3.4.

9: Compute the model cost Γ(R,Q) using Eq.(3.3.31).

10: If the cost is less than the minimum found so far, store the values of the current

model parameters η1, η2, ξ and γ and update them to the next search values

(depending on the employed search procedure and resolution of the search).

Output: The optimal co-embedding (Zx,Zy) and their associated optimal model

parameters.
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• The reconstruction of the 2D distribution of data objects given the partial

similarities between them (Section 3.4.1). Eight 2D synthetic datasets1 with

multiple geometric arrangements and clusters with patterns separated into two

groups are used.

• The simultaneous learning of the distributional representations of documents

and words in the same space, based on the frequency information the words

appearing in the documents (Section 3.4.2). Four document collections con-

taining clinical trials [85], Reuters new articles [85], 20 newsgroup documents2

and online reviews [107] are used.

• The learning of low-dimensional representations of objects based on link

information contained in knowledge graphs (Section 3.4.3). We use three

datasets [108] with the citation networks between the Cora and Citeseer docu-

ments, as well as the co-occurrence network between industrial companies.

To identify the optimal model, a set of values for its four model parameters is

searched for within the ranges η1, η2 ∈ [0, 10], ξ ∈ (0, 3] and γ ∈ [0, 3]. The local

neighbourhood parameters kr and kc are both fixed to 5 (in general small values

such as {5, 10, 15} are the most appropriate; Section 3.4.4 analyses their effect on

performance). To implement the actual search procedure, we employ a simple genetic

algorithm3, which relies on the Γ(·, ·) index of Eq.(3.3.31) to be its minimising

objective function, supported by fitness ranking, stochastic uniform parent selection

and an elitism operator. It uses a population of 52 real-valued encoded solutions, and

terminates when fitness improvement stagnates for 50 generations. Furthermore, we

use uniform crossover at a crossover rate of 0.8, and in order to maintain feasibility

of the range constraints an adaptive feasible mutation.

1 Some datasets are generated by us and some are downloaded from cran.
r-project.org/web/packages/mlbench, cs.joensuu.fi/sipu/datasets,
and search.r-project.org/library/fpc/html/rFace. The co-cluster points in each
data sets are randomly assigned to the two groups.

2Downloaded from qwone.com/~jason/20Newsgroups.
3Using Matlab ver.8.6 internal toolbox implementation.
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(b) Circles (m=200, n=300)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) R15 (m=313, n=287)
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(d) Target (m=496, n=262)
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(e) Rface (m=330, n=670)
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(f) 2dnormals (m=256, n=244)
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(g) Compound (m=108, n=291)
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(h) Ring (m=504, n=496)

Figure 3.1: Original patterns of the synthetic 2D datasets. Different colours corre-

spond to different clusters and spatial structures. All points with the same colour are

allocated either to group X (marked by “◦”) or to group Y (marked by “+”). The

cardinalities m = |X| and n = |Y| of the groups are shown for each dataset.

Yu Wu



3.4 Experimental Analysis and Results 64

3.4.1 Reconstruction of Synthetic 2D Data Points

The eight synthetic datasets are shown in Figure 3.1, where data points are

allocated to groups X or Y and form various clusters and co-clusters. We calculate

the initial input relational measurements in R, according to

rij = exp

(
−mn‖xi − yj‖2

2∑m
i=1

∑n
j=1 ‖xi − yj‖2

2

)
, (3.4.1)

where xi and yj are the m and n coordinates of the patterns from groups X and Y,

respectively.

The co-embeddings from all methods and for all datasets are displayed in Figures

3.2-3.4. It can be observed that the representations generated by the proposed method

resemble more the original arrangements of Figure 3.1. In most cases, most methods

are shown to possess the ability to preserve the principal spatial characteristics, but

the existing ones often do not fully capture the proximities of the cluster structures

within each individual group X and Y or between them. For example, the Rface

co-embedding of CODE in Figure 3.3(b) and that of CA in Figure 3.3(e) reliably

represent the eyes and nose components of the original set in Figure 3.1(e), but they

both completely break down the composition of the mouth structure, which is a

co-cluster of points belonging to both X and Y, and CODE also fails to preserve

the relative location of the chin. ACAS in Figure 3.3(e) totally distorts the relative

positions of the different components. For the Target dataset of Figure 3.1(d), CA,

ACAS and CODE in Figure 3.3(a,d,g) seem to preserve the continuity of the three

surrounding clusters separately comprising points from both groups. For the two

middle structures forming a single co-cluster structure in Figure 3.1(d), however,

CODE segregates the co-cluster, while ACAS preserves it but compresses one of the

structures. The proposed method is shown in Figure 3.3(m) to reliably reproduce the

co-cluster as a uniform mix of points from both groups. Similar observations can be

made for the remaining datasets, e.g., for the ring and the compound datasets, CODE,

ACAS and CA fail to preserve the co-cluster structures. The proposed algorithm

qualitatively shows to preserve the structure, shapes and relative proximities of both

within-group clusters and between-group co-clusters. MKPE does not perform well

for almost all the datasets, because ideally the algorithm requires both between-group
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(a) Dots, CODE
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(b) Circles, CODE
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(c) R15, CODE
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(d) Dots, ACAS
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(e) Circles, ACAS
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(f) R15, ACAS
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(g) Dots, CA
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(h) Circles, CA
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(i) R15, CA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(j) Dots, MKPE
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(m) Dots, proposed
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(n) Circles, proposed
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(o) R15, proposed

Figure 3.2: Co-embeddings generated by different algorithms, for the synthetic

datasets of Dots, Circles and R15 displayed in Figure 3.1. Co-embedding axes are

scaled within [0, 1].
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and within-group relations to recover the heterogeneous data embedding. When there

is only partial relation information available, e.g., the relation matrix R between

groups X and Y, it is difficult for MKPE to generate embedding that can satisfactory

recover the input relation.

3.4.2 Learning Distributional Representations of Documents and

Words

Given a collection of documents and a dictionary of unique words, the ab-

sence/presence (or frequency) of the words occurring in each document readily

provides a source of information on the similarities R between the documents group

X and the word group Y. Low-dimensional representations can be learned from R

for both documents and words, reflecting the document and word distributions in

the same space. The empirical co-occurrence counts from the clinical trials and

Reuters news articles are used. In order to quantitatively assess the co-embedding

quality, we make use of the class information available in the document collections.

After embedding the documents and words in the same space, we first estimate the

centre for each document class. Then, we calculate the Euclidean distance between

the words and each class centre in the co-embedding space. Sets of words that are

closest to the document class centres are selected. For this particular application, it is

reasonable to expect that in a reliable co-embedding map, the words that are more

important for the identification of a document class are proximate to the documents

that belong to this class. Thus, the selected words are expected to possess higher

discriminating power to distinguish between the document classes. Subsequently, we

recompose a new document-by-word frequency matrix by only retaining the selected

words. This recomposed frequency matrix can constitute the feature matrix input to a

classification algorithm, using the document class labels as the target class member-

ships, and the resulting classification accuracy to represent the co-embedding quality.

To implement this, we use a Support Vector Machine classifier for all experiments

in this section. The classifier uses, for simplicity, a linear kernel, without any data

scaling or standardisation applied to the predictors. It employs sequential minimal
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(a) Target, CODE
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(b) Rface, CODE
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(c) 2dnormals, CODE
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(d) Target, ACAS
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(f) 2dnormals, ACAS
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(g) Target, CA
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(h) Rface, CA
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(i) 2dnormals, CA
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(j) Target, MKPE
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(k) Rface, MKPE
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(l) 2dnormals, MKPE
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(m) Target, proposed

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(n) Rface, proposed

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(o) 2dnormals, proposed

Figure 3.3: Co-embeddings generated by different algorithms, for the synthetic

datasets of Target, Rface and 2dnormals displayed in Figure 3.1. Axes are scaled

within [0, 1].
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(a) Compound, CODE
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(b) Compound, ACAS
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(c) Compound, CA
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(d) Compound, MKPE
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(f) Ring, CODE
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(g) Ring, ACAS
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(h) Ring, CA
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(i) Ring, MKPE
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Figure 3.4: Co-embeddings generated by different algorithms, for the synthetic

datasets compound and ring displayed in Figure 3.1. Co-embedding axes are scaled

within [0, 1].
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optimisation for finding the optimal hyperplane, and a regularisation parameter for

the nonseparable cases set to 1. The multiclass setup is based on an one-against-all

coding, and a 10-fold cross-validation is used for model assessment.

Firstly, we visually demonstrate the learned 2D co-embeddings form=800 clinical

trials documents and n=1,780 unique words. Each clinical trial is assigned to one

of the four disease classes of asthma, breast cancer, lung cancer and prostate cancer,

and each class contains 200 documents. Infrequent words are removed, and only

the most informative ones are retained. The word occurrence count is used as the

relation measure between a document and a word in R. The resulting co-embeddings

of all algorithms are illustrated in Figure 3.5, where the document objects from the

four classes are plotted together with the word objects. It can be seen that the ACAS

and CODE algorithms have generated words that can be quite far away from the four

classes of documents. For the proposed method and CA, this is far less pronounced,

as the document objects appear to be blending with the word objects. It is relatively

easy to identify the document-word proximities which correspond to inter-object

similarities. As for MKPE, the document and word objects are displayed along

two separate and roughly parallel linear arrangements. We also use Figure 3.5(f) to

compare the classification rates that represent the reliability of the proximity between

the embedded document and word objects for varying numbers of selected words

(from 10 to 100) per document class. It can be seen that the proposed method and CA

show comparable error rates that are lower than CODE and ACAS. MKPE possesses

lower error rates in this case, and this indicates that despite being separated along

two parallel arrangements, the locations of each document class and its related words

are actually compatible. However, although offering a low error rate, such separation

is not optimal for visualisation purposes.

We further evaluate the algorithms with four more datasets possessing more

complex class structures. One is a larger collection of clinical trials consisting of

m=1,800 documents (with 200 documents per topic), containing n=2,300 words

after removing the infrequent words and belonging to the nine disease classes of

asthma, breast cancer, lung cancer, prostate cancer, cardiovascular, HIV, leukaemia,

depression and schizophrenia. Another dataset is the Reuters news article collection,
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(f) Classification error comparison

Figure 3.5: 2D demonstration of co-embeddings generated for 800 clinical trials and

1,780 words belonging to four classes by different methods and their classification

error comparison. Each document (marked by “+”) is a member of group X and

belongs to one of the four topics (plotted in different colour). Each member of group

Y (marked by “•”) is a word object.
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(d) Online reviews, 5 classes

Figure 3.6: Comparison of the classification error rates of different algorithms, for

varying the number k of the selected words that are closest to each class centre using

different document collections.

containing m=976 documents represented by n=2,185 words, belonging to ten

document classes of earn, acq, crude, trade, money-fx, interest, ship, sugar, money-

supply and coffee. A third one is the 20Newsgroups data, containing m=3,000

newsgroup documents represented by n=2,000 frequently occurring words, belonging

to twenty newsgroups. The fourth dataset is the online review collection containing

m=2,000 review documents represented by n=1,500 words after text processing,

belonging to the 5 topics of movies, books, dvds, electronics and kitchen. For

these datasets, the word occurrence counts in the documents are used as the relation

measurements in R. As all datasets contain multiple classes, it is insufficient to

learn 2D embeddings to characterise the class structure. We, thus, fix the number

of selected words per class to 20 and examine the classification performance while
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varying the number of used embeddings (k changes from 2 to 20). It can be seen

from Figure 3.6 that the proposed method possesses lower or comparable error rates

compared to existing ones. Overall, taking into account all the results demonstrated

in Figures 3.5 and 3.6, the proposed method exhibits the most consistently good

performance in preserving the relation measurements between documents and words.

3.4.3 Co-embedding Generation from Link Data

In this experiment, we assess the co-embedding algorithms using a different type

of data, which provides link information between objects. We use three datasets

to experiment with. One is the Cora dataset, which consists of 2,708 academic

publications that are classified into one of the seven classes from case based, genetic

algorithms, neural networks, probabilistic methods, reinforcement learning, rule

learning and theory. The CiteSeer dataset contains 1,540 articles classified into one

of six classes of agents from AI, DB, IR, ML and HCI. For both datasets, the citation

links between the documents are provided. The third dataset is the Industry-PR,

which contains 1,798 companies assigned to one of the 12 classes representing the

12 industry sectors of Yahoo!. Two companies are linked if they are mentioned by

the same text documents among the PR Newswire press releases gathered from April

1st, 2003 to September 30th, 2003. For all the datasets, undirected links are studied,

representing whether one cites the other in a document pair (for Cora and Citeseer),

or whether two companies appear in the same text (for Industry-PR). We analyse

objects that are included in the maximally connected subgraph of the given adjacency

matrix, constructed from the link information. 40% of the objects from each class

are randomly chosen and assigned to group X, while the remaining ones are assigned

to group Y. The geodesic distance matrix D between the objects from the two groups

is computed. Then, the Gaussian e−
Dij
t , with t denoting the average value of the

elements in D, is used to obtain the elements of the similarity matrix R, which is

finally used as the input to each of the three co-embedding algorithms.

