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Summary

Bioinformatics research is currently dominated by the (r)evolution in sequencing

technology that produces short fragments, called reads, containing the precise

order of the bases in that sequence. New sequencing platforms produce biological

sequence fragments faster and cheaper than ever before. The resulting growth

in access to large amounts of data opens perspectives for new applications and

prestigious projects, but simultaneously pushes existing sequence analysis tools

beyond their limits as data storage, computational analysis and interpretation

become true bottlenecks in life science research.

Mapping reads to reference genomes plays a key role in many genomics anal-

ysis pipelines. It consists of finding positions where sequencing reads best fit a

reference sequence and identifying differences and similarities between the read

sequence and region of the reference genome onto which the read is mapped. The

Olympic motto citius, altius, fortius in the context of this computationally inten-

sive problem drives read mappers into the algorithmically challenging quest to

find an optimal balance between maximal speed, minimal memory footprint and

maximal accuracy. Read mappers are also expected to shoot at a moving target,

as reads produced by fast evolving technologies differ in length distribution and

sequencing errors. Most of the current read mappers target short reads and allow

for no or low numbers of mismatches and/or indels. This makes them vulnerable

to the ongoing technological advances that feature increased read lengths, higher

error rates and error models showing more and longer indels.

In this dissertation we develop advanced algorithms and index structures for

fast and accurate mapping of long next generation sequencing reads. The de-

veloped read mappers rely on a combination of efficient index structures, search

algorithms and a multitude of heuristics. The outline of this dissertation reflects

the importance of each of those individual components, of which several are of

independent interest to other sequence analysis problems.

vii



viii Summary

The first chapter introduces basic notations and concepts that are used

throughout this work, many of which will be familiar to readers with a back-

ground in bioinformatics. Most notations revolve around the concepts of strings,

biological sequences and the wide variety of types of common substrings.

This chapter also provides background information on sequencing technology,

including a historical overview of the technology and a comparison of the features

of the currently available platforms. In addition, the chapter introduces key

concepts related to the sequencing read data type, such as quality values and

paired-end methodologies, that will affect the choices made in the development

of our read mapping algorithms.

Similar to the major data type, this chapter provides background information

on the algorithmic challenge tackled in this dissertation. In addition to basic

definitions and notations concerning mapping and alignment of sequences, a tax-

onomy of read mappers is given. This section illustrates the diversity of the

currently available read mappers and provides a basis for the selection of tools

used in the evaluation of our algorithms. The theoretical and practical procedures

for evaluating our methods are also discussed here.

Finally, the introductory chapter covers dynamic programming algorithms for

aligning strings. These basic algorithms have become common knowledge in the

field, but are still important subroutines in read mapping algorithms.

The second chapter contains a comprehensive review of full-text index struc-

tures, which are specialized data structures designed to speed up string searching.

Index structures are widely used in life sciences research, as most applications in

the field require basic string operations, most notably search operations. Read

mappers in particular rely on advanced index structures to quickly identify short

matching substrings between the reference genome and read that are used to

prune the search space. The features of these substrings are usually related to

the choice of index structure. Furthermore, memory requirements of read map-

pers are directly linked to the size of the index structure the employ.

Although the importance of index structures is generally known to the bioin-

formatics community, the design and potency of these data structures, as well as

their properties and limitations, are less understood. Moreover, the last decade

has seen a boom in the number of variant index structures featuring complex and

diverse memory-time trade-offs. This chapter brings a comprehensive state-of-

the-art overview of the most popular index structures and their recently developed

variants. Their features, interrelationships, the trade-offs they impose, but also

their practical limitations, are explained and compared.



Summary ix

In the third chapter we present a novel index structure, called an enhanced

sparse suffix array. This index structure is based on suffix arrays, which encode

the lexicographical ordering of the suffixes of a string. In addition to indexing

only a sparse set of suffixes, it enhances suffix arrays with additional information

about longest common prefixes of suffixes to boost performance of string searches.

In addition to the novel index structure, we present an algorithm for finding

maximal exact matches between two sequences. Maximal exact matches are

exact matches between two sequences that cannot be extended to the left or right

without introducing a mismatch. They are widely used in genome comparison

tools as anchor points for alignment, but can also be used as seeds for alignment

of reads, especially for alignment of very long reads.

The algorithm for finding maximal exact matches using enhanced sparse suffix

arrays is implemented and in a tool, called essaMEM . We show that essaMEM

outperforms other commonly used tools for finding maximal exact matches, in-

cluding sparseMEM [126], a tool that uses sparse suffix arrays. Furthermore,

essaMEM is competitive with backwardMEM [201], which utilizes compressed

suffix arrays. This final result indicates that, although compressed index struc-

tures have recently become very popular, the use of sparse index structures can

be a viable option for further research.

In the fourth chapter we present a novel read mapper called ALFALFA.

The read mapper ALFALFA is specifically designed to achieve high performance

in accurately mapping long DNA reads that possibly contain numerous errors.

Its implementation of the canonical seed-and-extend approach is empowered by

the index structures and algorithms from Chapter 3. Enhanced sparse suffix

arrays are used to find small exact matches between read and reference genome,

called seeds. The techniques and heuristics used to filter and combine seeds

and candidate mapping regions are designed to handle longer reads. Extension

of candidate regions into alignments are handled by fast chain-guided dynamic

programming routines, which are introduced in Chapter 1.

The performance, memory footprint and accuracy achieved by ALFALFA

are evaluated and compared against other state-of-the-art read mappers. The

benchmark includes a large variety of data sets, accuracy measures and read

mapper configurations. Results clearly show that ALFALFA is one of the few

read mappers that are able to cope with very long reads (> 1000bp). ALFALFA

is extremely fast and accurate at mapping long reads (> 500bp), while still being

competitive for moderately sized reads (> 100bp). Furthermore, flexible param-

eter tuning allows balancing performance, memory footprint and accuracy.



x Summary

In the fifth chapter we extend the previous algorithms to the mapping and

aligning of cDNA sequences and RNA-seq reads, which are used to study the RNA

content of a cell. In comparison to DNA sequence mapping, alignment of cDNA

sequences and RNA-seq reads to a eukaryotic reference genome poses additional

algorithmic challenges due to the presence of large gaps in the alignment. These

gaps are caused by removing (splicing) intronic segments from a transcribed

sequence, and joining together the remaining segments (exons). Because introns

are usually much larger than the deletions detected by traditional alignment

algorithms, standard DNA read mappers fail to align reads spanning multiple

exons.

We present mesalina, a prototype of a spliced alignment algorithm based on

essaMEM and ALFALFA. The algorithm combines ALFALFA with powerful dy-

namic programming algorithms introduced by GMAP [258]. Preliminary results

indicate that mesalina is competitive in terms of accuracy and has a high perfor-

mance that is more robust with respect to increasing read length.

All aforementioned tools, algorithms and data structures are publicly available

for download as C++ source code at https://github.com/readmapping.

https://github.com/readmapping


Chapter 1

Introduction

This chapter introduces basic notations and concepts that are used through-

out this work, many of which will be familiar to readers with a background in

bioinformatics. Section 1.1 introduces notations for the core concepts of strings,

sequences and common substrings. Index structures, being more complex data

structures, are introduced in Chapter 2. The need for the index structures and

algorithms presented in this work is motivated by the constant evolution in se-

quencing technology. Section 1.2 provides background information on sequenc-

ing technology and introduces sequencing reads as the main input data type of

our algorithms. Definitions and notations concerning mapping and alignment of

strings are given in Section 1.3. Dynamic programming algorithms for aligning

strings are covered in Section 1.4. These algorithms have become common knowl-

edge in the field, but are still important subroutines in read mapping algorithms.

Finally, Section 1.5 provides an overview of theoretical and practical evaluation

procedures of the index structures and algorithms introduced in this dissertation.

1.1 Notations

This section contains notations for basic concepts that are used throughout this

dissertation. Due to the interdisciplinary nature of the field of bioinformatics,

some concepts might have a different definition than the one is commonly em-

ployed by some readers. We will discuss these differences and describe some

properties of the biological sequences that are the subject of research in this

work.

1



2 Introduction

1.1.1 Basic notations

Let A be an array, list, set or string. The size of A is denoted by |A|.
For an ordered data structure A, the element at position or index i is given

by A[i]. By convention, all indexes in this dissertation are zero-based and the

first element can thus be found at position 0. If an array has more than one

dimension, the comma is used as a separator, e.g. A[i, j] denotes the element of

the two-dimensional array A at the i-th row and j-th column. An interval in A

from index i to (and including) index j, with i ≤ j, is represented by A[i..j].

Let the finite, totally ordered alphabet Σ be an array of size |Σ|. Furthermore,

let Σk be the set of all strings composed of k characters from Σ. Such a string is

also sometimes called a k-mer . The set of all strings composed of zero or more

characters from Σ is denoted by Σ∗, with the empty string represented by ε.

Let S ∈ Σn be a string of size n (S stands for string or sequence). Similar to

arrays, for every 0 ≤ i ≤ j < n, S[i] denotes the character at position i in S, the

interval S[i..j] denotes a substring that starts at position i and ends at position j

and S[i..j] = ε for i > j. A string P (for pattern) of length m is a substring of S

if there exists an index 0 ≤ i ≤ n−m such that S[i..i+m− 1] = P . The entire

set of positions for which this equality holds is denoted by occ(P, S).

S[i..] is the i -th suffix of S and is equal to the substring S[i..n− 1]. Likewise,

the i -th prefix of S is denoted by S[..i] and corresponds to the interval S[0..i].

The omission of the positions n − 1 and 0 focuses the attention on the fact

that the intervals are suffixes or prefixes, which have specific properties in the

data structures that are used in this dissertation. To ease notation, we state by

convention that S[−1..] = S[..n] = ε.

The lexicographical order relation between two elements S and P of Σ∗ is

represented as S < P .

As a final remark, note that all logarithms in this paper have base two, unless

stated otherwise.

1.1.2 Common substrings

Many classical problems in string analysis and biological sequence analysis re-

volve around the identification of repeated elements within a string or common

elements between two or more strings. In this section, we introduce several types

of common substrings that are used throughout this dissertation.
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Figure 1.1: All maximal exact matches with minimal length five between two strings.

Dark green lines represent pairs of intervals that are maximal exact

matches.

Let S and P be two strings of respective sizes |S| = n and |P | = m. A

common substring C of size ` > 0 between S and P is a string that appears as a

substring in both S and P . Every pair of positions i ∈ occ(C, S) and j ∈ occ(C,P )

defines a match of size ` between those strings, which is denoted by (i, j, `). Note

that a common substring refers to the string itself, whereas a match refers to a

pair of intervals. For example, the common substring CGAGC corresponds to two

matching interval pairs (5, 5, 5) and (18, 5, 5) in the example strings in Figure 1.1.

A substring C of size ` > 0 that appears more than once in S is called a repeat .

Similar to the definition of matches, repeated pairs of size ` can be defined as every

pair of positions i, j ∈ occ(C, S) and i < j. Repeated pairs are also denoted by

(i, j, `).

The set of all matches between two strings can be very large and does not

discriminate enough to provide useful information. In practice, only matches are

used that meet certain criteria. A widely used criterion is a restriction on the size

of the common substring. For example, some applications search for matches with

a fixed length k, called k-mers, or search for matches with a minimum length `.

The longest common substring between two strings, for example, can be used

to quickly identify possible contaminant substrings in a DNA sequence [97].
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The longest common substring of the two example strings in Figure 1.1 is found

at (27, 33, 10) and equals the string GACTGTCGAG. Important in this work is the

definition of the longest common prefix of two strings.

Definition 1.1. The longest common prefix LCP(S, P ) of two strings S and P

is the prefix S[..k], such that S[..k] = P [..k] and S[k + 1] 6= P [k + 1].

The longest common prefix of the example strings in Figure 1.1 is CTAC, which cor-

responds to the match (0, 0, 4). The longest common prefix between two strings

marks the point at which the strings start to differ. Although this concept seems

of limited use at first, it is often used in indexing (see Chapter 2).

Another frequently used type of matches between two strings restricts the

results to matches that are locally as large as possible by extending the match

until mismatches are encountered.

Definition 1.2. A triplet (i, j, `) is called a maximal exact match (MEM) between

two strings S and P of size |S| = n and |P | = m if:

i) S[i..i+ `− 1] = P [j..j + `− 1]

ii) i = 0, j = 0 or S[i− 1] 6= P [j − 1]

iii) i+ ` = n, j + ` = m or S[i+ `] 6= P [j + `]

The second and third conditions are respectively called the left-maximality and

right-maximality conditions. If only the first two conditions hold, the pair is a

left-maximal exact match. Likewise if only the first and third condition hold, the

pair is called a right-maximal exact match.

In Figure 1.1, all MEMs of minimum length five are shown in green. An

example of a left-maximal exact match is the pair (5, 5, 6). It is left-maximal

because S[4] = A 6= C = P [4], but not right-maximal because S[11] = A = A =

P [11].

A repeated pair for which the conditions in Definition 1.2 hold, is called a

maximal repeated pair . Formally, a substring of length ` > 0 that occurs at

least at two positions i, j (i < j) in S and that is both left-maximal (i = 0 or

S[i− 1] 6= S[j− 1]) and right-maximal (j+ ` = |S| or S[i+ `] 6= S[j+ `]) is called

a maximal repeat ; the pair (i, j, `) is a maximal repeated pair.

Note that although there are fewer MEMs than the total number of matching

intervals, the number of MEMs can still be very high. For example, in Figure 1.1

there are 273 MEMs of size one and 64 MEMs of size two. In practice, only

MEMs of a certain minimum size are used.



1.1. Notations 5

In addition to a minimal length, extra cardinality constraints can be imposed

on MEMs. A maximal unique match (MUM) is a maximal exact match for which

the matching substring occurs only once in both strings. The only MUM of

minimum length five in Figure 1.1 is the pair (5, 5, 8). The MEM (18, 5, 5) is not

a MUM because the corresponding substring CGAGC occurs both on positions 5

and 18 in S.

A somewhat less strict definition is that of an almost-unique maximal exact

match (MAM). A MEM is called almost-unique if it occurs uniquely in one of the

two strings, but not necessarily both. In practice, the concept of MAM is non-

commutative. Thus it is possible that a MEM is a MAM between S and P , but

not between P and S. From now on, we will impose that the uniqueness condition

of a MAM must hold for string S. In Figure 1.1, examples of MAMs that are

not MUMs are the intervals (27, 19, 10) and (27, 33, 10), as the corresponding

substring GACTGTCGAG occurs only once in S. The MEM (38, 21, 6) is not a MAM

because CTGTCG appears at positions 29 and 38 in S and at positions 21 and 35

in P .

The concepts of MUMs and MAMs can further be generalized to MEMs with

certain cardinality constraints. For example, it is possible to limit the set of

MEMs to MEMs (i, j, `) between S and P , with corresponding substring C =

S[i..i + ` − 1] = P [j..j + ` − 1], for which occ(C, S) < a and occ(C,P ) < b, for

given a and b.

SMEMs [147] are another type of MEMs designed to define subsets of MEMs

that are smaller, but contain the most “interesting” MEMs.

Definition 1.3. A pair of intervals (i, j, `) is called a super-maximal exact match

or SMEM between two strings S and P if (i, j, `) is a MEM that is not contained

in another MEM in P , i.e. there does not exist another MEM (i′, j′, `′) between S

and P such that [j..j + `− 1] is a subinterval of [j′..j′ + `′ − 1] and ` < `′.

Similar to MAMs, the definition of SMEMs is not commutative. In light of

applications of MEMs in this work, the MAM uniqueness condition holds for

string S, but the containment condition of SMEMs needs to hold for string P .

Examples of MEMs that are not SMEMs in Figure 1.1 are the interval pairs

(18, 5, 8), (38, 21, 6) and (38, 35, 6). It is interesting to note that MAMs are

always SMEMs, but the opposite is not always the case.

Lemma 1.1. The set of MAMs between two strings S and P , where the unique-

ness condition needs to hold for string S, is a strict subset of the set of SMEMs

between those strings.
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Proof. If (i, j, `) is a MAM between S and P , the substring S[i..i+ `−1] appears

only once in S. Now suppose that (i, j, `) is not an SMEM. By definition, there

exists another MEM (i′, j′, `′) between S and P such that [j..j + ` − 1] is a

subinterval of [j′..j′ + `′ − 1] and ` < `′. However, the substring S[i..i + ` − 1]

would then appear twice in S, because S[i′..i′ + `′ − 1] 6= S[i..i + `′ − 1]. This

contradicts the fact that (i, j, `) is a MAM. Thus, (i, j, `) is also a SMEM.

On the other hand, it is clear that not all SMEMs are necessarily MAMs.

A counterexample can be found in Figure 1.1. The SMEM (1, 1, 1) between

S = CACAC and P = TAT is not a MAM, because the corresponding substring A

appears twice in S, at positions 1 and 3.

1.1.3 Biological sequences

In the previous sections, we introduced concepts dealing with strings in the con-

text of computer science. In biology, however, the term sequence is used instead

of string. The term sequence is used for different concepts in the field of com-

puter science and biology. What is called a sequence in biology is usually a string

in standard computer science parlance. The distinction between strings and se-

quences becomes especially prominent in computer science when introducing the

concepts of substrings and subsequences. The former refer to contiguous intervals

from larger strings, whereas the latter do not necessarily need to be contiguous

intervals from the original string. As index structures work with substrings and

to avoid ambiguity, we will stick to the standard computer science term string

throughout this dissertation, unless we explicitly want to stress the biological

origin of the sequence.

The group of biological sequences includes several types of sequences that

use different alphabets, including DNA, RNA and the amino acid alphabet for

proteins. The algorithms in this dissertation were designed for handling sequences

using the DNA-alphabet, which has size four and is given by

ΣDNA = {A,C,G,T}.

The four letters of the alphabet represent the four nucleotides or bases that make

up a DNA sequence: A stands for adenine, C stands for cytosine, G for guanine

and T for thymine. The RNA alphabet is given by

ΣRNA = {A,C,G,U},

which is the same as the DNA alphabet, except for thymine, which is replaced

by uracil (U).



1.1. Notations 7

The amino acid alphabet has size 20 and is given by

ΣAA = {A,R,N,D,C,E,Q,G,H,I,L,K,M,F,P,S,T,W,Y,V}.

Sometimes the IUPAC nucleotide code1 is used as an extension of the standard

DNA alphabet. It contains special characters that express uncertainty about the

real base present at that position. For instance, the letter R can either be an A

or G in the DNA alphabet. We will use an alphabet that is a subset of the IUPAC

code of size five, namely the DNA5 alphabet, given by

ΣDNA5 = {A,C,G,T,N}.

Here, the letter N stands for an unknown character which could be any base, and

which is usually treated as a mismatch or wildcard.

In ΣDNA, cytosine (C) pairs with guanine (G) and adenine (A) pairs with

thymine (T) (in RNA adenine pairs with uracil (U)). This pairing comes from

the complementary strands of genomic sequences in which the forward strand

is read in the direction from the 5′ to the 3′ end and the reverse complement

strand is read in the reverse direction. For example, the reverse complement of

the forward sequence ATGC is GCAT.

Definition 1.4. If S is a DNA string of size n, its reverse complement is rep-

resented by S̄ and is given by S[i] = S[n− i− 1], 0 ≤ i < n, where Ā = T, T̄ = A,

C̄ = G, Ḡ = C (and N̄ = N in the DNA5 alphabet).

Characters in DNA or RNA sequences are also referred to as nucleotides (nt)

or base pairs (bp). The size of a sequence is often described in terms of the

number of base pairs (bp), thousands of base pairs: kilobases (kbp), millions of

base pairs: megabases (Mbp) or billions of base pairs: gigabases (Gbp).

In addition to the small alphabet, biological sequences have certain features

that need to be taken into account. For example, they usually contain a lot of

repeated patterns, which form obstacles for alignment and de novo assembly of

short sequences. In addition to repeats, DNA sequences contain special patterns

that partition long sequences in logical parts, such as start and stop codons that

mark the beginning of genes, and splice sites that mark the boundary between

introns and exons. Furthermore, the size of biological sequences, such as complete

genomes, ranges from millions to billions of nucleotides and, in contrast to natural

language texts, cannot be divided into small parts, such as words, sentences and

paragraphs.

1http://www.chem.qmul.ac.uk/iubmb/misc/naseq.html(last accessed September 2014)

http://www.chem.qmul.ac.uk/iubmb/misc/naseq.html
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1.2 Sequencing technology

The analysis of DNA samples first requires the determination of the precise order

of bases in that sequence. Methods that perform this “reading” of sequences

are collectively called sequencing technology platforms. These platforms do not,

however, produce complete genomes or chromosomes. Instead, they produce

sequence fragments, called reads, whose sizes range from a few tens of bases to

several thousands of bases and which may contain a small number of erroneous

bases. As such, an important part of the analysis of sequencing reads consists of

the correction of errors and to determine the origin of the small fragments in the

genome, either by mapping them onto a reference genome, if available, or de novo

assembly of the reads. Therefore, the demand for new bioinformatics solutions is

closely related to evolutions in sequencing technology.

In this section, we provide an overview of evolutions in sequencing technology,

covering major technologies and marking several milestone events. We will not,

however, go into the biological or technical details. Instead, we introduce the

generic properties of sequencing reads that need to be taken into account for

the development and evaluation of our algorithms. Finally, we give an overview

of the major sequencing technologies currently used based on these properties.

More in-depth information on (evolution in) sequencing technology can be found

in several reviews [48,161,166,184,236].

1.2.1 Historical overview

The method dominating the first generation of sequencing technology was the

chain-termination sequencing method of Frederick Sanger [223]. Early sequencing

efforts using this technology were slow and cumbersome and mainly focused on

determining the sequence of genes and micro-organisms such as viruses, bacteria

and fungi. Over the course of three decades several enhancements were made to

Sanger sequencing, including the automation and parallelization of the process.

The Human Genome Project [116,244] further boosted the development of Sanger

sequencing. Despite of its high cost and low throughput, Sanger sequencing is

still widely used today due to its long read length and high quality reads.

By the mid-2000s, a collection of several new technologies appeared that rev-

olutionized the field of sequencing and were collectively called next generation

sequencing technologies. The main feature these technologies have in common is

their ability to massively parallelize the sequencing process. The decrease in cost

and increase of throughput of sequencing ranged in several orders of magnitude.
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Table 1.1: Overview of major sequencing technology platforms, mostly adapted

from [161,236]. The sequencing technologies are roughly divided by gener-

ation. The numbers in this table are often approximations and can change

rapidly due to constant evolution and improvements in the technology. The

values that are not available (N.A.) are either due to company restrictions

or technologies still under development.

major error

modality
accuracy read length (bp)

sample

throughput

Sanger sequencing substitutions 99.9% 300 to 900 low

454 indels 99.9% 700 medium

Illumina/Solexa substitutions 98% 50 to 300 high

SOLiD substitutions 99.9%
50 + 35 or

50 + 50
high

Complete Genomics N.A. N.A. 35 high

Ion Torrent indels 98% 200 to 400 medium

Pacific Biosciences indels 87% > 2000 medium

Nanopore sequencing N.A. N.A. N.A. N.A.

For example, the Human Genome Project took almost ten years to complete at

the cost of approximately $3 billion. This amount has dropped by several orders

of magnitude, towards the symbolic boundary of $1000 [99].

The major technologies of this generation include the 454, Illumina/Solexa,

SOLiD, Complete Genomics and Ion Torrent platforms. Methods employed by

these platforms vary in both sequencing principle, sample preparation and de-

tection principle. More important for analysis of the produced reads, however,

the output of these platforms also has varying properties, such as read length

and type and number of sequencing errors. A summary of the different features

of these technologies, including advantages and disadvantages can be found in

Table 1.1 and Section 1.2.3.

Higher throughput and lower cost of next generation sequencing allowed

projects at a much larger scale than ever before [1, 139] and gave rise to new

applications. Apart from standard DNA sequencing (DNA-seq), next generation

sequencing also gave rise to sequencing of the presence of RNA in cells using

RNA-seq [252], sequencing methods for functional analysis and analysis of inter-

actions [256] and sequencing entire environments [237] using metagenomics.
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Since 2008, another generation of sequencing technology has emerged, cur-

rently referred to as third generation sequencing . Where second generation se-

quencing introduced massively parallel consensus sequencing, the third generation

features a technique called single-molecule sequencing. This technique eliminates

the need of an amplification step in the procedure, which is known to cause biases,

and allows real quantitative DNA or RNA to be obtained. Major technologies in

this generation include platforms by Pacific BioSciences and Oxford Nanopore.

Another advantage of some of these platforms is the length of the reads they

produce, which is much larger than that of their second generation counterparts

(see Table 1.1).

The increase in amount of data has caused bottlenecks in other parts of the

research pipeline, pushing existing sequence analysis tools beyond their limits

as data storage [52,235], computational analysis and interpretation become true

bottlenecks in life sciences research. Tools have to adopt to the new scale of

data, as well as changes in read length, error models, etc. The read mapping

algorithms presented in this work were designed to contribute to alleviating part

of this analysis bottleneck.

1.2.2 Sequencing reads

The constant evolution in sequencing and a multitude of available sequencing

platforms have led to a wide variety of sequencing reads with different features.

The choice of sequencing platform depends on many factors, including cost, speed,

throughput and chosen applications. For the sequence analysis algorithms in this

work, however, we focus only on those features of sequencing and the available

sequencing platforms that have a direct impact on the performance of the algo-

rithms. These features are: i) the size of the data sets, ii) length of the reads,

iii) types and number of sequencing errors and iv) special types of sequencing

libraries, such as paired-end reads.

The size of read data sets is governed by the size of the sequenced fragment

and the coverage, which is the average number of reads representing a given

nucleotide in the fragment. Depending on application, technology (which dictates

read length) and other factors, coverage can rise up to 50, resulting in very

large data sets. Reads in the data set also originate from both forward and

reverse complemented strand of the fragment and contain very similar sequences

originating from homologous chromosomes in polyploid organisms.

Read length varies depending on the used technology from as few as 35bp to

approximately 10 000bp with some technologies, with even longer reads expected
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in the near future. The majority of sequencing reads currently produced range

from 100bp to about 600bp with given technology.

As with most technology, sequencing technology is not infallible and occasion-

ally produces reads containing errors. Types of errors include substitutions of a

single base, called mutations, and insertion or deletion of one or more successive

bases. The latter type or errors are collectively called indels. An overview of

the error rate and major type of errors present in several sequencing platforms

in given in Table 1.1.

Quality values

To help identify sequencing errors, read sequences are accompanied by a series

of quality values. In practice, quality values are not represented as the raw base-

calling error probabilities, but by the Phred quality score2. Phred quality scores Q

are defined as a property that is logarithmically related to the base-calling error

probabilities P [57]:

Q = −10 log10 P.

For example, if the Phred score of a base equals 30, the chance that this base

is called incorrectly is 0.1%. For Sanger sequencing, the cut-off reflecting high-

quality bases is given by bases having a minimum score of 20, which represents an

error probability of 1%. For next generation sequencing data, a standard cut-off

is not yet established, but each manufacturer provides quality scores that should

reflect values equivalent to or greater than 20 [255].

As the score values are assigned to each individual nucleotide, the scoring

system is useful for tracking mutation-type errors, but is less suited to identify

indel errors. Furthermore, quality values double storage requirements of sequenc-

ing reads. As a result, lossy storage of quality values has been debated due to

increasing costs of the storage of sequencing data [80].

Paired-end reads

By default, sequencing libraries produce single-end sequencing reads. These se-

quences are produced by reading the order of nucleotides from the 5′-end of a

sequence to the 3′-end of a larger DNA template that was inserted in the sequenc-

ing device. Due to limited read length, only part of the template at the 5′-end is

contained in the read. In contrast, paired-end and mate-pair sequencing libraries

2Named after the program that developed these values to help automation of DNA sequenc-

ing in the Human Genome Project.
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FR RF FF RR=FF

Figure 1.2: Possible orientations for paired-end reads. The DNA fragment is shown

in black, with green ends showing the part of the fragment that can be

part of the reads. Top lines represent the forward strand and bottom lines

represent reverse complement strand. Arrows indicate the orientation of

the reads.

produce reads from both ends of the same DNA template. The use of paired-end

reads is especially useful to improve mappability of reads and help with assembly

in repetitive regions of a genome and to discover rearrangements in a sequence.

Both paired-end and mate-pair sequencing libraries produce pairs of reads

with an approximately known distance between them, but differ in the tech-

nological approach [48]. Although the processes vary technologically, the main

difference between the final read sequences are the distance between the reads

and their relative orientation. Therefore, we will refer to the reads produced by

both protocols as paired-end reads. For our purposes, a data set of paired-end

reads consists of pairs of reads, consisting of the first mate (originating from the

5′-end) and the second mate (originating from the 3′-end). The size of the initial

DNA template is called the insert size, which is equal to the sum of the read

lengths together with the distance between them.

Depending on the sequencing library, both reads can have the same orienta-

tion, or be reverse complemented. There are three possible orientations, which

are depicted in Figure 1.2. From left to right these orientations are:

� forward-reverse (FR): the mates are found on opposite strands and point

towards each other,

� reverse-forward (RF ): the mates are found on opposite strands and point

away from each other,

� forward-forward (FF ): the mates are found on the same strand, with the

first mate being on the left if on the forward strand, and on the right if on

the reverse complement strand.

The case reverse-reverse is identical to the forward-forward orientation.
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(a) (b) (c) (d)

Figure 1.3: Representation of special cases in the relative position of paired-end reads

in FR orientation, depending on the insert size and size of the reads. The

DNA template is indicated in black, with the upper line being the forward

strand and the bottom the reverse complemented strand. The darker green

line represents the first mate, whereas the lighter green is the second mate.

In (a), there is a positive gap between the mates, (b) represents an overlap,

(c) shows mate 2 being fully contained in mate 1 and case (d) shows both

mates extending past each other in normal orientation.

In practice, the size of the sequenced DNA templates is not equal for all reads,

but lies in an interval between given minimum insert size and maximum insert

size. Furthermore, the length of both mates is not necessarily the same.

In the default case, the insert size is large enough to have a positive gap or

small overlap between both mates in a pair. However, during alignment (see

Section 1.3) it is possible that one mate could be fully contained in the other, or

that both mates extend past each other, resulting in a dovetail . These cases are

shown in Figure 1.3.

Read file formats

Two file formats are typically used for representing sequence information: FASTA

and FASTQ. Both file formats include a header that can contain additional in-

formation, but FASTQ also stores the quality values for the sequence. Multiple

sequences in the same file are separated by distinguishable characters in the

header of each sequence entry.

In FASTA, information about the sequence is stored in a header, starting with

the ‘>’ character. The sequence is split over the next lines, in such a way that

each line, except possibly the last one contains the same number of characters.

Common file extensions of FASTA files are .fasta and .fa. An example FASTA

sequence is:

>chromosome1

AGGGTCACGTAATGCTGATCCAGTCTTGTTTTTATTTTCATTCATGTTCC

CGCTCTTGCTTTGATTCCGACTTCTAACGTTTAACCTGTGATCAGACGTT
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A sequence in FASTQ format consists of four lines, structured as follows:

� First line contains the header information and always starts with ‘@’.

� Second line contains the sequence.

� Third line starts with ‘+’ and is optionally followed by the same identifier

given in line 1.

� Fourth line consists of the encoded quality scores and should be of equal

length as line 2.

Encoded quality values are represented by ASCII characters in the range ‘!’

to ‘~’. Although some variants appear between sequencing technologies, usually

ASCII characters 33 to 126 represent Phred quality scores from 0 to 93. In

practice, however, quality values above 40 (Illumina technology) or 60 are rarely

seen. Common FASTQ file extensions are .fastq and .fq. An example of a

sequence in FASTQ is:

@reads .000000000

CGAAAGTAAGAACGCGAAAAGCGGAAAAAAGCAGCAGAGAAGAAACGACG

+

67U/’41P,0E(46-7_B.(-1H)_^9.(&/78223467G(0X1(,>/0/

Paired-end reads can either be stored in a single file, where the second mate

directly follows the first, or using two separate files, where the two mates have

the same order in both files. In addition, the header of the first mate of a pair

usually ends with ‘ 1’, ‘/1’ or using similar tokens. Likewise, the header of the

second mate usually ends with ‘ 2’ or ‘/2’. In some cases, the first mate is also

identified with the number 0, whereas the second mate is assigned number 1.

1.2.3 Sequencing technology comparison

This section contains a comparison between the major sequencing technologies

of all generations, which is mostly adapted from several excellent review arti-

cles [48, 161, 166, 184, 236], and complemented by other sources containing addi-

tional changes since publication of the reviews. The comparison is mainly focused

towards features that are important for mapping and alignment of reads. A com-

prehensive summary of the most important features is given in Table 1.1.

Sanger sequencing was the dominating technology of first generation sequenc-

ing. It is still used due to its relative high read length (300bp - 900bp) and low
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error rate. As the oldest technology listed, it has the lowest throughput and

highest cost.

One of the earliest breakthroughs in massively parallel sequencing was ob-

tained by the 454 Life Sciences technology, obtained by Roche. Its pyrosequenc-

ing technology currently features reads up to 1000bp3, rivaling that of Sanger

sequencing. It is therefore ideal for de novo sequencing, resequencing of known

genomes and metagenomic studies. The major source of errors in 454 reads can

be found in homopolymer sequences (long single-nucleotide repeats). For exam-

ple, the technology cannot discriminate between sequence AAAAAAAAAAAAA (13

successive A’s) and sequence AAAAAAAAAAAAAA (14 successive A’s). Recently, the

manufacturer has announced that it will discontinue support for its sequencers4.

The Illumina sequencing platform by Solexa/Illumina is the current market

leader in next generation sequencing technology. It features a very high through-

put at a low cost per sequenced base. Substitution errors appear most frequently

in this technology and errors are also more frequent at the end of the read. Ini-

tially, it featured high-quality reads of only 30bp to 36bp, which rendered it near

impossible to be used for de novo assembly, but did not prohibit its success in

resequencing applications. This led to an era of short-read mapping algorithms

(see Section 1.3.3). The read length of Illumina technology is anticipated to in-

crease to 2 × 400bp using paired-end sequencing [181]. Recently, Illumina also

offers a long read technology, built from overlapping smaller reads that are locally

assembled to reads reaching 10kbp [246].

Other NGS technologies include those of SOLiD (Sequencing by Oligonu-

cleotide Ligation and Detection), Complete Genomics and Ion Torrent. SOLiD

features very high quality reads, but its long runtime and short read length limit

its usefulness for some applications. Complete Genomics focuses on in-house hu-

man genome sequencing and analysis. It features low sequencing costs [55], but

also short read lengths. Ion Torrents ion semiconductor sequencing technology

features lower costs and faster runtimes and is comparable to the 454 technology

in terms of sequencing errors. However, the raw error rate of Ion Torrent reads

is higher than that of 454 reads to the point that no reads can be generated

in regions containing long homopolymers [208]. In addition, the size of reads

produced by Ion Torrent is smaller than that of 454 reads.

