1,565 research outputs found

    From truth to computability I

    Get PDF
    The recently initiated approach called computability logic is a formal theory of interactive computation. See a comprehensive online source on the subject at http://www.cis.upenn.edu/~giorgi/cl.html . The present paper contains a soundness and completeness proof for the deductive system CL3 which axiomatizes the most basic first-order fragment of computability logic called the finite-depth, elementary-base fragment. Among the potential application areas for this result are the theory of interactive computation, constructive applied theories, knowledgebase systems, systems for resource-bound planning and action. This paper is self-contained as it reintroduces all relevant definitions as well as main motivations.Comment: To appear in Theoretical Computer Scienc

    Global semantic typing for inductive and coinductive computing

    Get PDF
    Inductive and coinductive types are commonly construed as ontological (Church-style) types, denoting canonical data-sets such as natural numbers, lists, and streams. For various purposes, notably the study of programs in the context of global semantics, it is preferable to think of types as semantical properties (Curry-style). Intrinsic theories were introduced in the late 1990s to provide a purely logical framework for reasoning about programs and their semantic types. We extend them here to data given by any combination of inductive and coinductive definitions. This approach is of interest because it fits tightly with syntactic, semantic, and proof theoretic fundamentals of formal logic, with potential applications in implicit computational complexity as well as extraction of programs from proofs. We prove a Canonicity Theorem, showing that the global definition of program typing, via the usual (Tarskian) semantics of first-order logic, agrees with their operational semantics in the intended model. Finally, we show that every intrinsic theory is interpretable in a conservative extension of first-order arithmetic. This means that quantification over infinite data objects does not lead, on its own, to proof-theoretic strength beyond that of Peano Arithmetic. Intrinsic theories are perfectly amenable to formulas-as-types Curry-Howard morphisms, and were used to characterize major computational complexity classes Their extensions described here have similar potential which has already been applied

    Turing machines can be efficiently simulated by the General Purpose Analog Computer

    Full text link
    The Church-Turing thesis states that any sufficiently powerful computational model which captures the notion of algorithm is computationally equivalent to the Turing machine. This equivalence usually holds both at a computability level and at a computational complexity level modulo polynomial reductions. However, the situation is less clear in what concerns models of computation using real numbers, and no analog of the Church-Turing thesis exists for this case. Recently it was shown that some models of computation with real numbers were equivalent from a computability perspective. In particular it was shown that Shannon's General Purpose Analog Computer (GPAC) is equivalent to Computable Analysis. However, little is known about what happens at a computational complexity level. In this paper we shed some light on the connections between this two models, from a computational complexity level, by showing that, modulo polynomial reductions, computations of Turing machines can be simulated by GPACs, without the need of using more (space) resources than those used in the original Turing computation, as long as we are talking about bounded computations. In other words, computations done by the GPAC are as space-efficient as computations done in the context of Computable Analysis

    On the Skolem Problem for Continuous Linear Dynamical Systems

    Get PDF
    The Continuous Skolem Problem asks whether a real-valued function satisfying a linear differential equation has a zero in a given interval of real numbers. This is a fundamental reachability problem for continuous linear dynamical systems, such as linear hybrid automata and continuous-time Markov chains. Decidability of the problem is currently open---indeed decidability is open even for the sub-problem in which a zero is sought in a bounded interval. In this paper we show decidability of the bounded problem subject to Schanuel's Conjecture, a unifying conjecture in transcendental number theory. We furthermore analyse the unbounded problem in terms of the frequencies of the differential equation, that is, the imaginary parts of the characteristic roots. We show that the unbounded problem can be reduced to the bounded problem if there is at most one rationally linearly independent frequency, or if there are two rationally linearly independent frequencies and all characteristic roots are simple. We complete the picture by showing that decidability of the unbounded problem in the case of two (or more) rationally linearly independent frequencies would entail a major new effectiveness result in Diophantine approximation, namely computability of the Diophantine-approximation types of all real algebraic numbers.Comment: Full version of paper at ICALP'1

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature

    Adaptive Galerkin approximation algorithms for partial differential equations in infinite dimensions

    Get PDF
    Space-time variational formulations of infinite-dimensional Fokker-Planck (FP) and Ornstein-Uhlenbeck (OU) equations for functions on a separable Hilbert space HH are developed. The well-posedness of these equations in the Hilbert space L2(H,μ)L^{2}(H,\mu) of functions on HH, which are square-integrable with respect to a Gaussian measure μ\mu on HH, is proved. Specifically, for the infinite-dimensional FP equation, adaptive space-time Galerkin discretizations, based on a tensorized Riesz basis, built from biorthogonal piecewise polynomial wavelet bases in time and the Hermite polynomial chaos in the Wiener-Itô decomposition of L2(H,μ)L^{2}(H,\mu), are introduced and are shown to converge quasioptimally with respect to the nonlinear, best NN-term approximation benchmark. As a consequence, the proposed adaptive Galerkin solution algorithms perform quasioptimally with respect to the best NN-term approximation in the finite-dimensional case, in particular. All constants in our error and complexity bounds are shown to be independent of the number of "active" coordinates identified by the proposed adaptive Galerkin approximation algorithms
    • …
    corecore