For the quantitative evaluation, we employ a mean rank score [109] to examine

how well the learned embeddings preserve the relation information in R. The goal is

to compare the ranks of the closeness between each row object and all the column

Yu Wu



3.4 Experimental Analysis and Results 73

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Neural Networks
Rule Learning
Reinforcement Learning
Probabilistic Methods
Theory
Genetic Algorithms
Case Based
Neural Networks
Rule Learning
Reinforcement Learning
Probabilistic Methods
Theory
Genetic Algorithms
Case Based

(a) Cora, CODE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Agents
IR
DB
AI
HCI
ML
Agents
IR
DB
AI
HCI
ML

(b) Citeseer, CODE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Energy
Financial
Healthcare
Services
Technology
Energy
Financial
Healthcare
Services
Technology

(c) Industry-PR, CODE

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1 Neural Networks
Rule Learning
Reinforcement Learning
Probabilistic Methods
Theory
Genetic Algorithms
Case Based
Neural Networks
Rule Learning
Reinforcement Learning
Probabilistic Methods
Theory
Genetic Algorithms
Case Based

(d) Cora, ACAS

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Agents
IR
DB
AI
HCI
ML
Agents
IR
DB
AI
HCI
ML

(e) Citeseer, ACAS

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
Energy
Financial
Healthcare
Services
Technology
Energy
Financial
Healthcare
Services
Technology

(f) Industry-PR, ACAS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Neural Networks
Rule Learning
Reinforcement Learning
Probabilistic Methods
Theory
Genetic Algorithms
Case Based
Neural Networks
Rule Learning
Reinforcement Learning
Probabilistic Methods
Theory
Genetic Algorithms
Case Based

(g) Cora, CA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Agents
IR
DB
AI
HCI
ML
Agents
IR
DB
AI
HCI
ML

(h) Citeseer, CA

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Energy
Financial
Healthcare
Services
Technology
Energy
Financial
Healthcare
Services
Technology

(i) Industry-PR, CA

Figure 3.7: 2D co-embeddings generated by different algorithms, for the Cora and

Citeseer datasets. Row objects (marked by “+”) and column objects (marked by “◦”)

are members of different classes plotted in different colours. (cont.)
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Figure 3.7 (Cont.): 2D co-embeddings generated by different algorithms, for the Cora

and Citeseer datasets. Row objects (marked by “+”) and column objects (marked by

“◦”) are members of different classes plotted in different colours.

objects based on R, with the same closeness ranks, but obtained from the Euclidean

distances between objects in the co-embedding space. For each row object, the new

co-embedding-based ranks of its ten closest column objects searched within R are

averaged. A smaller value of this mean rank indicates better preservation of the

learned co-embeddings. The final score is computed by averaging the mean ranks for

all the row objects.

In addition to this relation preservation evaluation based on rank, we also examine
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Figure 3.8: Quantitative comparison of different co-embedding algorithms in terms

of the mean rank score and classification error rates using the three link datasets.
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the compatibility between the generated co-embeddings and the class information as-

sociated with the row and column objects. The 10-fold cross-validation classification

performance of both row and column objects with respect to their given class labels

is computed using a simple one-nearest-neighbour classifier.

Firstly, we visually demonstrate the learned 2D co-embeddings for the three

datasets in Figures 3.7 and 3.7 (Cont.). For all datasets, the proposed algorithm,

CODE and CA produce more spread out co-embedding distributions and better class

separability than ACAS. For Citeseer, it can be seen from Figures 3.7(b) and 3.7(k)

that CODE and MKPE fail to preserve the between-group relations, as row and

column objects from the same classes are shown to map far from each other. The

proposed algorithm, CA and ACAS manage to map the row and column objects from

the same class together.

In Figure 3.8 we compare the three algorithms numerically, in terms of the

mean rank scores and classification error rates for varying numbers of embedding

dimensions k (from 2 to 10). It can be seen that the proposed algorithm and CA

possess comparable performance, and both of them more frequently provide lower

mean rank scores and classification errors than the other algorithms. This indicates

better preservation of the input relation information in R and more compatible

structure to the associated ground truth class information of the data objects.

3.4.4 Further Analysis of the Proposed Method

So far, the proposed algorithm provides the best performance for the synthetic

datasets, while MKPE performs the worst (see Section 3.4.1). For document-word

representation learning, the proposed algorithm and MKPE yield better quantitative

performances, but MKPE provides separate document and word embedding distribu-

tions, which are less attractive for visualisation purposes (see Section 3.4.2). With

regard to link data evaluation, the proposed algorithm and CA provide better perfor-

mances in terms of mean rank and classification error (see Section 3.4.3). Overall,

the proposed algorithm is the only one that provides consistently good results for all

the examined cases and under most evaluation criteria.

Here, we further compare these algorithms in terms of their used parameters.
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CA does not involve any parameter in its embedding computation, and CODE and

MKPE do not employ parameters when constructing their objective or score functions.

Both ACAS and the proposed algorithm employ parameters to control the balance

between the local and global structure matching between the learned embedding

and the input similarities; that is, the quantisation parameter for ACAS, and the

neighbourhood parameters kr and kc for the proposed method. Sometimes, ACAS

cannot accurately preserve the desired relation structure even with an exhaustive

search over the quantisation parameter, especially when processing data with complex

geometric distributions (see Figures 3.2(e) and 3.3(b) for example). As we will show

in the experiments below, although the proposed method employs two parameters,

whereas CA, MKPE and CODE employ none, this does not limit its usability because

these parameters can be set to small values without any performance sensitivity

issues.

We investigate the effect of the neighbourhood control parameters kr and kc in

detail. In previous experiments, we employed small values of kr and kc, e.g., kr =

kc = 5, because we observed that it is more reliable to preserve local neighbourhood

structure than to enforce a global matching that considers both proximate and distant

objects. To demonstrate the effect of varying settings of kr and kc, in Figures 3.9 and

3.10 we illustrate the change of 2D distributions of the learned embeddings using

three synthetic datasets (dots, compound, ring), one text (4-class clinical trial) and

one link (Citeseer) dataset. For illustration purposes, we select example datasets

exhibiting more complex pattern distributions. The experimented settings include

kr = kc = 10, also kr = bpmc and kc = bpnc (b·c denotes the floor function) with

p ∈ {10%, 50%, 100%} controlling the percentage of the row (or column) objects to

be included as neighbours, as well as kr = m− 10 and kc = n− 10 to exemplify the

case of large neighbourhood ranges that is close to the extreme case of all the objects

being considered.

We compare Figures 3.9 and 3.10 and those reported in previous sections using

the kr = kc = 5 setting. It can be seen that there is not much difference between

embedding distributions obtained with smaller numbers of neighbours e.g., kr =

kc = 5, kr = kc = 10 and kr = b10%mc, kc = b10%nc. For most datasets, the
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Figure 3.9: 2D embeddings generated by the proposed algorithm with varying settings

of the neighbourhood control parameters kr and kc using the three synthetic datasets

dots, compound and ring (in each corresponding column).
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Figure 3.10: 2D embeddings generated by the proposed algorithm with varying

settings of the neighbourhood control parameters kr and kc using the: (a-e) 4-class

clinical trials, and (f-j) Citeseer dataset.
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Figure 3.11: Performance comparison of the proposed algorithm under varying

settings of the neighbourhood control parameters kr and kc. (a) Classification error

rates using the whole clinical trial collection. (b,c) Classification error rate and mean

rank values using the Citeseer data. The experimented settings of kr and kc are

shown in the legends. The typical setting of kr = kc = 5 and similar local settings of

kr = kc = 10 and kr = kc = 15, as well as the worst setting of kr = m and kc = n

are also included. (cont.)
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Figure 3.11 (Cont.): Performance comparison of the proposed algorithm under

varying settings of the neighbourhood control parameters kr and kc. (a) Classification

error rates using the whole clinical trial collection. (b,c) Classification error rate and

mean rank values using the Citeseer data. The experimented settings of kr and kc are

shown in the legends. The typical setting of kr = kc = 5 and similar local settings of

kr = kc = 10 and kr = kc = 15, as well as the worst setting of kr = m and kc = n

are also included.

shape of the embedded data patterns starts to show significant distortion when large

neighbours, e.g., kr = m− 10 and kc = n− 10, are used; for example Figure 3.9(l).

For the extreme case of kr = m and kc = n, the resulting embedding distribution

collapses for most datasets. For example, in Figure 3.9(m) some classes almost shrink

to single points, and in Figure 3.10(e), the words shrink to the centre of documents.

Using the Citeseer dataset and the whole collection of clinical trials, we compare

further parameter settings quantitatively in terms of classification errors and mean

ranks. The performances are displayed in Figures 3.11 and 3.11 (Cont.). It can be

seen that the worst performance is most frequently obtained with kr = m and kc = n.

Also, the figure shows that as long as the neighbourhood is kept small, similarly good

performances can be obtained.

Finally, we compare the computational time of the proposed and existing methods
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Figure 3.12: Computational cost comparison of different methods for increasing

number of data size (n,m) and embedding dimension (k). The incremental integer

values on x-axis mark the different settings of data size.

in Figure 3.12. It can be seen that gradient-based optimisation methods CODE and

MKPE are more time consuming, particularly for learning embeddings with higher

dimensions. The computational times of the remaining methods, that are mainly

based on matrix decomposition, do not increase notably when embedding dimensions

and data sizes increase. Both CA and our method are slightly more efficient than

ACAS. Overall, the proposed method not only offers good performance for preserving

relational structure, but also possesses competitive computational requirements.

3.5 Conclusion

We have proposed a novel method to generate co-embeddings of two different

groups of objects within a joint embedding space for use in data visualisation tasks,

and also unsupervised and supervised machine learning setups. Co-embedding

generation algorithms that simultaneously handle heterogeneous groups of data
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objects, are very important in many application areas, including biological network

analysis, co-occurrence data analysis and information retrieval, and act as unique

data analysis tools for sources supporting such complex multi-modal information.

The algorithm we have introduced is experimentally demonstrated to be very

competitive with the existing state of the art. It holds minimal assumptions with

respect to the data, as it does not require explicit knowledge of the initial objects,

but instead only a set of similarities between objects from the two groups. Its

underlying model is based on a set of weights that allow each embedding group

to be defined in terms of the other, and it is shown that this permits the model

optimisation to be achieved via simple matrix factorisation. Using a set of intuitive

heuristics, we drastically reduce the number of model parameters needed for the

generation of optimal co-embeddings. This is a also supported by a very effective

model identification score we propose to search for the optimal parameters of the

method.

The proposed work has some limitations. In the model construction, the distances

between the embedded points are expected to correspond to those of the original

patterns. This implicitly assumes that the original association values are comparable

and can be sorted within either rows or columns. But this assumption can hardly

be true in most real-world datasets. For example, the co-occurrence rates between

documents and terms are inherently multi-modality that they should be explained via

different unimodal sources. Also, the model parameters are identified by matching

the useful mutual neighbourhood patterns in the original data and the generated

co-embeddings. Though these neighbourhood patterns do correspond to important

structural characteristics of either a joint embedding or a relational matrix, they

might not be well-marked in an extremely sparse input — due to the sparsity of the

input relational matrix, a large proportion of mutual neighbourhoods is identified by

association of 0s.

Instead of unfolding the multi-modality information directly from the relational

measurements, the multi-modalities of the associations can also be assorted and

provided in the first place. In particular, the data can be represented by a multi-

relational graph with multiple edges correspond to different types of relations. There
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are rich sources for such data type and this so-called multi-relational data forms our

topic of study in the next chapter.
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Chapter 4

Knowledge Graph Embedding

4.1 Introduction

The above chapter deals with bipartite relations with positive numerical quantities

as the associations between different objects. When the associations are accurate

enough to reflect objects’ latent geometric structure, it has been demonstrated that

some of the heterogeneous co-embedding algorithms are capable of recovering the

original data patterns in the embedding space. But in the real world cases, the

relations may come from multiple sources with different functions that cannot be

simply explained as a measure of closeness between objects. This gives rise to the

need for processing the multi-relational data [110], where the objects are interlinked

by various relation types. Such data representation is very versatile, it can adapt

to capturing various relations by including the attributes, correlations or classes of

related objects. For example, the attributes of an object can be readily represented

by introducing relation type "hasAttrribute" as edges connecting this object and its

associated attributes. The main resource of multi-relational data is the web-based

KGs, also referred to as knowledge bases [70]. A KG stores information in a graph

structured format, such as a directed graph whose nodes (entities) represent the

objects and edges (links) correspond to the relation types between objects. An

example of a small KG is shown in Figure 4.1.

In the recent years, much work has been invested into the construction of
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Figure 4.1: Real world facts stored as a KG, of which the triplet form is expressed

as (head_entity, link, tail_entity), i.e. (chris_noth, starred_in, sex_and_the_city),

sex_and_the_city, is_a, tv_show).

large KGs, including Wordnet [49], YAGO [111], DBpedia [112], Freebase [113],

NELL [114] and the Google’s Knowledge Vault project [115]. These contain highly

structured information and are useful in many artificial intelligence related tasks, i.e.

word-sense disambiguation [71, 72], search engine [73, 74], question answering [75].

However, despite being very large (usually containing millions of nodes and billions

of edges), most KGs are very noisy and far from being complete, because large

databases are either constructed collaboratively by an open group of volunteers or

automatically extracted from unstructured or semi-structured text via rules, regular

expressions, or machine learning and natural language processing techniques [116].

Taking Freebase as an example, which is a large collaborative knowledge base har-

vested from resources, such as individual and user-submitted Wiki contributions,

there are 71% of around 3 million people with no known place of birth [117] within

the database. Consequently, one major goal of KG analysis is to develop numerical

models that suggest the likely truth of new facts and correct unlikely facts based on

the existing data within KGs.

Since the KGs can correspond to massive volumes of knowledge, it is often

prohibitively expensive to subject them for processing to symbolic models [118–120]

or inference models [20, 121–127]. Latent representation models have therefore

been receiving increasing attention. These are capable of embedding entities into a

continuous vector space and converting links to mathematical operations (e.g., linear,
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bilinear transformation, etc.) between entity vectors with reasonable computational

costs [23, 24, 67–69]. TransE [128] is a representative of such models, that requires

minimal parameterisation and achieves very good performance. It assumes that the

relationships in KGs are hierarchical and uses translations to represent them, where a

single low-dimensional vector is employed to represent each targeted relationship.