Third generation sequencing technology has introduced single-molecule DNA

sequencers, who have several advantages over the previous methods (see Sec-

3Source: http://454.com/products/gs-flx-system/(last accessed May 2014)
4Source: www.genomeweb.com/sequencing/roche-shutting-down-454-sequencing-business (last ac-

cessed November 2014)

http://454.com/products/gs-flx-system/
www.genomeweb.com/sequencing/roche-shutting-down-454-sequencing-business
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tion 1.2.1). The most used technology from this generation is the Single-Molecule

Real-Time (SMRT) sequencing, developed by Pacific Biosciences (PacBio).

This technology features both high quality short reads and lower quality long

reads. In 2012, average long read length was approximately 3kbp, but reads up to

15kbp could be generated [181]. Sequencing errors in this technology consist pri-

marily of small indels that are uniformly distributed over the read sequence [132].

This poses challenges for existing mapping algorithms [36]. It has been shown,

however, that many errors in these long reads can be corrected using shorter

Illumina reads [132].

In the near future, Oxford Nanopore [236] might become an important se-

quencing read provider player. Its technology promises very long read lengths,

over 5kbp, with relatively low error rates of less than 4% [181]. The company

furthermore claims that there would be no theoretical limit on read length, and

50kbp reads would be easily obtainable.

The main focus of the algorithms developed in this work follow the general

trend of sequencing technologies towards longer reads, which could possibly con-

tain more errors. Therefore, evaluation of our methods mainly use (simulated)

reads from Illumina, 454 and (error corrected) Pacific Biosciences technologies.

1.3 Alignment

A key process in the field of biological sequence analysis is the comparison of se-

quences, including the identification of differences and matching substrings, which

in turn can be arranged in an alignment between those sequences. Many appli-

cations are geared towards finding an alignment between two or more sequences

that is optimal given a predefined distance measure.

1.3.1 Sequence alignment

An alignment between two sequences is an arrangement of the nucleotides to

identify regions of similarity (matches), and dissimilarity (mismatches or muta-

tions and gaps). It can also be seen as a way of transforming the first sequence

into the second by changing, inserting and removing characters. In biological

sequences this corresponds to the introduction of point mutations, insertions and

deletions. The alignment can be used to indicate regions of structural, functional

or evolutionary similarity.
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Figure 1.4: Representation of a possible alignment between two sequences. The dashes

in the top and bottom row represent gaps, whereas the pipes in the middle

row indicate matching bases. The alignment is a possible optimal global

alignment using a match score of 1 and a mismatch and gap penalty of −1.

A representation of an alignment between two DNA sequences can be found

in Figure 1.4. The representation consists of a matrix that includes a single

row for each sequence, separated by a row containing a ‘|’ symbol in a column

when the bases of the sequences in that column are equal. A dash symbol ‘-’

in a column represents a gap in the alignment. Dashes in the first and second

sequence respectively represent deletions and insertions. Unaligned bases that

are part of the sequences are printed in lower case (example in Figure 1.6b).

The definition of optimal alignment depends on a given distance measure or

scoring function defined on the set of matches, mismatches and gaps between

the sequences. In computer science, the Hamming distance and edit distance are

commonly used distance measures, whereas in bioinformatics more complex dis-

tance measures are employed that take into account different types of mutations

and gaps.

The Hamming distance is defined for strings of equal length and measures the

number of mutations required to change one string into the other. The cost of a

mismatch is one, whereas the bonus of a match is zero. The edit distance counts

the number of edit operations, which includes changing a character and inserting

or deleting a single character. Thus, the costs of mutations and gaps both equal

one, whereas the bonus for a match is still zero.

In bioinformatics, some mutations are considered more likely than others.

Therefore, a substitution matrix is used in the scoring function, which includes

the score (or penalty) for each possible mutation. The score for matching bases

is usually constant over all nucleotides, except for the unknown base match N,

which can be considered as a mismatch. For the alignment of sequencing reads,

the mismatch penalty can also depend on the Phred quality scores [141].

Different scoring schemes are also used for gap penalties. For instance, it is

possible to define a different penalty for insertions and deletions, which might,

for example, be helpful in error correcting reads that contain mostly deletion or
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Figure 1.5: Representation of an optimal alignment between two sequences using

affine gap penalties. The scores used are +1 for matches, −3 for mis-

matches, −5 for opening a gap, and −1 for extending a gap.

insertion type errors. Instead of a constant penalty for each single-nucleotide

indel, the affine gap penalty model assumes a fixed (large) gap opening penalty

and another (smaller) penalty for each consecutive base in the gap.

This model favors mismatches and larger gaps at the expense of small gaps.

As an example, Figure 1.4 shows an optimal alignment between two sequences

using fixed gap penalties and Figure 1.5 shows an optimal alignment for the same

sequences using affine gap penalties. The alignment in Figure 1.4 consists of two

mismatches and five gaps which in total consist of eight nucleotides. In contrast,

the alignment in Figure 1.5 consists of five mismatches and two gaps which in

total consist of six nucleotides.

In addition to affine gap penalties, certain gaps can also be declared costless.

In global alignment , an attempt is made to align all bases of both sequences.

This type of alignment is preferred when both sequences are roughly of equal

size. If the size of the sequences is highly dissimilar, however, local alignment

or a type of semi-global alignment is preferred. Local alignment allows free gaps

at the ends of both sequences and is especially used to locate local regions of

high similarity. As an example, Figure 1.6 shows optimal alignments between

two sequences using global and local alignment.

In between global and local alignment, there are other alignment methods that

allow free gaps at some ends or sequences, but not everywhere. These methods

are collectively called semi-global alignment methods. In theory, there are four

ends that can either fix the alignment or allow free gaps, resulting in sixteen

different alignment methods. However, most of these cases are symmetric.

There are three semi-global alignment methods that we will use in this dis-

sertation. The first, called substring alignment , allows free gaps at the beginning

and end of a single sequence, but requires the other sequence to be aligned end-to-

end. As the name suggests, the method is used when aligning a smaller sequence

that is assumed to be a substring of a larger sequence. This is typically the case

in read mapping. An example substring alignment is given in Figure 1.7, using
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Figure 1.6: Representation of (a) an optimal global alignment and (b) an optimal

local alignment between two sequences.
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Figure 1.7: Representation of an optimal substring alignment between the same se-

quences shown in Figure 1.6.

the same sequences as in Figure 1.6.

The other two semi-global alignment methods that will be used fix one end of

the alignment, disallowing gaps, but allow free gaps at the other end of the align-

ment in a single or both sequences. The former method is defined as extension

alignment and the latter as local extension alignment . These alignment methods

will be used as part of a chain-guided global or local alignment (see Section 1.4.2

and Chapter 4).

The figures in this section represent possible optimal alignments, but are

not unique. For example, a substring can appear multiple times in a larger

string, resulting in alignments with equal optimal score. In the case of alignments

containing gaps, however, an alignment of equal score can sometimes be obtained

by a change in placement of a single indel. It should be noted that, although

these alignments are different by definition, they are not considered different by

many alignment algorithms and different definitions for the concept of different

alignment are used in practice. In addition, suboptimal alignments can also be

of interest if the alignment score is close to the optimal one.

The alignment scoring function used in this work consists of a positive match
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bonus, a fixed mismatch penalty and an affine gap penalty consisting of a gap

opening penalty and a gap extension penalty. In addition, depending on the type

of alignment, some gaps will be without penalty.

1.3.2 Read mapping

The main contributions presented in this dissertation are algorithms for read

mapping . The biological read mapping problem consists of finding positions and

alignments where sequencing reads best fit a reference sequence. If the sequencing

reads would originate from the reference sequence, this results in finding the

sample position from where the read originates. However, as this is not the

case in practice, the biological problem is ambiguous and approximated by a

mathematical problem [104].

Technically, the read mapping problem consists of performing substring align-

ments between a data set of sequencing reads and a reference sequence. Each read

is mapped independently to the reference sequence, obtaining positions on which

the substring alignments starts, called the mapping positions, and the alignments

proper. As the strand of origin is unknown, both the forward sequence and the

reverse complement of the read are mapped.

As discussed in Section 1.2, the sequencing reads are usually tens to thousands

of bases long, whereas the reference sequences range from millions to billions of

bases in length. In practice, multiple reference sequences are used, such as the

set of chromosomes of a genome. However, these reference sequences are often

treated as being concatenated into a single sequence, resulting in the search for

an optimal substring alignment in a single large sequence.

An abstract definition of the read mapping problem can be given as follows

(adapted from [104]):

Definition 1.5. The read mapping problem takes as input a reference sequence S,

a set R of reads ri ∈ R, 0 ≤ i < |R|, a score function f and a minimum score d.

The score function is used to assign an alignment score for substring alignments

between reads and S. For each read r, the problem is to find a set of feasible

matches of r in S, which are locations in S where the read aligns with a minimum

score of d. The set of feasible matches can further be limited in size and/or to

only the highest scoring matches, which are called best matches.
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Mapping quality

The quality of read mappings is usually assessed using a numerical value, called

the mapping quality . The mapping quality value was introduced by MAQ [155],

and is the Phred-scaled [57] probability that a read alignment may be wrong.

Definition 1.6 is transcribed from Lee and Schatz [144].

Definition 1.6. The mapping quality score q of an alignment is a probabilis-

tic measure that a read is correctly mapped. It is typically expressed in Phred-

scaled [57] form. For a reference genome S of length |S| = n and a read P of

length |P | = m, the probability p(P |S, i) of observing a read alignment of P on

position i in S is given by the product of the probabilities of errors recorded in the

quality values of the bases that disagree with the reference genome. The posterior

error probability ps(i|S, P ) of a position is defined as:

ps(i|S, P ) =
p(P |S, i)∑n−m

j=0 p(P |S, j)

The mapping quality score q for the alignment starting at position i is then defined

as:

q = −10 log10(1− ps(i|S, P ))

Accordingly, higher values of q represent a more confident alignment, and the

mapping quality score q will be lower or zero for reads that could be mapped to

multiple locations with nearly the same number of mismatches. Mapping quality

values of paired-end reads are either the sum of the single-end quality values for

uniquely mapped pairs, or the quality values of the individual ends for pairs with

multiple alignments.

In a probabilistic view, each read alignment is an estimate of the true align-

ment and is therefore also a random variable. If the mapping quality of a read

alignment is q, the probability p that the alignment is wrong can be calculated

as:

p = 10
−q
10

For q = 30, this means that on average one in every thousand alignments would

be wrong.

Calculation of mapping quality using Definition 1.6 is impractical, as it re-

quires mapping the read at every position of the reference genome. Therefore,

approximations of this measure are used in practice. In addition, a different
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definition is essential as it does not take into account indels and some read map-

ping algorithms do not rely on quality values for alignment. The approximation

used in this work is adapted from the BWA-SW [151] mapper and is given in

Definition 1.7.

Definition 1.7. The mapping quality value is approximated by m× s1−s2
s1

, where

s1 is the alignment score of the highest scoring alignment, s2 is the alignment

score of the second highest scoring alignment and m is the maximum allowed

mapping quality value. The alignment score is the score given by the aligner

to the alignments, using a given distance measure or scoring function (usually

obtained through dynamic programming). If only one alignment has been found,

s2 is set to 1. Mapping quality of paired-end reads is defined based on the sum of

the alignment scores of the mates.

The mapping quality is often used to compare the sensitivity and specificity of

read mapping algorithms. Reads mapped with a high mapping quality indicate

that the mapper perceives this alignment to be the best one, whereas reads

mapped with low mapping quality indicate that similar alignments were found on

other positions in the reference genome. Matches with low mapping quality are

more likely to contain false positives than matches with high mapping quality.

Evaluation of read mapping tools using mapping quality is preferable to a

simple count of the number of mapped reads, but still might not provide a fair

comparison between the tools. For example, mapping quality zero indicates a

mapper has found two alignments with equal alignment score. Another mapper

might be less sensitive and find only one of both alignments, and reports the

alignment with a high mapping quality. As many evaluations in the literature

discard reads mapped with mapping quality zero, the more sensitive mapper is at

a disadvantage. In contrast, reporting mapping quality zero could overestimate

the false-positive rate of tools that utilize a low alignment score threshold.

The mapping quality metric is also very sensitive to small changes in read

positions, read qualities, differences between local and end-to-end alignments,

and the used alignment scoring function. Clipping few bases of an alignment

can result in a significant drop in mapping quality [144]. Scoring functions that

contain large differences between penalties and bonuses for matches, mismatches

and gaps will produce different mapping qualities compared to scoring functions

that contain smaller differences between bonuses and penalties.
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1.3.3 Read mappers

The advent of next generation sequencing has made large-scale (re)sequencing

possible, resulting in a huge increase in the size of sequencing read data sets

and changing the field of read mapping considerably. First, due to the size of

the data sets, read mapping algorithms do not produce exact solutions to the

problem stated in Definition 1.5. Instead, many heuristics are used to speed up

the process at the cost of accuracy.

However, since read mapping is one of the first steps in many next generation

sequencing pipelines, and is crucial to the accuracy of downstream analysis, it has

gained a lot of attention during the last decade. Many read mapping algorithms,

also referred to as read mappers, obtain a different trade-off between accuracy,

performance and memory requirements. Second, next generation sequencing has

widened the field of sequence analysis to gave rise to new applications, each

featuring different data and/or different algorithmic challenges. Third, in contrast

to the domination of Sanger sequencing in the first generation, the presence of

multiple sequencing technologies in the second generation sequencing technology

requires adaption to technology-specific features. Finally, the need for faster

methods has inspired more emphasis on parallelization and hardware optimized

implementations.

The multitude of read mapping algorithms that have recently been published

can be found in Figure 1.8. As a result of the above mentioned features of next

generation sequencing read mapping, few mappers presented in Figure 1.8 out-

right outperform older mappers. Instead, many have unique features, or present

a unique trade-off between accuracy, performance and memory requirements.

The remainder of this section provides an overview of the different types of

read mappers, their features and limitations. This review is mainly based on

several review articles [77,153].

Applications and read features

A first major category in which read mappers can be divided, is the type of

sequencing application the mapper is designed for. Most mappers in Figure 1.8

are DNA mappers (shown in blue), designed for analysis of the DNA content of an

organism. The mappers in red represent RNA mappers, designed for RNA-seq.

RNA mappers have to take into account large deletions in the alignment which are

due to intronic regions in eukaryotic cells being spliced out after transcription.

Mappers in green represent miRNA mappers, as part of miRNA-seq analysis



24 Introduction

2001 2003 2005 2007 2009 2011 2013 2015

SSAHA
Blat

MUMmer 3
Exonerate

GMAP GSNAP
ELAND

BWT-SW
SOAP SOAP2 SOAPSplice
RMAP
PatMaN

ZOOM
SeqMap

MAQ
SOCS

QPALMA
Slider Slider II

PASS PASS-bis
MOM

Bowtie Bowtie2
TopHat TopHat 2

ProbeMatch WHAM
CloudBurst

BWA BWA-SW
SHRiMP SHRiMP2

RazerS MicroRazerS
SplazerS

RazerS3
BSMAP

RNA-Mate X-Mate
PerM

mrFAST mrsFAST
GenomeMapper

GNUMAP
segemehl

BFAST
BRAT BRAT-BW

SpliceMap
Supersplat
BS-Seeker BS-Seeker2

REAL
MapSplice

Stampy
Bismark
drFAST

RUM
DynMap

Passion
ContextMap

OSA
Batmis
SeqAlto

YAHA
BLASR

BatMeth
ERNE
STAR
GEM

SRmapper
CRAC

Subread/Subjunc
NextGenMap

Hobbes2
MOSAIK

BWA-PSSM
ALFALFA

mesalina

Figure 1.8: Time line showing publication date of most of the read mapping algorithms that

have been developed since 2001. The figure is mostly adapted from a recent version

(http://wwwdev.ebi.ac.uk/fg/hts_mappers/#timeline, last accessed June 2014) of data

originally published by Fonseca et al. [77]). Tools on the same line show major updates

of previously released tools. DNA mappers are plotted in blue, RNA mappers in red,

miRNA mappers in green and bisulphite mappers in purple.

http://wwwdev.ebi.ac.uk/fg/hts_mappers/#timeline
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pipelines that examine MicroRNAs. MiRNA mappers have to be able to map

very short reads, ranging from 16 to 30 bases [77]. Finally, mappers in purple are

bisulphite mappers, used in bisulphite sequencing [42] analysis pipelines, which

is used for determination of DNA methylation patterns. In bisulphite sequencing

reads, non-methylated C’s (respectively G’s) are converted to T’s (respectively A’s),

but others are not.

The length of reads has a major impact on the accuracy and performance of

read mapping algorithms.

Many mappers are therefore optimized or even restricted to a certain range in

the size of reads. Early next generation sequencing technology produced reads

that are much shorter than those produced by Sanger sequencing, resulting in

a large number of short read mappers being developed since 2007. Recently,

however, read lengths have increased again for some technologies and this trend

is expected to continue in the near future [181]. The increase of read length has

led to the development of long read mappers, of which ALFALFA (see Chapter 4)

and mesalina (see Chapter 5) are examples of. An overview of the range of read

lengths for most mappers was produced by Fonseca et al. [77].

The trade-off between accuracy and performance of read mappers is influenced

greatly by the number of differences between the reads and reference genome.

These differences can be caused by sequencing errors or natural differences, arising

from the fact that the reads do not originate from the reference genome’s DNA

directly. Like in general alignment, most differences include mutations and indels.

Other structural variations, such as duplication, inversion or relocations of an

entire substring, are more difficult to detect and are often left to post processing

tools.

Some read mappers limit the total number of mutations and indels, limiting

their ability to map certain reads, but greatly increasing their performance for

the reads they do map. For example, Vmatch [136] only allows 5 mutation-based

differences, and the number of indels allowed in SOAP [156] is limited to 3. Other

mappers also allow a single large gap in the alignment, such as SOAP2 [157] and

SeqAlto [187]. Other mappers use different techniques [77] to take advantage

of the Phred quality scores of sequencing reads, as it has been shown to reduce

alignment errors if mutations are given a lower penalty when the base has a low

quality value [153]. In practice, most mappers utilize a user-set maximum score

or minimum identity percentage, resulting in a trade-off between accuracy and

performance.

Both read length and error modalities are usually unique to certain sequencing
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technologies. As a result, several mappers have been specifically designed for

mapping reads produced by a given technology. For example, Slider [175] is

designed for Illumina reads, TAPyR [60] for 454 reads, SOCS [203] for SOLiD

reads and BLASR [36] is a mapper for reads produced by Pacific Biosciences

technology. In addition, most read mappers are evaluated on Illumina reads, as

Illumina technology currently dominates the next generation sequencing market.

Type and size of the alignment and output

Read mappers differ not only in the target input data, but also in the type and

size of the alignment output. For example, most mappers perform substring

alignments in which the read is aligned end-to-end. Other mappers, such as

BWA-SW [151] and SSAHA2 [195] produce local alignments. Local alignments

have the advantage of being more robust against differences located at the end

of the read sequence and even highly dissimilar reads can be matched partially

to the reference genome. In other cases, however, local alignment might miss

important variants located at the end of reads. Several mappers either allow

users to switch between end-to-end and local alignment [141,249] or automatically

choose between a global and local alignment, depending on the difference in

alignment score for both situations [148].

Another difference between mappers is the number of alignments that are

produced and reported. Mappers can either report one or multiple matches,

feasible matches or best matches (see Definition 1.5). Mappers that report only

a single alignment per read are called best-mappers [104], and include SOAP,

Blat [125] and QPalma [47]. Other mappers, such as BWA-MEM [148], offer users

the option to report all alignments found during the matching process. Another

option is to set a maximum threshold on the number of alignments reported

by the mappers. Examples of mappers with this feature are Bowtie 2 [141] and

ALFALFA. Finally, several mappers can be categorized as true all-mappers [104],

in the sense that they will attempt to find all possible different alignments with

a given minimum similarity or alignment score. Mappers in this category usually

operate on the edit distance and include RazerS3 [253] and GEM [179]. The bulk

of the available read mappers are either best-mappers or mappers that allow the

user to set a fixed number of alignments. For many applications, a single or

few alignments are enough or even desirable. In other applications that require

a more exhaustive search, such as metagenomics, all-mappers can provide more

detailed information [179]. In addition, all-mappers are usually more sensitive

overall, but much slower than best-mappers.
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A definition that is especially important for mappers producing multiple align-

ments per read is when two alignments are considered “different”. The Rabema

benchmarking method [104] features a formal definition of match equivalence, as

well as an exhaustive discussion on the concept. Informally, two matches are

considered equivalent if their alignment shares a common trace on the dynamic

programming matrix (see Section 1.4), their end-positions are neighboring, or

their end-positions are separated by feasible or other equivalent matches.

Algorithmic aspects

Together with input and output, read mappers also differ in the algorithms and

data structures they use to calculate alignments. To the end-users, the algo-

rithmic aspects of mappers are usually less important. They can, however, have

a large impact on the trade-off between accuracy, performance and memory re-

quirements on specific data sets. This trade-off is not always obvious from the

description and limitations imposed by the mappers themselves.

In general, read mapping algorithms consist of a three-step procedure. The

first step consist of the construction of an index structure for the reference

genomes and/or the set of reads. This data structure considerably speeds up

string searches in the indexed sequence, has a high impact on performance, but

is also the main contributor to the memory footprint of the analysis. The sec-

ond step in mapping usually consists of searching the index for small (in)exact

matches between read and reference genome, called seeds. Using seeds or an-

other method, the alignment search space is considerably trimmed to only a few

candidate regions. These candidate regions are thus explored further in the third

step, which usually consists of an exhaustive alignment algorithm, such as the

dynamic programming algorithms described in Section 1.4.

A more detailed discussion on the specific steps used in mapping algorithms

can be found elsewhere. Index structures will be discussed in Chapter 2. A taxon-

omy of mapping algorithms based on their alignment strategy can also be found

in the reviews by Li and Homer [153] and Fonseca et al. [77]. Equally important

to the main algorithmic aspects are the heuristics they employ. Although these

heuristics contribute greatly to the trade-off obtained by mappers on different

data, they do not facilitate easy comparison between mappers.

Some design choices are made to obtain certain time-accuracy trade-offs. All-

mappers, such as RazerS3, focus on high accuracy, reaching full sensitivity for

given thresholds [253]. Best-mappers focus on speed, such as suggested by their

reference’s title (e.g. “Ultrafast. . .” [143]). Another important trade-off includes
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memory requirements. Some mappers are designed to be run on standard desk-

top computers and utilize memory-efficient index structures, such as the FM-

index [143, 150, 163] and sparse or compressed suffix arrays [249]. Other map-

pers employ larger index structures to increase performance or accuracy, such as

segemehl [102] and Hobbes [6].

Implementations and technical details

In addition to the purely algorithmic aspects given in the previous section, read

mapping tools also employ more technical traits to set them apart from others.

These traits include both extra tunable features due to additional parameters

and performance optimization through parallelization or hardware acceleration.

To increase performance for high-throughput read mapping, most mappers

provide support for some level of parallelization. The most common forms of par-

allelization are those of multi-threading in multi-core CPUs, bit-level parallelism

using bit-vector operations or Single Instruction, Multiple Data (SIMD) opera-

tions. More rare are the hardware-specific implementations for Graphics Pro-

cessing Unit (GPU) [8], including some ports of CPU mappers to GPU [160,225]

and several mappers specifically designed for the architecture [130, 164]. Several

high-throughput read mappers also exist for use with Cloud Computing, using

the MapReduce implementation Hadoop [204,224].

A full-blown read mapper contains a lot of parameters that can be used to

enable or disable special features, specify input and output details, extra pre-

process and post process scripts or tune the performance, accuracy and memory

trade-off. For example, mappers can be set to only map reads to the forward or

reverse complement strand, orientation and insert size restrictions can be set for

paired-end read mapping, etc. Tuning the trade-offs can especially be daunting

for many end-users, as usually many parameters exist for this cause.

Accuracy and performance tuning parameters can vary from parameters with

global effect, such as a minimum alignment score or maximum number of align-

ments to calculate, to very local parameters that adjust the setting of a single

heuristic in the algorithm. The large variety in available parameters also com-

plicate a fair evaluation and comparison of read mappers. Moreover, the lack of

adjustable traits in tools is not always caused by the use of different algorithms,

but the value can just be hard coded, it can be dependent on other parameters,

or it is automatically tuned during the alignment process. In practice, evalua-

tions frequently utilize the default parameters settings given by the developers.

In some cases, these default settings work well for many settings, and parameter
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tuning has marginal effects. In other cases, parameter tuning is a prerequisite to

achieve good performance.

Finally, the choice of a read mapper can depend on practical or technical

issues, such as the availability and license, the supported operating systems, input

and output formats, documentation and ease of installation. The bulk of read

mappers are open source and most popular mappers have been successfully tested

on all major operating systems. Some notable exceptions are GEM , SSAHA2

and Vmatch which are only available as precompiled binaries. Standard input

formats are FASTA for reference genomes and FASTQ for read data sets. The

SAM/BAM format has become the standard output format and is discussed in

the next section. Some mappers offer an additional output format, developed for

their tool, which contains additional information that does not fit the SAM/BAM

standard. A list of these technical details can be found in the review article by

Fonseca et al. [77].

1.4 Dynamic programming

One of the most commonly used techniques for solving the various sequence

alignment problems is that of dynamic programming , originally introduced to

sequence alignment by Needleman-Wunsch [194] for global alignment and Smith-

Waterman [234] for local alignment. In addition, these algorithms can be easily

adjusted for semi-global alignments.

In their classical forms, these dynamic programming algorithms produce op-

timal alignments for two sequences S and P , with |S| = n and |P | = m, with

quadratical theoretical time and memory complexity O(nm). As these algorithms

have become common knowledge in the field of bioinformatics, this section con-

tains only a summary of the basic algorithm, together with the adjustments

needed for semi-global alignments. Finally, this section also contains a summary

of several optimizations to the classical algorithms, of which some are used in

Chapters 4 and 5.

The algorithm for finding an optimal alignment between the two sequences S

and P is based on the fact that the optimal alignment for any two prefixes S[..i]

and P [..j], 0 < i < n and 0 < j < m, can be derived from the optimal alignments

for S[..i − 1] and P [..j − 1], S[..i − 1] and P [..j], and S[..i] and P [..j − 1]. This

defines a recursive formula, which can be solved using the trivial solutions for

the case of aligning a sequence to an empty string. The implementation of this

technique for sequence alignment fills a (n+ 1)× (m+ 1) matrix row-by-row or
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A[i, 0] = i · c
A[0, j] = j · c

A[i, j] = max


A[i− 1, j] + c

A[i, j − 1] + c

A[i− 1, j − 1] +M [S[i], P [j]]

Begin alignment = A[0, 0]

End alignment = A[n,m]

Figure 1.9: Dynamic programming global alignment recursion formula. In the base

case, the positions have the following range: 0 ≤ i ≤ n and 0 ≤ j ≤ m.

For the recursion formula, they have the following range 1 ≤ i ≤ n and

1 ≤ j ≤ m.

column-by-column with all intermediate solutions calculated. The final alignment

score for an end-to-end alignment is found in the corner opposite of the starting

position. The actual alignment then needs to be traced back from this corner

using the intermediate solutions that gave rise to the final optimal score.

As an example, the recursion relation, starting situations and begin and end

of a global alignment A[i, j] of sequences S[..i − 1] and P [..j − 1], using scoring

matrix M and constant gap penalty c, are given in Figure 1.9. The scoring

matrix M holds the match and mismatch score or penalty for each combination

of characters from the alphabet. An illustration of the algorithm is shown in

Figure 1.10.

1.4.1 Variants for different alignment methods

The recursion relation in Figure 1.9 is used for global alignment using the constant

gap model. This recursion relation and/or boundary conditions need to be altered

in order to be used for the other alignment problems given in Section 1.3.

The use of an affine gap model requires the use of two extra matrices in

the dynamic programming algorithm. These matrices are used to keep track

of insertions and deletions separately, whereas the main matrix still holds the

optimal alignment scores of any two prefixes of the sequences that need to be

aligned. The recursion relation and boundary criteria for the global alignment
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Figure 1.10: Illustration of global alignment using dynamic programming. The alignment

was performed for the sequences in Figure 1.6 using a match bonus of 1 and

mismatch and constant gap penalties of −1. The grey path shows the trace of

an optimal alignment.
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U [i, 0] = −∞
L[0, j] = −∞
A[i, 0] = o+ i

A[0, j] = o+ j

A[0, 0] = 0

U [i, j] = max

{
U [i− 1, j] + e

A[i− 1, j] + o+ e

L[i, j] = max

{
L[i, j − 1] + e

A[i, j − 1] + o+ e

A[i, j] = max


U [i, j]

L[i, j]

A[i− 1, j − 1] +M [S[i], P [j]]

Begin alignment = A[0, 0]

End alignment = A[n,m]

Figure 1.11: Recursion formula for global alignment using affine gap penalties. In

the base case, the positions have the following range: 0 ≤ i ≤ n and

0 ≤ j ≤ m. For the recursion formula, they have the following range

1 ≤ i ≤ n and 1 ≤ j ≤ m.

with affine gap model A[i, j] of sequences S[..i − 1] and P [..j − 1] are given

in Figure 1.11. Mismatch penalties and match scores are stored in the scoring

matrix M , the gap opening penalty is o and the gap extension penalty is e. Two

auxiliary matrices are used: U stores vertical gaps, which correspond to gaps

in S (deletions), whereas L stores horizontal gaps, which correspond to gaps in P

(insertions).

For the remainder of the alignment problems in this section we will again use

the constant gap model.

It is, however, easy to combine the model (Figure 1.11) with the new boundary

conditions.

The Smith-Waterman local alignment algorithm changes the recursion re-

lation by allowing free gaps at the start and the end of the alignment. Free



1.4. Dynamic programming 33

A[i, 0] = 0

A[0, j] = 0

A[i, j] = max


0

A[i− 1, j] + c

A[i, j − 1] + c

A[i− 1, j − 1] +M [S[i], P [j]]

Begin alignment = first encountered zero in trace

End alignment = A[imax, jmax] ≥ A[i, j]

Figure 1.12: Recursion formula for local alignment. In the base case and for the end

alignment value, the positions have the following range: 0 ≤ i ≤ n and

0 ≤ j ≤ m. For the recursion formula, they have the following range

1 ≤ i ≤ n and 1 ≤ j ≤ m.

gaps at the start are achieved by setting the start conditions in Figure 1.9 to

zero. In addition, the alignment can start at any position by disallowing neg-

ative scores and tracing back until the first zero is found. Free gaps at the

end can be gained by starting the trace at A[imax, jmax], for which holds that

A[imax, jmax] ≥ A[i, j], for any i, j ∈ [0..n, 0..m]. The local alignment relation is

given in Figure 1.12.

The semi-global alignment variants can be obtained by using a combination

of the global and local alignment recursion relations.

The substring alignment allows free gaps in the beginning and end of a single

sequence, which is reflected in the beginning condition of the rows or columns

of the matrix and the end of the alignment (beginning of the traceback), which

starts at the cell with the highest alignment scores among those of the last row

or column:

A[i, 0] = 0 0 ≤ i ≤ n
A[0, j] = j · c 0 ≤ j ≤ m

End alignment = A[imax,m] ≥ A[i,m] 0 ≤ i ≤ n

Extension alignment is almost identical to global alignment, except for the

start cell of the trace of the alignment:

End alignment = A[imax,m] ≥ A[i,m] 0 ≤ i ≤ n
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Similar to extension alignment, local extension alignment differs from global

alignment only in the start cell of the trace of the alignment:

End alignment = A[imax, jmax] ≥ A[i, j], 0 ≤ i ≤ n, 0 ≤ j ≤ m

The difference between global, local, substring and extension alignment is also

illustrated in Figure 1.13.

1.4.2 Optimizations

Since the initial publication of the Needleman-Wunsch and Smith-Waterman al-

gorithms, several theoretical and practical improvements have been suggested to

both time and memory consumption. Some of these improvements maintain the

full sensitivity of the original algorithms, whereas others sacrifice some of it to

achieve better practical performance. For example, the memory footprint of the

divide-and-conquer algorithm of Hirschberg [101] is linear instead of quadratic,

while maintaining theoretical time complexity and sensitivity, at the cost of a

practical runtime. Banded alignment and chain-guided alignments improve on

both time and memory, but are not fully sensitive. Other optimizations rely on

parallelization of the algorithm using bit-level parallelism or specialized hard-

ware, such as GPUs and FPGAs [8, 262]. As the algorithms in this dissertation

are designed for standard hardware, we do not cover methods for GPU or other

hardware accelerations.

Banded alignment

If an estimate of the maximum alignment distance or minimum alignment score

is known beforehand, the dynamic programming matrix does not have to be fully

computed to obtain the optimal alignment. In banded sequence alignment [73]

only a number of diagonals around the main diagonal are computed for an optimal

end-to-end alignment. Only a few changes are required to the original algorithm:

computation of rows or columns should start and end at the band, cells in the

recursion relation that fall outside the band have value −∞, and the trace should

not go beyond the band.

The theoretical time and memory complexity of banded alignment is O(md),

where m is the length of the shortest aligned sequence and d is the band size. The

memory requirements can also be further reduced using Hirschberg’s algorithm to

O(d). An illustration of the effect of banded alignment can be seen in Figure 1.14.
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(a) global alignment (b) local alignment

(c) substring alignment (d) extension alignment

Figure 1.13: Illustration of the difference between several types of alignment problems solved

with dynamic programming. Rows and columns represent respectively refer-

ence sequence S and query sequence P from the example also used in figures

from Section 1.3.1 and Figure 1.10. The trace of the alignment is indicated in

green, with red dots indicating mismatches in the alignment. Alignment (a)

represents the global alignment from Figure 1.6a, (b) is the local alignment

from Figure 1.6b, (c) represents the substring alignment from Figure 1.7 and

(d) is an extension alignment.
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Figure 1.14: Illustration of the effect of banded alignment. The shaded area around

the main diagonal of the matrix and the trace of the alignment shows

the area of cells that are computed in banded alignment. The black line

on the trace of the alignment is an exact match between the aligned

sequences that was used to position the band.
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Banded alignment guarantees an optimal solution of all possible alignments

that fall within the band. If the optimal global alignment would fall outside of the

band, however, the optimal solution is obviously not found. In addition, banded

alignment is mostly useful for global alignment because a range of diagonals

should be known beforehand in which an optimal alignment is to be expected.

Furthermore, if both sequences are of different length, care should be taken that

both ends of the alignment fall within the given band.

