8 research outputs found

    Indexing large genome collections on a PC

    Full text link
    Motivation: The availability of thousands of invidual genomes of one species should boost rapid progress in personalized medicine or understanding of the interaction between genotype and phenotype, to name a few applications. A key operation useful in such analyses is aligning sequencing reads against a collection of genomes, which is costly with the use of existing algorithms due to their large memory requirements. Results: We present MuGI, Multiple Genome Index, which reports all occurrences of a given pattern, in exact and approximate matching model, against a collection of thousand(s) genomes. Its unique feature is the small index size fitting in a standard computer with 16--32\,GB, or even 8\,GB, of RAM, for the 1000GP collection of 1092 diploid human genomes. The solution is also fast. For example, the exact matching queries are handled in average time of 39\,μ\mus and with up to 3 mismatches in 373\,μ\mus on the test PC with the index size of 13.4\,GB. For a smaller index, occupying 7.4\,GB in memory, the respective times grow to 76\,μ\mus and 917\,μ\mus. Availability: Software and Suuplementary material: \url{http://sun.aei.polsl.pl/mugi}

    FASTA/Q data compressors for MapReduce-Hadoop genomics: space and time savings made easy

    Get PDF
    Background Storage of genomic data is a major cost for the Life Sciences, effectively addressed via specialized data compression methods. For the same reasons of abundance in data production, the use of Big Data technologies is seen as the future for genomic data storage and processing, with MapReduce-Hadoop as leaders. Somewhat surprisingly, none of the specialized FASTA/Q compressors is available within Hadoop. Indeed, their deployment there is not exactly immediate. Such a State of the Art is problematic. Results We provide major advances in two different directions. Methodologically, we propose two general methods, with the corresponding software, that make very easy to deploy a specialized FASTA/Q compressor within MapReduce-Hadoop for processing files stored on the distributed Hadoop File System, with very little knowledge of Hadoop. Practically, we provide evidence that the deployment of those specialized compressors within Hadoop, not available so far, results in better space savings, and even in better execution times over compressed data, with respect to the use of generic compressors available in Hadoop, in particular for FASTQ files. Finally, we observe that these results hold also for the Apache Spark framework, when used to process FASTA/Q files stored on the Hadoop File System. Conclusions Our Methods and the corresponding software substantially contribute to achieve space and time savings for the storage and processing of FASTA/Q files in Hadoop and Spark. Being our approach general, it is very likely that it can be applied also to FASTA/Q compression methods that will appear in the future

    CGRWDL: alignment-free phylogeny reconstruction method for viruses based on chaos game representation weighted by dynamical language model

    Get PDF
    Traditional alignment-based methods meet serious challenges in genome sequence comparison and phylogeny reconstruction due to their high computational complexity. Here, we propose a new alignment-free method to analyze the phylogenetic relationships (classification) among species. In our method, the dynamical language (DL) model and the chaos game representation (CGR) method are used to characterize the frequency information and the context information of k-mers in a sequence, respectively. Then for each DNA sequence or protein sequence in a dataset, our method converts the sequence into a feature vector that represents the sequence information based on CGR weighted by the DL model to infer phylogenetic relationships. We name our method CGRWDL. Its performance was tested on both DNA and protein sequences of 8 datasets of viruses to construct the phylogenetic trees. We compared the Robinson-Foulds (RF) distance between the phylogenetic tree constructed by CGRWDL and the reference tree by other advanced methods for each dataset. The results show that the phylogenetic trees constructed by CGRWDL can accurately classify the viruses, and the RF scores between the trees and the reference trees are smaller than that with other methods

    Compressive biological sequence analysis and archival in the era of high-throughput sequencing technologies

    No full text
    High-throughput sequencing technologies produce large collections of data, mainly DNA sequences with additional information, requiring the design of efficient and effective methodologies for both their compression and storage. In this context, we first provide a classification of the main techniques that have been proposed, according to three specific research directions that have emerged from the literature and, for each, we provide an overview of the current techniques. Finally, to make this review useful to researchers and technicians applying the existing software and tools, we include a synopsis of the main characteristics of the described approaches, including details on their implementation and availability. Performance of the various methods is also highlighted, although the state of the art does not lend itself to a consistent and coherent comparison among all the methods presented here

    ALFALFA : fast and accurate mapping of long next generation sequencing reads

    Get PDF
    corecore