Its intuitive, highly scalable and effective design has driven the development of a

number of translation-based algorithms [129–132], of which main benefits include

constraining the translations within the relation-specific space and incorporating extra

information (i.e., relation paths over the knowledge graphs) into the translation-based

energy function.

In this work, we focus on further improving translation-based relation modelling.

Our key idea is that more complex link representations could be constructed to reflect

more accurately the different roles of each relation type. This is fundamentally

different from the assumption made in most existing works, that only distinguish

the link representations among different relation types. In real-world applications,

the entity can always have exactly one meaning facilitated by the KG construction

stage. However, links can be more complex and they usually correlate with each

other, which makes them much harder to analyse. Therefore, a more careful design

is required to model link representations. Here, we show an example that the same

link can possess different characteristics when being involved with different entity

pairs, by considering the typical hierarchical link of “descendantOf”. For instance,

if both facts of (person_A, descendantOf, person_B) and (person_B, descendantOf,

person_C) are true, (person_A, descendantOf, person_C) must also be true according

to the hierarchical property of the "descendantOf" relationship, although it takes

a longer range of dependencies than the former two triplets. It is obvious that

“descendantOf" has as a direct link role with (person_A, person_B) and an indirect role

with (person_A, person_C). Existing works do not explicitly consider the different

roles of the same link in different entity pairs. We propose a new translation strategy

to address this, which although maps the entities and links within the same unified

vector space, it models the multiple facets of each link by projecting the link vector

on the relevant entity pair space to create more flexible interactions. The proposed
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algorithm is referred to as Translating on Pairwise Entity Space (TransPES). It is

trained on a ranking based objective function using stochastic gradient descent, and

is compared with multiple state-of-the-art methods in the field, using two commonly

used benchmark datasets on link prediction. To facilitate a deeper analysis of the link

prediction behaviour, we also propose a new way for partitioning the testing relational

triplets to demonstrate how the algorithm behaves on different arrangements of test

data.

The remainder of this chapter is organised as follows. In Section 4.2 and 4.3, a

review of the previous works is provided for multi-relational learning along with their

model design and limitations. The mathematical formulation of our model and the

associated analysis are presented in Section 4.4. Related experiments and evaluations

are conducted in Section 4.5. The work is concluded along with future directions in

Section 4.6.

4.2 A Brief Review

Early works on modelling multi-relational data employ graphical models, such as

Bayesian clustering frameworks [20, 121–124] or Markov logic networks [125–127].

Most of these models cannot be applied to analyse large-scale relational databases due

to their high cost of inference. Another line of work treats the multi-relational data as

3-dimensional adjacency tensors, and applies tensor factorisation techniques [65–67]

to analyse its link structure. One representative work is RESCAL [67], which models

entities as latent feature vectors and relation types as matrices containing pairwise

interaction weights between entities, and optimises efficiently the model variables via

alternating least squares. It achieves state-of-the-art accuracies for many benchmark

datasets, and has been applied for link prediction on entire KGs, such as YAGO and

DBpedia [111, 112].

Although the size of the adjacency tensor for modelling KGs can be very large,

only a small fraction among all possible relations between entities are likely to be

correct. For example, there are over 450,000 actors and over 250,000 movies stored

in Freebase [113], but each actor stars only in a few movies [31]. To efficiently
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deal with the sparse relationships in KGs, Structured Embedding (SE) model [23]

introduces a powerful ranking loss for learning entity embeddings. This stimulates

the development of a group of neural network models, such as Latent Factor Model

(LFM) [68], neural tensor networks [69], and Semantic Matching Energy (SME)

models [24], which design respective score functions to fit the likely true relations

utilising different operations between the latent entity representations. These models

seem to be appropriate as they attempt to model any kind of interactions through

universal numerical operations. However, they are computationally expensive and

are likely to suffer from overfitting with regard to very sparse relations, and this fails

to capture intrinsic properties of the relations leading to weak model interpretability.

It has been shown in [133] that the word vectors learned from free text, coinciden-

tally represent some hierarchical relationships as translations between word vectors;

e.g., vec(“Germany") + vec(“capital") is closest (translated) to vec(“Berlin"). This

motivates the first translation-based (or called distant) model TransE [128], which is

light on parameterisation, but outperforms all former methods in link prediction on

very large KGs. The appealing performance and scalability of this simple model have

inspired the development of many others [129–132] that build upon the translation

operations. Specifically, TransH [130] and TransR [131] assume that there is a link

space for each relation type and project the entity embeddings to each link space

before translation. They have shown consistent and significant improvements com-

pared to TransE on some very large KGs. A thorough survey on relational learning

techniques for analysing KGs can be found in [70].

4.3 Previous Methods

A knowledge graph D consists of a set of links between a fixed set of entities.

Let E = {e1, . . . , eNe} denotes the entity set and R = {r1, . . . , rNr} the link set.

Relation information indicated by D can be converted to relation triplets such as

(eh, r`, et), where eh, et ∈ E are referred as the head and tail, respectively, and r` ∈ R

the link (or relation type). For example, (Champa, formOfgoverment, Monarchy)

is one of such relation triplets, where the head entity “Champa" and the tail entity
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“Monarchy" is linked by the relation type “formOfgoverment". For convenience, we

denote the relation triplet (eh, r`, et) as (h, `, t) by referring only to the indices of the

entities and links. Given a set of known links within D, the goal is to infer unknown

links and correct known but mistaken links in order to complete D. One way to solve

this task is to learn an energy function E(h, `, t) on the set of all possible triplets in

E × R × E, so that a triplet representing a true existing link between two entities

is assembled with a low energy, otherwise with a high energy. By default, most

methods represent the head entity and tail entity as vectors of eh and et, respectively.

We will use vectors eh and et as their entity representations repeatedly throughout

this chapter.

In the later sections, we first summarise the non-translation models which repre-

sent the early approaches in this field. Then, we demonstrate some existing translation

models, e.g., their mathematical formulations, model limitations, to derive the mo-

tivations of our model. Although different training strategies can be used, all these

models mainly differ in their design of the energy function E(h, `, t) to fit the exist-

ing triplets. We also depict these embedding models in Table 4.1, i.e., their energy

function E(h, `, t) and the model complexity (the number of parameters).

4.3.1 Non-Translation Models

RESCAL [67] explains triples via pairwise interactions of the latent features in

the entity vectors, its energy function is written in bilinear form as

E(h, `, t) = −e>hW`et, W` ∈ Rk×k. (4.3.1)

W` is a weight matrix for link `, its entries wij specify how much the latent features

i and j interact in the `-th relation.

SE [23] transforms the head and tail entity vectors into an embedding space by

the head and tail relation matrices before comparing their distances

E(h, `, t) = −‖W`heh −W`tet‖, W`h,W`t ∈ Rk×k. (4.3.2)

These head and tail relation matrices aim to define different relation-specific measures

between entities.
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Table 4.1: Different embedding models with the associated energy function and

parameters specified. Both k and d are the dimensions of embedding space, we

assume k to be the final reduction dimensionality (k < d in general). ×̄3 denotes the

n-mode vector-tensor product along the 3rd mode.

Model Energy function E(h, `, t) #Parameters

Unstructured [24] ‖eh − et‖ O(Nek)

RESCAL [67] −e>hW`et, W` ∈ Rk×k O(Nek +Nrk
2)

SE [23] −‖W`heh −W`tet‖, W`h,W`t ∈ Rk×k O(Nek + 2Nrk
2)

SME(linear) [24]
−(Wh1e

>
h + Wh2e

>
` + b>h )>(Wt1e

>
t + Wt2e

>
` + b>t )

O(Ned+Nrd+ 4kd)
Wh1,Wh2,Wt1,Wt2 ∈ Rk×d, bh, bt ∈ Rk

SME(bilinear) [24]
−((Wh×̄3e

>
` )e>h + b>h )((Wt×̄3e

>
` )e>t + b>t )

O(Ned+Nrd+ 2kd2)
Wh,Wt ∈ Rk×d×d, bh, bt ∈ Rk

LFM [68]
−e>h (

∑s
j=1 α

`
jujv

>
j )et

O(Nek + 2Nrsk)
uj,vj ∈ Rk, s < k

TransE [128] ‖eh + r` − et‖ O(Nek +Nrk)

TransH [130]
‖(eh −w>` ehw`) + r` − (et −w>` etw`)‖

O(Nek + 2Nrk)
w` ∈ Rk

TransR [131]
‖P`eh + r` −P`et‖

O(Nek +Nrk +Nrkd)
P` ∈ Rk×d

TransPES ‖eh + Phtr` − et‖ O(Nek +Nrk)
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SME [24] proposes a neural network framework for encoding the energy function,

under which two models have been developed. One defines the energy function as

E(h, `, t) = −(Wh1e
>
h + Wh2e

>
` + b>h )>(Wt1e

>
t + Wt2e

>
` + b>t ), (4.3.3)

where Wh1,Wh2,Wt1,Wt2 ∈ Rk×d (weights), bh, bt ∈ Rk (biases). This model is

denoted as SME (linear) since the terms in the braces are in linear form.

The second model uses 3-modes tensors as core weights

E(h, `, t) = −((Wh×̄3e
>
` )e>h + b>h )((Wt×̄3e

>
` )e>t + b>t ), (4.3.4)

where Wh,Wt ∈ Rk×d×d, bh, bt ∈ Rk. ×̄3 denotes the n-mode vector tensor prod-

uct along the 3rd mode. Correspondingly, this model is denoted as SME (bilinear).

The advantage of SME models over the previous ones is that every relation is

denoted by a vector r` instead of matrices, which can reduce a significant number of

parameters.

LFM [68] uses a similar energy function as RESCAL, its energy function is

equivalent as Eq. (4.3.1), but it requires all relation matrices W` decompose over a

common set of rank one matrices

W` =
s∑
j=1

α`jujv
>
j , for uj,vj ∈ Rk. (4.3.5)

This decreases the overall number of parameters compared to RESCAL, and enables

a more efficient optimisation procedure.

In summary, these models consist of a large number of parameters and have only

been applied to process small KGs. Though they have continually progressed towards

lighter parameterisation, their performances do not degrade much.

4.3.2 Translation Methods

Given the effectiveness, efficiency and plausible interpretability of the translation

based relational learning technique, we aim to model the KG information more

accurately by addressing limitations of these models. The most commonly used

translation model TransE [128] employs the following energy function

E(h, `, t) = ‖eh + r` − et‖, (4.3.6)
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where ‖ ·‖ denotes a norm of the input vector, e.g., the Euclidean norm, and eh, r`, et
are the embedding vectors of head entity, relation type and the tail entity, respec-

tively, distributed in the same representation space. A correct relation triplet (h, `, t)

possesses a low energy value while an incorrect one high. This means that, in the

ideal case, et should be the nearest neighbour of the vector eh + r` for a true triplet

(h, `, t), or should be far away from et for an incorrect triplet. This assumption posed

by Eq. (4.3.6) can be oversimplified when processing one-to-many links. These are

defined as links ` contained in many correct triplets (h, `, t1), (h, `, t2), . . . , (h, `, tn).

One example, is the “isa" link extracted from the sentence “Bob Dylan was a song

writer, singer, performer, book author and film actor", based on which the following

list of relation triplets can be generated

head link tail

(BobDylan, isa, SongWriter),

(BobDylan, isa, Singer),

(BobDylan, isa, Performer),

(BobDylan, isa, BookAuthor ),

(BobDylan, isa, FilmActor).

For this type of links, TransE will return equal embeddings et1 = et2 = . . . = etn in

the ideal case of zero error. Such an output fails to distinguish between different tail

entities. Similarly, it can also fail to distinguish different links that are valid for the

same entity pair; for instance, equal embeddings will be returned for the two different

links of ”presidentOf” and “placeOfbirth” to represent the two triplets of (Obama,

presidentOf, USA) and (Obama, placeOfbirth, USA) in the ideal zero error case.