In some situations, such as chain-guided alignment, non-global alignments can

also make use of banded alignment if long exact matching substrings are used as

anchors to fix the position of the band (see also Chapter 4).

Chain-guided alignment

A more heuristic optimization makes use of a group of exact matches between

both sequences to guide the alignment. These matches represent certain diagonals

in the dynamic programming matrix that can be part of an optimal alignment. A

subset of these matches can be ordered in a (non-overlapping) chain, resulting in

a partial alignment. The full alignment is obtained by solving smaller alignment

problems in between two consecutive elements of the chain (global alignment)

and between the first (last) element of the chain and the start (end) cell of the

matrix (extension alignment).

An optimal alignment is not guaranteed, especially in the event of many spu-

rious matches. The accuracy and the time and memory performance of this

optimization depend on the number and length of the exact matches found be-

tween the sequences. The chain can also be used in combination with banded

alignment, and thus shares its time and memory complexity. Examples of chain-

guided alignment are used in MUMmer [137] and ALFALFA. An example of a

chain-guided alignment can be found in Figure 1.15. More information on this

type of dynamic programming can be found in Chapter 4.

Bit-vector alignment

Whereas the previously discussed optimizations try to limit the number of cell

values that need to be computed, the bit-vector algorithm of Myers [188] improves

the performance of the classical dynamic programming algorithm by calculating

many cell values simultaneously using bit-vectors. The time complexity of the

algorithm is O(
⌈
m
w

⌉
n), with n and m the lengths of the aligned sequences and w

the word size of the machine, which is typically 32, 64 or 128 bit. If the size of a
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Figure 1.15: Illustration of the effect of chain-guided banded alignment. The only

cells that need to be computed are indicated by a darker shaded area

around the trace of the alignment (in green). Black line segments on the

trace indicate exact matches that guide the alignment and red dots be-

tween segments indicate single nucleotide gaps between two consecutive

matches. The size of the shaded area is bound by the size of the gap

between two matches and the band size.
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column is smaller than the computer word size, an entire column of the dynamic

programming matrix can be calculated using bit-vector arithmetic.

The bit-vector algorithm of Myers is designed for the edit distance and several

other scoring functions that use constant, single point penalties to differences.

The main observations made by Myers are that i) in these systems, the difference

between a cell’s value and the value of the cells on which it depends falls in

the range [−1..1], and can thus be easily encoded using bit-vectors, and ii) the

dynamic programming recursion relation can be expressed using these bit-vectors

and dependencies within a single column can be resolved.

In essence, the bit-vector algorithm proceeds as follows. First, preprocessing

is performed for the alphabet and query sequence. The scores in the dynamic

programming matrix are represented by the difference to their horizontal, verti-

cal and diagonal predecessors. For edit distance, the difference values are −1, 0

or 1 and can be encoded using a maximum of two bit-vectors per dependency.

The algorithm proceeds as the normal dynamic programming algorithm, calcu-

lating column by column. For each column, all bit-vectors are updated and the

difference value for the last row is used to update the global alignment score.

Several additions and improvements to the original bit-vector algorithm have

been proposed. Hyyrö has designed a banded version of the bit-vector algo-

rithm [112], and has shown how to trace back the alignment [113], as the original

algorithm was only designed to return the alignment score. Recently, Benson et

al. have developed another bit-vector algorithm for scoring functions that use

constant integer bonuses and penalties for matches, mismatches and gaps [27].

The bit-vector optimizations improve the performance of the classic dynamic

programming algorithms considerably, at no loss of sensitivity. Furthermore, the

algorithm does not impose restrictions on the length of the sequences. However,

these bit-vector algorithms cannot handle more complex scoring functions with

variable penalties for mismatches or affine gap penalties. Furthermore, it is un-

clear if it can easily be modified to find local or semi-global alignments. Finally,

the bit-vector encoding of the alphabet makes it more suited for small alpha-

bets, such as ΣDNA and the need for preprocessing the query sequence makes it

unsuitable for very small alignment problems.

Implementations of the bit-vector algorithms have been used in several bioin-

formatics tools, such as the alignment programs GEM , Hobbes, RazerS3 and

Vmatch.
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SIMD alignment

Among the hardware-accelerated optimizations, the use of Single Instruction,

Multiple Data (SIMD) instructions is the most widely available in common hard-

ware (in all x86 processors). The type of alignment optimized by SIMD opera-

tions is local alignment, whereas the bit-vector method described above optimizes

global alignment.

Similar to the bit-vector encoding, the algorithms using SIMD instructions

pack several matrix elements into a single word (SIMD register) and use efficient

CPU operations (SSE, SSE2, AVX, AVX512 operations) to obtain the value of

many cells in few CPU cycles. In contrast to the bit-vector method, the actual

values are encoded into the register. This typically means that for a register

of 128 bits, 16 cells of 8-bit words are grouped (corresponding to values in the

range [0..255]) or 8 cells of 16-bit values (corresponding to the values in the range

[0..65 535]), allowing for a theoretical speed-up of 8 or 16. Similar to the bit-

vector method, however, dependencies between cells in the same column need to

be resolved. A possible strategy [58] to handle these dependencies is to ignore

the contribution of the vertical values in (1.12), but track them separately. In a

typical case, vertical contributions would be less than or equal to zero and local

alignment would not be influenced by them. If the vertical values are greater

than zero, a second pass through this column can correct errors in the values for

the given column.

Several implementations have been suggested for the SIMD accelerated Smith-

Waterman algorithm. They differ in, for example, the order of traversing the ma-

trix and which values are packed together. One of the most successful implemen-

tations is that of Farrar [58], which is used in alignment tools such as BWA-SW ,

Bowtie 2 and SHRiMP [211]. Another implementation [259] has been used in

the mapping algorithm MOSAIK [145] and has been shown to improve mapping

speed two-fold. In addition, this last implementation improves that of Farrar by

also providing an alignment (instead of just the alignment score) and a second,

suboptimal score that can help in calculating alignment quality and uniqueness.

Similar to the bit-vector optimization, SIMD implementations of the Smith-

Waterman algorithm require preprocessing of the query sequence, which makes it

less useful for very small sequences. An advantage over bit-vector methods is that

it allows a much more varied scoring system, including affine gap penalties. A

remark should be made, however, that the integer scores should not be chosen too

high, as scores should optimally be bound to 255. In addition, the less optimal

setting of 16-bit matrix elements is always required for longer sequences.
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To the best of our knowledge, all SIMD implementations are designed for

Smith-Waterman local alignment. The adaption to other alignment problems

should be possible, but the performance of these variants compared to regular

banded alignment is uncertain. The method can process many matrix elements

simultaneously to calculate the alignment score, but the strategy to recover the

alignment [259] uses a basic banded alignment. For local alignment, this still

provides a performance boost, as the alignment area is usually much smaller

than that of the entire matrix, but if the beginning and end of the alignment are

indeed the edges of the matrix (i.e. global alignment), the gain in performance

is lost.

1.5 Evaluation and Testing

This section contains information on the various ways to evaluate the time and

memory performance of the index structures and algorithms. The definition

of accuracy measurement of algorithms is given in the corresponding chapters.

Theoretical performance is expressed in terms of theoretical complexity. The

tools used to measure the practical performance are given below. Finally, this

section also contains a description of the test environment used in chapters 3, 4

and 5.

1.5.1 Theoretical complexity

The theoretical performance of algorithms and data structures is usually ex-

pressed in terms of their theoretical complexity , indicated by the big-O notation.

Although a theoretical measure of the worst-case scenario, it contains valuable

practical information about the qualitative and quantitative performance of al-

gorithms and data structures. For example, some data structures, such as index

structures, contain an alphabet-dependency, while others do not. Thus, alphabet-

independent index structures theoretically perform string searches equally well

on DNA sequences (4 different characters) as on protein sequences (20 different

characters). The qualitative information of the theoretical complexity usually

categorizes the dependency of input parameters in terms of logarithmic, linear,

quasilinear, quadratic or exponential dependency. Intuitively, this means that

even if several algorithms nearly have the same execution time or memory re-

quirements for a given input sequence, the execution time and memory require-

ments of some algorithms will grow much faster than those of others when the
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input size increases. In practice, quasilinear algorithms (complexity O(n log n))

are sometimes much faster than linear algorithms (complexity O(n)), because of

the lower order terms and constants involved. These are usually omitted in the

big-O notation. In general, however, the big-O notation is a good guideline for

algorithm and data structure performance. Furthermore, this measure of algo-

rithm and data structure efficiency is timeless and is not dependent on hardware,

implementation and data specifications, as opposed to benchmark test results

which can be misleading and may quickly become obsolete over time.

1.5.2 Memory model

Practical performance of index structures is not only governed by their algorith-

mic design, but also by the hardware that holds the data structure. Computer

memory in essence is a hierarchical structure of layers, ordered from small, expen-

sive, but fast memory to large, cheap and slow memory types. The hierarchy can

roughly be divided into main memory , most notably RAM memory and caches,

and secondary or external memory , which usually consists of hard disks or in the

near future solid state disks. Most index structures and applications are designed

to run in main memory, because this allows for fast random access to the data,

whereas hard disks are usually 105-106 times slower for random access [117]. As

the price of biological data currently decreases much faster than the price of RAM

memory and bioinformatics projects are becoming much larger, comparing more

data than ever before, algorithms and data structures designed for cheaper exter-

nal memory become more important [245]. These external memory algorithms

usually read data from external memory, process the information in main mem-

ory and report the result again to disk. As mentioned above, these input/output

(I/O) operations are very expensive. As a result, the algorithmic design needs

to minimize these operations as much as possible, for example by keeping key

information that is needed frequently into main memory. This technique, known

as caching, is also used by file systems. File systems usually load more data

into main memory than requested because it is physically located close to the

requested data and may be predicted to become needed in the near future. The

physical locality of data organized by index structures is thus of great importance.

Moreover, data that is often logically requested in sequential order, should also

be physically ordered sequentially, because sequential disk access is almost as

fast as random access in main memory. More information about index structure

design for the different memory settings is found in Chapter 2.



Chapter 2

Full-text Index Structures

Sequence data form a large fraction of the data processed in life sciences research.

Although the type of sequences and applications varies widely, they all require

basic string operations, most notably search operations. Given the sheer number

and size of the sequences under consideration and the number of search operations

required, efficient search algorithms are important components of genome analysis

pipelines. For this reason, specialized data structures, generally bundled under

the term index structures, are required to speed up string searching. The use

of specialized algorithms and data structures is motivated by the fact that the

data flow has already surpassed the flow of advances in computer hardware and

storage capabilities. The type and implementation of the index structure used

directly affects the memory and time performance of many bioinformatics tools.

Examples of those tools can be found, among others, in read mapping, alignment,

repeat detection, error correction and genome assembly.

There are many types of index structures. The most commonly known index

structures are inverted indexes and lookup tables. These work in a similar way to

the indexes found at the back of books. However, biological sequences generally

lack a clear division in words or phrases, a prerequisite for inverted indexes to

function properly. Two alternative index structures are used in bioinformatics

applications. k-mer indexes divide sequences into substrings of fixed length k

and are used, among others, in the BLAST [7] alignment tool. Full-text indexes,

on the other hand, allow fast access to substrings of any length. Full-text indexes

come at a greater memory and construction cost compared to k -mer indexes

and are also far more complex. However, they contain much more information

and allow for faster and more flexible string searching algorithms [76]. The in-

43
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dex structures developed and used in this dissertation belong to the category

of full-text index structures. As such, this chapter solely covers full-text index

structures. An overview of sequence alignment algorithms based on hash tables

can be found elsewhere [154].

Although index structures are already widely used to speed up bioinformat-

ics applications, there are two major factors that limit the performance of index

structures in current tools. On the one hand, they too are challenged by the re-

cent data flood. Index structures provide a wide variety of efficient string search-

ing algorithms, but also require an initial construction phase and impose extra

storage requirements. Traditionally, this has led to a dichotomy between search

efficiency and reduced memory consumption. On the other hand, there is a gap

between the field of index structure research and its application domains. Con-

cepts such as suffix trees, suffix arrays or FM-indexes are introduced in general

terms in bioinformatics courses, but most of the time, these index structures are

applied as black boxes having certain properties and allowing certain operations

on strings at a given time. In scientific literature, the description of bioinfor-

matics tools often bypasses a detailed description about the specifications of the

index structures used. This does injustice to the vast and rich literature available

on index structures and does not present their complex design, possibilities and

limitations. As a result, most tools are designed using basic implementations of

these index structures, without taking full advantage of the latest advances in

indexing technology.

This twofold limitation of index structure performance formed the motiva-

tion of the review article “Prospects and limitations of full-text index structures

in genome analysis” [247], on which this chapter is based. The chapter follows

the outline of the article, which covers a comprehensive review of the basic ideas

behind classical full-text index structures and an overview of the limitations of

these data structures as well as the research done in the last decade to over-

come these limitations. Furthermore, in light of recent advances made in both

sequencing technology as well as computing technology, some prospects on future

developments in index structure research were made in the review article. We

reflect on these prospects and list a comprehensive update on the developments

made since publication of the article.

In detail, this chapter is structured according to the following outline. Sec-

tion 2.1 reviews some of the most popular index structures currently in use. These

include suffix trees, enhanced and compressed suffix arrays and FM-indexes,

which are based on the Burrows-Wheeler transform.
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Section 2.2 gives an overview of current state-of-the-art main (RAM) memory

index structures, with a focus on memory-time trade-offs. Several memory saving

techniques are discussed, including compression techniques utilized in compressed

index structures. The aim of this section is to provide insight into the complexity

of the design of these compressed index structures, rather than to give their full

details. It is shown how their design is composed of auxiliary data structures

that govern the performance of the main index structure. On a larger scale,

practical results from the bioinformatics literature illustrate the performance gain

and limitations of search algorithms. Furthermore, a comparison between index

structures, together with an extensive literature list, acts as a taxonomy for the

currently known main memory full-text index structures.

While main memory index structures are the focus of the Section 2.2, Sec-

tion 2.3 discusses the design, limitations and improvements of external memory

index structures. The difference between index structures for internal and exter-

nal memory is most prominent in their use of compression techniques, which are

(still) less important in external memory. However, because hard disk access is

much slower than main memory access, data structure layout and access patterns

are much more important.

The second biggest bottleneck of index structure usage is the initial construc-

tion phase, which is covered in the Section 2.4. Both main memory as well as

secondary memory construction algorithms are reviewed. The main conceptual

ideas used for construction of the index structures discussed in previous sections

are provided together with examples of the best results of construction algorithms

found in the literature.

A summary of the findings presented in this chapter and some prospects on

future directions of the research on index structures and its impact on bioin-

formatics applications is given in Section 2.5. These prospects include variants

and extensions of classical index structures, designed to answer specific biological

queries, such as the search for structural RNA patterns, but also the use of new

computing paradigms, such as the Google MapReduce framework [50]. Finally,

an update is given on the state of index structures research since the publication

of the original review article [247]. The update supplements the chapter with cur-

rent state-of-the-art results and compares these to the previously made prospects

in the field.
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2.1 Popular Index Structures

Index structures are data structures used to preprocess one or more strings in

order to speed up string searches. As the examples in this section will illustrate,

the types of searches can be quite diverse, yet some index structures manage to

achieve an optimal performance for a broad class of search problems. The ulti-

mate goal of index structures is to quickly capture maximal information about

the string to be queried and to represent this information in a compact form. It

turns out that both requirements often conflict in practice, with different types

of index structures providing alternative trade-offs between speed and memory

consumption. However, the speedup achieved over classical string searching al-

gorithms often makes up for the extra construction and memory costs.

The type of index structures discussed here are full-text index structures.

Unlike natural language, biological sequences do not show a clear structure of

words and phrases, making popular word-based index structures such as inverted

files [29] and B-trees [23] less suited for indexing genomic sequences. Instead,

full-text indexes that store information about all variable length substrings are

better suited to analyze the complex nature of genome sequences.

The three most commonly used full-text index structures in bioinformatics

today are suffix trees, suffix arrays and FM-indexes. The raison d’être of the

latter two is the high memory requirements of suffix trees. In this section, it

is shown how those smaller indexes actually are reduced suffix trees and can be

enhanced with auxiliary information to achieve complete suffix tree functionality.

2.1.1 Suffix trees

Suffix trees have become the archetypical index structure used in bioinformatics.

Introduced by Weiner [254], who also gave a linear time construction algorithm,

they are said to efficiently solve a myriad of string processing problems [97].

Complex string problems such as finding the longest common substring can be

solved in linear time using suffix trees. The suffix tree of a string S contains

information about all suffixes of that string and gives access to all prefixes of

those suffixes, thus effectively allows fast access to all substrings of the string S.

Definition 2.1. The suffix tree ST(S) is formally defined as the radix tree [186],

i.e. a compact string search tree data structure, built from all suffixes of S. The

edges of ST(S) are labeled with substrings of S and the leaves are numbered 0

to n−1. The one-to-one correspondence between leaf i of ST(S) and suffix i of S

is found by concatenating all edge labels on the path from the root to the leaf: the
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Figure 2.1: Suffix tree for string S = ACATACAGATG$, where $ is the special end-

character. Each number i inside a leaf represents suffix S[i..] of the

string S. Dashed arrows correspond to suffix links. Edges are arranged

in lexicographical order. For the sake of brevity, only the first characters

followed by two dots and the special end-character $ are shown for edge

labels that spell out the rest of the suffix corresponding to the leaf the

edge is connected with.

concatenated string ending in leaf i equals suffix S[i..]. Moreover, internal nodes

correspond to the LCP of suffixes of S, such that labels of all outgoing edges from

an internal node start with a different character and every internal node has at

least two children.

The last property in Definition 2.1 allows to distinguish suffix trees and non-

compact suffix tries whose nodes can have single children because edge label

lengths are all equal to one. In order for Definition 2.1 to hold for a string S,

the last character of S has to uniquely appear in S. In practice, this problem is

solved by appending a special end-character $ to the end of string S, with $ /∈ Σ

and $ < c,∀c ∈ Σ. This special end-character plays the same role as the virtual

end-of-string symbol used in regular expressions (also represented as $ in that

context). Hereafter, for every indexed string S it is assumed S[n − 1] = $ or,

equivalently, S ∈ Σ∗$ holds. As a running example, the suffix tree ST(S) for the

string S = ACATACAGATG$ is given in Figure 2.1.

The label `(v) of a node v of ST(S) is defined as the concatenation of edge

labels on the path from the root to the node. From this definition it follows
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that `(root) = ε. The string depth of v is defined as |`(v)|. The suffix link sl(v)

of an internal node v with label cw (c ∈ Σ and w ∈ Σ∗) is the unique internal

node with label w. Suffix links are represented as dashed lines in Figure 2.1.

Most suffix tree algorithms boil down to (partial or full) top-down or bottom-

up traversals of the tree, or traversals using suffix links [3]. These different types

of traversals are further illustrated using some classical string algorithms.

Top-down traversal

In the exact string matching problem, occ(P, S) has to be found, i.e. all positions

of a substring P in string S. Exact string matching is an important problem on

its own and is also used as a basis for more complex string matching problems.

Because P is a substring of S if and only if P is a prefix of some suffix of S, it

follows that matching every character of P along a path in ST(S) (starting at the

root) gives the answer to the existential question. This algorithm thus requires a

partial top-down traversal of ST(S) and has a time complexity of O(m). Because

suffixes of S are grouped by common prefixes in ST(S), the set of leaves in the

subtree below the path that spells out P represents occ(P, S). This set can be

obtained in O(|occ(P, S)|) time.

As an example, consider matching pattern P = AC to the running example in

Figure 2.1. The algorithm first finds the edge with label A going down from the

root and then continues down the tree along the edge labeled CA. After matching

the character C, the algorithm decides that P is a substring of S. Furthermore,

occ(P, S) = {0, 4} and thus P = S[0..1] = S[4..5]. This classical example already

demonstrates the true power of suffix trees: the time complexity for matching

k patterns of length m to a string of length n is O(n + km). String matching

algorithms that preprocess pattern P instead of string S (Boyer-Moore [30] and

Knuth-Morris-Pratt [131], among others) require O(k(n+m)) time to solve the

same problem. Since k and n are usually very large in most bioinformatics

applications, for example in mapping millions (= k) short (= m) reads to the

human genome (= n), this speedup is significant.

Bottom-up traversal

Bottom-up traversals through suffix trees are mainly required for the detection

of highly similar patterns, such as common substrings or (approximate) repeats.

This follows from the fact that internal nodes of ST(S) represent the LCP of

suffixes in their subtree. Internal nodes with maximal string depth correspond to
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suffixes with the largest LCP, which makes it easy to find maximal repeats and

longest common prefixes using a full bottom-up search of ST(S).

In detail, the longest common substring of two strings S1 and S2 of lengths n1

and n2 is found by first building a suffix tree for the concatenated string S1$S2,

called a generalized suffix tree (GST), and then traversing the GST twice. In

GSTs, special characters, such as $, are used to separate the suffixes of the individ-

ual strings. During an initial top-down traversal, string depths are stored at the

internal nodes (if this information is gathered during construction of ST(S1S2),

the top-down traversal can be skipped). A consecutive bottom-up traversal de-

termines whether leaves in the subtree of an internal node all originate from S1,

S2 or both. This information can percolate up to parent nodes. In case leaves

from both S1 and S2 have the current node as their ancestor, the corresponding

suffixes have a common prefix. Because every internal node is visited at most

once during each traversal, and calculations at every internal node can be done

in constant time, this algorithm requires O(n1 + n2) time. The details of the

algorithm can be found in [97].

Maximal repeats, such as calculated in Vmatch [136], are found in a similar

fashion. Labels of the internal nodes of ST(S) represent all repeated substrings

that are right-maximal. There are, however, node labels that correspond to

repeats that are not left-maximal. Similar to finding the longest common sub-

string, a bottom-up traversal of ST(S) uses information in the leaves to check

left-maximality and forwards this information to parent nodes.

As an example, the maximal repeats in the running example (Figure 2.1)

are ACA, AT, A and T. The first internal node v visited by a bottom-up traversal

has `(v) = ACA and v has two leaves: 0 and 4. Because leaf 0 is a child of v, left-

maximality is guaranteed for v and every parent of v. The internal node w with

label `(w) = CA has leaves 5 and 1 as children, but because S[5− 1] = S[1− 1] =

A, `(w) =CA is not a maximal repeat.

Suffix link traversal

A final way of traversing suffix trees is by following suffix links. Suffix links

can both be used in suffix tree construction and algorithms for searching MEMs

or matching statistics. Intuitively, suffix links maintain a sliding window when

matching a pattern to the suffix tree. Furthermore, suffix links act as a memory-

efficient alternative to generalized suffix trees. Because constructing, storing and

updating suffix trees is a costly operation, the utilization of suffix links offers an

important trade-off. The following algorithm demonstrates how suffix links enable
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a quick comparison between all suffixes of string S1 and the suffix tree ST(S2)

of another string S2. Suppose the first suffix S1[0..] has been compared up to a

node v with `(v) = S2[0..i]. After following sl(v) = w, the second suffix S1[1..]

is already matched to ST(S2) up to w, with `(w) = S2[1..i]. In this way, i =

|`(w)| characters do not have to be matched again for this suffix. This process

can be repeated until all suffixes of S1 are matched to ST(S2). Hence, the MEMs

between S1 and S2 can be found again in O(n1 +n2) time, but using less memory

to store only the suffix tree of S2 plus its suffix links.

Memory requirements

Given enough fast memory, suffix trees are probably the best data structure ever

invented to support string algorithms. For large-scale bioinformatics applica-

tions, however, memory consumption really becomes a bottleneck. Although the

memory requirements of suffix trees are asymptotically linear, the constant factor

involved is quite high, i.e. up to ten [84] to twenty times [182] higher than the

amount of memory required to store the input string. However, state-of-the-art

suffix tree implementations are able to handle sequences of human chromosome

size [137]. During the last decade, a lot of research focused on tackling this

memory bottleneck, resulting in many suffix tree variants that show interesting

memory versus time trade-offs.

2.1.2 Suffix arrays

The most successful and well-known variants of suffix trees are the so-called suffix

arrays [176]. They are made up of a single array containing a permutation of the

indexes of string S, making them extremely simple and elegant. In terms of

performance, expressiveness is traded for lower memory footprint and improved

locality. Suffix arrays in general only require four times the amount of storage

needed for the input string, can be constructed in linear time and can exactly

match all occurrences of pattern P in string S in O(m log n + |occ(P, S)|) time

using a binary search.

Definition 2.2. Suffix array SA(S) stores the lexicographical ordering of all suf-

fixes of string S as a permutation of its index positions:

S[SA[i− 1]..] < S[SA[i]..], 0 < i < n.

The last column of Table 2.1 shows the lexicographical ordering for the run-

ning example. SA(S) itself can be found in the second column. The uniqueness of
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the lexicographical order is determined by the fact that all suffixes have different

lengths, and the use of the special end-character $ < c, c ∈ Σ. By definition,

S[SA[0]] always equals the string $. The relationship between suffix trees and

suffix arrays becomes clear when traversing suffix trees depth-first and giving

priority to edges with lexicographically smaller labels. Leaf numbers encoun-

tered in this order spell out the suffix array. All edges were lexicographically

ordered on purpose in Figure 2.1, so that leaf numbers, read from left to right,

form SA(S) as found in Table 2.1.

Exact matching of substring P is done using two binary searches on SA(S).

These binary searches locate PL = min{k|P ≤ S[ SA[k]]} and PR = max{k|P ≥
S[ SA[k]]}, which form the boundaries of the interval in SA(S) where occ(P, S)

is found. Note that finding the boundaries PL and PR requires O(m log n) time,

but finding occ(P, S) only requires an additional O(|occ(P, S)|) time.

Although conceptually simple, suffix arrays are not just reduced versions of

suffix trees [94, 200]. Optimal solutions for complex string processing problems

can be achieved by algorithms on suffix arrays without simulating suffix tree

traversals. An example is the all pairs suffix-prefix problem in which the maximal

suffix-prefix overlap between all ordered pairs of k strings of total length n can

be determined by both suffix trees [97] and suffix arrays [200] in O(n+ k2) time.

2.1.3 Enhanced suffix arrays

Suffix arrays are not that information-rich compared to suffix trees, but require

far less memory. They lack LCP information, constant time access to children

and suffix links, which makes them less fit to tackle more complex string matching

problems. Abouelhoda et al. [3] demonstrated how suffix arrays can be embel-

lished with additional arrays to recover the full expressivity of suffix trees. These

so-called enhanced suffix arrays consist of three extra arrays that, together with

a suffix array, form a more compact representation of suffix trees that can also

be constructed in O(n) time. Furthermore, the next paragraphs demonstrate

how the extra arrays of enhanced suffix arrays enable efficient simulation of all

traversal types of suffix trees [3].

A first array LCP(S) supports bottom-up traversals on suffix array SA(S).

Definition 2.3. The array LCP(S) stores LCP lengths of consecutive suffixes

from the suffix array:

LCP[i] = |LCP(S[SA[i− 1]..], S[SA[i]..])|, 0 < i < n.

By definition, LCP[0] = −1.
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An example LCP array for the running example is shown in the third column

of Table 2.1. Originally, Manber and Myers [176] utilized LCP arrays to speed up

exact substring matching on suffix arrays to achieve an O(m+log n+ |occ(P, S)|)
time bound. Recently, Grossi [94] proved that the O(m+log n+ |occ(P, S)|) time

bound for exact substring matching can be reached by using only S, SA(S) and

O( n
log2 n

) sampled LCP array entries. Furthermore, it is possible to encode those

sampled LCP array entries inside a modified version of SA(S) itself. However,

the details of this technique are rather technical and fall beyond the scope of this

review. Later, Kasai et al. [124] showed how all bottom-up traversals of suffix

trees can be mimicked on suffix arrays in linear time by traversing LCP arrays.

In fact, LCP(S) represents the tree topology of ST(S).

Recall that internal nodes of suffix trees group suffixes by their longest com-

mon prefixes. In enhanced suffix arrays, internal nodes are represented by LCP

intervals `-[i..j].

Definition 2.4. An interval `-[i..j], 0 ≤ i < j < n is an LCP interval with LCP

value ` if

� LCP[k] ≥ `, ∀k, i < k ≤ j

� ∃k, i < k ≤ j: LCP[k] = `

� LCP[i] < `

� LCP[j + 1] < `

The LCP interval 0-[0..n− 1] is defined to correspond to the root of ST(S).

Intuitively, an LCP interval is a maximal interval of LCP length that corre-

sponds to an internal node of ST(S). As an illustration, LCP interval 1-[1..5]

with LCP value 1 of the example string S in Table 2.1 corresponds to internal

node v with label `(v) = A in Figure 2.1. Similarly, subinterval relations among

LCP intervals relate to parent-child relationships in suffix trees.

Abouelhoda et al. [3] have shown that the boundaries between LCP subin-

tervals of LCP interval `-[i..j] are given by the `-indexes for which it holds that

LCP[k] = `, i < k ≤ j. Singleton intervals correspond to leaves in the suffix tree

and non-singleton intervals correspond to internal nodes. Consider, for example,

the LCP interval 1-[1..5] in the running example. Its `-indexes are 3 and 4. The

resulting subintervals are LCP intervals 3-[1..2] and 2-[4..5] and singleton interval

[3..3]. The above definitions thus generate a virtual suffix tree called the LCP
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interval tree. Note that the topology of this tree is not stored in memory, but is

traversed using the arrays SA(S) and LCP(S).

Fast top-down searches of suffix trees not only require their tree topology, but

also constant time access to child nodes. This means constant time access to the

`-indexes of LCP intervals. This information can be precomputed in linear time

for the entire LCP interval tree and stored in another array of enhanced suffix

arrays, the child array .

Definition 2.5. The array child(S) stores the `-indexes of LCP intervals `-[i..j].

The first `-index is either stored in i or j. If i < child[j] ≤ j, the value child[j]

corresponds to the first `-index of `-[i..j]. Otherwise this value is found in child[i].

The next `-indexes are stored at the location of the previous `-indexes.

The child array for the running example is given in the fourth column of

Table 2.1. As an example, again consider LCP interval 1-[1..5]. The first `-

index (3) is stored at position 5 and the second `-index (4) is stored at position 3.

Because child [4] = 5 is equal to the right boundary of the interval (which cannot

equal ` by definition), 4 is the last `-index. The child array allows enhanced suffix

arrays to simulate top-down suffix tree traversals.

As a final step towards complete suffix tree expressiveness, suffix arrays can

be enhanced with suffix link arrays that store suffix links as pointers to other

LCP intervals. These pointers are stored at the position of the first `-index of an

LCP interval because no two LCP intervals share the same position as their first

`-index [3]. This property and the suffix link array for the running example can

be checked in Table 2.1.

With three extra arrays added, enhanced suffix arrays support all operations

and traversals on suffix trees using the same time complexity. However, the sim-

ple modular structure allows memory savings if not all traversals are required for

an application. Furthermore, array representations generally show better locality

than most standard suffix tree representations, which is important when convert-

ing the index to disk, but also improves cache usage in memory [93]. Practical

implementation improvements have further reduced memory consumption [74]

of enhanced suffix arrays and have speeded up substring matching for larger al-

phabets [129]. In practice, several state-of-the-art bioinformatics tools make use

of enhanced suffix arrays for finding repeated structures in genomes (Vmatch),

short read mapping [102] and genome assembly [100]. If memory is a concern,

enhanced suffix arrays occupy about the same amount of memory as regular suffix

trees and are thus equally inapplicable for large strings. Suffix arrays (without

enhancement) are preferred for exact substring matching in very large strings.
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2.1.4 Compressed suffix arrays

Although suffix arrays are much more compact than suffix trees, their memory

footprint is still too high for extremely large strings. The main reason stems from

the fact that suffix arrays (and suffix trees) store pointers to string positions.

The largest pointer takes O(log n) bits, which means that suffix arrays require

O(n log n) bits of storage. This is large compared to O(n log |Σ|) bits needed

for storing uncompressed strings. A demand for smaller indexes that remain

efficient gave rise to the development of succinct indexes and compressed indexes.

Succinct indexes require O(n) bits of space, whereas the memory requirements of

compressed indexes is in the order of magnitude of the compressed string [192].

Many types of compressed suffix arrays [96] have already been proposed (see

Navarro and Mäkinen for a recent review [192]). They are usually centered around

the idea of storing suffix array samples, complemented with a good compressible

neighbor array Ψ(S). To understand the role of the array Ψ(S), the concept of

inverse suffix arrays SA−1(S) is introduced, for which holds that

SA−1[SA[i]] ≡ SA[SA−1[i]] = i.

Ψ(S) can then be defined as

Ψ[i] ≡ SA−1[SA[i] + 1 mod (n− 1)], 0 ≤ i < n.

This definition closely resembles that of suffix links and it will thus come as

no surprise that in practice Ψ can be used to recover suffix links [219]. Conse-

quently, the array Ψ can be used to recover suffix array samples from a sparse

representation of SA(S). This is illustrated using the running example string

from Table 2.1. Assume that only SA[0], SA[6] and SA[11] are stored and that

the value of SA[10] is unknown. Note that Ψ[10] = 1 and SA[1] = 4 = 3 + 1,

i.e. the requested value plus one. A sampled value of SA(S) is reached by re-

peatedly calculating Ψ[Ψ[. . .Ψ[10]]] = Ψk[10]. In the example k = 2, because

Ψ[Ψ[10]] = 6. Consequently, SA[10] = SA[6] − k = 5 − 2 = 3. A more detailed

discussion about compressed suffix arrays is given in Section 2.2.

2.1.5 The Burrows-Wheeler transform

Several compressed index structures, most notably the FM-index [70], are based

on the Burrows-Wheeler transform [34] BWT(S). This reversible permutation of

the string S is also known to lie at the core of compression tools such as bzip2.
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The Burrows-Wheeler transform itself does not compress a string, rather it

enables an easier and stronger compression of the original string by exploiting

regularities found in the string. Unlike SA(S) that is a permutation of the index

positions of S, BWT(S) is a permutation of the characters of S. As a result,

BWT(S) only occupies O(n log |Σ|) bits of memory in contrast to O(n log n)

bits needed for storing SA(S). Because it contains the original string itself,

the Burrows-Wheeler transform does not require an additional copy of S for

string searching algorithms. Index structures having this property are called

self-indexes.

Intuitively, the Burrows-Wheeler transformation orders the characters of S

by the context following the characters. Thus, characters followed by similar

substrings will be close together.

Definition 2.6. Let M be a n×n matrix whose rows are formed by the characters

of the lexicographically sorted n cyclic shifts of a string S. BWT(S) is the string

represented by the last column of M , or BWT[i] ≡M [i, n− 1], 0 ≤ i < n.

The rows of M also represent the suffixes of S in suffix array order. Thus, the

first column of M equals the first characters of the suffixes in suffix array order.