To overcome this shortcoming, various modifications of the above energy function

have been proposed. For instance, TransM [129] allows more flexibility to model the

one-to-many links by introducing a link-specific weight w`, with which the modified

energy function is defined as

E(h, `, t) = w`‖eh + r` − et‖. (4.3.7)

It imposes smaller weights to one-to-many links to prevent zero error cases, so that
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their associated many-side entity embeddings (i.e., et1 , et2 , . . . , etn for the one-to-

many link l) could possess different representations. Another modification is TransH

[130], which assumes that an entity should be assigned to different representations

when being involved with different links. The entity embeddings eh and et are first

projected to the hyperplane of the link `, denoted as e⊥`h and e⊥`t , based on which the

energy function is formulated as

E(h, `, t) = ‖e⊥`h + r` − e⊥`t ‖2
2. (4.3.8)

In this case, different representations are allowed to represent the many-side em-

beddings for the one-to-many link l even for the zero case as long as they share

the same projected representation e⊥`t1 = e⊥`t2 = · · · = e⊥`tn . TransR [131] further

expands this idea by allowing entities and links to be distributed in different spaces

of different dimensions d and k, respectively. It introduces a set of k × d projection

matrices {P`}Nr`=1 to align the two spaces over each link, leading to the following

energy function

E(h, `, t) = ‖P`eh + r` − P`et‖2
2. (4.3.9)

In distance calculation, both TransH and TransR employ a fixed embedding

representation for each link, but parameterise an entity in different ways to reflect the

role difference between links, that is, e⊥` by TransH and P`e by TransR. However,

it is more reasonable to fix the embedding representation for entities, but allow

the opportunity to propagate relation information through entities. This is because

of the true nature of a KG, where an entity has exactly one meaning or refers to

exactly one thing, but links can correlate with each other. Assume there exist entities

c1, c2, . . . , d1, d2, . . . , e1, e2, . . . belonging to three classes of C,D,E, and assume

that the class structure can be reflected by the link information. Another advantage

of characterising entities with fixed embedding representation is to show naturally

the within-class closeness and between-class dispersion in the same space, so that

it is possible to transfer the instance-based inference to the class-based inference,

e.g., from (ci, r1, dj) ∧ (dj, r2, , ek) ⇒ (ci, r3, ek) to (C, r1, D) ∧ (D, r2, E) ⇒
(C, r3, E). A third advantage of representing entities with fixed embeddings but

varying the link representation for different entity pairs, is that it offers the potential
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of addressing better the hierarchical relation structure. For example, the relation

type like “descendentOf" can appear in multiple relation triplets such as (person_A,

descendentOf, person_B) and (person_B, descendentOf, person_C), based on which

(person_A, descendentOf, person_C) can be inferred. Existing translation-based

algorithms, as mentioned above, may not perform well to infer such relation, because

their model expressive power can be limited by fixing the link representation of

“descendentOf" regardless of which entity pairs it is involved with. Instead, by

using different representations for “descendentOf", the model can become more

flexible and formulate more accurately the interaction between“descendentOf" and

different entity pairs of (person_A, person_B), (person_B, person_C) and (person_A,

person_C).

4.4 The Proposed Method

4.4.1 Model Construction

The energy function of an input relation triplet is parameterised over not only

three individual k-dimensional embedding vectors of its head, tail and link, but also

a set of k × k transformation matrices {Pht}h,t. Different matrices are constructed

for different head-tail entity pairs (h, t) to create a bespoke link representation for a

given entity pair. We formulate the energy function as

E(h, `, t) = ‖eh + Phtr` − et‖2, (4.4.1)

where, apart from the l2-norm, other ones or dissimilarity measures can be used.

To reduce the computational cost, instead of optimising the transformation ma-

trices, each Pht is computed as a matrix that projects a k-dimensional vector onto

the space spanned by the two (typically independent) k-dimensional entity vectors

eh and et. Letting the columns of the k × 2 matrix Eht be the two entity embedding

vectors eh and et, then the projection vector of r` must be the linear combination

of the columns of Eht. We denote the combination coefficient vector as x. Clearly,

vector (r` − Ehtx) is perpendicular to the column vectors of Eht due to the property
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of orthogonal projection operator. Formally, it leads to the following equation

E>ht(r` − Ehtx) = 0, (4.4.2)

which can readily be solved by x =
(
E>htEht

)−1 ET
htr` when the columns of Eht are

linearly independent.

Correspondingly, the projection vector Ehtx is given by

Ehtx = Eht

(
E>htEht

)−1 ET
htr`. (4.4.3)

And the analytic form of the orthogonal projector Pht is defined as

Pht = Eht

(
ET
htEht

)−1 ET
ht. (4.4.4)

To regularise and make the process more numerically flexible, Eq.(4.4.4) is modified

according to

Pht = Eht

(
ET
htEht + ξI

)−1 ET
ht, (4.4.5)

where ξ > 0. Using Eq.(4.4.5), for sufficiently small ξ, the transformed vector Phtr`
lies very close to the entity subspace spanned by eh and et. This can be seen because

ET
ht (I− Pht) r`

=ET
ht

(
r` − Eht

(
ET
htEht + ξI

)−1 ET
htr`

)
=ET

htr` −
(
ET
htEht + ξI− ξI

) (
ET
htEht + ξI

)−1 ET
htr`

=ξ
(
ET
htEht + ξI

)−1 ET
htr`, (4.4.6)

which shows that for any r` we have limξ→0 ET
ht (I− Pht) r` = 0.

In TransR, different dimensionalities for the two embedding spaces of (d) entities

and (k) links are allowed, and a set of k× d transformation matrices are employed to

align the two spaces over links. Differently here, we assume equal dimensionality

(k) of the two spaces, and employ a set of k × k transformation matrices to align

the two spaces over entity pairs. The benefit of using equal dimensionality, is that it

enables to derive an analytic form of the projection matrix as in Eq.(4.4.5) without

additional effort to optimise it. For TransR, when d > k, the information stored in

an entity embedding is compressed to a lower-dimensional vector. When d < k,
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the entity embedding is expanded to a higher-dimensional vector. However, all the

expanded entities are distributed within a subspace of the link space, of which the

rank of the expanded entity matrix is no more than d. Also, given the fact that the

number of existing links (relation types) is usually much less than the number of

existing entities in a KG, it is not necessary to increase the freedom of the link space,

e.g., a higher dimensionality than the entity space. Thus, setting d ≥ k is more

reasonable than d < k, and d = k allows the minimal information loss, which is also

the adapted setting reported in the TransR work. Because of these, we enforce equal

dimensionality between the two spaces, aiming at obtaining a more mathematically

convenient solution for the projection matrices without sacrificing the expressive

power of the model.

4.4.2 Model Training

Given a set of known links between entities, a set of valid triplets can be con-

structed, which is referred to as the positive triplet set and denoted by D+. For

each positive triplet (h, `, t) ∈ D+, a set of corrupted triplets can be generated by

replacing either its head or tail entity with a different one, as

D−h,l,t =
{

(h
′
, `, t)|h′ ∈ {1, 2, . . . , Ne}, (h

′
, `, t) /∈ D+

}
∪{

(h, `, t
′
)|t′ ∈ {1, 2, . . . , Ne}, (h, `, t

′
) /∈ D+

}
Minimising the energy function in Eq.(4.4.1) parameterised via the entity and link

embeddings, is equivalent to the optimisation of these embedding vectors to en-

courage the maximum discrimination between the positive and negative triplets. To

achieve this, a margin-based ranking loss is employed, given as

Lm =
∑

(h,`,t)∈D+

∑
(h′ ,`,t′ )∈D−h,`,t

[
γ + E(h, `, t)− E(h

′
, `, t

′
)
]

+
, (4.4.7)

where [x]+ , max(0, x) denotes the positive part of the input x, and γ > 0 is a

user-set margin parameter.

A length constraint ‖ei‖2 ≤ 1 for each entity embedding is considered to prevent

the training process from trivially minimising Lm by arbitrarily increasing the scale
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of the entity embedding. This constraint can be incorporated into the cost function

Lm as
∑Ne

i=1 [‖ei‖2
2 − 1]+. We also add a regularisation term for the link embedding

vectors {rj}Nrj=1. This leads to the regularised cost function

L = Lm + λ1

Ne∑
i=1

[
‖ei‖2

2 − 1
]

+
+ λ2

Nr∑
j=1

‖rj‖2
2, (4.4.8)

where λ1 > 0 is the scale control parameter and λ2 > 0 is the regularisation parameter.

Finally, the following optimisation problem is to be solved

argmin
{ei}Nei=1,{rj}

Nr
j=1

L
(
{ei}Nei=1, {rj}

Nr
j=1, θ

)
, (4.4.9)

where θ = {γ, ξ, λ1, λ2, k} comprises the user parameter set, that includes one

margin parameter, three regularisation ones, and the embedding dimensionality.

The pseudocode for the proposed algorithm is provided in Algorithm 2. Similar

to the optimisation procedure used in [128], a stochastic gradient descent approach

in minibatch mode is used. All embedding vectors for entities and relations are first

initialised following the random procedure in [134]. At each main iteration, a set

of positive triplets for minibatch training is randomly sampled from the training

set and the corresponding corrupted triplets are generated from each individual

positive triplet in this set. After a minibatch, the gradient is computed and the model

parameters are updated. The algorithm terminates after a fixed number of iterations.

4.4.3 Discussion

Here we conduct some further analysis and discussion of the proposed algorithm

with regard to its connections to TransE and model complexity. It can be seen from

Eqs.(4.3.6) and (4.4.1) that TransE formulates a true relation triplet as r` = et − eh,

while the proposed algorithm as Phtr` = et − eh to enable the modelling of more

complexed relations. For instance, given three true triplets (h, `,m), (m, `, t) and

(h, `, t), a potential solution of TransE with low energy can be self-contradictory, e.g.,

r` = em − eh = et − em = et − eh in the ideal case of zero error. By allowing

different representation Phtr` for the same link r for different entity pairs (h, t),

TransPES can overcome this effect.
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Algorithm 2 Pseudocode for TransPES.
Input: Training set D = {(h, `, t)}, entity and link sets E and R, user-provided

parameter set θ = {γ, ξ, λ1, λ2, k}, triplet minibatch of size b.

1. Initialisation:

r ← uniform (− 6√
k
, 6
k
) for each r ∈ R

r ← r/‖r‖ for each r ∈ R

e← uniform (− 6√
k
, 6
k
) for each e ∈ E

e← e/‖e‖ for each e ∈ E

2. Loop:

Dbatch ← sample from D

Tbatch ← ∅

for (h, l, t) ∈ D do

(h
′
, `, t

′
)← sample from D−(h,l,t)

Tbatch ← Tbatch ∪ {((h, `, t), (h
′
, `, t

′
))}

end for

Ebatch ← head and tail set from Tbatch

Rbatch ← link set from Tbatch

Gradient descent update of embeddings using Ebatch and Rbatch

end loop
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On the other hand, assume the relation ` adheres to some deterministic rules, e.g.,

(h, `, t) can be inferred from (h, `,m) and (m, `, t). This transitivity pattern can be

potentially modelled by using three planes H1, H2 and H3, on which the projected

embeddings r`1 , r`2 , r`3 for link ` satisfy r`1 + r`2 = r`3 . This can be achieved by

the proposed algorithm with the entities eh, em, et pairwisely spanning these three

planes, that is, a spanned space Hhm of eh and em “close" to the plane H1, Hmt

“close" to H2, and Hht “close" to H3. By “close", we mean that the angle between

the two planes is small. Subsequently, the learned lower energies of triplets (h, `,m)

and (m, `, t), will lead to the lower energy of (h, `, t), because

‖eh + Phtr` − et‖ ≈ ‖eh + r`3 − et‖

= ‖eh + r`1 − em + em + r`2 − et‖

≤ ‖eh + r`1 − em‖+ ‖em + r`2 − et‖

≈ ‖eh + Phmr` − em‖+ ‖em + Pmtr` − et‖. (4.4.10)

This indicates the possibility of encoding (h, `,m) + (m, `, t) ⇒ (h, `, t) into the

three spanned spaces that satisfy Phmr` ≈ Phmr` + Pmtr`.

Let e1, e2, . . . , en denote the entities that appear together with link ` in the true

relation triplets. If one only considers to reduce the energy of correct triplets in

TransE, the optimal link vector r∗` must be contained in the subspace spanned by the

corresponding entity embeddings. Any components added to the link embedding

that are not in this subspace will increase the energy of correct triplets in TransE.

However, during the training based on ranking loss, the energy of incorrect triplets

is also to be maximised by seeking appropriate solution for r`. This will inevitably

drag the learned link embedding vector r` away from the optimal one r∗` . Differently,

the proposed algorithm has the potential to learn from an incorrect triplet in the

complementary space of its corresponding correct one, so that its influence over

the optimal link vector r∗` is automatically ignored. This enables the reduction of

the energy for correct triplets and the increase of the energy for incorrect ones,

simultaneously. To encourage consideration of incorrect triplets, a smaller λ2 can

be used to suppress the regularisation term of λ2

∑Nr
j=1 ‖rj‖2

2 as in Eq.(4.4.8) by

amplifying the effect of link embeddings.
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We also compare our model with the embedding models in Table 4.1. Since the

data size is usually very large, all these models are scaled linearly in the number of

entities Ne and linearly in the number of relations Nr. But scalability problem is still

a big concern. Taking the RESCAL algorithm as an example, the model complexity

Nek + Nrk
2 is quadratic in the number of embedding dimension k and it is likely

to be huge even for a moderate dimension value k . Consequently, our proposed

model takes only the minimum parameterisation that is also linear in the embedding

dimension k. Although it needs to compute the inverse term
(
ET
htEht + ξI

)−1
in

every evaluation of Pht in the energy function E(h, `, t), it’s computational efficient

as
(
ET
htEht + ξI

)
is a small matrix of 2-by-2.

4.4.4 Data Partition Scheme for Evaluation

When evaluating a link prediction task given a KG, in addition to computing an

overall performance using all the test relation triplets, researchers are looking in more

detail into the different types of relation triplets and analyse how a model behaves

over these different triplet types. The work in [128] suggests to group the relation

triplets into the four categories of: 1-to-1, 1-to-many, many-to-1 and many-to-many,

according to the cardinalities of their head and tail entities. For instance, a given

triplet is classified into 1-to-many if its head entity can appear together with many

tail entities in other triplets, but its tail entity only appears in this given triplet.

We propose here an alternative split of the relation triplets based on human

inference logic. Specifically, it is natural for human intelligence to infer the existence

of a reverse form of a given relation triplet. This can be denoted as to infer (t, `−1, h)

from (h, `, t), where `−1 denotes the inverse link of `. We list three relation triplet

examples in Table 4.2 that appear in Freebase [113]. In each example, an original

relation triplet and its reverse version that truly exist in the database are displayed, e.g.,

“/base/fight/crime type/includes crimes" is reverse of “/people/cause of death/parent

cause of death". Another type of relation triplet that is natural for human to infer is

the reciprocal relation, for which swapping the positions of the head and tail entities

does not affect the validity of the relation triplet, e.g., links such as “MarriedTo" and

“AliasTo”. This can be denoted as to infer (t, `, h) from a known triplet (h, `, t) when
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Table 4.2: Examples of reverse triplets.

head relation type tail

E1
original /m/012hw /people/cause_of_death/parent_cause_of_death /m/051_y

reverse /m/051_y /base/fight/crime_type/includes_crimes /m/012hw

E2
original /m/0hkb8 /architecture/structure/architectural_style /m/0f447

reverse /m/0f447 /architecture/architectural_style/examples /m/0hkb8

E3
original /m/0czp_ /award/award_category/category_of /m/0g_w

reverse /m/0g_w /award/award/category /m/0czp_

the link ` is reciprocal. Taking out these two types of straightforward inference, the

other inference requires more complex logic.

Our assumption is that, since human can easily infer the reverse and reciprocal

triplet from the given original one, the link prediction model should be able to achieve

the same. Thus, it is interesting to group the relation triplets to three categories of

“reciprocal type", “reverse type", and “the other" that requires more complex logic to

infer. We define the collection of known relation triplets for the model to learn from

as the training set, and the testing triplets for performance evaluation as the test set.

The following split is applied to the test set: If a testing triplet (h, `, t) is reciprocal,

(t, `, h) should be found in the training set. If a test triplet (h, `, t) belongs to the

reverse type, its reverse form (t, `−1, h) should appear in the training set. However,

it is not easy to identify the reverse relation for any given relation type due to the

lack of information. So we relax the condition to that, if (h, `, t) is a reverse type,

(t, ∗, h) should exist in the training set without specifying the involved link. After

identifying the reciprocal and reverse triplets, the remaining ones in the test set are

categorised as “the others". Individual evaluation over each category of the testing

triplet provides deeper insight on the studied model.
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4.5 Experiments

4.5.1 Datasets and Experimental Setup

The proposed algorithm is compared with ten state-of-the-art translation models

from the literature (see Table 4.4), evaluated using two benchmark link prediction

datasets of WN18 [24] and FB15k [23] extracted from the two large real-world

knowledge bases of Wordnet [49] and Freebase [113], respectively. We provide

below some brief description of WN18 and FB15K datasets, and show their statistics

in Table 4.3.

• The WN18 dataset contains a total of 40,943 entities, 18 relational types and

151,442 relation triples. It is extracted from the large English lexical database

Wordnet, which groups words into sets of cognitive synonyms (synsets) and

interlinks these synsets by means of a small number of semantic relations,

such as synonymy, antonymy, meronymy and hypernymy. One example of a

typical triplet is (_range_NN_3, _hypernym, _tract_NN_1), which means the

third meaning of the noun "range" is a hypernym of the first sense of the noun

"tract".

• The FB15k dataset contains a total of 14,951 entities, 1345 relation types and

592,213 relation triples. It is created by adopting the frequently occurrent

entities and relationships in Freebase, which is a massive online collection

database consisting of general human knowledge. It organises the human

knowledge data directly in the triplet form of (head, link, tail). Typical triplet

examples are (Peasant Magic, album, Solipsitalism), (Barack Obama, religion,

Christianity) and (Orange France, place-founded, Paris).

The proposed algorithm is compared with ten state-of-the-art translation models

in terms of link prediction performance. Essentially, every model is trained by

optimising a score function (or an energy function in our case) to assemble the likely

relation triples with higher scores (or lower energies) than the unlikely relations. This

function can thus give its estimation of the likely score (or energy) for every true
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Table 4.3: Statistics of datasets.

Dataset WN18 FB15k

Relationships 18 1, 345

Entities 40, 943 14, 951

Train 141, 442 483, 142

Valid 5, 000 50, 000

Test 5, 000 59, 071

triplet in the test set. The following evaluation metrics based on the predicted score

(or energy) are used:

• Mean rank measures how well the predicted scores (or energies) correlate

with the true triplets [23]. For each correct triplet in the test set, we first

construct the corrupt triples by replacing the head entity with all the entities

in the knowledge base. The scores (or energies) of these corrupted triples are

first computed and then sorted in descending (or ascending for energy) order,

and the rank for the correct head entity is stored. This procedure is repeated

by replacing the tail entity of each correct triple with all the entities in the

knowledge base to obtain the rank for each correct tail entity. The average of

all these predicted ranks in the test set is used to report the performance.

• Hits@10 is another measure of the correlation between the predicted scores

(or energies) and the true triplets [23]. Following exactly the same ranking

procedure as in the mean rank evaluation, hits@10 is the proportion of the

correct triplets ranked within top 10 of all the evaluated ones.

Previous work [128] suggests to filter out corrupted triplets that appear to be valid

ones in the given triplets (for all the training, validation and test sets), as they should

not be counted as errors. We conduct this filtering procedure to calculate filtered

mean rank and hits@10 performance. To distinguish performance computed with

and without the filtering procedure, we refer it as raw without filtering and filtered

with the filtering procedure.

The same training, validation and test splits provided by [128] are used to evaluate
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the proposed model. The resulting performance is compared against performances

of the state-of-the-art models that are reported in the literature [128] [130] [131]

using their recommended settings as stated in the papers. Parameters of TransPES

were tuned using validation set based on simple grid searches. The learning rate was

searched among {0.1, 0.01, 0.002}, the dimension of the entity and link embedding k

among {20, 50, 100}, the regularisation parameter for scaling control λ1 was assigned

as a constant value 1, batch sizeB among {50, 100, 200}, the regularisation parameter

λ2 among {0.1,0.01,0.001} and the margin γ between 0 and 1 with step size of 0.1.

The regularisation parameter ξ is fixed as a small positive value 10−8. For both

datasets, the epochs round was set as not more than 1000 times. The best model

among the last 100 epochs was selected according to the mean rank and hits@10

performance of the validation set. An open-source implementation of TransPES

is available from the project webpage1. The optimal configurations returned by

the searching procedure are k = 20, B = 100, λ2 = 0.01, γ = 0.7 for WN18 and

k = 100, B = 100, λ2 = 0.01, γ = 0.4 for FB15k.

4.5.2 Performance Comparison

Performance of the proposed and competing methods are reported in Table 4.4.

The proposed TransPES provides in general better performance than the competing

ones, particularly for the larger and more complex dataset FB15k containing 1, 345

relation types. Although TransR provides good performance for the smaller dataset

WN18, it performs less wells for the larger dataset FB15K. In terms of optimisation

complexity, TransR requires to optimise much more variables than TransE and

TransPES.

We also demonstrate how the TransPES performance changes against different

settings of the embedding dimensionality (k), regularisation parameter (λ2) and mar-

gin parameter (γ) using the FB15K dataset. In each implementation, two parameters

are fixed as the ones in the optimal configuration, different settings of the third

parameter within the searching range are examined, for which the raw and filtered

mean ranks, also the filtered hits@10 performance for both the validation and test

1https://github.com/while519/TranPES.git.
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Table 4.4: Performance comparison for WN18 and FB15k datasets. The best perfor-

mance is highlighted in bold, and second best underlined.

Dataset WN18 FB15k

Metric
Mean Rank Hits@10(%) Mean Rank Hits@10(%)

Raw Filter Raw Filtered Raw Filtered Raw Filtered

Unstructured [24] 315 304 35.3 38.2 1, 074 979 4.5 6.3

RESCAL [67] 1, 180 1, 163 37.2 52.8 828 683 28.4 44.1

SE [23] 1, 011 985 68.5 80.5 273 162 28.8 39.8

SME(linear) [24] 545 533 65.1 74.1 274 154 30.7 40.8

SME(bilinear) [24] 526 509 54.7 61.3 284 158 31.3 41.3

LFM [68] 469 456 71.4 81.6 283 164 26.0 33.1

TransE [128] 263 251 75.4 89.2 243 125 34.9 47.1

TransH [130] 318 303 75.4 86.7 211 84 42.5 58.5

TransR [131] 232 219 78.3 91.7 226 78 43.8 65.5

CTransR [131] 243 230 78.9 92.3 233 82 44 66.3

TransPES 223 212 71.6 81.3 198 66 48.05 67.3

sets are reported in Figures 4.2 and 4.2 (Cont.) . It can be seen that TransPES is less

sensitive to the regularisation parameter λ2 than to the embedding dimension k and

margin parameter γ.

We further analyse the performance of the large dataset FB15K in detail using the

detailed evaluation protocol suggested in [128], which classifies the hits@10 results

according to four categories of relationship including 1-to-1 (1-1), 1-to-many (1-M),

many-to-1 (M-1) and many-to-many (M-M).The corresponding results are shown

in Table 4.5. It can be seen from the table that the proposed algorithm consistently

outperforms most the competing ones, provides similarly good performance as

the cluster-based TransR (CTransR). As expected, TransPES provides satisfactory

performance to predict head entity in the 1-to-1, 1-to-many relationships and predict

tail entity in the 1-to-1 and many-to-1 relationships.

We conduct deeper analysis for the FB15k dataset using the proposed evaluation

scheme as explained in Section 4.4.4, based on which 4,336 (7.3%) reciprocal

triplets and 41,481 (70.2%) reverse triplets are identified, and the remaining triplets

correspond to “the others" type. Most test triplets can find their reciprocal or repetitive
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Figure 4.2: Illustration of the performance change of TransPES against each of its

three algorithm parameters (k, λ2, γ) in terms of the raw and filtered mean rank, also

the filtered hits@10 measurements, evaluated using validation and test sets marked

as “valid" and “test" respectively in each plot. (cont.)
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Figure 4.2 (Cont.): Illustration of the performance change of TransPES against each

of its three algorithm parameters (k, λ2, γ) in terms of the raw and filtered mean

rank, also the filtered hits@10 measurements, evaluated using validation and test sets

marked as “valid" and “test" respectively in each plot.
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Table 4.5: Detailed evaluation on FB15k. Best performance is highlighted in bold,

and second best underlined.

Tasks Predicting Head (Hits@10) Predicting Tail (Hits@10)

Relation Category 1-1 1-M M-1 M-M 1-1 1-M M-1 M-M

Unstructured [24] 34.5 2.5 6.1 6.6 34.3 4.2 1.9 6.6

SE [23] 35.6 62.6 17.2 37.5 34.9 14.6 68.3 41.3

SME(linear) [24] 35.1 53.7 19.0 40.3 32.7 14.9 61.6 43.3

SME(bilinear) [24] 30.9 69.6 19.9 38.6 28.2 13.1 76.0 41.8

TransE [128] 43.7 65.7 18.2 47.2 43.7 19.7 66.7 50.0

TransH [130] 66.7 81.7 30.2 57.4 63.7 30.1 83.2 60.8

TransR [131] 76.9 77.9 38.1 66.9 76.2 38.4 76.2 69.1

CTransR [131] 78.6 77.8 36.4 68.0 77.4 37.8 78.0 70.3

TranPES 78.0 88.6 38.9 67.3 78.9 42.1 84.2 69.8

Table 4.6: Link prediction comparison between TransE and TransPES over the

reciprocal, reverse and other triplets in the test set of FB15k data.

Methods TransE TranPES

Metrics MAR Hits@10(%) MAR Hits@10 (%)

Reciprocal 46 58.8 10 82.1

Reverse 75 56.9 28 72.4

Others 157 48.9 204 46.6
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forms in the training set to support the inference. In Table 4.6, we compare the TransE

and TransPES performance by examining how well they infer the reciprocal and

reverse type of triples in the test set in Table 4.6. It can be seen from the table

that the proposed algorithm achieves much better results (58.8% vs. 82.1% on the

reciprocal triplets and 56.9% vs. 72.4% on the reverse ones). On the other hand, for

the more challenging triplets of “the other" type, both algorithms experience a very

large decrease in the performance.

4.6 Conclusion

We have presented a new translation-based relational learning algorithm to en-

code relation triplets in KGs using link and entity embeddings, under the constraint

of employing simple operations, such as vector addition and projection to encode

interlinkages in KGs and maintain very low computational cost and better model

interpretability. Facing the challenge of accurately modelling complex relation logic

via simple operations, the key is to unfold the relation logic by determining appropri-

ate subspaces to work on. The proposed TransPES allows multiple representations

for a single relation type to model its multimodality behaviour when interacting with

different entity pairs, and employs fixed embedding representation for entities to

permit smooth propagation of information across the graph. Interactions between

links and entities are formulated in different spaces spanned by different entity pairs

to offer bespoke link presentation for a targeted entity pair. Performance comparison

with state-of-the-art methods and in-depth analysis of the algorithm behaviour based

on different test data partitions demonstrate the superiority of the proposed algorithm.

In Table 4.6, we have conducted deeper analysis for the FB15k dataset using

the proposed evaluation scheme, and find that the TransE and TransPES algorithms

perform much better on the simple reciprocal and repetitive types of testing triples.

From here we conclude that the existing relational learning algorithms could make

better use of the triplets’ reciprocal and repetitive forms in the training set to support

inference than other dependencies. And we foresee that a better encoding and

interpretability of the more complex dependency structures within the KGs is highly

Yu Wu



4.6 Conclusion 111

demanded for the future research in this field.

As we have discussed in Chapter 3, we expect that the inclusion of the relation

type information can help to mitigate the difficulties of modelling the multi-modality

linkage structures. However, it turns out that these sources of information themselves

are noise and ambiguous by nature, and thus they can even introduce more issues.