BWT(S) can be defined using SA(S) as

BWT[i] ≡ S[SA[i]− 1 mod n], 0 ≤ i < n,

where the modulo operator is used for the case SA[i] = 0.

From Definition 2.6 it immediately follows that BWT(S) can be constructed

in linear time using SA(S). BWT(S) for the running example can be found in

Table 2.1, column 8, while the complete matrix M is given in Table 2.2.

The inverse transformation that reconstructs S from BWT(S) is key to un-

compression algorithms and the string matching algorithm utilized in compressed

index structures. It recovers S back-to-front and is based on a few simple observa-

tions. First, although BWT(S) only stores the last column of M , the first column

of M is easily retrieved from BWT(S) because it is the lexicographical ordering

of the characters of S (and thus also BWT(S)). Moreover, the first column of M

can be represented in compact form as an array C(S) that stores the number of

characters in S that are lexicographically smaller than character c ∈ Σ. More

precisely:

C[c] ≡
∑
ci<c

|occ(ci, S)|, ci ∈ Σ.

For the running example, C(S) = [0, 1, 6, 8, 10] can be retrieved from Table 2.2.
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Table 2.2: Conceptual matrix M containing the lexicographically ordered n cyclic

shifts of S = ACATACAGATG$. M [0..11, 0] contains the lexicographically

ordered characters of S and M [0..11, 11] equals BWT(S). The last two

columns are required for the inverse transformation. offset [i] stores the

number of times BWT[i] has appeared earlier in BWT(S). The last column

LF[i] contains pointers used during the inverse transformation algorithm:

if S[i] = BWT[j], then BWT[LF[j]] = S[i− 1].

i S[SA[i]] BWT[i] offset [i] LF[i]

0 $ ACATACAGAT G 0 8

1 A CAGATG$ACA T 0 10

2 A CATACAGATG $ 0 0

3 A GATG$ACATA C 0 6

4 A TACAGATG$A C 1 7

5 A ATG$ACATAC G 1 9

6 C AGATG$ACAT A 0 1

7 C ATACAGATG$ A 1 2

8 G $ACATACAGA T 1 11

9 G ATG$ACATAC A 2 3

10 T ACAGATG$AC A 3 4

11 T G$ACATACAG A 4 5

A second observation is that BWT(S) stores the order of characters preceding

the suffixes in suffix array order. As a result, if the character at position i (S[i])

has been decoded and the lexicographical order of suffix S[i..] is known to be j,

character S[i− 1] is found in BWT[j].

Finally, the most important observation that allows for the retrieval of S

from BWT(S) is that identical characters preserve their relative order in the

first and last columns of M . To see the correctness of this observation, let

BWT[i] = BWT[j] = c for i < j. The lexicographical ordering of the cyclic

permutations means that the suffix in row i of M corresponding to SA[i] is lex-

icographically smaller than the suffix in row j corresponding to SA[j]. From

cS[SA[i]..] < cS[SA[j]..] it then follows that the location of character c corre-

sponding to BWT[i] precedes the location of character c corresponding to BWT[j]

in the first column of M .

The relative order of identical characters in BWT(S) is captured in the array

offset(S): offset [i] stores the number of times that character BWT[i] occurs in
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BWT(S) before position i, i.e.

offset [i] ≡ |occ(BWT[i],BWT[..i− 1])|, 0 < i < n.

Given a position i in BWT(S), the corresponding character in the first column

of M can then be found at position LF[i] = C[BWT[i]] + offset [i]. The array

LF(S) is called the last-to-first column mapping .

The above observations allow the back-to-front recovery of S from BWT(S)

utilizing a zig-zag algorithm. Starting in row i0 of BWT(S) containing charac-

ter $, the position of the previous character of S is found in row LF[i0] = i1.

The next preceding character is found on row i2 = LF[i1] in BWT(S), and so

on. Thus, to find the row of the next preceding character, the algorithm looks

horizontally in Table 2.2 and the actual character is retrieved from the BWT

column on that row in Table 2.2. Note that neither M nor its first column are

ever used explicitly during the algorithm. They only serve to understand the

procedure for the inverse transformation.

In practice, C(S) and offset(S) are first constructed from BWT(S). During

each step, LF[ik] is calculated using C(S) and offset(S) and BWT[LF[ik]] is

returned as the preceding character.

As an example, M , offset(S) and LF(S) for the running example can be found

in Table 2.2 and C(S) = [0, 1, 6, 8, 10]. S[SA[0]] = $ is preceded by the character

BWT[i0] = G in the running example. Consequently, G$ is the lexicographical

first suffix that starts with G, which translates into offset [i0] = 0. The first row

of M whose corresponding suffix starts with G has row number C[G] = 8. Adding

the number of suffixes that also start with G, but are lexicographically smaller

than G$ (= 0), returns the position in BWT(S) of the next character that will

be decoded. BWT[8 + 0] = BWT[LF[0]] = T = S[9]. In the next step, S[8] is

retrieved by computing LF[8] = 11 and BWT[11] = A. Eventually, S is retrieved

in O(n) time using the LF-mapping.

The Burrows-Wheeler transform by itself only permutes strings without com-

pressing them. It is however easier to compress BWT(S) than the original

string S, as the order of the characters in BWT(S) is determined by similar

contexts following the characters, analogous to the way suffixes are grouped by

longest common prefixes in suffix trees. An immediate consequence is that run-

length encoding, which encodes runs of identical characters by their length, shows

good compression results for BWT(S). Apart from run-length encoding [70,171],

move-to-front lists [70], wavelet trees [72,171,192] and several entropy encoders,

such as Huffman codes [69, 91], have also been used successfully to compress
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BWT(S). For a complete overview on compression techniques based on the

Burrows-Wheeler transform, we refer to the book of Adjeroh et al. [5].

Analogous to suffix arrays, BWT(S) can be used to find exact matches of

substrings by applying binary search. Similar to compressed suffix arrays, bi-

nary searching BWT(S) requires auxiliary data structures, including Ψ(S) and

(sampled) SA(S) [5], resulting in compressed suffix arrays. Given the relation be-

tween BWT(S) and SA(S), BWT(S) can also be utilized for constructing other

compressed suffix arrays [107]. Moreover, suffix trees, suffix arrays and other

non-self-indexes require a copy of the indexed string S, which can be replaced by

a compressed form of BWT(S) to reduce space.

2.1.6 FM-indexes

Another search method for exact string matching can be applied to Burrows-

Wheeler transformed strings, using ideas from the inverse transformation algo-

rithm. This method is referred to as backward searching and forms the basic

search mechanism of FM-indexes [70]. FM-index is the short name given by

Ferragina and Manzini to their f ull-text self-indexes that require “minute amount

of space”. The space requirement is proportional to and sometimes even smaller

than that of the indexed string. FM-indexes can be constructed in O(n) time and

all occurrences of pattern P can be located in O(m+ |occ(P, S)| log n) time. Note

that finding |occ(P, S)| only requires O(m) time, which makes that FM-indexes

have theoretical optimal time and space requirements for counting the number

of occurrences of a pattern in a string.

The backward search algorithm employed by FM-indexes requires BWT(S),

C(S) and a two-dimensional n× |Σ| array rank(S)1. This array is defined as

rank [i, c] ≡ |occ(c,BWT[..i])|, 0 ≤ i < n, c ∈ Σ.

For the running example, rank(S) is shown as columns 9 to 13 in Table 2.1.

The role of rank(S) is similar to the role offset(S) plays in the inverse trans-

formation of BWT(S). However, while offset(S) only stores information on the

number of occurrences of one character for each index position, rank(S) contains

this information for all the characters in the alphabet in all index positions. The

extra information contained in rank(S) compared to offset(S) gives it the ad-

vantage of granting random access to LF(S). Furthermore, rank(S) is easier to

compress than offset(S) or LF(S) [5].

1In many papers, rank(S) is referred to as Occ(S), but to avoid confusion with occ(P, S),

the name rank is used.
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During the course of the search algorithm, P is matched from right to left. For

every step i, 0 ≤ i < m, an interval BWT[si..ei] is maintained that contains all

occurrences of P [m− i..]. Initially, [s0..e0] ≡ [0..n−1], and after m steps [sm..em]

contains the suffix array interval corresponding to occ(P, S). Given [si..ei] and

c = P [m− i− 1], the next interval is found using the formulas

si+1 = C[c] + rank [c, si − 1] and ei+1 = C[c] + rank [c, ei + 1]− 1.

Here, array C(S) is used to locate the interval of suffixes starting with c in

SA(S) and array rank(S) is used to find the number of suffixes starting with c

that are lexicographically smaller and larger than the ones prefixed by cP [m−i..].
As an example of backward searching, again consider matching P = CA

to the running example in Table 2.1. Initially, the backward search interval

is [0..11]. Because C[A] = 1 and C[C] = 6, the backward search interval narrows

down to [s1..e1] = [1..5] in the next step, which corresponds to the suffix array

interval containing suffixes starting with A. Note that BWT[3] = BWT[4] = C,

so there are two suffixes starting with A that are preceded by C. Consequently,

s2 = C[C]+ rank [0, C] = 6+0 = 6 and e2 = C[C]+ rank [5, C]−1 = 6+2−1 = 7.

The answer |occ(P, S)| = 7−6+1 = 2 is found inO(m) time. rank [0, C] = 0 means

that there are no suffixes starting with C located in SA[0..0] and rank [5, C] = 2

means that there are 2 suffixes starting with C located in SA[0..5].

Also note the resemblance between LF-mapping and backward search: s2

also could have been found as the first occurrence of C in BWT[1..5], which is 3:

LF[3] = 6 = s2. Likewise, e2 could have been found as the last occurrence

of C in BWT[1..5]. However, instead of locating these occurrences, note that

offset [3] = rank [3, C]− 1 = rank [1, C]− 1. Thus, the offset(S) values are stored

in rank(S) at the boundaries of every interval, allowing search intervals to be

narrowed down in constant time. As a result, the reverse search algorithm of the

FM-index simulates a top-down search in a suffix trie, i.e. a suffix tree where

every edge label contains only a single character.

After backward searching has terminated, occ(P, S) is still unknown. Using

LF-mapping, this set can be retrieved from the interval BWT[sm..em]. One pos-

sibility is to count the number of backward searches it takes to reach character $

for every sm ≤ i ≤ em. However, this would require too much time. To achieve

better performance, FM-indexes mark additional positions with suffix array val-

ues in BWT(S). The number of suffix array values stored constitutes a time-space

trade-off. Recall that LF[i] returns the position in SA(S) of suffix S[SA[i]− 1..].
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Thus SA[LF[i]] = SA[i] − 1, such that LF(S) can be used to find the next

smaller suffix array value. The ability of LF(S) to find smaller suffix array values

is used as an argument to classify FM-indexes as compressed suffix arrays [70].

Moreover, LF(S) and Ψ(S) are each others’ inverse: SA[LF[i]] = SA[i] − 1 and

SA[Ψ[i]] = SA[i] + 1, hence LF[Ψ[i]] = Ψ[LF[i]] = i.

FM-indexes combine fast string matching with low memory requirements.

Their original design [70] compresses BWT(S) using move-to-front lists, run-

length encoding and a variable-length prefix code. In the original paper, rank(S)

was compressed using the Four-Russians technique [10]. Roughly speaking, this

technique comes down to subdividing the problem into small enough subproblems

and indexing all solutions to these small problems in a global table. The subdivi-

sion into smaller subproblems is done by recursively splitting arrays into equally

sized blocks and storing answers to queries relative to the larger parent block.

Other compression methods have been proposed that show better performance

in practice [69] or that give different space-time trade-offs [66,71,72,91,171].

Because they allow fast pattern matching while having small memory require-

ments, FM-indexes have become a very popular tool for different types of genome

analyses. Compressed full-text index structures are mainly used for exact string

matching, but algorithms for inexact string matching exist [5, 214]. FM-indexes

have started to become used as part of de novo genome assembly algorithms [230]

and are supporting popular tools for mapping reads to reference genomes such

as Bowtie [143], BWA [150] and SOAP2 [157].

2.2 Time-memory trade-offs

The increase in sequencing data requires efficient algorithms and data structures

to form the backbone of computational tools for storing, processing and analyzing

these sequences. Without the use of index structures, many algorithms that

rely on string searching would become unfeasible due to a long execution time.

However, index structures also incur a memory overhead to sequence analysis.

Over the last decade, much energy has been put into decreasing the mem-

ory consumption of index structures. The proposals differ in the performance

overhead incurred by lowering the memory footprint. Some index structures suf-

fer from a logarithmic slowdown, while others allow for tuning the space-time

trade-off. There are indexes that have been especially designed for certain types

of data, whereas others are tweaked for particular hardware architectures. An

example of a data-specific property influencing index structure performance is
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the alphabet size of the sequences.

Another major factor that allows classifying index structures is their expres-

siveness. Suffix trees are considered to have full expressiveness [97], supporting

a large variety of string algorithms. Conversely, the bulk of recent compressed

self-index structures are limited to performing mainly (in)exact string match-

ing. These string matching self-indexes are often compared on the basis of four

criteria: their performance of extracting a random substring of S, calculating

|occ(P, S)| and occ(P, S) and their size.

An overview of the memory taken by several index structures discussed in this

section can be found in Table 2.3. This table represents memory requirements

both in general terms of number of bits required per indexed character, as well as

in terms of its size for indexing full genomes. Note, however, that the list of index

structures in Table 2.3 is not complete nor gives a full overview of the memory-

time trade-offs. For example, external memory index structures were omitted,

but can be found in Section 2.3. Additionally, peak memory requirements during

construction can be much higher than the figures described here (see Section 2.4).

Furthermore, index structures contain parameters that allow manual tuning of

the memory-time trade-off. Finally, because the expressiveness differs greatly

between index structures, Table 2.3 does not include any time-related results.

Partial results for some algorithms can be found elsewhere [13,66,93,243].

The remainder of this section focuses on the basic principles behind these

index structures and the memory-time trade-offs induced by design choices and

confounding factors such as application and data types.

2.2.1 Uncompressed index structures

Choosing appropriate data structures for implementing the different components

of suffix trees forms a basic step in lowering their memory requirements. These

components include nodes, edges, edge labels, leaf numbers and suffix links. The

topological information of ST(S) and the edge labels are traditionally stored as

pointers, resulting in suffix trees that require O(n) words of usually 32 bits. Note

that for very large strings (n > 232 ≈ 4 · 109) 32 bits is insufficient for storing the

pointers, thus larger representations are required. This factor is often overlooked

when presenting theoretical results.

There is only one major O(|Σ|)-sized memory-time trade-off in this traditional

representation. This trade-off comes from the data structure that handles access

to child vertices. Most implementations make use of — roughly ordered from high

memory requirements to low access time — static arrays, dynamic arrays [93],
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Table 2.3: Representative memory requirements for different index structure imple-

mentations, expressed both as bits per indexed character (column 2) and

estimated size in megabytes for several known genomes (columns 3-5). Col-

umn 6 contains references to the original theoretical proposals and an

additional reference to the articles from which these practical estimates

originate. For ease of comparison, the index structures are sorted by in-

creasing memory requirements. As a reference, the original (non-indexed)

sequence is also included (bold), both stored using 2-bit encoding and byte

encoding. §Genome sizes were taken from the NCBI genome information

pages http://www.ncbi.nlm.nih.gov/genome of Saccharomyces cerevisiae

(yeast), Drosophila melanogaster (fruit fly) and Homo Sapiens (human).
†mean of the interval of possible memory requirements given in [35].

Name bits/ size for genome in MB

index structure char yeast fruit fly human reference

2-bit encoded string 2 3 35 775 NCBI§

CSA Grossi et al. 2.4 4 42 931 [78,95]

FM-index 3.36 5 59 1302 [70,93]

SSA (best) 4 6 70 1551 [13,171]

CST Russo et al.† 5 8 87 1939 [35,213]

CSA Sadakane (best) 5.6 8 98 2171 [218,220]

LZ-index (best) 6.64 10 116 2574 [13]

byte encoded string 8 12 139 3102 NCBI§

CST Navarro† 12 18 209 4653 [35]

SSA (worst) 20 30 349 7754 [13,171]

CST Sadakane† 30 45 523 11 632 [35,219]

LZ-index (worst) 35.2 53 614 13 648 [93,189]

suffix array 40 60 697 15 509 [176]

enhanced SA 72 109 1255 27 916 [3]

WOTD suffix tree 76 115 1325 29 467 [84]

ST McCreight 232 350 4045 89 952 [84,182]

hash tables, linked lists and layouts with only pointers towards the first child

and next sibling. Furthermore, mixed data structures that represent vertices

with different numbers of children have also been proposed [135]. Note that for

DNA sequences, |Σ| is very small, turning array implementations into a workable

solution. Also note that algorithms that perform full suffix tree traversals, such

http://www.ncbi.nlm.nih.gov/genome
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as repeat finding and many other string problems [97], do not suffer from a

performance loss when implemented with more memory-efficient data structures.

In practice, suffix trees and suffix arrays require between 34n and 152n bits

of memory. The suffix tree implementations described by Kurtz [135] perform

very well and are implemented in the latest release of MUMmer [137], an open-

source sequence analysis tool. The implementation in MUMmer allows indexing

DNA sequences up to 250Mbp on a computer with 4GB of memory. Single

human chromosomes are thus well within reach of standard suffix trees. Another

implementation by Giegerich et al. [84] is even smaller, but lacks suffix links.

Enhanced suffix arrays [3] also reach full expressiveness of suffix trees, as described

in Section 2.1. When carefully implemented, they require anything between 40n

and 72n bits.

Enhanced suffix arrays use a linked list to represent the vertices of the tree.

However, the O(|Σ|) performance penalty for string matching can be reduced

to O(|logΣ|) [129]. Furthermore, enhanced suffix arrays form the basis of the

Vmatch program that finds different types of exact and approximate repeats in

sequences of several hundreds of Mbp in a few seconds. Moreover, according to a

comparison between several implementations of suffix trees and enhanced suffix

arrays [93], enhanced suffix arrays show the best overall performance for both the

memory footprint and the traversal times. Finally, their modular design allows

replacing some arrays by a compressed counterpart to further reduce space.

2.2.2 Sparse indexes

An intuitive solution for decreasing index structure memory requirements is spar-

sification or sampling of suffixes or array indexes. sparse suffix trees [123] and

sparse suffix arrays [64] adopt the idea of utilizing a sparse set of suffixes, whereas

compressed suffix arrays and trees sample values in Ψ(S), C(S), rank(S) and

other arrays involved in their design. As a consequence of sparsification, more

string comparisons and sequential string searches are required. This, however,

gives the opportunity to optionally tweak the size of the index structure based

on the available memory.

We have combined techniques from enhanced suffix arrays and sparse suffix

arrays to create a new index structure, called enhanced sparse suffix array, and

used this index structure for finding MEMs between two sequences. This index

structure will be presented in Chapter 3.

In general, sparse index structures have received less attention in bioinfor-

matics applications than compressed index structures. However, sparse suf-
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fix arrays have been successfully used for exact pattern matching, retrieval of

MEMs [126, 248] and read alignment [133, 249]. Furthermore, splitting indexes

over multiple sparse index structures has been used for index structures that

reside on disk [19] and for distributed query processing [180].

Word-based index structures are special cases of sparse index structures which

only sample one suffix per word. Although word-based index structures are most

popular in the form of inverted files, word-based suffix trees [9, 115] and suffix

arrays [64] also exist. Although it is possible to divide biological sequences into

“words”, word-based index structures are generally designed to answer pattern

matching queries on natural language data. On natural language data, Transier

and Sanders [239] found that inverted files outperformed full-text indexes by a

wide margin. Unfortunately, the inverted files were not compared against word-

based implementations of suffix trees and suffix arrays. A somewhat dual ap-

proach was taken by Puglisi et al. [206], who adapted inverted files to become

full-text indexes able to perform substring queries. They found compressed suffix

arrays to generally outperform inverted files for DNA sequences, but the oppo-

site conclusion was drawn for protein sequences. It turns out that compressed

suffix arrays perform relatively better compared to inverted files when searching

for patterns having fewer occurrences. Note that both comparative studies were

performed in primary memory.

2.2.3 Compressed index structures

Compressed and succinct index structures are currently the most popular forms of

index structures used in bioinformatics. Index structures such as compressed suf-

fix arrays and FM-indexes are gradually built into state-of-the-art read mapping

tools and other bioinformatics applications. Where traditional index structures

require O(n log n) bits of storage, succinct index structures require O(n) bits

and the memory footprint of compressed index structures is defined relative to

the empirical entropy [178] of a string. Furthermore, these self-indexes contain S

itself, thus saving again O(n) bits. Theoretically, this means that the size of com-

pressed index structures can become a fraction of S itself. In practice, however,

DNA and protein sequences do not compress very well [63,133]. For this reason,

the size of compressed index structures is roughly similar to the size of storing S

using a compact bit representation. The major disadvantage of compressed in-

dex structures is the logarithmic increase in computation time for many string

algorithms. This is, however, not the case for all string algorithms. For exam-

ple, calculating |occ(P, S)| can still be done in O(m) time for some compressed
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indexes. These internal differences between compressed index structures result

from their complex nature, as they combine ideas from classical index structures,

compression algorithms, coding strategies and other research fields. In the follow-

ing paragraphs, the conceptual differences of state-of-the-art compressed index

structures are surveyed, illustrated with theoretical and practical comparisons

wherever possible. A more technical review is found in [192].

Auxiliary data structures

Understanding the organization details and properties of compressed index struc-

tures requires prior knowledge of the auxiliary data structures involved in their

design. Compressed indexes consist of many auxiliary structures that influence

their memory-time trade-off, and have properties that dictate their expressive-

ness and performance for certain types of data. Representation of these auxiliary

structures forms an active field of research. What follows is a brief summary of

several commonly used auxiliary structures, not including the rather technical

implementation details.

Almost all compressed index structures make use of bit vectors B to support

random access and rank(B) and select(B) queries. Intuitively, rank(B) queries

count the number of zeros or ones before a certain index in the vector. Dual to

this, select(B) queries return the position in B of the i-th zero or one. They often

play a role in granting random access to a compressed or permutated string. Their

usefulness, however, goes further than being mere building blocks of compressed

index structures. For example, they can also be used to succinctly represent de

Bruijn graphs [44], a typical data structure used in de novo genome assembly.

Formally, rank(B) is represented as a two-dimensional array defined by

rank [i, c] ≡ |occ(c,B[..i])|, 0 ≤ i < |B|, c ∈ {0, 1},

similar to rank(S) for FM-indexes. select(B) is defined as

select [i, c] ≡ j iff i = rank [j, c], 0 ≤ i < |occ(c,B)|, c ∈ {0, 1}.

These data structures and their generalizations to non-binary strings strongly

influence the memory-time trade-off of compressed index structures [72]. As an

example, the array rank(S) used in FM-indexes takes up to half of its size. As is

the case for other data structures, there is no single optimal implementation for

every application, but many proposals exist [40, 202, 209]. The performance also

depends on the restrictions imposed by the compressed index structure or the
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Figure 2.2: Wavelet tree for indexing string S = GT$CCGAATAAA. Only the binary

strings are stored in practice. Subsequences of S are shown only to ease

the interpretation. This figure does not include data structures for resolv-

ing rank and select queries for every bit vector. For this small example,

however, the answer to these queries is straightforward.

properties of the data, such as the sparsity of the original bit vector. From ex-

tremely sparse to more balanced, the best implementations require 0.2n bits [202]

(1% ones), 0.8n bits [40] (20% ones) and 1.4n bits [202] (50% ones).

The results for bit vectors have been generalized to non-binary strings [40,

72], as worked with in many applications, including FM-indexes. A simple idea

towards such a generalization is to create |Σ| bit vectors Bc, with Bc[j] = 1 iff

S[j] = c. However, this entails an overhead both in time (random access to S)

and memory. A careful implementation allows eliminating this overhead [72], but

wavelet trees [95] form an even more elegant solution.

Wavelet trees are balanced binary trees with |Σ| leaves. Every node v in
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the tree represents a subsequence S′ of S formed by the concatenation of all

characters that belong to some interval Σ[i..j]. The two children of v are the

subsequences formed by the concatenation of all characters of S′ that belong to

Σ[i..d i+j
2 e] and Σ[d i+j

2 e+1..j], respectively. Vertex v itself is represented by a bit

vector B of size |S′| that is defined as B[i] = 0 iff S′[i] ∈ Σ[i..d i+j
2 e]. Furthermore,

B is preprocessed as to resolve rank(B) and select(B) in constant time.

The wavelet tree for BWT(S) of the running example is shown in Figure 2.2,

and has the same functionality as BWT(S) and rank(S). From this figure,

BWT[9] can be found as follows. The root bit vector learns that BΣ[9] = 0,

meaning that BWT[9] is a character from the first half of the alphabet. Because

BΣ[9] is the sixth occurrence of 0 in BΣ (rank [9, 0] = 5), it corresponds to B$AC[5]

(zero-based index). Repetition of this procedure for the vertices corresponding

to S$AC = $CCAAAAA and S$A = $AAAAA yields BWT[9] = A. rank(S) queries can

be resolved in a similar way.

Further research on wavelet trees gave rise to non-binary wavelet trees [72]

and Huffman-shaped wavelet trees [78]. This elegant, yet somewhat complex data

structure, has become very popular in index structure design. As an example

result, all maximal repeats occurring in the complete human genome could be

found in less than 17 hours on a desktop PC [127] with 8 GB internal memory

using an index structure based on the Burrows-Wheeler transform combined with

a sparse wavelet tree implementation of the LCP array. Similar tests using suffix

trees or enhanced suffix arrays failed due to the memory bottleneck.

Other important index structure building blocks are auxiliary tree representa-

tions. Index structures use various types of trees, but a common design problem

is the representation of their topology. As an example, suffix tree topology is

traditionally implemented using pointers, requiring O(n log n) bits of memory.

In contrast, a popular way to succinctly represent tree topology by a sequence of

balanced parentheses [118] only requires 2n + o(n) bits of memory. This imple-

mentation represents nodes in the tree as a pair of parentheses ‘()’. The nested

structure of the parentheses then represents the tree [11], similar to a reduced

form of the known Newick Tree Format [59]. More tree operations are generally

supported in constant or near-constant time by succinct tree topology represen-

tations compared to classical pointer-based representations, which only supports

top-down traversals in constant time. Node depth, subtree size and the low-

est common ancestor of two nodes [87] are examples of properties that can be

retrieved in constant time from succinct representations where pointer-based rep-

resentations require additional data structures to achieve the same performance.
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In theory, this means that a highly expressive suffix tree topology can be stored

using 4n+o(n) bits instead of 64n bits using 32-bit pointers. Note, however, that

the o(n)-term may become large in practice and even surpass the higher order

term. For biological sequences, tests [11] show that these representations require

something in between 2.1 and 4.84 bits per node, which has to be multiplied

by 2n nodes in the worst case.

Retrieval of the lowest common ancestor of two nodes v1 and v2, mentioned in

the previous paragraph, is a fundamental operation for inexact string matching

algorithms [97]. Denoted by LCA(v1, v2), it is defined as the unique node v3 for

which holds that `(v3) = `(LCA(v1, v2)) ≡ LCP(`(v1), `(v2)). This operation is

supported by a combination of LCP arrays and data structures for resolving range

minimum queries [28]. This directly follows from the definition of LCA(v1, v2).

Range minimum query data structures return the positions of the smallest

values in any interval of an array. In LCP arrays, they return the length of the

longest common prefix of any two suffixes. Furthermore, range minimum query

data structures can replace the child array in enhanced suffix arrays [74], because

`-indexes are the positions of minimal values in LCP intervals.

Compressed suffix arrays

Compression of suffix arrays is based on storing a sparse representation of SA(S)

and storing Ψ(S) in compressed form. Ψ(S) has the property that it is increasing

in areas of SA(S) that point to suffixes starting with the same character [96],

which makes it compressible. The first real compressed suffix array was designed

by Grossi and Vitter [96]. They built on a hierarchical decomposition of SA(S)

that halves the size of SA(S) in every level by removing values pointing to odd

suffixes and dividing even suffix array values by two. Ψ(S) is stored in every

level for odd suffix array values. rank(S) and select(S) data structures are used

to retrieve the parity of suffixes on every level of the hierarchy and in an encoding

of Ψ(S) [96,216]. The number of levels stored in this representation is a parameter

that tunes the memory-time trade-off.

Sadakane [218] further improved the above implementation by incorporating

the compressed string into the index structure. A basic version of this self-index

does not allow direct access to SA[i], but instead allows access to S[SA[i]], which

is sufficient for pattern matching and finding |occ(P, S)|. Direct access to SA[i]

and SA−1[i] and random access to S is achieved by incorporating the hierarchical

structure by Grossi and Vitter. Sadakane’s compressed suffix array was imple-

mented [220] and constructed for the human genome. The index required about
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5.6n bits of memory, resulting in an overall memory footprint of less than 2 GB.

Additionally, Sadakane designed a backward search algorithm, similar to that

used by FM-indexes, for counting patterns [217]. This strategy is much faster

than the traditional binary search used by suffix arrays.

Other compressed suffix array designs incorporated wavelet trees [95]. In

practice, an example implementation [78] required 2.4n bits of memory for real

DNA sequences.

A different solution to lower the memory requirements of suffix arrays was

used for compact suffix arrays [169]. Here, the compression is based on self-

repetitions, so-called runs, in SA(S). These are suffix array intervals [i..i+ `] for

which another interval [j..j + `] exists such that SA[i + k] = SA[j + k] + 1 for

0 ≤ k ≤ `. In practice, compact suffix arrays take up more memory than existing

compressed suffix arrays, but are also faster. It was shown that the number

of self-repetitions in SA(S) is related to the number of equal-characters runs in

BWT(S) [170], which can be compressed by run-length encoding. In terms of

compression, however, this technique was superseded by other FM-indexes [171].

The above compressed suffix arrays are especially geared towards pattern

matching. Some compressed index structures [192] are able to find |occ(P, S)| in

O(m) time, but in practice they all require at least O(|occ(P, S)| log n) time for

retrieving the actual occurrences of pattern P . Furthermore, locating the patterns

requires a lot of random accesses to the index structures, resulting in degrading

performance due to cache misses. This becomes even more severe when ported

to secondary memory [89]. This also holds for FM-indexes, as discussed further.

González and Navarro [89] designed locally compressed suffix arrays to cope with

this problem. Their index structures are based on sampling exact suffix array

values, differentially encoding SA(S) and encoding this array using dictionaries.

However, these index structures are not self-indexes and have to be incorporated

into existing compressed suffix arrays or FM-indexes. In practice, the speed for

locating patterns is indeed much faster, even compared to the Lempel-Ziv index

structures described further. However, their compression rate is not that high,

as it requires up to 85% of the size of regular suffix arrays for DNA sequences

and 70% for protein sequences.

A practical performance comparison between compressed suffix arrays and

plain suffix arrays was made by Sadakane and Shibuya [220]. They both tested

for the application of approximate string matching. Compressed suffix arrays

required one sixth of the memory typically needed by plain suffix arrays, but

were 2 to 20 times slower.
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FM-indexes

As previously stated, FM-indexes are compressed full-text indexes based on the

Burrows-Wheeler transform. Different memory-time trade-offs are reached for

FM-indexes by using different techniques for compressing BWT(S) and rank(S).

As a reminder, in the original proposal [70,71], BWT(S) is compressed by apply-

ing move-to-front transformation, run-length compression and a version of Elias-γ

prefix codes [56]. rank(S) is encoded by cutting the array in blocks and using

the Four-Russians technique. In the original practical implementation [69], the

dictionary used for the Four-Russians technique is replaced by a linear scan of a

bit vector.

The above representation of FM-indexes is heavily dependent on the alpha-

bet size. A simple way to reduce this dependence is to use a wavelet tree over

BWT(S) and use any representation of rank(S) for bit vectors in every internal

node [192]. Huffman-shaped wavelet trees are used by succinct suffix arrays [171].

In a recent practical survey [66], this implementation shows the best known prac-

tical time-memory trade-offs for the most used basic operations on compressed

index structures when applied to DNA and protein sequences. Although its

memory footprint is somewhat higher (4n-20n bits) than that of the standard

FM-index, it is 20 times faster than its classical counterpart [93]. Compared

to suffix trees, however, it is 20 times slower. There exist even smaller FM-

indexes, such as run-length FM-indexes [171] that apply run-length compression

to BWT(S) prior to building a wavelet tree. A more recent proposal by Ferragina

et al. [72], the alphabet-friendly FM-indexes, theoretically supersedes all previous

FM-index implementations. In practice [66], however, the alphabet-friendly FM-

index is superseded by the succinct suffix array for biological sequences. Only for

strings with a large alphabet and small high-order entropy (making them highly

compressible), such as natural language strings or XML files, alphabet-friendly

FM-indexes outperform other FM-indexes.

Another possibility for lowering the memory dependence of FM-indexes was

explored by Grabowski et al. [91]. They first Huffman-encoded S and then applied

the Burrows-Wheeler transform. They require sampling some characters from S

additionally to the sampling of SA(S). Their best implementation slightly out-

performs succinct suffix arrays on biological sequences and requires 3.28n bits of

memory on average.

Note that locating patterns using FM-indexes is done by sampling suffix array

values, which turns out to be rather slow in practice. A memory-time trade-off is

imposed by the sampling rate. Improvements on the pattern locating performance
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can be made by using more complex sampling strategies, different from basic

evenly spaced sampling [66, 69]. An alternative is to incorporate another index

structure that supports fast locating of patterns [71,89].

Lempel-Ziv index structures

Similar to the above compressed full-text index structures, Lempel-Ziv index

structures [122] are mainly designed for pattern matching. Unlike the above

compressed index structures, however, Lempel-Ziv indexes are not based on suffix

arrays or the Burrows-Wheeler transform. Instead, they build on the dictionary-

based Lempel-Ziv [146] compression technique. Briefly, LZ78 [261] compression is

achieved by traversing S and replacing substrings of S with tuples (w, c), where w

is a word from the dictionary and c ∈ Σ. Assume that at some point, S[..i−1] has

been compressed and the next tuple in the compressed string is (w, c). w equals

the code word for the longest prefix of S[i..], say S[i..j], that is already part

of the dictionary and c = S[j + 1]. Furthermore, S[i..j + 1] is added to the

dictionary. Note that there are other variants of Lempel-Ziv compression, similar

to the technique described here, which are omitted for the sake of brevity.

Details on the structure and search algorithms of Lempel-Ziv indexes are

omitted, but can be found elsewhere [192]. What is important to note about their

structure, however, is that Lempel-Ziv indexes contain many building blocks:

compressed or sparse (suffix) tree data structures to compactly represent the

dictionaries of forward and reverse code words, data structures for linking those

trees and several other auxiliary data structures that answer rank(S) queries and

data structures to answer orthogonal range queries. As a direct consequence,

further improvements in these building blocks will improve the performance of

Lempel-Ziv indexes. Compared to other compressed index structures, Lempel-

Ziv index structures require more memory than other self-indexes on average

and they are not competitive for counting occurrences of patterns (O(m2) time).

They, however, excel at retrieving the exact set of all occurrences occ(P, S).

Lempel-Ziv indexes have been turned into self-indexes by Navarro [189], who

also designed an efficient implementation [190]. Further improvements in count-

ing occurrences were made by Ferragina and Manzini [71], who attached FM-

indexes to Lempel-Ziv indexes. Other approaches [15, 215] have minimized the

redundancy caused by an overload of building blocks and have experimented with

new auxiliary data structures. Recent tests [13,66,215] show that those new im-

plementations have made Lempel-Ziv indexes more competitive compared to com-

pressed suffix arrays and FM-indexes, but succinct suffix arrays are still reported
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to have better memory-time trade-offs. In the near future, however, Lempel-Ziv

indexes could outperform other indexes for highly compressible strings because

all building blocks of Lempel-Ziv index structures can be compressed, while other

compressed indexes contain sampled suffix array values, which are incompress-

ible [15].

Compressed suffix trees

The above compressed index structures were mainly designed for exact string

matching. As such, they do not reach the full expressiveness of suffix trees.

Examples of this expressiveness have been previously given as illustration of

the different traversal types of suffix trees. In recent years, efforts have been

made to increase the flexibility of compressed index structures either by de-

signing index-specific algorithms or by implementing additional auxiliary data

structures. Analogous to enhanced suffix arrays, the main auxiliary data struc-

tures used for augmenting compressed suffix arrays are succinct representations

of LCP arrays [217], data structures for top-down tree traversals and suffix link

support. As an example, the combination of Burrows-Wheeler index structures

and wavelet trees for succinct LCP arrays was used for locating all maximal re-

peats in the whole human genome [127]. Ohlebush et al. [201], among others,

noted that the backward search mechanism mimics top-down suffix trie traver-

sal. Using additional data structures to simulate suffix links, they calculated

maximal exact matches between DNA sequences, using less memory than, for

example, MUMmer.

Instead of developing application-specific compressed index structures, sev-

eral compressed suffix trees [219] or compressed enhanced suffix arrays [199] have

been designed that even surpass the expressiveness of classical suffix trees. Fur-

thermore, because compressed suffix trees extend compressed self-indexes, they

are self-indexes themselves. The difference between these data structures and the

compressed suffix arrays and FM-indexes on which they are built, is their ability

to directly implement suffix tree algorithms. Although the extra data structures

increase their memory footprint, compressed suffix trees are still smaller than

classical suffix arrays. Furthermore, space-time trade-offs can be tuned to a cer-

tain extent, similar to the sparsification parameter in compressed suffix arrays

and FM-indexes.

Over the last years, several compressed suffix tree designs have been proposed.

These can be classified by their choice of auxiliary data structures, especially the

representation of the suffix tree topology [198]. They either use sequences of
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balanced parentheses or implicit representation by LCP intervals. Additional

building blocks are succinct representations of LCP arrays and data structures

for performing lowest common ancestor queries, which in turn support suffix

links.

As an example, the first compressed suffix tree reaching full expressiveness was

given by Sadakane [219]. It consists of a compressed suffix array, succinct LCP

array, balanced parentheses representation for suffix tree topology and additional

data structures for solving range minimum queries. In practice, an engineered

version [243] of this compressed suffix tree required 25n-35n bits of memory and

was able to index the complete human genome using only 8.5GB. Compared to

classical suffix trees, this compressed variant is two orders of magnitude slower

on average. Nevertheless, compressed suffix trees are still much faster than brute

force algorithms. Furthermore, many auxiliary data structures used in the design

offer a memory-time trade-off which can be optimized for the available memory.

Advancements made in representing auxiliary data structures have led to

index structures with even smaller memory requirements [87]. The smallest com-

pressed suffix tree we know of [213] requires only 4n-6n bits of memory and is

based on sampling the suffix tree. This low memory footprint, however, is paid

for by giving up performance, and it is several orders of magnitude slower than

Sadakane’s compressed suffix tree [35]. Another compressed suffix tree proposed

by Fischer et al. [75] has a memory-time trade-off which lies between the two pre-

viously mentioned compressed suffix trees. Cánovas and Navarro [35] engineered

an implementation of this compressed suffix tree and compared the impact of

different LCP array implementations on the compressed suffix tree. Depending

on the implementation of the LCP arrays used, the compressed suffix tree re-

quires between 8n and 16n bits of memory. A compressed enhanced suffix array

reaching full expressiveness is given by Ohlebusch and Gog [199]. However, it

does not support lowest common ancestor queries.

Prospects are that space-time trade-offs of compressed index structures will

keep improving due to advances in auxiliary data structures, especially advances

in compressed suffix arrays and compressed LCP arrays.

2.3 Index structures in external memory

The solution for the memory bottleneck suffered by (main memory) index struc-

tures are index structures in external or secondary memory, such as hard disks.

This paradigm shift is necessary when even the smallest compressed index struc-
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tures cannot be stored in main memory. This limit is usually reached when even

a compressed form of S cannot be stored in main memory.

Secondary or external memory has the advantages of low cost, abundance and

the persistence given to index structures. However, random access to secondary

memory (disk) is much slower than random access to primary memory (RAM).

In practice, this difference can be up to five orders of magnitude [117]. Because

index structures, such as suffix trees, intrinsically access data structures and input

strings in a random manner, this leads to a so-called I/O bottleneck.

Several techniques are used to minimize the effect of this bottleneck, both

in hardware and in algorithm and data structure design. Solid State Disks, for

example, are one order of magnitude faster than classical hard disks. Also, se-

quential disk access is almost as fast as random access on RAM. Another solution

is to limit the number of I/O operations altogether by, for example, decreasing

the size of the index structure.

Buffering is another strategy commonly employed, as well as improving local-

ity of information that is closely connected. To achieve this locality, redundancy

is often introduced in the data structure, which is opposite to the space-saving

techniques seen in main memory indexes. These techniques are not only applied

for designing the spatial layout of index structures, but also for their traversal

algorithms.

In this section, existing index structures for external memory are reviewed

with an emphasis on the high-level strategies employed. Other, more technical,

reviews on this topic can be found elsewhere [19,108,245].

2.3.1 Suffix arrays

Both suffix trees and suffix arrays perform poorly when naively implemented in

secondary memory. Because of their simple design, however, suffix arrays are

easier to implement on disk. The basic idea is to use levels of sparse suffix arrays

in faster memory to guide searches in the full suffix array stored on disk.

Baeza-Yates et al. [18] proposed a two-level index structure. They also aug-

mented the sparse suffix array, stored in RAM, with exact prefixes of the suffixes

represented in the sparse suffix array. This has the advantage that no random

access to S is needed for matching in the sparse suffix array. Tests revealed that

this implementation is five times faster than a naive implementation [231] of a

single level suffix array on disk.

Later, Sinha et al. [231] replaced sparse suffix arrays by pruned suffix tries

for the first level of the hierarchy. Again, labels on the pruned suffix trie are
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explicitly stored instead of pointers to S. Sinha et al. also improved the second

level of the hierarchy by storing SA(S), LCP(S) and substrings of S, to minimize

random access to S. Note that in primary memory, redundancy is eliminated,

whereas in secondary memory it is introduced to increase performance. Tests

showed that this method is five times faster than the two-level method of Baeza-

Yates et al. and requires about ten times less non-sequential I/O operations for

pattern matching.

A larger number of levels is used in the design of string B-trees [67]. These

index structures act as conceptual B-trees [23] over suffix arrays. Similar to B-

trees, internal nodes are B-ary and the final suffix array values are found in the

leaves. To speed up the search through the B-tree, each internal node v contains

a Patricia tree or blind tree for the suffixes in v. Blind trees are suffix tree

variants for which edge labels are stored as the first character of the label and

its length. Pattern matching in blind trees consists of two phases. A first phase,

similar to pattern matching in suffix trees, finds candidate positions according

to the matched characters on the edges of the tree. A second phase explicitly

compares the pattern to the candidate substrings in S. This type of edge labeling

followed by a blind search can also be applied to all external memory suffix tree

implementations to minimize random access to S. This data structure has the

advantage that pattern matching is theoretically I/O optimal and updates are

supported due to its B-tree nature. Furthermore, succinct cache-oblivious string

B-trees have been developed [68]. Note that string B-trees are not suffix trees

and thus do not reach full expressiveness. Another disadvantage is that the blind

search method used is impractical for inexact string matching [111].

Distribution of suffix arrays has also been proposed [180]. This allows process-

ing batches of queries in parallel by dividing SA(S) in intervals or by interleaving

suffix array values. This interleaving can be done by grouping every k-th suffix

to a single computing unit or by grouping the suffixes of a substring of S to-

gether in one node, thus minimizing access to S. Although these designs look

promising, we have no knowledge of any recent performance results for string

matching algorithms on biological data using any of the above external memory

suffix arrays.

2.3.2 Suffix trees

Because of the underlying tree data structure, efficient implementation on disk

is more difficult for suffix trees than for suffix arrays. Although many papers

about external memory suffix trees exist, most of them focus on construction in
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external memory. Less attention has been given to optimizing suffix tree layout

for traversals and even fewer performance tests are available for algorithms that

make use of external memory suffix trees. The most important factor in designing

external memory representations of suffix trees is the grouping of nodes into

blocks and the layout of these blocks onto disk. Other important aspects are node

and edge label representations. For locality reasons, array-based representations

are superior to other implementations [24] and nodes contain more information

than their primary memory counterparts, while edge labels can be compactly

represented by their first character and length as in blind trees. An example

of this strategy is one of the earliest external suffix trees, the compact Patricia

tree [39], which uses a topology representation similar to the balanced parentheses

representation.

A very intuitive external memory suffix tree layout is that of partitioning by

prefixes. The suffix tree is split into an upper root-block and blocks containing

the subtrees of a given prefix. This layout is similar to the two-level hierarchi-

cal layout for suffix arrays. For top-down traversals of the suffix tree, it works

well in practice. Furthermore, this layout is created naturally during construc-

tion [24,111]. A disadvantage, however, is its scalability. Although these indexes

can be constructed for the human genome [238], larger sequences or data sets

suffer from either a large growth in the size of the partitions or an exponential

growth in the number of partitions. Moreover, data skewness results in decreas-

ing performance, as some partitions are much larger than others. In theory, a

multi-level hierarchical structure could alleviate the scalability problem and data

skewness has already been tackled by using variable length prefixes [82,205].

Another weakness of external memory suffix trees are suffix links. These links

imply a lot of random access and are thus optional [82, 205] or completely omit-

ted [111,238]. On the other hand, some authors [205] claim that the use of suffix

links in external memory improves performance of some search algorithms, such

as finding maximal exact matches. Clifford [41] designed distributed suffix trees,

which contain a local version of suffix links, called sparse suffix links. These

links point to the local root if the normal suffix link would point to a node in a

different partition. Clifford points out that prefix partitioning allows traversals

on the suffix tree to be run in parallel on the distributed subtrees. Further-

more, he claims that most bioinformatics applications do not require traversals

that require communications between the different prefix-partitioned parts. Thus

prefix-partitioning enables the parallelization of most search algorithms on suffix

trees.
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For exact pattern matching, prefix partitioned suffix trees work well. For

other queries, however, transforming the tree layout to an already constructed

prefix-partitioned suffix tree has been proposed. The goal of changing layouts is to

increase scalability and improve the locality of the nodes. For pattern matching,

however, the new layout could increase the number of I/O operations. Different

techniques have been proposed to achieve this goal. Clark and Munro [39] focused

on minimizing the number of blocks required to store suffix trees using a greedy

bottom-up algorithm. STELLAR [25], on the other hand, focused on improving

locality of nodes for both parent-child links as well as suffix links. Other layouts

introduce redundancy of data by having the subtrees stored in blocks on disk

overlap [20,33]. Although the redundancy introduced increases the memory foot-

print of the index structures, it improves locality of the nodes and improves the

scalability of the index structures. Care has to be taken, however, not to destroy

some of the expressiveness of suffix trees, including longest common prefix values

and suffix links.

In practice, the largest indexed single DNA sequence found in the literature

contains 12 billion base pairs [21]. Although no extensive performance results

for string algorithms on this index were given, disk-based index structures are

known to be several times faster than non-indexed methods for string matching

on the scale of the human genome. Compared to string B-trees, disk-based suffix

trees require a similar number of I/O operations [108] for pattern matching.

Furthermore, Halachev et al. [98] showed that for protein data, pattern matching

on disk-based suffix trees can be almost as fast as pattern matching on enhanced

suffix arrays. As an example of other applications, a disk-based enhanced suffix

array has been used to locate repeats in human chromosomes [16].

2.3.3 Compressed index structures

Data compression and indexing are very important in computational biology,

although they seem to be opposites at first sight. With the rise of compressed

index structures, this dichotomy can be considered solved [63] for the RAM model.

However, designing a disk-based version of these indexes is non-trivial, because

compressed suffix arrays and FM-indexes perform many random accesses and

show a poor locality [89]. Nevertheless, some compressed index structures for

external memory do exist.

Mäkinen et al. [172] designed a secondary memory version of the compressed

suffix array by Sadakane [216] using a multi-level hierarchical structure. They

also designed a distributed compressed suffix array. External memory variants of



2.4. Construction 79

FM-indexes have been developed by González and Navarro [90]. They proposed

external memory versions for auxiliary data structures for calculating rank(B)

and select(B) and proposed a two-level hierarchy for storing rank(S). Different

structures were designed for representing BWT(S) on disk, all having different

trade-offs depending on the size of the available main memory. For fast locating,

they adopted the locally compressed suffix array designed for fast locating [89].

Arroyuelo and Navarro [12] designed an external memory Lempel-Ziv index based

on the Lempel-Ziv index structure proposed by Navarro [189]. A recent article

by Russo et al. [212] shows how parallel and distributed compressed suffix arrays

can efficiently answer more advanced queries such as longest common substrings.

Furthermore, they designed parallel and distributed compressed suffix trees.

Although the idea of reducing space in external memory to reduce the number

of I/O-operations is interesting, it is not known how this affects performance in

practice. Some tests on natural language data suggest that compressed index

structures are competitive in practice, although they are somewhat slower than

string B-trees [90].

Recently, Chien et al. [37] proposed a new transformation, called the geo-

metric Burrows-Wheeler transform, which connects index structures with range

searching. It translates characters of a string into 2D points and vice versa and

uses the vast research on 2D range queries to answer pattern matching queries.

To achieve a succinct representation, sparsification is used by grouping substrings

in meta characters. For external memory purposes it uses a string B-tree to find

ranges in the sparse suffix array, while 2D search can be done using a wavelet tree.

Tests [108] show that these compressed index structures are smaller compared to

other external memory index structures, but they require more I/O operations.

Another application opened by these index structures is the possibility to answer

relevance queries [108]. As an example, it would be possible to retrieve only the

top k most similar sequences in a database.

2.4 Construction

Before index structures can be used, they first need to be constructed. Although

construction is fast in theory, it is not always the case in practice. The current

bottlenecks in constructing disk-based index structures for very large strings are

memory limitations in the working space, cache misses and a high number of

random accesses to secondary memory. The working space is the amount of

memory required by the construction algorithm, which is usually higher than the



80 Full-text Index Structures

memory required by the final index. Apart from dealing with these issues, some

research has focused on parallelizing construction algorithms. In this section,

an overview of existing construction algorithms for various index structures is

given, illustrated with practical results found in the literature. Note that the

figures in this section represent some of the historical breakthroughs in index

structure construction, and are not meant as a comparison between the cited

implementations. As a general reference, reported index structure construction

times for the human genome, or for sequences in the same order of magnitude,

were in the range of a few hours on desktop computers and in the range of minutes

on clusters and specialized hardware.

2.4.1 Suffix trees

Historically, suffix tree construction goes back to Weiner [254], who gave a first

O(n) algorithm. Later, Ukkonen [242] gave a simpler O(n) algorithm, which has

the nice property of being online, i.e. a new string can be added to the suffix

tree by appending it to the back of the previous strings. The WOTD suffix tree

by Giegerich et al. [84] comes with a lazy construction algorithm, in the sense

that suffix tree nodes are added the first time that a traversal algorithm requires

these nodes. Thus, suffix trees can also be efficiently used for smaller applications

that do not require information about the whole tree. The suffix links that are

a by-product of Ukkonen’s algorithm have very nice features, as discussed in

Section 2.1, but they are omitted in other construction algorithms. To retrieve

these suffix links, some post-processing algorithms exist [167]. Although the

above mentioned suffix tree construction algorithms only scale up to chromosome

level, they form the basis for many external memory construction algorithms.

Although a main memory suffix tree for the whole human genome was constructed

by Kurtz [135], most main memory index structure construction algorithms focus

on suffix arrays and compressed index structures.

2.4.2 Suffix arrays

Originally, linear time suffix array construction required the construction of the

suffix tree [97]. During the last decade, however, many direct suffix array con-

struction algorithms have been proposed. A taxonomy of existing suffix array

construction algorithms is given by Puglisi et al. [207]. Because suffix array con-

struction consists of sorting all suffixes of S, many algorithms are based on known

sorting algorithms. One of the most popular algorithms is the recursive O(n) KS3
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algorithm of Kärkkäinen and Sanders [120]. It can be modified to a parallel and

external memory version, called DC3 [121], which can construct SA(S) for the

whole human genome using only 1GB RAM and for which a Message Passing

Interface (MPI) version exists that has indexed the human genome in only a few

minutes (on specialized hardware) [134]. However, it was noted elsewhere that

DC3 is unable to index strings longer than 4Gbp [65].

Other algorithms try to minimize the working space in internal memory. So-

called lightweight [177, 197] construction algorithms have a working space that

approaches the theoretical minimum. Furthermore, according to extensive tests

on biological sequences made by Mori2, among others, they are the fastest con-

struction algorithms in practice. Another trick utilized is to only sort suffixes up

to a certain LCP value, leading to partial suffix arrays. Although the expressive-

ness of partial suffix arrays is unclear, they have already been applied for error

correction of sequencing reads [260]. For the construction of enhanced suffix ar-

rays, efficient LCP array construction algorithms have been developed [124] and

O(n) algorithms exist for the construction of the other tables [3, 167].

2.4.3 Compressed index structures

Working space is even more important for compressed full-text index structures.

Compressed suffix arrays, FM-indexes and regular suffix arrays can easily be ob-

tained from one another. However, suffix array construction requires 40n to 48n

bits of memory, whereas FM-indexes can be stored in only 2n bits. Despite

this, lightweight suffix array construction algorithms [197] are used by Burrows-

Wheeler-based read mapping tools, such as BWA. Direct and lightweight con-

struction of compressed index structures is therefore an important issue. A

gap between theory and practice existed for several years, but several practi-

cal results have been reported recently. For example, a lightweight Burrows-

Wheeler construction algorithm by Kärkkäinen [119] requires only 8n bits of

working space for DNA sequences (which is equal to the size of a normal text

string) and was implemented in the short read mapping tool Bowtie. Other di-

rect construction algorithms include the parallel algorithm of Sirén [232] and the

lightweight construction algorithms in both internal and external memory set-

tings of Ferragina et al. [65]. The former has the added value of being able to

merge existing compressed suffix arrays, and the latter have very low working

spaces. Moreover, a parallel BWT(S) construction algorithm [183] based on the

Google MapReduce [50] framework has recently indexed the human genome in

2http://code.google.com/p/libdivsufsort/(last accessed September 2014)

http://code.google.com/p/libdivsufsort/
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about 10 minutes on the Amazon Elastic Compute Cloud. Finally, a lightweight

construction algorithm for Lempel-Ziv indexes [14] has been reported that is

competitive with construction algorithms for other compressed full-text indexes.

2.4.4 External memory suffix tree construction

Most work on external memory index structures has been done on construction

algorithms, which have been extensively reviewed by Barsky et al. [19]. To sum-

marize their results, external memory allows for larger sequences to be indexed,

but the scalability of the algorithms is limited by the number of random ac-

cesses to S and the suffix tree under construction. This means that the practical

performance of many construction algorithms is limited to sequences which are

smaller than the size of the available main memory. As an exception, the B2ST

algorithm [21] was able to index DNA sequences of 12Gbp in less than 8 hours,

making this algorithm the first to partially overcome the above-mentioned bottle-

necks. Furthermore, the authors believe the algorithm will scale up to sequences

of 60Gbp.

2.5 Summary

In this review, we have shown the importance of data structures for processing

and searching in strings, known as index structures. Many current sequence

analysis tools heavily rely upon index structures for handling large amounts of

data, which is currently a major concern to bioinformaticians. In Section 2.1,

details concerning the most commonly used index structures were presented. The

details given in this review are often omitted in articles describing tools and

applications. However, we believe that these details are important to fully grasp

the possibilities and limitations of these sequence analysis tools.

2.5.1 Prospects

We have made a basic classification of existing index structures and explained

the memory-time trade-offs related to these data structures. Because the number

of available index structures is vast, we were only able to skim over the technical

details involved in the design of these data structures. However, the interested

reader was guided to more in-depth work in the literature. Note that the index

structures discussed in this review are mainly all-purpose full-text index struc-

tures, although some focused on exact pattern matching. There are, however,
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other index structures specially designed for specific applications. Affix index

structures, for example, allow bidirectional string searching. As a result, they

can be used for searching RNA structure patterns [185] and for short read map-

ping [140]. Weighted suffix trees [114] can be used to find patterns in biological

sequences that contain weights such as base probabilities, but are also applied

in error correction [227]. Geometric suffix trees [228] have been used to index

3D protein structures. Property suffix trees have additional data structures to

efficiently answer property matching queries. This can be useful, for example, in

retrieving all occurrences of patterns that appear in a repetitive genomic struc-

ture [105].

Furthermore, both general purpose full-text index structures and specialized

index structures will always be hampered with space-time trade-offs. Several

index structures allow tuning this trade-off by setting a sparsification parameter.

This optimization of the available main memory is required because of the large

difference in speed between internal and external memory. In some cases, the

available main memory does not suffice and external memory index structures

have to be used. Moreover, we saw that the performance of external memory

index structures highly depends on the application for which the index structure

is used. There is still a lot of work to be done on increasing the performance of

disk-based index structures.

Construction of index structures in external memory has seen more investi-

gation and clearly shows that the use of current index structures is limited to

sequences that fit in main memory. Main memory construction algorithms are

limited by the available work space for which the demand is several times higher

than the memory required for the final index structure.

In the future, algorithms and data structures will have to be improved fur-

ther to keep up with the rapidly evolving sequencing technology and the growing

amount of data in general. To tackle the bottlenecks related to index structures

mentioned here, new directions for their design have to be investigated [63]. As

a final note, we give some prospects for research on index structures for bioin-

formatics applications. Currently, the biggest issue in index structure research is

closing the gap between theory and practice, which is illustrated by the fact that

many theoretically superior index structures do not outperform simpler designs in

practice. More engineering work has to be done to improve the practical perfor-

mance of these index structures. These implementations should be grouped under

a common interface in libraries and benchmarked using different types of (bio-
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logical) sequences. One such library-project is the Pizza&Chili website3, which

bundles full-text compressed index structures for use in exact pattern match-

ing. Another library containing several index structures, but also focusing on

biological applications, is the SeqAn library [54].

Another significant topic for further research is the adaptation of index struc-

tures to modern hardware, such as multi-core CPUs [165, 241] and Solid State

Disks. Recently, even more specialized hardware has been considered, including

Graphical Processing Units (GPUs) [225] and FPGAs [62]. Alternatively, large

computer clusters, local or on the cloud, could allow for massive parallelization

of index structures. Some applications have already been ported to these new

platforms, including read mapping and SNP finding [142] using cloud comput-

ing, sequence alignment [225] on GPUs and suffix array construction [183] using

Google’s MapReduce [50]. However, these techniques and implementations are

very novel and further research will have to indicate their scope and potential.

For applications which require maintenance of the index structure, such as se-

quence databases or updating an existing index of the human genome, dynamic

index structures are required. Historically, this is challenging due to the intrin-

sic interrelationship of suffixes, where insertion of a single character in a string

can change the lexicographical order of many suffixes. However, some index

structures that allow addition and removal of whole strings [67, 213] and single

characters [221,222] can be found in the literature. Moreover, several index struc-

tures were recently proposed for processing a set of very similar strings [138,173],

where the size of the index structure only depends on a single reference genome

in the collection, rather than the combined size of all sequences in it.

Given these developments, index structures will continue to increase the per-

formance of bioinformatics applications while coping with the continuous growth

in sequence sizes.

2.5.2 Related work

Since the publication of the review article [247] on which this chapter is based,

many new variants of the full-text index structures presented here have been

developed, as well as new construction algorithms, string matching applications

and implementations in bioinformatics tools. The new algorithms and data struc-

tures present multiple improvements, including improvements in construction and

traversal time in main or secondary memory, lower memory requirements and

3Two mirrors at http://pizzachili.di.unipi.it and http://pizzachili.dcc.uchile.cl

(last accessed September 2014)

http://pizzachili.di.unipi.it
http://pizzachili.dcc.uchile.cl


2.5. Summary 85

lower peak memory, parameterized indexes that allow users to set the trade-offs,

etc. A more in-depth literature review falls beyond the scope of this dissertation

and as such we would do injustice to the important work of colleagues whose

work was not cited. Furthermore, the impact of some contributions cannot yet

be correctly estimated at this point. We will therefore limit the overview of

related work to some advances related to the prospects made above and other

developments that have an impact on the research in this work.

The development of several new index structures has been driven by appli-

cations requiring complex string searches. Affix index structures, for example,

have seen several developments. As discussed at the beginning of this section,

affix index structures expand beyond the expressiveness of suffix trees by allowing

bidirectional search algorithms. Schnattinger et al. designed a memory efficient

affix index structure, called bidirectional wavelet index [226]. This index structure

consists of wavelet trees for BWT(S) and BWT(Srev), with Srev being the reverse

of string S. Compared to the bidirectional BWT of Lam et al. [140], the bidi-

rectional wavelet index is somewhat larger, but traversal is only logarithmically

dependent on |Σ| instead of linear. A bidirectional FM-index, called FMD-index,

was proposed by Li [147]. The FMD-index consists of a single FM-index for

the string SS̄. This index was designed specifically for indexing double stranded

DNA, but is not applicable to generic texts. The advantage of this approach,

however, is an increase in speed for exact matching due to the use of a single

index.

The last few years have also seen some new time-memory trade-offs for both

classical and compressed index structures. In Chapter 3, we show how a small

hash index containing suffix array intervals for fixed-length k-mers can be used

to speed up top-down search in (enhanced) suffix arrays. Conceptually, this hash

index contains pointers to all nodes in the LCP interval tree that have a fixed

string depth. This technique was independently proposed by Grabowski and

Raniszewski [92]. In the same chapter, we present an improvement to sparse

suffix arrays by augmenting the index with a sparse version of the child array

from enhanced suffix arrays. Together with a sparse LCP array and support for

suffix links [126], an enhanced sparse suffix array index structure is formed. This

conceptually simple index allows easy tuning of the time-memory trade-off by

setting the sparseness. Fernandes and Freitas propose another improvement to

non-compressed index structures [61]. They propose a new scheme for sampling

the LCP array and sampling auxiliary data structures used for computing the

parent interval of an LCP interval. Their index has low memory requirements
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compared to classical full expressive index structures and is very fast in finding

maximal exact matches.

As discussed in Section 2.2.3, improvements in auxiliary data structures have

a direct effect on the performance of compressed index structures. Gog and

Petri proposed several new bit vector representations and implemented them in

FM-indexes, resulting in indexes that are either smaller or faster than previ-

ous state-of-the-art indexes [88]. This result clearly shows the importance of all

building blocks of a compressed index structures. Wavelet trees, another build-

ing block, have received attention in a dedicated review [191]. Recent proposals

for complete compressed index structures include, among others, CSTs taking

advantage of repetitiveness in sequences [2] and improvements in the speed of

certain operations for the currently smallest available CSTs [193].

Novel construction algorithms focused mainly on reducing work space require-

ments of main memory algorithms or combining main and secondary memory, re-

sulting in semi-external construction algorithms. Lightweight construction algo-

rithms for the Burrows-Wheeler transform are especially important, as BWT(S)

eventually requires much less memory than SA(S), but the fastest main memory

BWT construction algorithms first construct SA(S). Recently, Crochemore et al.

developed a O(n2) construction algorithm that only requires constant space [45]

and Beller et al. designed a space-efficient semi-external BWT construction al-

gorithm [26]. The latter algorithm was used to build BWT(S) for a 6GB file in

memory with only 8GB of workspace and has no upper limit on file size due to its

use of external memory. In addition, algorithms for constructing and querying

the BWT for a collection of strings were also proposed [22]. One of the fastest and

most used suffix array construction algorithms today is the SA-IS algorithm [197].

Recently, an O(1) workspace variant of this algorithm, called SACA-K, was de-

veloped [196]. Finally, in light of closing the gap between computer science and

bioinformatics, an exposition of the SA-IS algorithm was given intended for a

bioinformatics audience [229].

In the original review article, we argued that one of the biggest issues with

index structure research was the gap between theory and practice. This gap is

especially prominent in compressed index structures. A step towards closing this

gap was made by Gog et al. whose SDSL-lite library [86] contains the highlights

of 40 research publications4. This allows users to plug and play parts of a com-

pressed index structure until the desired time-memory trade-off is reached. Other

practical implementations can be found in recent genome analysis tools, such as

4https://github.com/simongog/sdsl-lite (last accessed September 2014)

https://github.com/simongog/sdsl-lite
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read mappers. In addition, index structures continue to be used in hardware

accelerated (i.e. using GPUs, FPGAs, etc.) applications [8].

Due to the recent availability of many genomes of the same species, compres-

sion and indexing of similar genomes has received a lot of attention [52]. Indexes

for a collection of sequences have many applications, such as read mapping against

multiple reference genomes, split-read alignment using an exon map (see Chap-

ter 5) and others [233]. Since the pioneering work of Mäkinen et al. [173] several

practical advances have been made in this field [46]. Most techniques focus on

indexing either multiple sequence alignments [173, 233] or indexing a reference

genome extended with a file of known variants between the additional genomes

and reference genome [46,109].
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Chapter 3

essaMEM

In this chapter we present essaMEM , a tool for finding maximal exact matches

that can be used in genome comparison and read mapping. essaMEM utilizes

an enhanced sparse suffix array (ESSA), which integrates a child array into an

existing sparse suffix array implementation. The chapter is based on the arti-

cle “essaMEM: finding maximal exact matches using enhanced sparse suffix ar-

rays” [248].

3.1 Introduction

Maximal exact matches are exact matches between two sequences that cannot

be extended to the left or right without introducing a mismatch (Definition 1.2).

MEMs are widely used in genome comparison tools as anchor points for alignment

[32,38,137], but can also be used without alignment to define a genomic distance

measure [51]. MEMs can also be used as seeds for alignment of high-throughput

sequencing reads [154], especially for alignment of very long reads.

A naive algorithm for finding all MEMs of a given minimum length between

two sequences S and P is to perform exact string matching between all pairs of

suffixes S[i..] and P [j..] that meet the left-maximality requirement, i.e. S[i−1] 6=
P [j − 1]. The matching process continues until a mismatch is found, or until the

end of either suffix is reached. The time complexity of this approach isO(|P |2|S|),
which is too high for practical applications.

Efficient MEM-finding algorithms can be subdivided into online and indexed

methods. Algorithms of the former type construct a (compressed) index structure

89
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for the concatenation of both sequences and iterate over the index to find the

MEMs [97, 106]. Algorithms in the latter method match one sequence against

an index of the other sequence. The advantage of indexed MEM-finding over

online MEM-finding algorithms is the reusability of the constructed index and

the lower memory requirements. We therefore focus on the indexed MEM-finding

algorithms.

The indexed MEM-finding algorithm proceeds in a similar way to the naive

algorithm presented above, but makes use of an index structure to speed up the

matching process. A suffix of P is matched to all suffixes of S simultaneously

using an index for S. In addition, some index structures allow to skip parts of

the matching process for suffix P [i..] using the result for suffix P [i−1..]. As such,

the optimal time complexity O(|P |+ |S|) can be reached at the cost of additional

memory requirements.

Originally, suffix trees [137] or enhanced suffix arrays [3] were used to find

MEMs. However, the size of these types of indexes is several times larger than

the size of the indexed sequence. Khan et al. suggest the use of sparse suffix

arrays [126]. Their SSA-based algorithm, sparseMEM , is able to find MEMs

faster than previous methods, while using less memory. As a result of this lower

memory footprint, SSAs can also index larger genomes than previous methods.

For large sparseness values, however, the runtime increases dramatically. Ohle-

busch et al. use (enhanced) compressed suffix arrays [201]. It was shown how the

CSA-based MEM-finding algorithm, backwardMEM , outperforms sparseMEM ,

except when memory is abundant.

Our contribution, essaMEM , optimizes the method by Khan et al. by sup-

plementing SSAs with a sparse child array for large sparseness factors. We show

that the new index structure outperforms the previous design, while maintaining

the same memory footprint. Furthermore, when combining both the suffix link

and child arrays, we achieve a complete enhanced sparse suffix array (ESSA),

which has the same expressiveness as suffix trees for substrings larger than the

sparseness of the index. We show that ESSAs are competitive for MEM-finding

with the CSA-based method by Ohlebusch et al. and outperform commonly used

methods like MUMmer [137] and Vmatch [136]. This indicates that, although

compressed index structures have recently become very popular [192, 247], the

use of ESSA-based algorithms can be a viable option for further research.

Section 3.2 briefly describes the SSA implementation of Khan et al. and intro-

duces enhanced sparse suffix arrays. In Section 3.3, we present the MEM-finding

algorithm and discuss all optimizations we have made. In Section 3.4, we compare



3.2. Enhanced sparse suffix arrays 91

essaMEM to previous MEM-finding methods. The final section also discusses new

developments that were made since the initial publication of essaMEM [248].

3.2 Enhanced sparse suffix arrays

Suffix trees and suffix arrays are the basic data structures to allow for fast se-

quence analysis. However, the size of the indexed data sets have fueled the need

for the development of other index structures with a lower memory footprint, as

discussed in Section 2.2. One of the possible options to alleviate the memory

requirements of suffix arrays is indexing only a sampled number of suffixes. This

type of suffix arrays are called sparse suffix arrays (SSA), which were briefly

discussed in Section 2.2.2.

Definition 3.1. The sparse suffix array SSA(S) with sparseness value s stores

the lexicographical ordering of every s’th suffix of string S as a permutation of

its index positions:

S[SA[(i− 1) · s]..] < S[SA[i · s]..], 0 < i <
⌈n
s

⌉
.