Unravelling the multi-modality properties of data will continually be an inevitable

challenge for the relational learning algorithms. We will see in the next chapter,

instead of labelling the relationships with type information, the linkage network com-

bines the node description/content information to find ways to benefit the relational

data learning tasks (e.g., link prediction, semantic representations).
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Chapter 5

Link Prediction in Document

Networks

5.1 Introduction

In the former chapters, we have developed novel embedding approaches for

analysing and manipulating different types of relational structures. While traditional

learning algorithms have a long history of modelling attribute/propositional data that

is characterised by its high dimensional feature vectors of attributes. It is possible to

combine the relational structure with the rich information of data attribute representa-

tions to improve the relational learning tasks, i.e, suggesting new and conceivable

connections, clustering data into functional related sets. In this chapter, we consider

joining these two types of data information into a complex network, where nodes cor-

respond to objects with attribute representations and edges to relationships between

objects. In its most simple form, we study the document network data introduced

in Section 1.1.1, where it requires the attributes to be fixed and defined in the same

homogeneous set, e.g., attributes might correspond to occurrence counts of terms

in a fixed vocabulary when representing text or raw intensity value of each pixel

when representing images. In this chapter, we discuss the document network in the

context of text, that is, the nodes correspond to documents, and the edges are the

citations/hyperlinks between documents.
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Document network data is ubiquitous, existing throughout human generated text

contents, such as citation/co-author networks in the scientific publications, friendship

networks in online websites like Facebook, Flickr, and Twitter, and hyperlinked

networks of webpages. Apparently, the context of the nodes along with the additional

links between them should be useful for exploring various aspects of the intrinsic

nature of the data. To this end, various tasks have been explored for the document

network data in recent years, including improving the discovery of hidden "topic"

factors in a corpus [33,135–138], enhancing the detection of document clusters [139],

inferring the topical influences over linkages [140] and inspecting the topic changes

over time [141]. All these approaches model the observed linkage structure as ground

truth information that has been encoded into the model (e.g., interdependencies

networks between documents, linkage-based attributes) and cannot generalise to new

linkages outside of the training data.

Link prediction is one fundamental task in relational learning that can potentially

benefit from the fusion of both the linkage structure and the content data, which form

the document network data. In the traditional network analysis, it only makes use of

the observed linkage structure to help to infer new likely links. This is unfavourable

since most linkage structures are constructed by human agents, which are laborious

and thus far from being incomplete. Otherwise, the linkage structures are extracted

by some automatic data mining techniques, causing the data to be very noisy. To

support link predictions, conventional models also require a node to have a moderate

number of observed links for providing a predictive distribution. But this is not

likely to be the case since most linkage networks are very sparse, e.g., the average

number of links for the documents in Cora citation dataset is only four. As such, one

can hardly build a reliable model to generalise well based on the linkage structure

alone. Differently, in the real world application, the acquisition of the content data is

normally inexpensive and they can be highly useful for link prediction. For example,

the text content of scientific articles which describes the themes of the papers are

strongly related to the authors’ selection of cited papers, the hyperlinks between

webpages often signify their relevance in talking topics and items. Moreover, if no

linkages are provided for a single node, we can still take advantage of this node’s
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feature representation to give information about its linkage distribution. Thus, it is

important to develop numerical models for improving the link prediction power over

traditional network model by jointly utilising the linkage structure and the content

data.

In this field, only a few studies are directly designed for addressing the link

prediction problem. Most of them are probabilistic generative models [33, 139, 142–

146]. These models assume the existence of some latent membership factors that

account for both the random generation of text at each node and the links between

them. Usually, the words generation in these models is as the same as that in

conventional Topic models [27, 147], where each document comprises of different

proportions of membership factors and each membership factor is accompanied with a

distribution over the set of distinct vocabularies. But the underlying linkage structures

are modelled in different ways through either a random generation process or a

network regulariser. Other types of approaches have also been proposed for modelling

the document networks, such as methods relying on learning a Mahalanobis distance

metric [40, 148], and those built on deep learning methods [149, 150]. Some linear

embedding approaches [65, 151] can also be extended to handle this link prediction

task.

As we have seen in previous chapters, embedding-driven methods have been

successfully applied to the scenarios for capturing important data patterns through

the attribute representations as well as modelling the node’s interdependencies in

the linkage structure. It is then straightforward to associate each node with a latent

vector representation to connect both types of modalities. Specifically, we have

developed a nonlinear embedding model for simultaneously processing the linkage

structure and the node attributes in the document network data. It converts the

assumed-to-be exist embedding points into conditional probabilities for explaining

the likelihood of pairwise linkages, and iteratively modifies the locations of these

embedding points by matching these conditional probabilities with our knowledge

of the link structure and the node attributes. Two objectives are used, one is a

ranking based criterion for modelling the linkage structure, and the other is rest

on the Kullback-Leibler divergence for capturing the patterns in the content data.
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Then these two objective functions are added up with a regularisation parameter

to control their relative importance, and the final cost is simply optimised by the

gradient descent methods.

The rest of this chapter is organised as follows. Section 5.2 reviews some of the

existing work in this field. In Section 5.3 we present our proposed algorithm with

its training procedure. Section 5.4 presents the experimental results and Section 5.5

concludes this work.

5.2 Related Work

5.2.1 Pairwise Link-LDA

Pairwise Link-LDA [142] uses a Latent Dirichlet Allocation (LDA) [27] model

for generating the document contents and a Mixed Membership Stochastic Block

(MMSB) model [22] for modelling the linkage structure.

In LDA, each document is described as a random mixture over a small number

of latent factors, where each factor is defined as a discrete distribution over the

collection’s vocabulary. Semantically and epistemologically, each factor can be

understood as a "topic" in the document since we can browse its high probability

words to sense about which something is said for each factor. Each word’s creation

is then derived by one of the document’s topic distributions. The LDA model’s

generation process is depicted in lines 1-7 in Algorithm 3. Its parameters are as

follows: K is the number of topics in the whole corpus, α is a K-dimensional

Dirichlet parameter to assign the weights for topics in each document, β1:K represents

the K topics where each topic is a discrete probability distribution over the corpus’

vocabulary.

Lines 8-12 in Algorithm 3 depict the random generation process for the links.

For each pair of documents, the presence or absence of a link is represented by a

Bernoulli random variable whose parameter is specified by the topics involved in

this interaction. Let the K-by-K matrix η store these parameters, with the ijth

entry ηij correspond to the interaction weight between the topic i and j. In Pairwise

Link-LDA, the linkages are directional, and are denoted as binary variables y1:D,1:D,
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Algorithm 3 Generative process for Pairwise Link-LDA.
1: for each document d do

2: Draw topic proportions θd|α ∼ Dirichlet(α).

3: for each word wd,n do

4: Draw a topic assignment zd,n|θd ∼ Multinomial(θd).

5: Draw word wd,n from wd,n|zd,n,β1:K ∼ Multinomial(βzd,n).

6: end for

7: end for

8: for each pair of documents (d, d′) do

9: Draw an outlink topic assignment zd,d′ |θd ∼ Multinomial(θd).

10: Draw an inlink topic assignment zd′,d|θd′ ∼ Multinomial(θd′).

11: Draw binary link indicator yd,d′ |η, zd,d′ , zd′,d ∼ Bernoulli(ηzd,d′ ,zd′,d).

12: end for

βk

yd,d′ zd′,dzd,d′

wd,n wd′,n

zd,n zd′,n

θd θd′

η

α

Nd N ′dK

Figure 5.1: Graphical representation of the Pairwise Link-LDA model. This plate

only shows the generation of one directional link yd,d′ from document d to document

d′.
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where yi,j = 1 if there is a link between the ith and jth document, otherwise yi,j = 0.

To incur a link from document d to document d′, the latent topics zd,d′ and zd′,d are

first sampled from document d and d′ respectively, then the corresponding Bernoulli

distribution for generating the link yd,d′ is conditioned on its mean ηzd,d′ ,zd′,d .

The graphical representation for this random generation process for a single pair

of documents is shown in Figure 5.1. Compared to previous generative approaches

[135, 136], this model is capable of predicting links based on only the content of

any new document. However, it does not scale well as it requires to model every

pair of documents. The authors simultaneously developed a different model called

Link-PLSA-LDA [142, 152], which is more efficient but can only deal with bipartite

linkage structure. PMTLM [144] is also developed to address the computational

issue in this model, it replaces the MMSB model with a much lighter and simpler

link generation process introduced in the physics community [153].

5.2.2 Relational Topic Model

Relational Topic Model (RTM) [33] is a very important work in this field, it has

made two subtle but crucial changes over the Pairwise Link-LDA model, which leads

to significant computational efficiency and better predictive performance.

The generation process for RTM is denoted in Algorithm 4, note that the parame-

ters are defined similar to the above section. In this generation process, the documents

are generated as the same as in Pairwise Link-LDA. Whereas the link probability

function is directly related to the latent topic assignments on the words rather than

depending on the topic proportions in each document. This is more appropriate since

it can avoid the issue of having disparate sets of topics to explain the words and the

links. By enforcing the link probability function to be depended on the latent topic

assignments zd and zd′ , RTM ensures the same set of topics used to generate the

links are those used to generate the words. The link probability function can take

different forms, such as

φσ(y = 1) = σ
(
η>(z̄d � z̄d′) + ν

)
, (5.2.1)
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or

φe(y = 1) = exp
(
η>(z̄d � z̄d′) + ν

)
, (5.2.2)

where z̄d = 1
Nd

∑
n zd,n, σ(·) is the sigmoid function ,the � notation denotes the

Hadamard product. It is parametrised by the weights in η and ν is the bias term. In its

designs, the weight vector η captures the symmetric similarities between the topics

of two documents, making this model only applicable for modelling undirected links.

Another important change in RTM is that it only models the observed links rather

than the links between all the documents, which is fundamentally different from the

previous approaches [142, 152]. This provides a significant computation advantage

since its inference procedure scales linearly in the number of the links rather than the

number of document pairs. Also, it is inappropriate to simply regard the unobserved

links as nonlinks as the absence of a link cannot be formulated as evidence for

yd,d′ = 0.

The RTM has been extended in multiple ways to model the document networks.

In gRTM [145], it is generalised to allow pairwise topic interactions to model asym-

metric networks. More importantly, gRTM introduces a regularisation parameter on

the link structure to deal with the imbalanced network data. In [146], a nonparametric

version of RTM is proposed to automatically determine the number of hidden topics.

All these generative models including those described in the former section seek

for probabilistic approximate inference methods, such as variational inference and

(collapsed) Gibbs sampling, to approximate the posterior, estimate parameters, and

make predictions.

5.2.3 Communities from Edge Structure and Node Attributes

Communities from Edge Structure and Node Attributes (CESNA) [139] is a

simple probabilistic model for simultaneously modelling the network topology and

the node attributes. It has a linear runtime in the network size and is capable of

processing very large networks.

In CESNA, it also assumes the patterns exhibited by each document are attributed

by some latent factors. Let the K dimensional vector zd containing the nonnegative
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Algorithm 4 Generative process for RTM.
1: for each document d do

2: Draw topic proportions θd|α ∼ Dirichlet(α).

3: for each word wd,n in d do

4: Draw a topic assignment zd,n|θd ∼ Multinomial(θd).

5: Draw word wd,n from wd,n|zd,n,β1:K ∼ Multinomial(βzd,n).

6: end for

7: end for

8: for each pair of documents d, d′ do

9: Draw binary link indicator

yd,d′|zd, zd′ ∼ φ(·|zd, zd′ ,η),

where zd = {zd,1, . . . , zd,n}.
10: end for

βk

yd,d′

wd,n wd′,n

zd,n zd′,n

θd θd′η

α

Nd Nd′K

Figure 5.2: Graphical representation of the RTM model. This plate only shows the

generation of one undirected link yd,d′ between document d and document d′.
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affiliation weights for the K hidden factors. For the binary linkage indicator yd,d′ , it

is generated according to

ηd,d′ = 1− exp(−zd � zd′)
yd,d′ ∼ Bernoulli(ηd,d′)

, (5.2.3)

where ηd,d′ is the Bernoulli parameter and � is again the Hadamard product.

Similarly, the kth attribute of document d are sampled from

ξd,k = 1/
(
1 + exp(−a>k zd)

)
wd,k ∼ Bernoulli(ξd,k)

, (5.2.4)

where ξd,k is the Bernoulli parameter and ak is the weight vector associated with

kth attribute. Here, the attributes are assumed to be binary valued. In the case of

real-valued attributes, a linear regression model is used. This model is optimised via

maximising the likelihood of the observed data attributes and network linkages.

5.2.4 Structure Preserving Metric Learning

Structure Preserving Metric Learning (SPML) [148] is developed as a distance

metric learning method, it learns a mapping from features such that the learned

distances in the embedding space are tied to the connectivity structure of the network.

In other words, the learned locations of the connected nodes in the network should

be close and the unconnected nodes should be placed far.

At first, SPML learns a linear scaling on the node features by matrix L ∈ Rd×d

that the rescaled distances between nodes i and j are expressed as

DL(vi,vj) = ‖(Lvi − Lvj)‖2
2

= (vi − vj)>(L>L)(vi − vj), (5.2.5)

where vi is the attribute vector for node i. Letting M = L>L, this rescaled distance

metric is equivalently parameterised by a PSD matrix M � 0.

Then, it imposes the same linear constraints as Structure Preserving Embedding

(SPE) [154] to enforce the network connectivity pattern to be preserved. Let A ∈

Yu Wu



5.3 Proposed Formulation 121

Rn×n be the binary adjacency matrix of the document network G, one constraint

could be expressed mathematically as

DL(vi,vj) ≥ (1−Aij) max
l

(AilDL(vi,vl)), ∀i, j. (5.2.6)

It means that the distances to all disconnected nodes must be larger than the distance

to the farthest connected neighbour.