Definition 3.1 is very intuitive and nearly identical to the classical definition

of suffix arrays (Definition 2.2) except for the introduction of the sparseness

value s. Although the memory footprint of an SSA is s times smaller than that

of a SA, we will see that it has the same expressiveness as long as the queries

used in search algorithms are at least s characters long. The cost for a decreased

memory footprint is paid in additional computational resources.

3.2.1 Data structure

Similar to suffix arrays, sparse suffix arrays can be enhanced with additional

information, stored in separate arrays, to increase the expressiveness of the index

structure. In addition to an SSA, enhanced sparse suffix arrays (ESSA) consist of

a sparse LCP array, sparse child array and facilities for retrieval of sparse suffix

links. Most of the definitions used for enhanced suffix arrays (Section 2.1.3) still

apply to sparse suffix arrays because they only rely on the presence of an array of

lexicographically sorted strings. For example, the sparse LCP array contains the

length of the longest common prefixes of two consecutive suffixes in the sparse

suffix array. Likewise, an interval of SSA values with LCP of length ` can be

grouped in a sparse ` interval, which serves as a node in a virtual sparse suffix



92 essaMEM

Table 3.1: Arrays used by enhanced sparse suffix arrays for string S = ACATACAGATG$

and sparseness value 2. From left to right: index position, sparse suffix

array, sparse LCP array, sparse child array, sparse inverse suffix array and

sampled suffixes of string S.

i SSA LCP child SA−1 S[SA[2i]..]

0 4 -1 1 ACAGATG$

1 0 3 1 3 ACATACAGATG$

2 6 1 3 0 AGATG$

3 2 1 4 2 ATACAGATG$

4 8 2 2 4 ATG$

5 10 0 4 5 G$

tree. The sparse child array then stores the parent-child relationship in this

virtual sparse suffix tree. Finally, a node with label S[i..j] has a sparse suffix link

that point to the node with label S[i+ s..j], or the root if i+ s > j.

An example of an ESSA for sequence ACATACAGATG$, using sparseness value 2,

is given in Table 3.1. This example can be compared to Table 2.1, which shows

the normal enhanced suffix array. All suffixes with even index positions are

added to the index, as can be seen in the SSA column. The values of the LCP

array are based exclusively on the indexed suffixes, which are also printed in the

last column. Values of the child array and the inverse suffix array now range in

[0.. |S|−1
2 ] instead of [0..|S|−1], which could be used to further reduce the memory

footprint of the index if integers are stored succinctly. The definition of the child

array is identical to that of the non-sparse version, but the sparse inverse suffix

array is defined as ISA[SSA[ is ]] = i. Table 3.1 does not contain a sparse suffix

link array, as we adopt the idea of Khan et al. to calculate suffix links online

using a combination of the sparse LCP array and sparse ISA [51].

The virtual suffix tree that can traversed using the information stored in the

arrays of Table 3.1 can be seen in Figure 3.1.

Enhanced sparse suffix arrays have the advantage of being modular, similar

to ESAs. The basic index structure requires n bytes of storage for the indexed

sequence and 4n
s bytes for the SSA. The sparse LCP array requires an additional

n
s bytes and both the sparse ISA and child arrays require 4n

s bytes of memory.

In total, the ESSA thus consumes n+ 13n
s bytes. For MEM-finding, however, we

found that we can do without either the child array or the ISA depending on the

sparseness value, resulting in a practical memory footprint of n+ 13n
s bytes.
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Figure 3.1: Sparse suffix tree for string S = ACATACAGATG$, with sparseness value 2.

Each number i inside a leaf represents suffix S[i..] of the string S. Dashed

arrows correspond to suffix links. For the sake of brevity, only the first

characters followed by two dots and the special end-character $ are shown

for edge labels that spell out the rest of the suffix corresponding to the

leaf the edge is connected with.

3.2.2 String matching

String matching with an SSA or ESSA is identical to using their classical coun-

terparts. However, the patterns will only be matched to a fraction of the suffixes

of the indexed sequence. To obtain the complete set of occurrence of a pattern P

in an indexed sequence S, the index will have to be traversed multiple times

for consecutive suffixes of P . The full string matching algorithm is presented in

Algorithm 3.1. To find occ(P, S) in an index with sparseness value s, the algo-

rithm matches suffixes P [0..] through P [s − 1..] to obtain all occurrences in the

indexed suffixes of S. For suffixes different from P , the algorithm then checks if

the unmatched prefix of P also matches the substring of S at these positions.

Algorithm 3.1 is able to find all occurrences of P in S (|S| = n) if |P | = m ≥ s.
To see this, let P occur at offset j in S. If S[j..] is indexed, the match will be

found by matching P to the index. If S[j..] is not indexed, there will be an

offset j′ > j with j′ mod (s) = 0. For j′, it holds that P [j′ − j..] = S[j′..j′ +

(|P |− (j′−j)+1)], and because j′ is indexed, a match of P [j′−j..] will be found,

which then translates into a match of P at position j.



94 essaMEM

Algorithm 3.1 String matching on SSA and ESSA

Input: pattern P and sequence S, (E)SSA index I for S and sparseness value s

Output: occ(P, S)

1: for i in [0..s− 1] do

2: occ(P [i..], I)← match P [i..] to I

3: for j in occ(P [i..], I) do

4: if P [0..i] = S[j − i..j] then

5: add j to occ(P, S)

6: end if

7: end for

8: end for

Note that the sparse index structures are unable to retrieve all matches of

a pattern that is smaller than the sparseness value. In practice, however, the

length of patterns is much higher than the sparseness value because sparse index

structures are mainly used for very large sequences in which small patterns are

very frequent and less useful. In addition, large sparseness values are rarely used

as the memory footprint of the ESSA index becomes dominated by the footprint

of the reference genome itself.

The runtime of Algorithm 3.1 depends on the type of matching algorithm

used, which is O(m log(n
s ) + c) for the SSA, O(m + log(n

s ) + c) for the SSA

augmented with the sparse LCP array and O(m + c) for the SSA augmented

with both the sparse LCP array and sparse child array. In these formulas, c

equals the total number of occurrences of all prefixes of P that are matched to

the index, i.e.
∑s−1

i=0 occ(P [i..], I). The values also need to be multiplied by s to

obtain the full time complexity of the algorithm.

3.2.3 Construction

For the construction of the arrays making up the ESSA index structure, slight

variants of the algorithms for the classical arrays can be used. The construction

algorithms of all arrays, except the sparse child array, were taken from the imple-

mentation by Khan et al. They use the algorithm of Ferragina and Fischer [64]

for constructing SSAs, which is based on radix sort. The ISA and LCP arrays

can be easily calculated in a linear pass of the SSA [64]. For the construction

of the sparse child table, we use the algorithm described in [3]. This algorithm

can be used without major modifications because the child array only requires
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knowledge of specific intervals within LCP arrays (LCP intervals [3]), for which

the definition remains unchanged when introducing sparseness.

We did modify the algorithm, however, to make it work for sequences that do

not contain a terminal character that is lexicographically larger than all charac-

ters in the alphabet of the sequence. Our modifications relate to the computation

of up and down values, as described in Algorithm 6.2 in [3] and can be found in

Algorithm 3.2.

Abouelhoda et al. [3] prove that the assigned child array values are correct.

However, it is possible that not all down values are assigned. The down values

of the last increasing sequence of LCP values will still be on the stack at the end

of the algorithm if the sequence did not contain a terminal character appended

to the sequence, or a value that is low enough to flush the stack. We modify the

existing algorithm by clearing the stack at the end of the algorithm and executing

the lines within the while loop to check whether additional down values can be

found.

3.3 MEM-finding

Most MEM-finding algorithms roughly share the basic approach described in the

introduction of this chapter. The implementation of common algorithmic stages

can vary greatly, however, due to the specific design of the index structure used.

We will first discuss the MEM-finding algorithm based on classical suffix tree and

enhanced suffix array index structures [3, 137]. Subsequently, we will cover the

main alterations made to the algorithm by the SSA implementation of Khan et

al. Finally, we discuss the changes we proposed in our ESSA implementation.

Our main contributions are the introduction of the sparse child array, an option

to use suffix links in combination with the child array, and the introduction of

sampling in the suffixes of the pattern sequence (parameter p).

3.3.1 Outline

The essaMEM MEM-finding algorithm is given in Algorithm 3.3. The base algo-

rithm using classical index structures can be obtained by setting s = p = 1. The

algorithmic effects of those sparseness parameters is described further down this

section. All index-based MEM-finding algorithms using suffix tree variants follow

a three-step approach of i) constructing an index structure for S, ii) matching all
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Algorithm 3.2 Part of the construction algorithm for the sparse child array.

The algorithm describes how up and down values are calculated.

Input: the LCP array LCP and a stack ST

Output: all up and down values calculated for CHILD

1: lastIndex = −1

2: ST.push(0)

3: for i in [1.. n
s−1 ] do

4: while LCP [i] < LCP [ST.top] do

5: lastIndex = ST.pop

6: if LCP [i] ≤ LCP [ST.top] and LCP [ST.top] 6= LCP [lastIndex ] then

7: CHILD [ST.top].down = lastIndex

8: end if

9: end while

10: if lastIndex 6= −1 then

11: CHILD [i].up = lastIndex

12: lastIndex = −1

13: end if

14: ST.push(i)

15: end for

// Additional loop to fill in the remaining down values on the stack.

16: while 0 < LCP [ST.top] do

17: lastIndex = ST.pop

18: if 0 ≤ LCP [ST.top] and LCP [ST.top] 6= LCP [lastIndex ] then

19: CHILD [ST.top].down = lastIndex

20: end if

21: end while
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suffixes of P against this index until a mismatch occurs or the minimum length `

is reached and iii) checking possible matches for maximality constraints.

Index construction has been covered in the previous section and Section 2.4

for general index structures. While left-maximality of potential MEMs has to

be verified explicitly, right-maximality immediately follows from the properties

of the index structure. At each (virtual) suffix tree node during the matching

process, all positions contained in the leafs of all subtrees except for the subtree

that continues to match the pattern contain right-maximal matches between the

matched suffix and the reference genome. The length of the right-maximal match

is equal to the length of the currently matched substring, i.e. the string depth

of the node. The efficiency of the matching algorithm in line 6 of Algorithm 3.3

depends on the data structure, e.g. suffix tree, SA or ESA.

For every right-maximal exact match found this way, the algorithm explicitly

compares characters to the left of the match to verify left-maximality. The char-

acter comparisons required for checking left-maximality can be done in constant

time, as both S and the SA are stored uncompressed. Matches that are both

right and left-maximal and whose length is at least ` are subsequently reported

as MEMs.

In addition to the steps described thus far, a suffix link-based sliding window

scan is used in line 18 to recover computations made for the previous suffix. As a

result, MEMs can be computed with a linear, rather than a quadratic dependency

on m. The fact that not all implementations contain suffix links by default is

underpinned by the conditional statement above line 18. If the implementation

does not contain suffix links, the matching process starts from the root of the

(virtual) suffix tree.

3.3.2 Sparse suffix arrays

The MEM-finding algorithm by Khan et al. can be obtained from Algorithm 3.3

by using an SSA index structure and setting s > 1, while keeping p = 1. Similar

to the exact string matching Algorithm 3.1, the introduction of a sparse index

structure requires matching multiple suffixes of a sequence against the index

to obtain all occurrences of that sequence. However, since the MEM-finding

algorithm already iterates over all suffixes of P , the use of an SSA does not

require additional traversals of the index. Furthermore, the matching phase in

line 6 traverses a smaller index. This is noticeable as the SSA algorithm uses the

binary search algorithm during the matching phase, which has a complexity of

O(m+ log(n
s )).
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Algorithm 3.3 the essaMEM MEM-finding algorithm

Input: sequence S of length n, pattern P of length m, sparseness value s and

sampling factor p

Output: all MEMs between S and P of minimum length `

1: construct the enhanced sparse suffix array I for S with sparseness value s

// `s is the minimum length of right-maximal exact matches

2: `s ← `− (p · s− 1)

3: for i in [0..s− 1] do

4: j ← i

5: while j < m− `s do

6: match P [j..] to I until the longest match is found

7: store the suffix array interval of matches longer than `s
// all stored matched are right-maximal

8: if at least one match of length `s exists then

9: for all right-maximal exact matches do

10: check left-maximality by matching up to s · p characters

11: if the length of the match is at least ` then

12: report a maximal exact match

13: end if

14: end for

15: end if

16: j ← j + s · p
17: if suffix links are available then

18: recover part of the matching process using sparse suffix links

19: end if

20: end while

21: end for
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The price paid for the reduced memory footprint can be found in the loop

on line 9 in which left-maximality is checked. This is because the set of right-

maximal exact matches has expanded to matches of length ` − s and because

the maximum number of bases that can be added to the match is now s − 1.

MEM-finding using SSA-based algorithms becomes infeasible if ` − s becomes

close to zero, as will be shown in Section 3.4.

In addition to the use of SSA in the matching phase of the algorithm, Khan et

al. also support the sliding window scan using sparse suffix links. Because sparse

suffix links target nodes whose label is s characters shorter, the special double

loop in lines 3 and 5 are used and the inner loop has a step size of s.

3.3.3 Sparse child arrays

The first major improvement we made to the existing MEM-finding algorithm is

the incorporation of sparse child arrays. For this, we use the child array traversal

Algorithm 6.8 in [3]. However, minor adjustments are needed to incorporate

the input and output specifications of the MEM-finding algorithm because the

matching algorithm on line 6 might not start with a proper LCP interval. The

algorithm has to check whether the provided depth ` of the starting interval

[i..j] equals the LCP value `′ of the LCP interval `′ − [i..j]. This can be done

in constant time using the child and LCP arrays. If ` = `′, the algorithm starts

matching again with finding the correct child interval of [i..j]. On the other hand,

if ` < `′, the algorithm starts the matching process at the edge connecting [i..j]

with its parent interval. By design of the original SSA method, the case ` > `′

does not occur. As a result, the matching stage of the ESSA-based MEM-finding

algorithm can be run in O(m) time.

3.3.4 Sparse suffix links

Khan et al. simulate suffix links using the LCP array and a sparse inverse suffix

array (ISA) to speed up the matching stage of the MEM-finding algorithm. As the

produced intervals match LCP intervals as defined in [3], the existing algorithm

for simulating suffix links can be used in combination with a sparse child array.

However, sparse suffix arrays decrease the LCP value of the suffix link by s

instead of just one. As a result, the LCP value produced by the original SSA-

based algorithm might be smaller than the LCP value of the corresponding LCP

interval. Therefore, the matching algorithm described in Section 3.3.3 needs to

check for possible discrepancies between the two definitions.
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Due to the fact that suffix links are simulated by extending a subinterval until

the right boundaries are found, the suffix link simulation can fail. As a result, the

final MEM-finding algorithm still has worst case time complexity of O(m2 + o),

where o is dependent on the number of `− s right-maximal exact matches.

Although suffix links and (sparse) child arrays can be combined in enhanced

sparse suffix arrays, this combination does not lead to further improvements in

execution time for the MEM-finding algorithm, especially if the parameter p is

used (see Section 3.3.5). The combination of child arrays and suffix links might

still be of interest for designing other algorithms.

3.3.5 Pattern suffix sampling

The final addition to essaMEM is the introduction of sampling in the pattern

sequence P . This feature is enabled in Algorithm 3.3 by setting parameter p > 1.

This parameter allows to skip the matching phase of several suffixes of P , but in-

creases the number of right-maximal exact matches by decreasing the guaranteed

minimum length of those matches. While SSA-based methods already introduce

sparseness in the indexed reference genome, this parameter introduces sparseness

in the pattern.

In contrast to the sampling of indexed suffixes, suffixes in the pattern are

not sampled equidistantly because such a combined sampling strategy would

not result in all MEMs being found. Instead, s consecutive suffixes are always

sampled, separated by gaps of s(p− 1) suffixes that are skipped.

Lemma 3.1. Algorithm 3.3 correctly identifies all MEMs of minimum length

` ≥ p · s.

Proof. Let (i, j, `) be a MEM of length `. It is enough to show that the algorithm

identifies a suffix of this MEM of at least `s = `−(p·s−1) bases long, as this suffix

will be a right-maximal exact match. The argumentation used is similar to the

proof of the correctness of the original SSA-based MEM-finding algorithm [126].

First consider the case p = 1. If suffix S[i..] is not sampled, the distance d to

the next sampled suffix of S is lower than or equal to s−1. Therefore, the length

of S[i+ d..i+ `− 1] is at least `− s+ 1.

Next, consider the case p > 1. Again, the distance d to the first sampled suffix

in S will be lower than or equal to s− 1. Due to the equidistant sampling in S,

suffixes S[i+ d+ s..], . . . , S[i+ d+ s(p− 1)..] are also sampled. Furthermore, at

least on of the suffixes P [j + d..], P [j + d + s..], . . . , P [j + d + s(p − 1)..] will be

sampled in the pattern. This is because (j+d+ s(p−1))− (j+d) + 1 > s(p−1),
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which equals the maximum gap between two sampled suffixes in the pattern.

As a result, the shortest suffix of (i, j, `) sampled in both sequences has length

`− (d+ s(p− 1)) ≥ `s.

To illustrate the correctness of MEM-finding using a sparse index structure in

combination with sampling suffixes in the pattern, Figure 3.2 shows all possible

situations that can occur for s = p = 2 and a specific MEM.

Suffix sampling does not work well in combination with simulated sparse

suffix links. This combination would require p suffix link simulation steps to be

performed and simultaneously decreases the number of matched characters that

can be recovered using sparse suffix links. Therefore, we set p = 1 when suffix

links are enabled in essaMEM .

3.3.6 Implementation

essaMEM extends the SSA-based MEM-finding method by Khan et al. The

updated source code is available and open source1. We have also included extra

command line parameters to switch the use of suffix links or a sparse child array on

or off. We also included the parameter p and support all native MUMmer v3.23

parameters. In addition, all features of the original sparseMEM method still

function properly, including multithreading support. Because essaMEM supports

all MUMmer functions, it can replace the native MEM-finding algorithm in the

MUMmer alignment program2.

3.4 Results

The correctness of the essaMEM MEM-finding algorithm was experimentally ver-

ified using sparseMEM as a benchmark tool. Both tools found the same set of

MEMs on various data sets. We evaluated the performance and memory require-

ments of essaMEM against Vmatch, MUMmer, sparseMEM and backwardMEM

using all relevant data sets provided in [126], which include six pairs of megabase-

sized genomes, two pairs of gigabase-sized sequences and two sequencing read data

sets. We also tested the impact of the different improvements we implemented.

1https://github.com/readmapping/essaMEM(last accessed September 2014)
2http://mummer.sourceforge.net/(last accessed September 2014)

https://github.com/readmapping/essaMEM
http://mummer.sourceforge.net/
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Figure 3.2: (previous page) All 8 possible cases that might occur during MEM-finding

between a reference genome (top) indexed with sparseness s = 2, and a

read sequence (bottom) with suffix sampling p = 2. The matching sub-

sequence GGGTGAGGCTGGATTG (green) is maximal as it is flanked by mis-

matching base pairs C and A (red). Initial matches can only be found

between two sampled suffixes, whose starting positions are indicated in

dark green. Light green bases indicate starting positions of suffixes that

are not sampled. With s = 2 and p = 2, every second suffix is indexed and

s · (p − 1) consecutive blocks of suffixes are skipped for every successive

block of s suffixes that are matched in the read. The right-maximal exact

match (vertical connection lines) that is found by the algorithm is a suffix

of the complete MEM, whose starting position depends on the stride of

the sampled suffix blocks. Horizontal connection lines show the prefix of

the right-maximal exact match that needs to be additionally inspected in

order to find the left border of the complete MEM. The length of this

prefix is at most s · p.

3.4.1 Test Setup

A summary of all the different test data sets can be found in Table 3.2. The

tests include six megabase-sized genome comparisons, two gigabase-sized genome

comparisons and two data sets with NGS sequencing reads. Column 1 in Table 3.2

introduces an identifier for the data set and column 6 gives the minimum length `

that was used for the data set.

For all data sets, we compare essaMEM , MUMmer v3.23, Vmatch v2.1.7,

sparseMEM and backwardMEM . For essaMEM , we used five settings:

� essaMEM-1: uses a sparse child array, no suffix link support and p = 1;

� essaMEM-2: uses a sparse child array, no suffix link support and p is optimal

(default setting of essaMEM);

� essaMEM-3: uses both a sparse child array and suffix link support and

sets p = 1;

� essaMEM-4: uses the sparseMEM binary search algorithm, no suffix link

support and sets p = 1;

� essaMEM-5: uses the sparseMEM binary search algorithm, no suffix link

support and p is optimal.
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Table 3.2: Summary of all data sets used for benchmarking essaMEM . The first eight

data sets are whole genome comparisons, of which the first six are megabase

genomes and the last two are gigabase genomes. The last two data sets

consist of a reference genome and a sequencing read data set.

index reference size query size `

1 A. fumigatus 29Mbp A. nidulans 29Mbp 20

2 M. musculus16 95Mbp H. sapiens21 35Mbp 50

3 H. sapiens21 35Mbp M. musculus16 95Mbp 50

4 D. simulans 138Mbp D. sechellia 167Mbp 50

5 D. melanogaster 169Mbp D. sechellia 167Mbp 50

6 D. melanogaster 169Mbp D. yakuba 166Mbp 50

7 Mouse (mm10) 2.7Gbp Human (hg19) 3.1Gbp 100

8 Human (hg19) 3.1Gbp Chimp (panTro3) 3.4Gbp 100

9 Chicken (galGal4) 1.1Gbp SRR107602 447Mbp 100

10 D. melanogaster 169Mbp SRR034674 214Mbp 50

Note that sparseMEM is equal to essaMEM without sparse child array, p = 1 and

suffix link support enabled. For Vmatch, we also used two different performance

optimization settings:

� Vmatch-0: Vmatch with parameter -qspeedup 0;

� Vmatch-2: Vmatch with parameter -qspeedup 2.

Other program parameters are the same as used in [126] and [201]. However,

we explore a much larger interval of sparseness and compression values than

previously reported by other authors. We test all powers of 2 that are smaller than

the minimum length `, except for the Mouse-Human and Human-Chimp data

set, were the set of s-values equals {3, 4, 6, 8, 16, 32, 64}. The sampling value p

in essaMEM-2 and essaMEM-5 for a given sparseness value s was obtained by

testing a maximum of five successive values of p, with the largest value of p equal

to the largest value for which `s = `− s · p+ 1 ≥ 10 holds. The final choice of p

was set to:

p =

{⌈
`−10
s

⌉
, if s ≥ 4⌈

`−12
s

⌉
, if s < 4

The runtimes do not include the time for the index construction phase, if the

program contains such as phase. The resident set size was measured for the
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Table 3.3: The real size of the index structure built by sparseMEM , essaMEM and

backwardMEM for the D. melanogaster (169Mbp) genome. sparseMEM

and essaMEM share the same memory footprint.

s sparseMEM essaMEM-2 backwardMEM

1 1861MB 1861MB 1031MB

2 997MB 997MB 709MB

4 576MB 576MB 548MB

8 370MB 370MB 468MB

16 268MB 268MB 427MB

32 218MB 218MB 407MB

memory results in this section. Additional details on the experimental results,

including hardware configurations, can be found in Appendix C.

3.4.2 Memory requirements

First, we compare all tools exclusively on memory consumption. The memory

footprint of the classical index structures used in MUMmer and Vmatch is much

higher than those of the tools using compressed or sparse index structures. Fur-

thermore, they do not allow to set a memory-time trade-off. An example of the

exact memory footprint of the other tools is given in Table 3.3.

sparseMEM and essaMEM share the same memory footprint as the sparse

ISA array used in sparseMEM and sparse child array used in essaMEM have

the same size. In addition, the index of both of these tools consists of the ref-

erence genome, SSA and sparse LCP array. In terms of memory consumption,

backwardMEM starts with a lower memory footprint at no compression, but the

memory footprint of essaMEM decreases faster. For the data set in Table 3.3,

the index size of the MEM-finding tools is equal for s between 4 and 8.

In addition to the experimentally observed memory usage, we also report

the theoretical memory requirements of the index structures. MUMmer requires

approximately 15n bytes [137] and the index used in Vmatch requires 6n to 7n

bytes3. For a reference genome of size n, the default setting of essaMEM requires

n+ 9n
s bytes of memory. BackwardMEM requires 4n

s +1.375n bytes [85], where s

is used for sampling suffix array values used in the CSA. As a result, essaMEM

and backwardMEM theoretically have the same memory requirements for s ≈ 13.

3http://www.vmatch.de/virtman.pdf(last accessed September 2014)

http://www.vmatch.de/virtman.pdf
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3.4.3 Time-memory trade-offs

The time-memory trade-offs achieved by all tools on the megabase-sized genome

data sets and sequence read data sets can be found in Figures 3.3, 3.4 and 3.5.

The tests for the gigabase-sized genome data sets only include sparseMEM and

essaMEM , as the other programs did not meet the memory restrictions of our

hardware. Results for these data sets are therefore given in the next section. The

figures contain only the results for one essaMEM setting, namely essaMEM-2.

This setting provides the best performance of all essaMEM settings. The exact

time and memory statistics can be found in Appendix C.

From the results in Figures 3.3 and 3.4, it is clear that MUMmer is one of the

fastest MEM-finding algorithms, but its memory requirements are significantly

higher than those of the other programs. Furthermore, its memory footprint

cannot be altered.

Vmatch features a similar mapping time to MUMmer, but benefits from

smaller memory requirements. In addition, Vmatch features two memory set-

tings using the -qspeedup parameter. This memory footprint is, however, still

higher than the memory footprint of backwardMEM (in all settings) and both

sparseMEM and essaMEM (for s ≤ 2). As a result, Vmatch lacks the flexibility

of the programs using sparse or compressed index structures. Moreover, Vmatch

is completely outperformed by essaMEM , both in mapping time and memory

consumption.

In all tests, sparseMEM is clearly outperformed by both backwardMEM and

essaMEM , except for some cases when memory is abundant (s = 1). sparseMEM

is very fast for small values of s, but essaMEM is still 2 to 10 times faster

than sparseMEM . This gap further increases for intermediate values of s as the

performance of sparseMEM quickly degrades. For the D. melanogaster - D.

yakuba data set (Figure 3.4c), for example, essaMEM becomes up to 25 times

faster than sparseMEM . The decrease in performance could be explained by the

diminishing use of suffix links. For the highest values of s, however, the runtime

of sparseMEM decreases again, whereas the performance of essaMEM slowly

degrades. As a result, sparseMEM is only 4 to 6 times slower than essaMEM

for low memory settings. The increase in performance for high sparseness values

could be explained by the low performance of the suffix link simulation algorithm

for intermediate sparseness values.



3.4. Results 107

0

50

100

150

200

250

300

0 100 200 300 400 500

m
a
p

p
in

g
 t

im
e 

(s
)

memory footprint (MB)

sparseMEM

essaMEM-2

backwardMEM

MUMmer

Vmatch

(a) A. fumigatus vs A. nidulans

0

100

200

300

400

500

0 200 400 600 800 1000 1200 1400 1600

m
a
p

p
in

g
 t

im
e 

(s
)

memory footprint (MB)

sparseMEM

essaMEM-2

backwardMEM

MUMmer

Vmatch

(b) M. musculus16 vs H. sapiens21

0
100
200
300
400
500
600
700
800
900

1000

0 100 200 300 400 500 600 700

m
a

p
p

in
g

 t
im

e 
(s

)

memory footprint (MB)

sparseMEM

essaMEM-2

backwardMEM

MUMmer

Vmatch

(c) H. sapiens21 vs M. musculus16

Figure 3.3: Scatterplot showing the memory-time trade-offs of MEM-finding between

megabase-sized genome data sets 1 to 3.
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Figure 3.4: Scatterplot showing the memory-time trade-offs of MEM-finding between

megabase-sized genome data sets 4 to 6.
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Figure 3.5: Scatterplot showing the memory-time trade-offs of MEM-finding between

a reference genome and a read data set (data sets 9 to 10). For (a),

memory requirements for MUMmer were too high for data set 9 and are
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A similar decrease in runtime for the mapping phase with high sparseness s can

be observed using the sparse child array in essaMEM . This is, however, countered

by the diminishing effect of the sampling parameter p and can therefore not be

clearly seen in Figures 3.3 to 3.5. The lower running time for the mapping phase

might be explained by a combination of the use of a sparse child array that can

match more than one character at the same, smaller minimum lengths in the

matching phase and improved I/O performance.

The results also indicate that essaMEM is in general somewhat faster than

backwardMEM for comparable memory settings. If p = 1 due to a small differ-

ence between ` and s, however, backwardMEM is faster for intermediate values

of s, whereas essaMEM is faster for large values of s. The exact values at which

either method becomes faster than the other is dependent on the data set. In Fig-

ure 3.3c, for example, the runtime of backwardMEM is almost constant, whereas

in Figure 3.4a, runtime steeply increases with increasing values of s. Note that,

except for the Aspergillus data set in Figure 3.3a, the essaMEM data points are

located below the backwardMEM data points. For most data sets, essaMEM

with s = 16 even outperforms the fastest setting of backwardMEM . In contrast

to SSA-based methods, however, backwardMEM puts no restriction on the max-

imum value of s and could thus be used for small ` settings in combination with

a high compression factor.

The performance of sparseMEM , essaMEM and backwardMEM is dependent

on the product of the sparseness value and the number of right-maximal matches.

This dependency is more apparent for backwardMEM in our tests, but can also

be detected in essaMEM as p · s approximates `. To illustrate this, Table 3.4

shows the relationship between the number of right-maximal matches for the

first six data sets and the mapping time for varying s. In addition, column 3

of Table 3.4 contains the mapping time of a modified version of backwardMEM

that does not calculate the offset of the MEMs in the reference genome. We find

that by disabling the expensive calculation of the offset, the overall runtime of

backwardMEM becomes independent of s. The overhead caused by calculating

the offset can be found by comparing the value in column 3 of Table 3.4 with

columns 4 to 9. Note that by comparing the overhead of computing the offset

for different values of s, a linear dependency on s can be found. Furthermore, by

comparing the overhead for a fixed value of s with the different number of right-

maximal matches in column 2 of Table 3.4, a linear dependency on the number

of right-maximal matches can be found. These results confirm the theoretical

complexity of the algorithm that is given in [201]. According to Gog [85], the
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Table 3.4: Relationship between number of right-maximal matches (column 2) and

runtime in seconds for different values of s (columns 4 to 9) on the

megabase-sized genome data sets (column 1). Column 3 shows the runtime

in seconds of backwardMEM if only the number of right-maximal exact

matches is calculated without searching for the positions of the MEMs in

the reference genome. As this runtime is independent of s, only one value

is given.

data set #MEMs runtime for s

#MEMs 1 2 4 8 16 32

1 1.7M 34 35 36 36 38 43

2 2.6M 38 41 42 43 45 51 64

3 2.6M 97 101 101 103 105 111 121

4 49.6M 167 269 379 579 1028 2057 4334

5 226.9M 167 242 306 408 671 1271 2620

6 395.4M 180 193 208 233 302 412 694

linear dependency on s could be removed by storing all suffix array indexes to

disk, sorting them with an external memory algorithm, and finally streaming the

uncompressed suffix array to get all required values.

3.4.4 Impact of optimizations

This section contains experimental results that can be used to assess the impact

of the settings available in essaMEM (essaMEM-1 to essaMEM-5). These results

were obtained for the gigabase-sized genome data sets (data sets 7 and 8), and

are shown in Figure 3.6. As a reference, Figure 3.6 also shows the results for

sparseMEM . The difference in performance between sparseMEM and essaMEM

is similar to that for the previous data sets. For the Mouse-Human data set, for

example, sparseMEM becomes up to 50 times slower than essaMEM-2.

A first observation on the effect of our optimization is that the influence of

parameter p is significant, especially for small values of s. For s = 1, optimizing p

leads to an increase of performance of a factor 10 to 20. An extreme case is

measured in the sequencing read data set for the Chicken genome (Figure 3.5a),

where optimizing s results in a mapping time that is 40 times lower than the

mapping time for s = 1.

The impact of suffix sampling can be seen by comparing the performance
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a gigabe-sized genome data sets 7 and 8.
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of essaMEM-1 and essaMEM-2 or essaMEM-4 and essaMEM-5. The relative

performance of parameter p and sparse suffix links can be found by comparing

essaMEM-2 and essaMEM-3 or sparseMEM and essaMEM-5. These results show

that for the given application and data sets, parameter p serves the same purpose

as suffix links, as the effect is more significant for small sparseness factors. Suffix

sampling in the pattern results, however, in a higher increase of performance in

mapping time and does not require storage of additional data structures. Note,

however, that suffix sampling increases the time required for checking the left-

maximality of right-maximal exact matches.

In Figure 3.6, a decrease in mapping time of sparseMEM can be seen for large

values of s. A possible reason for this could be the decrease in minimum length

(` − s + 1) during the matching phase, which results in less binary searches. In

addition, better I/O performance and cache effects could positively affect the

runtime of the program. A similar behavior is observed for essaMEM when the

parameter p is not taken into account. For example, Figure 3.6 shows a decrease

in runtime of essaMEM with p = 1 for increasing values of s. In addition to the

effects that affect the runtime of sparseMEM , a higher sparseness value could

increase the number of characters on the branches of the virtual sparse suffix

tree, thus increasing the number of characters a sparse child array can match in

one go.

The performance gain due to the use of the sparse child array can be seen

by comparing essaMEM-1 and essaMEM-4 or essaMEM-2 and essaMEM-5. The

test results show that the performance gain is significant. This holds especially

true for higher values of s, where the effect of either suffix sampling or suffix links

diminishes. As a result, essaMEM remains competitive with backwardMEM ,

even for smaller memory settings.

If the enhanced sparse suffix array of essaMEM consists of both a sparse

child array and sparse suffix links, the algorithm could benefit from both data

structures. However, the tests do not show a significant improvement in mapping

time of essaMEM-3 compared to the minimum of the runtimes of sparseMEM and

essaMEM-1. Furthermore, this setting has a higher memory requirement than

other settings. Moreover, the suffix links and suffix sampling counteract each

other. In some cases (see for example Figure 3.6a), the suffix links simulation

even decreases the performance of this setting compared to essaMEM-1.
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3.5 Related work

The algorithm and experimental results as described in this chapter are based

on the initial release of essaMEM [248]. Since then, two new MEM-finding tool

have been developed, called slaMEM [61] and GPUMEM [4]. slaMEM utilizes

an FM-index augmented with both a new sampled LCP array representation

and a new sampled data structure to obtain parent intervals in the LCP-interval

tree. GPUMEM utilizes the massively parallel GPU threads together with a

lightweight indexing structure.