Alternatively, another constraint could be that the true graph G must have the

total maximum weight among all other feasible graphs. Similar to SPE, the weight

wij for each edge is chosen to equal the corresponding negated pairwise distance

−DL(vi,vj). Hence, the constraint is expressed as

Tr(W>A) ≥ Tr(W>Ā), (5.2.7)

which should be valid for all adjacency matrices Ā in a certain class of graphs, e.g.,

tree graph, k-regular graph.

Combining these linear constraints with a Frobenius norm regulariser on M, this

learning problem is reformulated as a Semi-Definite Programming (SDP) problem

and can be solved by a standard SDP solver. However, it does not scale well for very

large networks. Instead, SPML adapts it to large scale networks based on a projected

stochastic subgradient descent algorithm [155].

5.3 Proposed Formulation

A document network is represented as a simple directed graph G = (V,E) in

which we are given a set of n nodes V = {V1, V2, . . . , Vn} and a set of directed

edges (denoting as ordered pairs of nodes) in E. In the convention of this paper, we

consider each edge (i, j) ∈ E as indicating a directed connection from node i to

node j. In document network data, the node contents are given as a feature vector

of attributes, i.e., the attribute values might correspond to pixels for images or term

occurrence frequencies for articles. And we denote the feature vector for node Vi as

vi of dimensionality d.

In what follows, we model each possible edge between n nodes as a random

variable that indicates the model’s confidence about its existence. Any true directed
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linkages should possess high probabilities whereas incorrect linkages low for a

reasonably well-trained model. We further assume that the probability distribution of

the above random variables can be effectively encoded by the hidden representations

{h1,h2, . . . ,hn} of the n nodes that lie on a k (typically k < d) dimensional

Euclidean space. Thus, learning such hidden representations can give us the model’s

confident score (the conditional probability) about each edge so as to provide a

predictive distribution of links for unobserved pairs of nodes. Note that our model

does not necessarily require some observed links to be present for a node to make

predictions about its links as it can predict links using only a node’s attributes vector.

This is out of reach for the traditional network models that only utilise the link

structures.

In the subsequent sections, we describe how our model is constructed and trained

based on both the node content information and the observed directed links within

the document network.

5.3.1 Encoding Link Validities as Stochastic Variables

We want to give locations for all the nodes in a common semantic space whereby

the incurred geometry can reflect reasonably well of the link structures. Specifically,

any node Vi link onto node Vj indicating that the latent representation hj of node

Vj should be put "close" to that of node Vi. By "close", we mean that the outlinked

node hj is closer to hi than any other nodes in terms of some distance measures

(we simply utilise the Euclidean distance as the model’s distance metric) in this

embedding space. One can readily describe the "closeness" by the conditional

probabilities as proportional to either the Gaussian probability density

pj|i =
exp(−‖hi − hj‖2)∑
l 6=i exp(−‖hi − hl‖2)

(5.3.1)

or Cauchy distribution’s probability density

pj|i =
(1 + ‖hi − hj‖2)−1∑
l 6=i(1 + ‖hi − hl‖2)−1

(5.3.2)

where pj|i corresponds to our confidence probability of the link from node Vi to node

Vj and pi|i is set to zero as we do not allow any nodes to have self-connections. It
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should be larger for true links than for assumed-to-be false links. These two designs

for encoding "closeness" into probabilities have been successfully applied to many

dimensionality reduction problems [76, 156, 157].

The conditional probability pj|i in Eqs. (5.3.1, 5.3.2) is closely related to the

notion of k-nearest neighbours – for each object it will assign greater probabilities

to its closer neighbours. In fact, we choose the heavy-tailed Cauchy distribution

over the Gaussian since it has been shown to capable of creating a single map that

retains much of the local structure of the data while revealing global structure such as

clusters at several scales [157]. Furthermore, it is computationally efficient under Eq.

(5.3.2) than under a Gaussian in Eq. (5.3.1) because it does not involve computations

of exponential, which as well result in a much stable optimisation procedure during

the training phase.

5.3.2 Modelling the Linkage Structure

A simple objective function for finding a suitable placement of the hidden points

h1,h2, . . . ,hn is to maximise the sum of log-likelihood of correct links

f(h1,h2, . . . ,hn) =
∑

(i,j)∈E

log pj|i. (5.3.3)

However, this approach is intractable as this model is prone to over generalise

and may have "imbalanced" issue for fitting the positive edges in the training set. In

our experiment, maximising the above criterion usually leads some pairs of objects

to be placed extremely close, exhibiting conditional probability values above 0.9, in

contrast, a large proportion of the other positive links still possess very low probability

values. Hence, it cannot generalise the testing links well.

Instead of maximising the sum of log-likelihood probabilities of the observed

positive links, it is much more reasonable to try to make the probabilities larger for

positive links than for the rest links. To achieve this, a margin-based ranking loss is

minimised, given as

Llink =
∑

(i,j)∈E

∑
(i,l)∈E−

[
pl|i − pj|i + γ

]
+
, (5.3.4)
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where [x]+ , max(0, x) is the Ramp function that denotes the positive part of the

input x, and γ > 0 is a user-set margin parameter. E− is the set for unobserved link

structures, in which the linkages are assumed to be false in most network models.

This construction is beneficial as it does not assume that the unobserved links

are necessarily false, just that they are "more negative" than the positive ones, which

reflects our very incomplete knowledge about the linkage networks. Also, the

conditional probability pj|i from node Vi to Vj will not increase exaggeratedly in this

model as long as it satisfies pj|i > pl|i + γ. Therefore, it can alleviate the imbalanced

issue mentioned above for taking the maximum log-likelihood in Eq. (5.3.3) as the

criterion function.

Usually, the negative set E− is very large, resulting in a huge number of terms for

summing in Llink. To enable a more efficient training process, we replace the loss

function with a sequence of stochastic optimisation functions by randomly sampling

corrupted links in set E− at each iteration. In the construction of each of these

sub-loss functions, we randomly sample a corrupted link for each individual positive

link, resulting only |E| (cardinality of set E) terms in total. This is the same strategy

that we have used in the Chapter 4.4.2. Such sub-loss functions may take distinct

values with quite large deviations at the early iteration. However, as the number of

iterations increases, their costs are decreasing in the long run and will converge to a

minimal state. Optionally, we can monitor the training process for this ranking loss

through the proportion of terms that violate the Ramp function or utilising the sum

of the positive linkages’ probabilities in Eq. (5.3.4).

5.3.3 Modelling the Attributes Data

In most real world data, there is only a small proportion of linkages that are ob-

served, resulting in a very incomplete linkage network. Taking the citation networks

for example, a scientific paper cites the relevant paper that are only perceived by its

authors, which usually contains only a tiny fraction of the relevant volumes. On the

other hand, the readily available content data should be useful for understanding the

linkage structure or enhancing the network by providing new likely linkages. Thus,

it is necessary for us to incorporate the content data into the cost function.
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Our goal is to learn a set of suitable conditional probability distributions Pi =

{pj|i, for j 6= i} that best fit the linkage structure as well as capturing the content

data distribution. Based on the assumption that similar (neighbouring) objects tend to

establish linkage connections, we convert the pairwise Euclidean distances between

nodes into conditional probabilities that represent similarities. That is to say, nearby

nodes will associate with higher conditional probabilities, whereas the conditional

probabilities correspond to distant nodes will be miniature. Again, similar to Eqs.

(5.3.1, 5.3.2), the conditional probability qj|i conditioned on the content data can be

chosen either as

qj|i =
exp(−(‖vi − vj‖2)/2σ2

i )∑
l 6=i exp(−(‖vi − vl‖2)/2σ2

i )
, (5.3.5)

or

qj|i =
(1 + ‖vi − vj‖2/σ2

i )
−1∑

l 6=i(1 + ‖vi − vl‖2/σ2
i )
−1
, (5.3.6)

where σi is the variance of the Gaussian or Cauchy distribution that is centred on ith

node attributes vi. And the value of σi is determined to give a conditional probability

distribution Qi = {qj|i, for j 6= i} with fixed Shannon entropy [76] [157], which

ensures σi to be small for dense region and large for sparse region (see Chapter

2.4.2 for calculation details). Again, we set the value of qi|i to zero since we are not

interested in self-to-self connections.

The mismatch between the conditional distribution Pi and Qi is naturally mea-

sured by the Kullback-Leibler divergence, and the cost is given by their sum

Lcontent =
∑
i

KL(Qi‖Pi) =
∑
i 6=j

qj|i log
qj|i
pj|i

. (5.3.7)

Considering each term qj|i log
qj|i
pj|i

, there is a large cost for using small pj|i to match

a large qj|i. On the contrary, the cost will be moderate when we use a large pj|i to

model a small qj|i. Therefore, minimising this cost function essentially propagates

the locality information within the content representations into the targeted latent

representations.

Now that we combine the link and content cost functions by taking the sum of

their mean L̄link and L̄content up to a weight controlling parameter λ

Ltotal = L̄link + λL̄content, (5.3.8)
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where λ controls the influence from the content data.

5.3.4 Training Procedure

The model training is simply carried out by gradient decent methods. Let dij
denote the squared Euclidean distance between hi and hj . For the linkage loss

function L̄link (or equivalently Llink in Eq. (5.3.4)), we only need to compute the

gradient with respect to any conditional probability pj|i, which is given as

∂pj|i
∂ht

=


2(1 + dij)

−1((p2
j|i − pj|i)(hi − hj) +

∑
l 6=j p

2
l|i(hi − hl)), if t = i,

2(1 + dij)
−1(p2

j|i − pj|i)(hj − hi), if t = j,

2(1 + dij)
−1p2

t|i(ht − hi), if t 6= i, j.

(5.3.9)

Each of these gradient terms is easy to compute, involving only the computations

of the squared Euclidean distances {dij, for ∀j 6= i} and the conditional probabilities

{pj|i, for ∀j 6= i}. Differentiating with respect to the Kullback-Leibler cost function

Lcontent yields

∂Lcontent

∂ht
= 2

∑
l 6=t

(
ql|t − pl|t + qt|l − pt|l

)
(1 + dtl)

−1(ht − hl). (5.3.10)

The gradients in Eqs. (5.3.9, 5.3.10) are stable to any configurations of {h1,h2,

. . . ,hn} as the coefficients in these gradients are all in the range of (0, 2). It is

therefore robust to learning rate misspecification.

The pseudocode is given in Algorithm 5. All hidden points are randomly ini-

tialised according to a uniform distribution around zero. At each iteration, a set of

corrupted linkages is randomly sampled for computing the surrogate linkage loss.

The total cost is then obtained by summing up the linkage and content costs. After

each iteration, the model parameters are updated according to the gradient of the

combined loss function. We train the model for a fixed number of iterations.

We use a simple strategy for choosing the learning rate. At each iteration, we

perform the gradient descent with adaptive learning rate for a fixed number of steps.

In our experiment, the learning rate increases at the rate 1.01 if the cost successfully

goes down, otherwise it decreases at rate 0.4. Since the cost function and its gradients
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are robust to any configurations of the hidden representations, we can even start to

train at a very large learning rate. The code for the the proposed algorithm is provided

on Github1.

5.4 Experimental Analysis and Results

In this section, we present the performance of our proposed method as well as that

of the comparing methods on three real world datasets, of which two are scientific

papers with citation links between each other, the other is the webpages consisting

of hyperlinks that link onto other webpages. These datasets 2 are processed by

removing self-linkages and only preserving those links within the document set. The

statistics of these processed datasets Cora [158], Citeseer [36] and WebKB [159] are

summarised in Table 5.1. The experimentation is split into two main parts, covering

different tasks of quantitative performance comparisons and sensitivity analysis with

respect to various model parameters.

Table 5.1: Summary statistics for the three datasets after processing.

Data set Number of documents Number of links Lexicon size

Cora 2,708 5,429 1,432

Citeseer 3,312 4,591 3,703

WebKB 877 1,516 1,703

5.4.1 Mean Rank Evaluation

To quantitatively evaluate our approach, we randomly split the data into train-

ing/testing set, then fit our model with both the training linkage pairs and the content

feature vectors, the mean rank of the testing links based on the well-learned condi-

tional probability distribution {Pi, i = 1, 2, . . . n} is reported.

Two baseline methods are employed for comparing performances, of which

one computes the ranks of testing linkages using the cosine similarity score based
1https://github.com/while519/Margin-based_NN/tree/master.
2Downloaded from URL http://www.cs.umd.edu/~sen/lbc-proj/LBC.html.
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Algorithm 5 Pseudocode for the proposed method.
Input: feature vectors h1,h2, . . . ,hn for n nodes, the linkages between nodes in

E, and user-provided regularisation parameter λ > 0, margin parameter γ, latent

dimensionality k.

1. Initialisation:

hi ← uniform (− 6√
k
, 6√

k
) for each sample i = 1, 2, . . . , n

compute the content conditional probability distributions {Qi, i =

1, 2, . . . , n} based on Eq. (5.3.5)

2. Loop:

T ← ∅

for (li, lo) ∈ E do

(li, lo′)← sample from Ē, which is the complement set for E

T ← T ∪ {(li, lo, lo′)}

end for

compute the conditional distributions {Pi, i = 1, 2, . . . , n} according to Eq.

(5.3.2)

calculate the mean of linkage loss

L̄link = 1
|T|
∑

(i,j,l)∈T
[
pl|i − pj|i + γ

]
+

calculate the mean of content loss

L̄content = 1
n(n−1)

∑
i 6=j qj|i log

qj|i
pj|i

Gradient descent update of model parameters with respect to

Ltotal = L̄link + λL̄content

end loop
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on the content data (it has the best linkage prediction performance among many

other similarity measures in our experiment), the other is trained on the linkage loss

function Llink in Eq. (5.3.4) (corresponding to setting λ = 0 in our proposed model)

with available only the linkage structures. The first model that conditioned on the

content data is denoted as Content Only, and the second model that excluding the

effect of content information is tagged with Linkage Only.