Although slaMEM employs the backwardMEM MEM-finding algorithm, the

authors did not implement a tunable memory-time trade-off. However, the sin-

gle configuration of slaMEM is reported to be both fast and lightweight. For

benchmarking their tool, the authors used data set 6 and data set 7 (the or-

der of reference and query sequence was reversed for the latter data set). For

the megabase-sized data set 6 (D. melanogaster versus D. yakuba), slaMEM is

slightly faster than essaMEM using s = 16 (7% faster), but requires more mem-

ory (40% more). For higher sparseness settings, slaMEM is up to 70% faster than

essaMEM . For the gigabe-sized genome data set, slaMEM is roughly 25% faster

than the fastest setting of essaMEM , which was the setting with s = 32. For this

setting, memory requirements of slaMEM were more than twice as high as those

of essaMEM . For lower sparseness values, the difference in runtime between the

tools becomes higher, and the memory footprint of essaMEM increases. As a

result, slaMEM exhibits a very interesting time-memory trade-off that does not

require optimizing parameter setttings.

Because GPUMEM is the only recent MEM-finding tool for the GPU, Abu-

Doleh et al. compared the performance of their tool against CPU-based MEM-

finding algorithms. sparseMEM and essaMEM are run using a maximum of 8

threads, but slaMEM and MUMmer do not support shared-memory parallelism.

From the evaluations, GPUMEM outperforms all other tools on the tested data

sets, with essaMEM having the highest performance among the CPU-based tools.

Since the initial release of essaMEM , we added a few improvements to the

algorithm and implementation. The major change in the index structure and

algorithm is the introduction of a k-mer table that connects sequences of fixed

length k to the suffix intervals in the ESSA index structure. This table is designed

to partially mitigate the loss of suffix links when using the suffix sampling by

providing pointers to positions in the LCP interval tree at string depth k.

In detail, the new data structure consists of an array of length Σk, with one

entry for every sequence of length k. An entry for sequence P stores the left and
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right boundary of the maximal suffix array interval [i..j], such that

S[SA[i]..SA[i] + k − 1] = . . . = S[SA[j]..SA[j] + k − 1] = P,

but S[SA[i− 1]..SA[i− 1] + k− 1] 6= P and S[SA[j + 1]..SA[j + 1] + k− 1] 6= P .

If P is the LCP of the suffixes in the suffix array interval [i..j], the entry stores

the location of an LCP interval; if not the table entry points to an edge between

two nodes in the LCP interval tree.

The new data structure is used on line 6 in Algorithm 3.3. Instead of starting

at the root, the algorithm skips the first k bases and moves in constant time to

string depth k in the virtual suffix tree, if possible. If the entry for the k-length

prefix of the current query is empty, the algorithm breaks and continues with the

next step of the loop.

The value of k is automatically decided as being equal to the minimum of 10

and ` − s · p + 1, which is equal to the minimum length of right-maximal exact

matches in Algorithm 3.3. The maximum value 10 fixes the maximum memory

requirements for this data structure to 8|ΣDNA|10 = 8 · 410, which is less than

10MB. In this calculation, we used 2 four-byte integers to store the suffix ar-

ray interval boundaries. In practice, the additional memory requirements are

negligible compared to the rest of the index.

Table 3.5 shows the increase in performance by using the k-mer table. The

values in this table represent the gain in performance, expressed in relative speed-

up, by using the k-mer table in the essaMEM-2 setting. The impact of this

improvement is significant, as runtime is up to three times lower than the previous

optimal runtime of essaMEM .

In addition to the introduction of the k-mer lookup table, we also added the

option to store the ESSA index to disk for later usage.
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Table 3.5: The effect of the introduction of a k-mer table in the ESSA index structure.

The values in this table represent the gain in performance, expressed in the

relative speed-up, by using the k-mer table in the essaMEM-2 setting. The

rows represent the different data sets in Table 3.2 and the columns represent

different sparseness values.

data set s

1 2 4 8 16 32

1 2.50 2.73 2.96 3.21 2.00

2 1.24 1.37 1.33 1.51 2.43 2.68

3 1.43 1.65 1.61 1.82 2.70 2.97

4 1.24 1.38 1.39 1.59 2.32 2.61

5 1.32 1.50 1.39 1.59 2.53 2.75

6 1.48 1.71 1.44 1.67 2.78 2.94

10 1.17 1.27 1.27 1.42 2.06 2.34



Chapter 4

ALFALFA

This chapter covers a novel read mapper called ALFALFA. Rapid evolutions

in sequencing technology force read mappers into flexible adaptation to longer

reads, changing error models, memory barriers and novel applications. ALFALFA

achieves high performance in accurately mapping long single-end and paired-

end reads to gigabase-scale reference genomes, while remaining competitive for

mapping shorter reads. Its seed-and-extend workflow is underpinned by fast

retrieval of super-maximal exact matches from an enhanced sparse suffix array,

with flexible parameter tuning to balance performance, memory footprint and

accuracy. The chapter is based on the article “A long fragment aligner called

ALFALFA” [249].

4.1 Introduction

Mapping sequencing reads to reference genomes plays a key role in many genomics

analysis pipelines. For a single read, it consists of finding optimal substring align-

ments among all alignments between the read and reference genome. A more

technical description of the read mapping problem is given in Section 1.3.2. Due

to the size of the data sets, read mappers rely on a combination of efficient index

structures, search algorithms and a multitude of heuristics. In addition, read

mappers and their underlying index structures are under constant development

to handle specific applications or data models and to further improve implemen-

tations [153,247]. An overview of the similarities and differences between existing

read mappers is given in Section 1.3.3.

117
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Recent advances in next-generation sequencing technologies have led to in-

creased read lengths, higher error rates and error models showing more and longer

indels. This general trend is likely to continue with third-generation sequencing

technologies like Oxford Nanopore and Pacific Biosciences [181]. Most of the

current read mappers target short reads and allow for no or low numbers of

mismatches and/or indels. This makes them vulnerable to the ongoing tech-

nological advances. It has inspired a second generation of novel read mappers

(GEM [179]), while authors of short read mappers present new versions equipped

for aligning longer reads with higher error rates (Bowtie 2 [141], BWA-SW [151],

BWA-MEM [148] and CUSHAW3 [162]). Recurring strategies include increasing

the seed lengths, clustering neighboring seeds into candidate regions and optimiz-

ing the implementations of global and local alignment algorithms using banded

and bit-parallel versions. However, except for BWA-SW and BWA-MEM , none

of the existing mappers scales well for read lengths up to several kilobases.

The read mapper ALFALFA is extremely fast and accurate at mapping long

reads (> 500bp), while still being competitive for moderately sized reads (>

100bp). Its implementation of the canonical seed-and-extend approach is em-

powered by a novel index structure, combined with several new optimizations

and heuristics. Both end-to-end and local read alignment are supported, and

several strategies for paired-end mapping can efficiently handle large variations

in insert size. ALFALFA is unique in using enhanced sparse suffix arrays to in-

dex reference genomes. This data structure facilitates fast calculation of maximal

and super-maximal exact matches [248] and supports the important design goal

of balancing between processing speed, memory consumption and mapping accu-

racy. The speed-memory trade-off is tuned by setting the sparseness value of the

index. The techniques and heuristics used to filter and combine seeds and candi-

date regions are designed to handle longer reads. Furthermore, ALFALFA uses

a chaining algorithm to speed up dynamic programming extension of candidate

regions.

The name of the read mapper ALFALFA is an acronym for “A Long Fragment

Aligner/A Long Fragment Aligner”. It is repeated twice as a pun on repetitive

and overlapping fragments observed in genome sequences that heavily distort read

mapping and genome assembly. The reference to the flowering plant Medicago

sativa in the pea family Fabaceae bearing the same vernacular name underscores

the ability of enhanced sparse suffix arrays to index entire plant genomes (that

are among the largest genomes known), without giving up expressiveness for

fast string matching with respect to the memory-intensive suffix trees and suffix
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arrays.

The algorithms and heuristics used in ALFALFA are presented in Section 4.2.

This section first covers our implementation of the seed-and-extend alignment

strategy on a high level. Afterwards, each individual step and heuristic is dis-

cussed in more detail. The design choices made in the creation of ALFALFA

are motivated by discussing their effect on performance or using case studies

that were encountered during the development of the algorithm. In Section 4.3,

ALFALFA is evaluated on a wide variety of real and simulated read data and

compared against other long read mappers.

4.2 Algorithms & heuristics

The ultimate goal set by ALFALFA is to report a number of different feasible

alignments (see Definition 1.5) between the reads and the reference genome. The

minimum score d required for an alignment to be deemed feasible is calculated

using a parameter expressing the maximum percentage of differences based on the

read length. This parameter is also used to determine when two alignments are

considered different, namely when the difference between their mapping positions

is less than the maximal allowed edit distance.

Due to huge differences in size between reads and reference genomes, most

read mappers share a high-level strategy of i) finding matching segments that are

used to ii) prune the search space to genomic regions in which iii) alignments are

found that meet a particular scoring threshold. These steps are usually preceded

by a step in which either the reference genome or read data set is indexed. The

ALFALFA algorithm is outlined in Figure 4.1. ALFALFA is the first read mapper

that is underpinned by an ESSA index structure ((Figure 4.1 step a)). ALFALFA

takes advantage of the technological evolution by using MEMs and SMEMs as

seeds (Figure 4.1 step b). These seeds are then extensively filtered and triaged

to allow for more accurate prioritization of candidate regions (Figure 4.1 step c).

To further limit the number of expensive dynamic programming computations

needed, ALFALFA chains seeds together to form a gapped alignment. As a result,

the extension phase is limited to filling gaps in between chains while evaluating

alignment quality (Figure 4.1 step d).
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Figure 4.1: (previous page) ALFALFA follows a canonical seed-and-extend workflow for

mapping reads onto a reference genome. The reference genome is indexed by

an ESSA (a) to enable quick retrieval of MEMs and SMEMs between a read and

the reference genome (b). Seeds are then grouped into non-overlapping clus-

ters that mark candidate genomic regions for read alignment (c). Handling of

candidate regions is prioritized by agglomerate base pair coverage of the seeds.

The final extend phase samples seeds from candidate regions to form collinear

chains that are bridged using banded dynamic programming (d). All of these

steps strive to make optimal reuse of seeds in order to avoid superfluous compu-

tations. Background image used with permission from Walter Obermayer.

Another outline of the high-level single-end alignment strategy of ALFALFA

is given in Algorithm 4.1. The seeds calculated in line 4 are filtered and grouped

together into candidate regions in line 9. After being sorted, these candidate re-

gions are further examined in line 13 to see if they may contain a good alignment.

The seeds in the regions that meet the criteria are chained together in line 16,

after which the chains are extended in line 17 using dynamic programming. The

result of the extension procedure is an alignment score, which is converted into

a full alignment in line 28 for the best alignments found.

The various sub procedures in Algorithm 4.1 are discussed in detail in the

next sections. These sections contain a description and the pseudocode of the

algorithms and heuristics used, supplemented with examples to illustrate design

choices and a discussion on advantages and disadvantages of the methods and

viable options for parameter settings, when applicable.
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Algorithm 4.1 outline of single-end mapping algorithm used by ALFALFA

Input: reference genome G, list of reads LR

Output: SAM file containing alignments of reads onto G

1: read input and parse parameter options

2: construct enhanced sparse suffix array I for G

3: for all reads R in LR do

4: seeds ← calculateSeeds(G,R, I)

5: if no seeds were found then

6: lower minimum seed length

7: seeds ← calculateSeeds(G,R, I)

8: end if

9: regions ← identifyCandidateRegions(seeds)

10: sort regions according to seed coverage of the read sequence

11: while regions remaining and not enough feasible alignments found do

12: C ← current region

13: if extendRegion(C) then

14: sort seeds in C according to length

15: for all seed s ∈ C do

16: chain ← buildChain(s, C)

17: alignment ← extendChain(chain)

18: if feasibleAlignment(alignment) then

19: add alignment to R

20: end if

21: end for

22: end if

23: end while

24: if no feasible alignments found then

25: rescueProcedure(G,R, I,regions)

26: end if

27: sort feasible alignments

28: postProcess(R)

29: end for
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As an example, Figures 4.2 to 4.4 depict the flow of the algorithm for one

read. Figure 4.2 shows the reference genome as separate segments (chromosomes

or contigs) organized in a circle around a read sequence (light green) in the center.

Note that the read sequence is not drawn in scale with the reference genome. The

figure also shows the location of all seeds found as black bars around the read (in

this case all MEMs with ` ≥ 30 were used as seeds). The seeds are also connected

to their position in the reference genome. Bars above (below) the read represent

seeds located on the forward (reverse) strand. The dots on the reference genome

represent regions containing MEMs and are thus candidate mapping locations.

In addition, dots in which more lines converge will have a higher score as more

MEMs are found in there. In this example, most regions will contain only a

single small seed and will thus be filtered out in later phases. Furthermore, the

seeds span the entire read sequence only in a single region. This region, identified

by the black dot outside the circle, is also the region from which the read was

simulated.

In Figure 4.3, we have zoomed in to the area around the highest scoring

candidate region. The read and reference genome are shown in the same way

as in Figure 4.2, but now the displayed region of the reference genome is small

enough to show the exact location of the seeds on the reference genome. The black

arc outside the reference genome shows the location of the candidate region as

delineated by ALFALFA. This candidate region extends somewhat beyond all

seeds to take into account parts of the read that are not covered by seeds and

additional insertions. The black segment on the reference genome corresponds

to the location from which the read was simulated, thus corresponding to the

location of an optimal alignment. The simulated region does not include the first

two seeds, but does extend beyond the last seed. As a result, the candidate region

identified by ALFALFA completely contains the simulated region.

Finally, Figure 4.4 illustrates the results of the chaining and alignment phase

of the algorithm. The candidate region found by ALFALFA is shown at the

top and the read at the bottom. Most read mappers extend candidate regions

by performing full dynamic programming within the boundaries of the region.

ALFALFA, however, combines seeds in the candidate region into a chain, covering

large sections of the matching bases of the alignment. The seeds in the example

are depicted as connected bars between the read and reference genome. Seeds

making up the chain are shown in black, whereas those not included in the chain

are shown in red.
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Figure 4.2: Example illustrating the general workflow of ALFALFA, showing the col-

lection of seeds (MEMs) that are found between a read (light green bar in

the center) and a reference genome (green circle, each segment is a chro-

mosome or contig). Seeds are depicted as black bars around the read, on

top of the read for seeds found on the forward strand and below the read

for seeds found on the reverse strand. The seeds are connected to their

location on the reference genome. As a reference, the black dot outside

the circle represents the simulated location of the read.
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Figure 4.3: Example illustrating the general workflow of ALFALFA, showing the col-

lection of seeds (MEMs) in a single candidate region. Seeds between the

read (light green bar in the center) and the area around the candidate

region (green circle) are depicted as connected black lines. The black

segment on the reference genome indicates the region of an optimal (sim-

ulated) alignment and the black segment outside the circle indicates the

part of the reference genome defined by ALFALFA as the candidate align-

ment region.
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Dynamic programming is only performed in between two seeds and at the

edges of the candidate region. As a result, large sections of the alignment are

already fixed before costly dynamic programming routines are applied. The figure

also clearly illustrates the importance of finding a good set of seeds. Ideally, the

chain covers as much of the read sequence as possible. To illustrate the quality of

the seeds for this example, grey areas in Figure 4.4 represent parts of an optimal

alignment that consists of three or more consecutive matching bases. Among

those, light grey areas are covered by seeds, whereas darker ones are not. In this

example, all large matching areas are covered, except some at the end of the read.

Most matches that were not found as seeds are due to the lower limit imposed

on seeds by ALFALFA during seed-finding.

4.2.1 Seed-finding

Seed-finding is the first major phase in the mapping process. Depending on the

data and parameter settings, it usually takes about a quarter to half of the total

runtime. Ideally, seed-finding produces a limited number of long seeds that cover

as much of the mapping location as possible. Finding too many seeds results in

an exponential increase of candidate mapping locations and usually favors highly

repetitive regions in the genome. As a result, mapping locations may be missed.

Finding too few seeds results in a possible loss of good mapping locations and

shorter chains. The latter may increase the computational cost of the extension

phase.

One of the strongholds of ALFALFA is its use of the essaMEM algorithm de-

scribed in Chapter 3 as a way to identify seeds. As a result, ALFALFA inherits

several parameters from essaMEM to tune the performance of the seed-finding

process such as the sparseness of the index, suffix sampling in the read and the

minimum seed length. In addition, ALFALFA can limit the maximum num-

ber of seeds per read offset to further reduce the number of seeds. Moreover,

ALFALFA implements two new MEM-finding algorithms that focus on finding

SMEMs (see Definition 1.3). The choice of seed-finding algorithm also impacts

the performance of the read mapping algorithm.

By default, ALFALFA uses a fixed sparseness value of 12 for reference genomes

that have a similar size to the human genome. An automated choice of the

suffix sampling in the read is made using the function described in Section 3.4.1.

ALFALFA finds variable-length seeds with a fixed minimum length, which is 40

by default. The default was chosen, based on our experiments for the human

reference genome and varying read lengths.
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For shorter genomes, this minimum seed length could be lowered to increase

sensitivity of the algorithm. On the other hand, ALFALFA automatically tunes

the minimum seed length for reads longer than 1000bp. For those reads, the

minimum seed length ` is incremented by 20 for every 500bp above 1kbp, with

the total increment being divided by the maximum percentage of errors allowed

in accepting alignments.

Super-maximal exact matches

For long read mapping, the performance of the essaMEM MEM-finding algorithm

described in Chapter 3 does not suffice. Furthermore, the number of MEMs

between a short read sequence and a large reference genome can be very high,

hindering fast identification of a small set of candidate mapping locations. As

a result, ALFALFA implements two other seed-finding algorithms that focus on

finding SMEMs in addition to a small subset of rare or very large MEMs. The

use of SMEMs as seeds is motivated by the fact that the MEM with the highest

similarity to a part of the reference genome, i.e. the longest, will most likely

be found in a region containing a good alignment between read and reference

genome.

We have designed Algorithm 4.2 to find a smaller set of MEMs, of which

most are SMEMs. Furthermore, it is guaranteed to find all SMEMs if there

is no sparseness in the read or index of the reference genome. Technically, the

algorithm is highly similar to the MEM-finding algorithm given in Algorithm 3.3.

The main difference is that Algorithm 4.2 does not keep track of all right-maximal

exact matches longer than the minimum length. Given an offset in the read, left-

maximality is only checked for the longest right-maximal exact matches.

Lemma 4.1. If the sparseness s of the ESSA and the sparseness p in the read

are equal to one (no sparseness), the set of MEMs returned by Algorithm 4.2 is

exactly the set of all SMEMs.

Proof. To see this, suppose that m = (i, j, `) is an SMEM that corresponds to the

substring S[i..i+`−1] in the reference genome S and P [j..j+`−1] in the read P .

If there is no sparseness, the algorithm loops over all offsets of P . For offset j, the

algorithm will match exactly ` characters because i) at least ` characters can be

matched due to P [j..j + `− 1] = S[i..i+ `− 1] and ii) no more than ` characters

can be matched due to m being an SMEM. Similarly, the algorithm will not find

any right-maximal match with offset j and length ` that is not left-maximal,
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Algorithm 4.2 SMEM-finding algorithm

Input: reference genome G, ESSA index I and read sequence R

Output: a set of SMEMs between G and R

1: `← minimumLength(|P |,e) // minimum similarity = 100− e
2: s← sparseness of I

3: p← sparseness(`,s) // p is the sparseness in the read

// `s is the minimum length of right-maximal exact matches

4: `s ← `− (p · s− 1)

5: for all i in range [0..s− 1] do

6: for j from i to |R| − `s do

7: xmi ← match R[j..] to I

8: if # characters matched ≥ `s then

// xmi contains the longest right-maximal exact matches

9: for all right-maximal exact matches in xmi do

10: compare up to s · p characters to check for left-maximality

11: end for

12: if max(s, p) = 1 and all matches in xmi are MEMs then

13: report all matches in xmi as SMEMs

14: else if max(s, p) > 1 then

15: `min = `− s
16: report MEMs in xmi whose length is at least `min
17: end if

18: end if

19: j ← j + s · p
20: end for

21: end for
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because otherwise a longer MEM could be found that contains m. As a result,

the condition in line 12 has been met and m is reported.

Conversely, if the algorithm reports a MEM m = (i, j, `), it is an SMEM.

No other MEM matched P [j..j + `] because it did not match any substring of S

(line 7). As a result, there is no other MEM that covers P [j..j+`−1] and extends

to the right of it. Similarly, if there would be a MEM covering at least P [j..j+`−1]

and extending to the left of it, this match would be found as a right-maximal

exact match together with m, but it would not be left-maximal. In that case,

the condition in line 12 would be false and m would not be reported. Therefore,

no other MEM can be found that is longer than ` characters and in which m is

fully contained.

By default, ALFALFA induces sparseness in both the read and reference

genome. In this case, Algorithm 4.2 is not guaranteed to produce the set of

all SMEMs. An example of an SMEM that is not reported and a reported MEM

that is not an SMEM are shown in Figure 4.5. The SMEM m = (2, 2, 5) covering

S[2..6] and P [2..6] is not found. The suffix S[2..] is not sampled and therefore m

cannot be found if the offset in P is 2. For offset 3, m would be reported by Algo-

rithm 3.3 because it is a MEM. For offset 3, however, Algorithm 4.2 finds a longer

right-maximal exact match (7, 3, 7). It is therefore unable to find m. Although

the MEM m′ = (19, 19, 8) is contained in the longer MEM m′′ = (30, 19, 11), and

is thus not an SMEM, it will be reported. This is because suffix S[30..] is not

sampled and thus m′′ is not found at offset 19 in P but in offset 20.

Although Algorithm 4.2 does not have the nice theoretical property of guar-

anteeing to find all SMEMs, we have found that the set of seeds produced by the

algorithm is sufficient for our purposes. In a post-processing step, it is easy to

filter out all SMEMs from the data set returned by Algorithm 4.2. In addition,

the larger data set allows ALFALFA to build larger chains for use in the extension

phase of the mapping algorithm. For this reason and to somewhat counter the

effect of sparseness, we have decreased the minimum seed length requirements in

line 15.

From our experiments, we found that the reduced set of SMEMs is ideal for

identifying a small set of candidate regions, but was sometimes too small to build

large chains to be used in the extension phase of the algorithm. Algorithm 4.3

is inspired by the seed-finding procedure in BWA-MEM and is a combination of

previous algorithms in that it will produce more MEMs in regions in which few

SMEMs are found. The algorithm first proceeds as in Algorithm 3.3 by finding

all right-maximal exact matches of a given minimal seed length.
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Figure 4.5: MEMs of minimum length 5 between reference genome S and read P .

Among the MEMs, only the one of length 8 with offset 19 in both S

and P (third from the left) is not an SMEM, as it is contained in a larger

MEM. In addition to the MEMs, the figure shows the sampling of S in an

ESSA index structure with sparseness 2. Only suffixes that start at dark

green characters are sampled in the index.

It then sorts the intervals of right-maximal exact matches in descending order

of rightmost matched position in the read. This sort procedure is used to filter

out intervals of right-maximal exact matches that will not be SMEMs in line 14.

Finally, the algorithm either finds all MEMs as in Algorithm 3.3 or only the

longest MEMs for an offset in P as in Algorithm 4.2 based on the size of the

latter data set (condition in line 15).

Comparison of seed-finding settings

The parameter settings not only have an impact on the performance of the seed-

finding phase, but also affect the rest of the mapping algorithm. Experimental

results have shown that the use of Algorithm 3.3 results in the highest accuracy,

but it can also lead to a runtime that is three to four times higher than the runtime

achieved by using the other seed-finding algorithms. Moreover, the difference in

accuracy is in most cases less than 0.01%.

~ ······················ 



132 ALFALFA

Algorithm 4.3 MEM and SMEM-finding algorithm

Input: reference genome G, ESSA index I and read sequence R

Output: a set of MEMs between G and R

// define variables similar to Algorithm 3.3

1: `← minimumLength(|R|,e)
2: s← sparseness of I

3: p← sparseness(`,s) // p is the sparseness in the read

4: `s ← `− (p · s− 1)

5: intervals ← empty list

6: for all sampled positions i in R do

7: calculate mli and xmi in a similar way to Algorithm 3.3

8: intervals[i]← (i,mli , xmi)

9: end for

10: sort intervals in descending order of rightmost matched position in R

11: smems ← empty dictionary

12: for all (i,mli , xmi) in intervals do

13: d← length of right-maximal match in xmi

14: if [i..i+ d] is not contained in smems then

15: if |xmi | ≤ EXT then // EXT is a parameter, default 10

16: report all mems up to mli

17: else

18: report all mems from xmi

19: end if

20: update smems dictionary

21: end if

22: end for
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Overall, Algorithm 4.2 provides the best trade-off, with Algorithm 4.3 result-

ing in a slightly higher accuracy, at the cost of a small increase in runtime.

In addition to the choice of seed-finding algorithm, a higher minimum seed

length results in a lower runtime, but misses some alignments due to the lower

number of seeds. In contrast, a lower minimum seed length results in more seeds,

which in turns results in a higher chance of finding a good alignment at the cost

of increased runtime.

As an example of the impact of the different seed-finding strategies and pa-

rameter settings on the progress of the algorithm, Figures 4.6 and 4.7 show pos-

sible changes in the example shown Figures 4.2 to 4.4. Figure 4.6 depicts the

situation of a high number of seeds resulting from a low minimum seed length

setting. Compared to Figure 4.2, a lot more candidate regions will be identified

and analyzed, resulting in a higher runtime. In general, finding more seeds will

increase the runtime of all phases of the algorithm, while increasing accuracy. In

some cases, however, an abundance of seeds may lead to some alignments being

missed, as the algorithm might not be able to distinguish good candidate regions

or may be unable to form a good chain from the seeds in a region. In contrast,

Figure 4.7 shows the most common effect of a low number of seeds. The algo-

rithm will usually still be able to recover all candidate regions containing optimal

alignments, but the chain will be made up of fewer seeds. This will increase the

runtime of the extension phase of the algorithm.

Overall, the trade-offs obtained by the different settings do not vary greatly.

This is probably due to the many heuristics employed in the remainder of the

algorithm that are designed to cope with a wide array of (badly chosen) parameter

settings. One of these heuristics is a rescue procedure which is used when no seeds

were found. This rescue procedure will lower the minimum seed length twice in an

attempt to find seeds. If no seeds were found after this procedure, the algorithm

skips to the next read.

4.2.2 Candidate regions

ALFALFA groups the seeds found in the previous phase of the algorithm into

candidate regions of roughly the size of the read length. These candidate regions

are subsequently sorted and explored further if they meet certain criteria. This

part of the algorithm corresponds to lines 9-13 and 25 in Algorithm 4.1.
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Figure 4.6: Example illustrating the effect of too many seeds found in the read in

Figure 4.2, showing the collection of seeds (MEMs) that are found between

a read (light green bar in the center) and a reference genome (green circle,

each segment is a chromosome or contig). The seeds are depicted as black

bars around the read, on top of the read for seeds found on the forward

strand and below the read for seeds found on the reverse strand. The

seeds are connected to their location on the reference genome. The black

dot outside the circle represents the simulated location of this read.

... - ·- -·---· .. 
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Candidate region identification

Seed-finding in ALFALFA serves two goals, namely i) identifying few candidate

regions that have a high likelihood of containing high-scoring alignments and ii)

creating collinear chains that cover the entire read. Algorithm 4.4 takes both

goals into consideration when identifying candidate regions. The algorithm first

filters the set of seeds to only the longest and rarest seeds, which serves the first

goal. Candidate regions are then identified using the filtered list. Afterwards,

however, seeds that were filtered out are merged with existing candidate regions

and reused during chain building.

In detail, Algorithm 4.4 filters out all SMEMs appearing more than 10 000

times in the reference genome, and all MEMs that are not SMEMs if they are

either shorter than 50bp or appear more than 20 times in the reference genome.

The parameters employed are similar to those used in the seed-finding Algo-

rithm 4.3 and are not hard coded. Filtering the MEMs this way significantly

reduces the number of candidate regions and thus the runtime of the algorithm.

For example, on a data set containing half a million 600bp reads simulated from

the human genome, the filter decreased the number of candidate regions ten-fold

and lowered the runtime five-fold.

The filtered list of seeds is then sorted by offset in the reference genome and

traversed left-to-right to find candidate regions. Candidate region boundaries are

formed by extrapolating seed boundaries to cover the entire read, supplemented

with additional bases to take into account gaps in the alignment. ALFALFA adds

seeds to a candidate region as long as they fit the extrapolated boundaries.

Candidate region boundaries are recalculated each time a seed is added that is

longer than the longest seed already included in the region. This is based on the

idea that longer seeds are more reliable in identifying a candidate region. After

recalibration of the candidate region boundaries, ALFALFA checks if the region

would overlap the previous one. If this is the case, both regions are merged.

Merging of overlapping regions is performed to avoid possible loss of informa-

tion in repeated regions. As an example, Figure 4.8 shows a situation in which

parts of the read contain tandem repeats. The black arc on the reference genome

(green circle) represents the location of an optimal alignment. Most seeds fall

within this region, but several seeds were also found preceding this region. Due

to the left-to-right nature of the candidate region identification, a first candidate

region is started from the seeds preceding the optimal alignment region. This

region extends to halfway the optimal region, after which a second candidate

region is started.
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Algorithm 4.4 Identify candidate regions

Input: set of MEMs and SMEMs seeds between reference genome G and read R

Output: list of candidate regions made up from a subset of the seeds

1: topSeeds, reserve ← empty list

2: diff ← maximum allowed differences

3: for all s in seeds do // split the set of seeds

4: if (s is an SMEM and occ(s,G) < 10 000)

5: or (occ(s,G) < 20 and |s| ≥ 50) then

6: add s to topSeeds

7: else

8: add s to reserve

9: end if

10: end for

11: sort topSeeds according to offset in the reference genome

12: for all s in topSeeds do // identify candidate regions

13: i← offset of s in G

14: j ← offset of s in R

15: `← length of s

16: C ← current candidate region

17: if G[i..i+ `− 1] falls within C then

18: if ` > longest seed in C then // recalculate boundaries of C

19: left bound of C ← i− j − diff

20: right bound of C ← i− j + |R|+ diff

21: end if

22: add s to C

23: if C now overlaps other regions then

24: merge C with other overlapping regions

25: end if

26: else

27: start new candidate region with s

28: end if

29: end for

30: for all s in reserve do // merge reserve with candidate regions

31: if s can be fit in existing region then

32: add s to existing region

33: end if

34: end for
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Both candidate regions cover only part of the optimal alignment region and would

lead to sub-optimal alignments. Using the merging algorithm, however, a single

candidate region is created in which the optimal alignment is found.

After candidate region identification, seeds filtered out at the beginning of

Algorithm 4.4 are merged back into the candidate regions. The set of all seeds

making up a region will be used to rank the region and to eventually build the

chain. The extra seeds help to avoid situations such as that of Figure 4.7 in which

the extension procedure is almost as costly as full dynamic programming.

Candidate region selection

After candidate region identification, the resulting list of regions is sorted accord-

ing to the percentage of bases in the read that are covered by at least one seed.

The coverage can be easily computed by traversing the list of seeds that is sorted

by start position in the read and calculating the overlap between two consecu-

tive seeds in the list. This second sort does not require additional computational

resources as it is mandatory for the chaining algorithm in the extension phase of

the algorithm.

In previous experiments, we also tested sorting candidate regions according

to the sum of the lengths of the seeds making up the candidate region, but this

advantaged adversely repetitive regions in the reference genome.

The list of candidate regions is then traversed in sorted order and candidate

regions are extended until a maximum number of feasible alignments have been

found (line 4.1.11). By default, ALFALFA searches for a maximum of 5000

feasible alignments meeting a minimum score threshold. This tunable value can

be much higher than the number of reported alignments, as the optimal alignment

might not be the first feasible alignment found.

For a candidate region to be extended (line 4.1.13), the following two criteria

must be satisfied:

� the region contains at least 2 seeds or the read coverage is higher than the

minimum required coverage,

� fewer than f candidate regions have been extended that did not produce a

feasible alignment or the region contains a unique seed.

The first extension criterion increases performance of the algorithm by limiting

the extension of candidate regions to those regions that are supported by at least

two seeds or one long seed. The minimum coverage is 25% by default.
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Figure 4.8: Example of a problem that could arise if overlapping candidate regions

would be allowed. The figure represents the read in the center, a region of

the reference genome around two candidate regions as the green circle and

seeds between the reference genome and the read as connected black bars.

The black line on the reference genome represents the region in which an

optimal alignment of the read can be found and the two arcs outside the

circle represent candidate regions found by ALFALFA. Both candidate

regions overlap the region containing an optimal alignment, but not fully

contain it. As both regions overlap, ALFALFA will merge them.
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The first part of the second extension criterion halts the current stage of the

algorithm if regions showing good coverage do not produce feasible alignments.

The value of f is 10 by default. In contrast, if every candidate region produces

at least one feasible alignment, the extension of regions is continued. Further-

more, the bad candidate region counter is reset if a region produces an alignment

with a new best alignment score. In addition to continued analysis of successive

candidate regions that were successful, a region is always extended if it contains

a seed that covers an area of the read that was not previously covered by higher

ranked candidate regions.

Rescue procedures

If ALFALFA fails to produce at least one alignment meeting the minimum score

set by the user, it can start a two-stage rescue procedure (line 4.1.25). The

first stage reiterates over the list of candidate regions using a significantly lower

minimum score for the threshold and minimum coverage requirements. As a com-

pensation, the maximum number of alignments calculated per read is lowered.

Failure of this rescue procedure is most likely due to bad seed-finding or candi-

date region identification. Therefore, a second rescue procedure first invokes the

seed-finding rescue procedure using less stringent parameter settings, followed by

another round of candidate region identification along the same lines as the first

rescue procedure.

Rescue procedures are turned on by default. However, it is possible to disallow

rescuing to boost performance. As expected, the rescue procedures negatively

affect the runtime of ALFALFA, but the effect was never significant in all of our

experiments. Furthermore, sensitivity of ALFALFA significantly increases using

the rescue procedures at the cost of some false positives.

4.2.3 Candidate region extension

This section provides details about the extension phase of the seed-and-extend

algorithm (lines 14 to 21 in Algorithm 4.1). In ALFALFA, candidate mapping

regions are linked to the seeds that were used to delimit the region. These

seeds are reused in collinear chains, which serve as partial alignments of the

read in the candidate region. Full alignments are obtained by applying dynamic

programming procedures in between the gaps of the chains.
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Chaining

The greedy procedure used by ALFALFA to form collinear chains of seeds is

given in Algorithm 4.5. The algorithm starts from the list of seeds found in the

candidate region, sorted by offset in the read, and one seed designated as the

anchor for the alignment. Starting from the anchor seed, the algorithm extends

the chain to the left and right by adding seeds that do not exhibit a large skew

to the previous seed in the chain and do not overlap with it more than 10 bases.