Two schemes are used for partitioning the data into training/testing set. In

Table 5.2, we randomly split the linkage network into training/testing set. In this way,

most testing documents have been presented in the training network structure and we

are making use of both their attributes and network connections to collectively make

predictions of new linkages. On the contrary, the link prediction results in Table 5.3

are purely based on the testing document attributes since we have removed all the

attendant links for testing documents in training. For these two tasks, we ask two

questions: will the combined use of attributes data and content data help to improve

the link prediction performance; and given only the attributes of new documents,

how probable are its links.

As no validation set is provided, the parameters of our model are simply set by

hand with intuitions. The latent dimensionality k is taken as 20, the regularisation

parameter λ is fixed as 1.0, the margin is assigned as equal to the inverse of the data

sample size and the algorithm stops if the number of iterations exceeds 2000. For

the learning rate, we use a fixed learning rate of 10 in all experiments except for the

Citeseer data experiment in Table 5.3, which we have searched the learning rate in the

values of {10, 100, 1000}. We also compare our models for those models reported

in Chapter 5.2, i.e., SPML , CESNA, and RTM. For the last two methods, we need

to specify their number of topics, which is searched in the set of {10, 20, 30} in our

experiment.

The proposed method exhibits the best performance on these two tasks. In

Table 5.2, it is the only method that can consistently improve performance over the

cosine similarity measure (the Content Only method in the table). And in the second

table, all the methods have dropped their performances but our proposed method

still achieves the best performance on the all these datasets. From these two tables,
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Table 5.2: Mean ranks of different algorithms for predicting links based on both

the attribute representations and the existing linkages. The best performance is

highlighted in bold, and second best underlined.

Citeseer Cora Webkb

Content Only
Train 370 526 186

Test 356 480 204

Link Only
Train 5 8 17

Test 797 494 147

CESNA
Train 364 87 61

Test 870 572 166

SPML
Train 467 806 191

Test 520 794 195

RTM
Train 347 743 142

Test 388 805 158

Proposed Method
Train 13 44 76

Test 343 358 93

Table 5.3: Mean ranks of different algorithms for held out documents. The best

performance is highlighted in bold, and second best underlined.

Citeseer Cora Webkb

Content Only
Train 365 524 191

Test 384 512 172

Link Only
Train 5 8 18

Test 1811 1663 405

CESNA
Train 325 47 45

Test 1688 1392 463

SPML
Train 438 770 171

Test 618 868 189

RTM
Train 286 360 195

Test 456 561 232

Proposed Method
Train 36 56 38

Test 351 475 105
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we see that though the existing methods can extract meaningful information from

the attributes and the linkage structure, they could not even outperform the cosine

similarity measure of Content Only for this link prediction task. It is interesting to

see that the Link Only method’s performance is comparable to existing methods in

the first table, while it fails to make predictions for the held out documents in the

second table. This reflects our data partition schemes that this link-based method

can utilise the linkage structure to make predictions in the first data partition scheme

but it completely has no information to predict links for held out documents in the

second case. CESNA generally does not give good results, in the Table 5.3, it only

performs slightly better than the Link Only method. This may be caused by its weak

connections of cost functions that it learns separate parameters for the node attributes

and the linkage structures. SPML also does not perform well due to its very simple

linear assumption, but its performance is consistent in both experiments. Seen from

the tables, RTM is only good at modelling the Citeseer dataset.

5.4.2 Sensitivity Analysis of Model Parameters

In this section, we conduct sensitivity analysis by examining the performance

changes against different settings of the model parameters (k, γ, λ) using the three

text datasets Citeseer, Cora and WebKb. The associated mean ranks of test sets

are reported in Figure 5.3. Notably, because the optimal margin parameter γ is

sensitive to the sample size — for datasets of larger sample size, smaller values of

γ are preferred — we investigate instead the influence of the surrogate parameter

γ∗, where the value of γ is replaced by γ∗/(sample size) in the linkage loss function

Llink.

Considering the embedding dimensionality k in Figure 5.3(a), the linkage ranks

decrease as k grows. This is because of the very different statistics of the high

dimensional space from that of low dimensions. For instance, it is possible to place

11 points as equidistant in ten dimensions whereas by no means could one model this

in a two-dimensional map. In the performance analysis in Figure 5.3(a), we see that

our model is robust to high dimensionality values of k.

In Figure 5.3(b), we can see the effect of the margin parameter γ up to a scale
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Figure 5.3: Illustration of the performance with respect to different settings of the

embedding dimensionality k, surrogate margin parameter γ∗ = γ × (sample size)

and the regularisation parameter λ on the three used datasets. In each figure, two

parameters are fixed as the ones in Section 5.4.1, the performances correspond to the

different setting of the third parameter are displayed.
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factor. For small values of the margin parameter, minimising the linkage criterion

Llink cannot distinguish the positive linkages from the negative ones remarkably.

While for very large margin values, the Ramp function will have no effect that the

minimising problem will be similar to that in Eq. (5.3.3), which cannot generalise

well. The above inference is well-reflected in Figure 5.3(b) for all three datasets. The

link prediction performance against to γ∗ is stable in a wide range (e.g., 1 ≤ γ∗ ≤ 5).

The regularisation parameter λ controls the relative influential importance from

the content data, its effect on linkage prediction performance is illustrated in Figure

5.3(c). It can be seen that our proposed model is an appropriate combination of

the two source of information, as it gives better performance than either purely

exploiting the linkage structure (correspond to λ = 0) or only utilising the content

data (correspond to very large λ). The optimal value of λ is situated around 0.5 for

all datasets.

5.5 Conclusion

In this work, we have presented a new embedding based technique for handling

the link prediction problem in the document network data. The key idea of our

approach is to encode both the linkage validities and the nodes neighbourhood

information into embedding-based conditional probabilities. Since there are normally

a huge number of pairwise links, we reduce the number of training linkages by

utilising an efficient margin-based criterion, which is also capable of dealing with the

imbalanced linkage structure. In the experiment of three document network datasets,

we show that our proposed method improves the link prediction performance over

methods using only the content data or the linkage data, and it also gives good

predictive performance when making use of purely the attribute representations.

Multiple performance comparisons with the state-of-art approaches also demonstrate

the superiority of the proposed algorithm.

The proposed algorithm also learns a latent representation from the document

network data, this data representation can be used for various unsupervised and

supervised learning setups, such as clustering, classification and link predction. But
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the representation itself is only used to support the computations rather than give

a meaningful representation of the data. Since the link prediction performance of

the proposed algorithm undoubtably beat all other methods by a large margin in our

experiment, it would be promising to extend this model to reveal some meaningful

aspects in the data (e.g., categorising or explaining the links in a document network).

Another important challenge for this field is the quality of the datasets. For

instance, in a citation network, the motivations for citations are usually very complex

(e.g., relevant works, empirical findings and background readings). And the authors

are usually aware of only a very small proportion of the relevant works, not to mention

those future works. From this viewpoint, most linkage networks are highly noisy

and sparse, and may even not be able to benefit the learning algorithms compared

with those train on a single data source. In the respect, it is very important for us to

identify and study a good resource of document network data.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we have studied the relational data. Generally, a relational data may

correspond to an arbitrarily complex database that can be defined and described by an

entity-relationship model. In this context, constructing universal relational learning

models/systems for processing such a complex data format would not be possible.

Thus, we partition the relational data into simpler forms to reveal the significant

information within them. Specifically, we have focused our attention on three

different types of relational data in this thesis: a) bipartite weighted graph b) multi-

relational data c) document network data. And we propose methods based on giving

locations for each data pattern in a low dimensional space — the so-called embedding

approaches. Then the relational structures are encoded in diverse ways, e.g., by

the use of distance information, translation/projection operations and conditional

probabilities. Extensive experiments on multiple datasets and comparative analysis

with the state-of-art existing algorithms in each field demonstrate the superiority of

our proposed algorithms. These models are also very efficient and require only a

small number of parameters.

The offered good performance of our proposed algorithms comes from varied

aspects: a) the first co-embedding generation algorithm has identified a soft version

of "similarities" within the input association matrix. It assumes that only the values
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in the same rows or columns are comparable and can be sorted. This is distinct

from some previously presented methods (e.g., ACAS, MKPE) that take the whole

input values as comparable similarity quantities, and since it is based on a more

reliable assumption it straightforwardly captures more reliable patterns in the data.

Also, the proposed model identification score respects the same assumption, and

is shown to be able to capture the co-cluster patterns in multiple synthetic data

sets.b) Our second model for KG analysis makes use of the translation operation that

is suitable for modelling the hierarchical structures in the text [133]. This assembles

the model with only a few parameters — the relation is represented by a compact

vector rather than large matrices/tensors. Our model then extend such translation

operation to allow multiple representations for a single relation when interacting

with different entity pairs . In this procedure, the model does not introduce any

extra parameters and retains a better interpretability for multimodal patterns, and the

advantageous translation operation is also maintained. c) As for the third method,

it uses the pairwise margin-based ranking criterion for modelling the link structure

in a document network. This criterion takes better care of the unknown linkages in

a network and due to this it has been widely applied to the KG analysis problem

in Chapter 4. Thus, by incorporating it into a nonlinear dimensionality reduction

method, our model has offered consistently better predictive performance compared

with existing algorithms.

We have already seen the powerful performance of the proposed embedding

methods in various machine learning tasks, e.g., data visualisation, clustering and

link prediction. It is necessary to extend embedding methods to extract meaningful

and human understandable patterns. For example, in the three applications regarding

the co-occurrence data, knowledge graph data and document network data, it would

be good if the methods can help to explain the data linkages. And LDA is one such

very successful model for explaining the documents by extracting "topic factors". We

believe that such meaningful extensions can eventually benefit for human to organise

the massive content of the relational data. This goal has also shaped my line of

research in this thesis, where I move from modelling co-occurrence data to multi-

dimensional data and move from modelling multi-dimensional data to document
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network data, in order to encode and explain a broader scope of the meaningful

human generated big data in our relational learning models.

6.2 Future Work

There are a lot of possible directions for the future research. We briefly outline

some interesting directions as follows.

The Co-occurrence Data

The proposed method in Chapter 3 takes the input as a set of association mea-

surements between two groups of heterogeneous objects. It is shown to be capable of

recovering the original shape of the synthetical data when the input association matrix

reflecting well the similarity values between the two sets of heterogeneous objects.

However, in the real world application, the provided associations are usually very

sparse and their magnitudes have little effect on their relative strength of associations.

This is a prevailing issue in many co-occurrence data sets. Taking the text corpus

as an example, the words that occur most frequently may have little to no meaning

on their own (e.g., the, great, we), but they have a strong co-occurrence rates in the

document corpus. On the contrary, some words that are rarely found in a corpus may

be strongly attached to the underlying semantics of the documents. Thus, this is an

important research direction when modelling the co-occurrence data, and how to

resolve it in the embedding based approaches requires much thought and creativity.

Co-Embeddings and Topic Modelling

Topic modelling [27] is an important research direction in machine learning, nat-

ural language processing and information retrieval. In developing the co-embeddings

or joint embeddings of the documents and words, our hope is to identify different sets

of neighbouring words as potential overlapping "topic clusters" and simultaneously

put each document to be close to its topical keywords in the same dimensional space.

This idea is presented in Figure 3.5 and a formal and detailed application can be

found in [63]. But it is often too restricted and impractical to put the documents and
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words in the same space for interpreting the documents’ topical associations. In the

co-embedding models, an appropriate positioning of a very long document that is

consist of a large number of topics is hard as it needs to be simultaneously placed

close to a disparate set of "topic clusters". In turn, the requirement that different

topics should be put close to some same set of documents will inevitably position

these topics badly, making them intermingled rather than forming meaningful ”topic

clusters”. One way to alleviate this issue is to partition each document into different

paragraphs where each paragraph embodies only one or a few topics. Then the input

to the co-embedding algorithms would be the associations of the words and the

paragraphs. Or it is recommend to have a number of different embedding spaces to

interpret the document-topic associations as well as the word-topic associations.

Graph Connectivity Patterns in Multi-dimensional Data Modelling

We have developed a novel embedding method for the multi-dimensional data

in Chapter 4, it is also important to consider the use of graph connectivity patterns

for predicting links in multi-dimensional data. Such models attract fewer attentions

compared to the embedding-based models since they require much more computa-

tional efforts. Some theoretical work [160, 161] show that the connectivity-based

approaches are often complementary to the embedding approaches, as they are con-

centrating on different aspects of the dependency structures. Furthermore, they are

computationally efficient if some patterns or rules can be explained from only some

short paths in the graph. Combining the strengths of embedding and connectivity

based models is therefore a promising direction, where some efforts [160, 162–164]

are continually devoted to this field.

Co-Embeddings for the Document Network

Document network embodies a linkage network between documents as well as a

co-occurrence term-document matrix. Current research works [33, 137, 145] usually

employ an LDA [27] model for the word generation with a regulariser based on

the linkage structure. In a similar manner, we can handle the document network in

a co-embedding generation setting, with the document-word Euclidean distances
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explaining the co-occurrence statistics and the document-document distances for

explaining the linkage structure. And we can simply add them up with a weight

controlling parameter to give the global cost function for parameter learning. An

ideal mapping of this should comply with both the document-word associations

and the document-document linkages in the data. Once the co-embeddings are

computed, it could be used for various machine learning applications, e.g., clustering,

classification and data visualisation.
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