The skew between two seeds is defined as the absolute difference of the dis-

tances between the substrings in the read and the reference genome. For example,

if the distance between the substrings in the read is 50bp and the distance be-

tween the substrings in the reference genome is 70bp, the skew is 20. In this

example, a chain consisting of those two seeds would lead to a large deletion in

the alignment, which is not common in practice.

An example motivating the use of restricted skew between two seeds is given

in Figure 4.9. Grey areas in the figure represent sequences of more than three

matches in an optimal alignment between the reference genome (top) and the

read (bottom). Connected bars represent seeds found between the read and

the reference genome. Although it is collinear with the other seeds, the pair of

connected red lines is not used as part of the chain because it does not meet the

skew condition. Note that inclusion of the red seed in the chain would have led

to a sub-optimal alignment, as is indicated by the location of the dark grey areas.

The maximal amount of skew allowed between two consecutive seeds in a

chain is dependent on the outer distance between the matching substrings and the

maximal allowed percentage of differences in a feasible alignment. The value of

this parameter can be increased if large insertions and deletions are expected to be

present in the chain. If optimal alignments would contain long gaps, the algorithm

will produce much shorter chains, resulting in a higher dynamic programming

cost. It will, however, still be able to retrieve the alignment.

Number of chains per candidate region

Because Algorithm 4.5 depends on a good choice for the anchor seed, it is likely

that the first chain does not result in an optimal alignment within that region.

This is the case when candidate regions contain many seeds, which often occurs

in repetitive regions of the reference genome or in the cases where candidate re-

gions were merged during identification. ALFALFA therefore constructs multiple

chains per candidate region.
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Algorithm 4.5 Collinear chaining

Input: reference genome G, read R, list of seeds in a candidate region and one

seed a used as anchor

Output: chain of seeds collinear to a

1: function distance(G,s1,s2 )

2: return outer distance between intervals s1 and s2 in sequence G

3: end function

4: e ← preset maximum allowed percentage of differences // parameter -e

5: add a to chain

6: sort seeds according to offset in R

7: p ← a

8: for all s in seeds to the right of a do

9: sDist ← distance(G,p,a)

10: pDist ← distance(R,p,a)

11: skew ← |sDist − pDist |
12: if overlap between s and p < 10 and skew ≤ e ·max(sDist , pDist) then

13: add s to chain

14: prevSeed ← s

15: end if

16: end for

17: prevSeed ← a

18: for all s in seeds to the left of a do

19: . . . // same procedure as for seeds to the right of a

20: end for
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Initially, ALFALFA considers the entire list of seeds, ordered by length, as

possible anchors for a chain. After each call of Algorithm 4.5, seeds that were

used in the chain are removed from the list of potential anchors. In most cases,

we have found that this procedure eliminates most seeds as anchors after the

first two chains have been constructed. Moreover, the remaining anchors usually

cannot be combined with other seeds due to a high skew. ALFALFA will not

consider these single-seed chains if their coverage of the read is below the same

threshold set for candidate regions.

A situation in which constructing multiple chains is mandatory is depicted

in Figure 4.10, which uses the same candidate region representation as before.

Seeds depicted in black are the only seeds that are part of an optimal alignment,

whereas seeds depicted in red lead to suboptimal alignments. Furthermore, there

is a tie for the choice of the initial anchor (longest seed), which shows that the

longest seed does not always lead to the best possible chain.

Alignment

The chains obtained by Algorithm 4.5 represent gapped alignments of the read

against the reference genome, not containing the unaligned sections between each

pair of consecutive seeds and possibly at the beginning and end of the read.

Algorithm 4.6 describes how chains are extended to full alignments that also

cover the previously unaligned sections.

Before starting the alignment procedure, Algorithm 4.6 first checks whether

the chain meets the same requirements imposed on candidate regions. Similar

to the coverage requirements for candidate regions, single-seed chains that cover

few bases of the read are omitted from alignment.

If the chain meets the minimum coverage requirements, the algorithm pro-

ceeds by filling the gaps in the alignment between each pair of consecutive seeds.

For normal gaps, we use a standard banded dynamic programming routine. In

some cases, however, dynamic programming can be avoided. For example, if the

gap in both reference genome and read is a single base, the algorithm just inserts

a single mutation. Likewise, if there is a positive distance between two seeds in

one sequence, but no gap in the other, the algorithm adds an insertion or deletion

of appropriate size. Finally, banded semi-global alignment is performed in the

region between the ends of the read and the ends of the chain.

For dynamic programming, we use an affine gap model with default match

bonus of 1, mismatch penalty of 4, gap open penalty of 6 and gap extension

penalty of 1.
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Algorithm 4.6 Extend chain to alignment

Input: reference genome G, read R, collinear chain of seeds between G and R

Output: Alignment between R and the region of G bounded by chain

1: c← minimum coverage set by parameter -c

2: if chain consists of 1 seed and coverage of R < c then

3: return

4: end if

5: p← pop first seed from chain

6: add p matches to alignment

7: for all seeds s in chain do

8: calculate gap between p and s

9: if gap can be filled with single mutation then

10: add mutation to alignment

11: else if gap can be filled with single (long) indel then

12: add insertion or deletion of length gap to alignment

13: else

14: perform banded alignment in gap

15: end if

16: add s to alignment

17: p← s

18: end for

19: if first seed of chain did not start at first base of R then

20: perform semi-global alignment between first seed and start of R

21: l, g ← local,global alignment score

22: if acceptLocal and g < l + 3 mutation differences then

23: use local alignment

24: else

25: use global alignment

26: end if

27: end if

28: if last seed of chain did not end at last base of R then

29: . . . // same procedure as above

30: end if

31: if alignment score ≥ minscore and no previous alignment found within

minDistance bases then

32: add alignment to R

33: end if
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The band size is estimated using the maximum allowed percentage of differences

in a feasible alignment. This value is decreased after each dynamic programming

routine to more correctly represent the current situation after several differences

have already been added.

The implementation of the dynamic programming algorithms was obtained

from the klib1 library. We made some minor changes to the library, in addition to

the changes made in BWA-MEM , to facilitate global and semi-global alignments.

These changes allow the semi-global alignment algorithm to report both local

and global alignment scores. Similar to BWA-MEM , ALFALFA uses both scores

to automatically decide between both alignment types. Local alignment is only

preferred if the global alignment score is smaller than the adjusted local alignment

score for which three mutations were added.

The obtained alignment score is compared to a minimum score to decide

whether the alignment is considered feasible. The minimum alignment score is

obtained by starting from the maximum obtainable score and subtracting the

maximum allowed number of differences e multiplied by the mismatch penalty.

On the command line, the maximum number of differences is expressed as a

fraction that is multiplied by the read length to obtain e. In addition to being

feasible, the alignment should also be e bases separated from another feasible

alignment with a higher alignment score.

The use of chain-guided alignment can significantly lower the computational

cost of the extension phase of the algorithm, as illustrated in Figure 1.15 (see

Section 1.4). In practice, we have found that chain-guided alignment is up to twice

as fast as alignments using standard banded dynamic programming. Moreover,

chain guided alignment does not seem to lead to a significant drop in accuracy,

thanks to the conservative collinear chaining algorithm.

4.2.4 Alignment post-processing

During the alignment process, ALFALFA stores all alignments whose alignment

score is higher than a minimum value. The number of feasible alignments is

usually much higher than the requested number of alignments a. In a final post-

processing step (line 28), ALFALFA selects the a highest scoring alignments and

computes mapping qualities and CIGAR strings for these alignments.

To obtain the CIGAR string for an alignment, ALFALFA needs to perform

another extension of the chain/candidate region that led to the alignment. This

1https://github.com/attractivechaos/klib(last accessed September 2014)

https://github.com/attractivechaos/klib
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is because the dynamic programming routines in Algorithm 4.6 do not trace back

the alignment after finding the alignment score. By default, the algorithm will

again perform the chain-guided alignment, but users can also request the usage

of a banded dynamic programming routine. This latter option might improve

the quality of the alignment in some cases at the cost of increasing runtimes. In

our benchmarks, the gain in accuracy was small, whereas the runtime sometimes

increased significantly.

Mapping quality is estimated by a function that is widely used among read

mappers. If s1 is the best alignment score of the best alignment and s2 is the

alignment score of the second best alignment, the mapping quality for the best

alignment is given by

250× s1 − s2

s1
.

This means that the mapping quality is zero if the two best alignments have

an equal alignment score. In addition, mapping quality uses the sum of the

alignment scores of concordantly mapped reads when mapping paired-end reads.

For ease of comparison, we also set the maximum attainable mapping quality

to 60, which is the same as used by BWA-MEM .

4.2.5 Paired-end read mapping

Similar to single-end read mapping, ALFALFA is designed to report a maximum

number of different feasible paired-end alignments between reads and the refer-

ence genomes. The added requirement is that pairs need to be aligned concor-

dantly with respect to a preset orientation and insert size (see Section 1.2.2). Pa-

rameter settings for mapping paired-end reads have been adopted from Bowtie 2

and include options to (dis)allow mates to overlap, contain or dovetail one an-

other and options to (dis)allow discordant or unpaired alignments. A graphical

representation of the six different paired-end mapping algorithms implemented

in ALFALFA can be found in Figure 4.11.

The first approach we tested is widely used among read mappers. The al-

gorithm independently maps both mates of the pair and checks concordancy for

every combination of feasible alignments found for the two mates. This method is

also described in Algorithm 4.7, as it is currently the default paired-end mapping

algorithm.
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Figure 4.11: (previous page) Graphical representation of the various methods for

paired-end alignment implemented by ALFALFA. The schematic repre-

sents alignments as colored rectangles, candidate regions as ellipses and

other regions in the reference genome (containing no seeds) as empty

rectangles. Dark green is used for mate 1 and light green for mate 2.

Numbers within shapes represent scores used to sort candidate regions

and alignments, i.e. alignment scores or coverage of bases in the read.

Lines between shapes indicate pairing between structures to check ori-

entation and insert size. Structures that can be paired are indicated by

thick black lines, whereas failed comparisons are shown in red.

Algorithm 4.7 Default paired-end read mapping algorithm

Input: reference genome G, list of paired-end reads LR

Output: SAM file containing alignments of reads onto G

1: read input and parse parameter options

2: construct the enhanced sparse suffix array I for G

3: for all mate1, mate2 in R do

4: calculate alignments for mate1

5: calculate alignments for mate2

6: for all pairs of alignments (a1,a2) of respectively mate1 and mate2 do

7: if orientation and insert size between a1 and a2 are correct then

8: report concordant alignment pair (a1,a2)

9: end if

10: end for

11: if not enough concordant pairs found then

12: rescue(mate1,mate2) // try other paired-end alignment method

13: end if

14: if report discordant or unpaired alignments then

15: report all discordant and unpaired alignments found

16: end ifpostProcess(mate1,mate2)

17: end for
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The second method for paired-end mapping is also used frequently among

read mappers. For this method, a single mate is mapped, after which alignments

for the second mate are found using dynamic programming in a window defined

by the concordancy constraints (orientation and insert size). If the alignments of

the first mate did not result in concordant alignments, the second mate is aligned

and the process of finding a concordant alignment is repeated.

For the next methods, we tried to limit the number of times the single-end

extension phase is called, as we found this to be the most costly subroutine in the

mapping algorithm. This is done by using information from the candidate regions

of both mates. In the third and fourth methods, we first calculated candidate

regions for both mates. We subsequently merged the lists of candidate regions

into a single list, which is then sorted by coverage of the reads. This procedure

effectively prioritizes extension of the best candidate regions among those of both

mates.

Using the union of candidate regions from both mates, method 3 behaves

like a single-end mapping algorithm and reports alignments for both mates. The

alignments reported by the algorithm are then compared to find concordant pairs.

In contrast to method 3, method 4 does not postpone the pairing of alignments

until all candidate regions have been processed. Immediately after finding a feasi-

ble alignment, method 4 searches for a concordant alignment of the other mate in

a window defined by the concordancy constraints. In contrast to method 2, how-

ever, this method can make use of a chain-guided alignment using the candidate

regions for the other mate.

The last two methods also use candidate region information to speed up align-

ment of paired-end reads. Instead of merging the lists of candidate regions of both

mates, however, methods 5 and 6 compare all pairs of candidate regions for the

concordancy constraints and filter those candidate regions that do not pair with

any other region of the other mate. Using the filtered list of candidate regions,

method 5 then behaves exactly like methods 1 and 3, whereas method 6 uses the

same strategy employed by method 4. A recap of the relationship between all

methods for paired-end alignment can be found in Figure 4.12.

If the algorithms did not find enough concordant alignments, rescue proce-

dures can be invoked. These rescue procedures will call method 1, except for

method 1 itself, which calls method 2. ALFALFA will also combine the best

alignments for both mates into discordant pairs or select unpaired alignments, if

required by the user. Finally, the post-processing procedure calculates mapping

quality and CIGAR strings for the alignments that will be reported.
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calculate candidate
regions and align-

ments independently

combine candidate
regions from both

mates in 1 sorted list

filter candidate regions to
those having a concordant
region in the other mate

check concordancy
between all pairs of can-

didate regions/alignments

find alignment of mate
2 in window defined by
an alignment of mate 1

1

2
3 4 5 6

Figure 4.12: Schematic showing the relationship between all implemented methods for

paired-end mapping. The top diagrams represent the different ways can-

didate regions are used. The bottom diagrams represent the two methods

for finding concordant alignments, i.e. pairing two existing alignments or

calculating an alignment for one mate given an alignment of the other.

Tests have shown that all methods have similar performance in both time and

accuracy. Overall, we chose method 1 as the default, because of its simple design

and stable performance over all data sets. In comparison to the first method, the

second is somewhat more accurate in some situations, but it is not well suited for

very long reads or for data sets with a broad variation in insert sizes. In contrast,

methods 5 and 6 were somewhat faster than method 1 due to the shorter list of

candidate regions. However, the lower runtime comes at the cost of a drop in

accuracy. The trade-off obtained by methods 3 and 4 is almost identical and lies

in between that of method 1 on the one hand and methods 5 and 6 on the other

hand. Further testing might reveal more information on which methods perform

best for certain data sets.

4.3 Results

ALFALFA accepts FASTA/FASTQ input and outputs to SAM format. The read

mapper is open source and distributed under the very permissive MIT license.

Appendix E provides details on the command line options that can be used to

tweak ALFALFA, as well as default parameter settings and general usage tips.

ALFALFA is available for download as C++ source code at http://alfalfa.

ugent.be.

Execution speed, memory footprint and accuracy of ALFALFA have been

I 

http://alfalfa.ugent.be
http://alfalfa.ugent.be
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scrutinized in a benchmark study that includes five other state-of-the-art long

read mappers. Executables for ALFALFA v0.8, Bowtie v2− 2.2.3, BWA v0.7.9a

and CUSHAW v3.0.3 were built from source. Build 1.376 (beta) of GEM was

obtained from its website, as source code was not available at the time of writing.

Two configurations of all read mappers were tested. First, read mappers were

configured to produce a maximum of 4 alignments per read, if possible. Second,

read mappers were configured to produce a single best alignment per read. Other

parameters were kept to their default settings, unless the authors suggested spe-

cific settings for certain types of data. Appendix D contains information on the

chosen parameter settings, as well as other technical details of the experimental

setup, including hardware configurations.

The human genome is used as a reference genome to map a large array of

moderately sized reads generated by current sequencing platforms and artificial

reads generated by two simulators covering lengths expected to become common-

place in the near future. These simulated data sets are also crucial in evaluating

mapping accuracy, which otherwise could not be evaluated objectively on true

data. Care was taken to cover a broad range of error models observed in read

sets generated by current sequencing technologies.

The wgsim simulator v0.3.1-r13 [149] — developed for SAMtools, but now

a standalone project — was used to generate a series of single-end reads with

lengths of one, five and ten thousand base pairs. Errors were introduced at

rates between 2% and 10% of the total read length, with varying indel/mutation

frequencies. Reads ranging from 100bp to 10kbp and abiding to specific error

models induced by Illumina and 454 technologies were generated using the Mason

simulator v0.1.1 [103]. Default parameter settings were used to generate reads

of length 100bp and 200bp and parameter settings from the literature [141, 253]

were used for longer read data sets.

4.3.1 Memory footprint

An index of the human genome assembly GRCh37 was constructed by all read

mappers using their default parameter settings, except for GEM . A pre-built

GEM index was downloaded from the GEM website as the indexer of this mapper

ran into a fatal error on our test environment. Memory requirements of read

mappers are mainly dependent on the memory footprint of the index structures

they use. An overview of the index structure memory requirements can be found

in Table 4.1.
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Table 4.1: Comparison of the used index structures and memory requirements of eval-

uated mappers in benchmarking ALFALFA. The ESSA index is evaluated

for two different sparseness values. The read mappers BWA-SW and BWA-

MEM both use the same index structure, jointly reported as BWA. The

third column indicates whether memory footprint can be tuned via user-

specified options. The fourth column reports the memory footprint of the

index structure when stored on disk. The fifth column provides peak mem-

ory of the read mapper observed during alignment of 1kbp reads. The time

needed to construct the index structure is given in the last column. §A pre-

built GEM index was downloaded from the GEM website as the indexer

of this mapper ran into a fatal error in our test environment.

mapper index type fixed disk (GB) peak constr.

(GB) (h:mm)

ALFALFA (s = 4) ESSA no 10.7 11.0 0:19

ALFALFA (s = 12) ESSA no 5.6 5.7 0:10

Bowtie 2 FM-index no 3.9 5.3 1:58

BWA FM-index yes 5.2 5.4 1:18

CUSHAW3 FM-index yes 3.7 3.5 0:36

GEM FM-index no 4.8 5.0 N.A.§

In this table, BWA-SW and BWA-MEM are reported as BWA, as they both

use the same index structure. From the table, it can be seen that most tools

require 3 − 5GB of memory, both for storing the index on disk and for the

peak memory during mapping a data set of 1kbp reads. Among the tested read

mappers, CUSHAW3 seems to be the most memory efficient one. In contrast,

ALFALFA requires twice as much memory as the other tools when configured

with a lower sparseness setting. The default setting (sparseness value 12) is com-

petitive in terms of memory requirements with the other tools. The last column of

Table 4.1 also shows index construction time, which is the lowest for ALFALFA.

4.3.2 Performance and accuracy on simulated data

Performance and accuracy results for most simulated and real data sets can be

found in Figures 4.13 to 4.17. Performance is shown in the top bars, expressed

in milliseconds per read. Accuracy is expressed as the percentage of reads that

were not mapped within 10 bases of the simulated origin. Absolute values of the

mapping time and more accuracy results can be found in Appendix D.
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Figure 4.13: Accuracy and performance comparison of several long read mappers on 200 000

simulated 1kbp single-end reads. The six different data sets vary in error rate

and percentage of errors that are indels as specified in the legend. Upper bars

show the average mapping time per read (in milliseconds), whereas lower bars

show the percentage of reads for which no alignment was found within 10bp of

the simulated origin. All tools were configured to produce a maximum of one

alignment per read.
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Figure 4.14: Accuracy and performance comparison of several long read mappers on 200 000

simulated 5kbp single-end reads. The six different data sets vary in error rate

and percentage of errors that are indels as specified in the legend. A data set

that was one hundred times smaller was used for Bowtie 2 and CUSHAW3

due to low performance. For GEM , the first three results were obtained using

the full data sets and the last three using the reduced data set. Upper bars

show the average mapping time per read (in milliseconds), whereas lower bars

show the percentage of reads for which no alignment was found within 10bp of

the simulated origin. All tools were configured to produce a maximum of one

alignment per read.

D 
D 
D 

• • • 

H 



4.3. Results 157

ALFALFA BWA-MEM

3.
98

BWA-SW

90
14

95
44

75
67

92
65

67
04

72
02

9.
4

Bowtie 2

14
26

6
13

71
7

12
52

2
12

16
8

56
45

54
68

CUSHAW3

43
09

3
38

99
7

13
.8

8

GEM

in
co

rr
ec

tly
m

ap
pe

d
re

ad
s

(%
)

0

0.5

1

1.5

2

2.5

3

3.5

m
ap

pi
ng

tim
e/

re
ad

(m
s)

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700
2% errors, 10% indels

2% errors, 90% indels

5% errors, 10% indels

5% errors, 90% indels

10% errors, 10% indels

10% errors, 90% indels

Figure 4.15: Accuracy and performance comparison of several long read mappers on 200 000

simulated 10kbp single-end reads. The six different data sets vary in error rate

and percentage of errors that are indels as specified in the legend. A data set

that was one hundred times smaller was used for Bowtie 2 and CUSHAW3

due to low performance. For GEM , the first three results were obtained using

the full data sets and the last three using the reduced data set. Upper bars

show the average mapping time per read (in milliseconds), whereas lower bars

show the percentage of reads for which no alignment was found within 10bp of

the simulated origin. All tools were configured to produce a maximum of one

alignment per read.
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Figure 4.16: Accuracy and performance comparison of several long read mappers on reads

following Illumina error model and have varying read lengths as specified in the

legend. For the two longest read data sets, results for Bowtie 2 and CUSHAW3

were obtained using a data set that was ten times smaller due to low perfor-

mance. Upper bars show the average mapping time per read (in milliseconds),
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Figure 4.17: Accuracy and performance comparison of several long read mappers on reads

following 454 error model and have varying read lengths as specified in the

legend. For the two longest read data sets, results for Bowtie 2 were obtained

using a data set that was ten times smaller due to low performance. Results

for CUSHAW3 on 5kbp reads were also obtained using the reduced data set

and no results were obtained for the 10kbp data set due to a fatal error. Upper

bars show the average mapping time per read (in milliseconds), whereas lower

bars show the percentage of reads for which no alignment was found within

10bp of the simulated origin. All tools were configured to produce a maximum

of one alignment per read.
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Performance

ALFALFA is the fastest read mapper. It is only outperformed by GEM and

BWA-MEM for the shortest reads in Figure 4.16 and by GEM for a single data

set of 1kbp reads in Figure 4.13. The difference in runtime between ALFALFA

and the other mappers increases with read length. For reads longer than 1kbp,

ALFALFA, BWA-MEM and BWA-SW become orders of magnitude faster than

the other mappers. This can be clearly seen in Figures 4.14 and 4.15. Even

compared to BWA-MEM , the second fastest mapper, ALFALFA is on average

three times faster and up to five times faster for reads of at least 1kbp long.

The performance of GEM is mostly affected by the user-set error rate. For

Illumina reads with low error rates and low error reads simulated with wgsim,

GEM is among the fastest algorithms. For high error rate data sets, however,

GEM becomes much slower. Performance of CUSHAW3 could be higher on hard-

ware that supports SSE4 operations, which CUSHAW3 uses by default. However,

CUSHAW3 is known to focus more on accuracy than speed [162]. In addition,

runtimes of CUSHAW3 dramatically increase when multiple alignments per read

are requested (see Appendix D). The performance of Bowtie 2 and BWA-MEM is

also influenced by the number of alignments per read requested, but the increase

in runtime is less significant.

The performance of paired-end read mapping can be seen in Figures 4.16

and 4.17. For most mappers, there is no loss in performance when mapping

single and paired-end reads. The exceptions are CUSHAW3 and Bowtie 2, whose

performance is much lower when mapping paired-end reads due to the high read

length and large insert size window and the fact that these mappers perform full

dynamic programming to find an alignment for the mate of a mapped read.

Figures 4.13, 4.14 and 4.15 also show that the performance of ALFALFA,

BWA-MEM and GEM decreases for reads containing more errors, whereas the

performance of Bowtie 2, BWA-SW and CUSHAW3 increases. This could be

explained by the fact that the latter mappers stop the alignment procedure more

rapidly for reads that are more difficult to map, whereas the former increase the

effort in finding an alignment for these reads. The type of errors, i.e. mutations

versus indels, does not seem to have an effect on runtime.

If memory is abundant, the runtime of ALFALFA can be further improved by

lowering the sparseness of the index. ALFALFA is up to twice as fast when the

sparseness is lowered from the default value of 12 to 4, the lowest setting tested

(see Appendix D). The effect of different sparseness values on performance and

accuracy is also shown in Figure 4.18.
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Figure 4.18: Influence of sparseness when indexing the reference genome with an en-

hanced sparse suffix array on the memory footprint, execution speed

and accuracy of the read mapper ALFALFA. The scatterplot displays

the peak memory measured during read mapping for all even sparse-

ness values between 4 and 32, against the corresponding performance

and accuracy of the read mapper. ALFALFA reported a maximum of 4

alignments per read. Green dots (left axis) plot performance as the av-

erage time needed to map one read (in milliseconds). Purple dots (right

axis) plot accuracy as the percentage of reads for which no alignment

was found within 10bp of the simulated origin or with less errors than

were simulated. Darker shades of green and purple correspond to lower

sparseness values. Evaluation was done on 600bp reads simulated with

wgsim. The benchmark study evaluates ALFALFA with a sparseness

value of 12, corresponding to the fifth dot from the right.
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Accuracy

On simulated reads, accuracy was measured using the recall rate and our own

definition of accuracy. Recall rate is defined as the number of reads for which an

alignment is found within 10bp of the simulated origin. Our accuracy measure is

less stringent and considers a read to be mapped correctly if an alignment either

fulfills the recall rate requirements or has an edit distance that is not higher than

the number of simulated differences to the reference genome. The lower bars

in Figures 4.13 to 4.17 represent the recall rate in case each mapper reported a

single alignment per read. When returning multiple alignments per read, a read

is considered to be mapped correctly if at least one of the returned alignments

fulfills the requirements imposed by our own accuracy measure. These additional

results, together with the results using our own definition of accuracy, can be

found in Appendix D.

In contrast to the performance results, the difference in accuracy between the

evaluated read mappers is small. All tested mappers exhibit both a high recall

rate and accuracy when reporting either a single or up to four alignments per read.

We will therefore refer to accuracy for both measures, unless we want to stress

the difference between the two accuracy measures used. In general, CUSHAW3,

BWA-MEM and ALFALFA are the most accurate mappers, with BWA-SW and

Bowtie 2 having a somewhat lower accuracy. In most cases, either CUSHAW3,

BWA-MEM or GEM is the most accurate mapper, by a small margin.

The accuracy of GEM is highly dependent on the command line parame-

ter settings. We have tried several parameter settings to optimize the time-

accuracy trade-off, but it is possible that GEM reaches a more optimal trade-off

for untested parameter settings. As a result, the accuracy of GEM can vary

greatly, being the highest for some data sets, but the lowest for other data sets.

This effect can be seen in Figure 4.13. On the 1kbp data sets with 2% errors,

setting the parameters to this maximum error value results in a very low accu-

racy. In contrast, on 5% and 10% error rates, GEM has the highest recall rate

for the data sets with low numbers of indel errors. The effect of the sparseness

of the ESSA index on the accuracy of ALFALFA is depicted in Figure 4.18, but

is rather small in general.

From the results of the wgsim data sets in Figures 4.13, 4.14 and 4.15 it can

be seen that the accuracy of all mappers drops with increasing error rate. A

noticeable exception is GEM , whose accuracy depends on the chosen parame-

ter settings. The effect of increasing error rate seems smallest for BWA-MEM ,

whereas CUSHAW3 does not perform well for reads with 10% errors. It is,
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however, possible to increase the accuracy of CUSHAW3 using command line

parameters, as by default CUSHAW3 allows only 10% errors. In addition to the

raw error rate, an increase in the number of indel type errors has also a detri-

mental effect on accuracy. This effect seems smallest for Bowtie 2, whereas it has

the highest effect on GEM .

In contrast to the above, an increase in read length has a predominantly pos-

itive effect on accuracy. For the longest reads, accuracy is almost 100% for most

mappers. Note, however, that several of the results for Bowtie 2, CUSHAW3

and GEM were obtained on a smaller data set due to a forced timeout in our

testing environment of 72 hours. Nonetheless, a few samples on a different ma-

chine indicated that these mappers indeed have a high accuracy at the cost of

performance.

The type of errors also has an impact on accuracy. Wgsim simulated reads

have a uniformly distributed error model, which differs from the Illumina and

454 error models. For equal read length, the accuracy on simulated reads with

an Illumina error profile is lower than the accuracy on reads with a 454 error

profile. For Illumina reads, CUSHAW3 is more accurate than BWA-MEM and

ALFALFA, whereas the reverse is true on 454 reads.

The effect of paired-end read mapping on accuracy can be seen in Figures 4.16

and 4.17. As expected, paired-end read data sets exhibit a higher accuracy than

single end read data sets. GEM hugely benefits from paired-end data sets for

Illumina type reads. The only exception is BWA-SW , which performs worse for

paired-end reads. This might be explained by the fact that BWA-SW automati-

cally tries to estimate insert size, whereas other mappers trust on users to present

insert size boundaries.

From the Additional tables in Appendix D, we have found that the difference

between the accuracy and recall rate measures is noticeable for most mappers.

The biggest effect was present in BWA-SW , Bowtie 2 and CUSHAW3, whereas

the lowest effect was measured for GEM .

If multiple alignments per read are reported (see Appendix D), the accu-

racy of several mappers increases significantly. The effect is the greatest for

CUSHAW3 and ALFALFA, whereas it is lower for BWA-MEM and GEM . As a

result, ALFALFA becomes the most accurate mapper for some data sets in this

setting. In contrast, the accuracy of Bowtie 2 drops frequently, as the -k mode

that is required to return multiple alignments works differently from the regular

mode. Finally, BWA-SW does not offer an option to return multiple alignments

per read.
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4.3.3 Mapping quality

In addition to accuracy and recall rate, we compared the sensitivity and speci-

ficity of ALFALFA against that of other mappers. These evaluated measures are

represented in receiver operating characteristic (ROC) curves in which the true

positive rate is plotted against the false positive rate in terms of mapping quality

values (MAPQ field in SAM files). For these plots, we limited ourselves to the

wgsim simulated reads and used the evaluation script in the wgsim package to

generate the data points. In addition to the wgsim simulated read data sets pre-

sented in Figure 4.13, we used a data set of single-end reads of length 600bp with

a small (1%) error rate. The ROC curves are presented in Figure 4.19 and 4.20.

Overall, Bowtie 2 has the highest sensitivity, which reaches 100%. How-

ever, Bowtie 2 is also less able to distinguish between good and bad alignments.

CUSHAW3, BWA-MEM and ALFALFA exhibit the best trade-off between true

positives and false positives. For the 600bp data set presented in Figure 4.19a,

CUSHAW3 is most sensitive for high mapping quality, whereas BWA-MEM be-

comes more sensitive for lower mapping quality values. ALFALFA obtains a

trade-off that fluctuates between that of CUSHAW3 and BWA-MEM . For the

1kbp data sets with higher error rate, BWA-MEM is best able to distinguish

between true and false positive hits, with ALFALFA a close second.

4.3.4 Performance and accuracy on real data

To validate our findings on simulated data, we also compared the performance

of ALFALFA on one real Illumina read data set and one real 454 data set. The

results can be found in Table 4.2. Because the real origin of the reads cannot be

indisputably determined, we use the sensitivity, i.e. the number of mapped reads

as an accuracy measure.

As our focus was on long reads, the Illumina read data set that consists of

2 × 100bp paired-end reads falls out of the scope of ALFALFA. As a result, it

is outperformed by BWA-MEM and GEM in terms of mapping time and BWA-

MEM , BWA-SW and CUSHAW3 in terms of sensitivity. The default parameter

settings for ALFALFA were optimized for longer reads. Therefore, a higher sensi-

tivity for shorter reads can be gained by changing the default parameter settings.

The single-end 454 reads have an average length of 574, which is well within

the scope of our mapper. For this data set, ALFALFA is by far the fastest

mapper. In addition, it also has the highest sensitivity. This is consistent with

the good accuracy of ALFALFA for the simulated 454 reads.
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Figure 4.19: ROC curves plotting the sensitivity (vertical axis) against the false

positive rate (horizontal axis) using different mapping quality cut-offs

(MAPQ> 0). Data set (a) consist of half a million single-end reads and

data sets (b-c) consist of 200 000 single-end reads. Read length, number

of simulated errors and the percentage of errors that are indel type errors

are shown below each figure.
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Figure 4.20: ROC curves plotting the sensitivity (vertical axis) against the false

positive rate (horizontal axis) using different mapping quality cut-offs

(MAPQ> 0). All data sets consist of 200 000 single-end reads. The data

sets differ in the number of errors and the percentage of those errors that

are indels.
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Table 4.2: Benchmark comparison of long read mappers on two real data sets. The

Illumina paired-end read data set (SRA:ERR024139) consists of 2× 100bp

reads and the reads of the 454 single-end data set (SRA:SRR003161) are

on average 574bp long. The performance measures are runtime in h:mm

and percentage of mapped reads (sensitivity).

Illumina reads 454 reads

runtime sensitivity runtime sensitivity

ALFALFA 5:48 99.09 0:33 99.75

BWA-MEM 5:19 99.71 1:04 99.60

BWA-SW 12:18 99.34 2:20 97.54

Bowtie 2 11:04 97.98 4:33 99.02

CUSHAW3 64:30 99.67 5:10 91.31

GEM 3:09 97.65 5:02 93.29
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Chapter 5

Mesalina

Analysis of biological sequences encompasses many different types of sequences,

including DNA, RNA and proteins. In comparison to DNA sequence map-

ping, alignment of cDNA sequences and RNA-seq reads to a eukaryotic refer-

ence genome poses additional algorithmic challenges due to the presence of large

gaps in the alignment caused by splicing. Moreover, RNA-seq mappers or spliced

alignment programs also have to adapt in response to the changing landscape

in sequencing technology. In this chapter, we present Mesalina, a prototype of

a spliced alignment algorithm based on essaMEM and ALFALFA. Preliminary

results indicate that mesalina is competitive in terms of accuracy and has a high

performance that is more robust with respect to increasing read length. Mesalina

has been developed in collaboration with Dieter De Smedt, Dr. Yao-Cheng Lin

and Dr. Lieven Sterck and the results in this chapter were presented in the confer-

ence paper “Fast and accurate cDNA mapping and splice site identification” [250].

5.1 Introduction

Transcriptomics, the study of the RNA content of a cell, reveals information that

can not be obtained from the DNA content of the cell using genomics. Similar to

genome analysis, however, the study of the transcriptome requires mapping and

alignment of short sequences against a reference genome. These short sequences

include expressed sequence tags (ESTs), full-length complementary DNA (cDNA)

and high-throughput sequencing reads produced by RNA-seq [252]. In compar-

ison to the mapping problem discussed thus far in this dissertation, alignment

169
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Figure 5.1: Graphical representation of the spliced alignment problem. The top se-

quence contains an alternating sequence of exons and introns, with the

latter not being present in the sequenced mRNA. When aligning reads to

the original pre-mRNA, the alignment can contain gaps spanning introns,

which is shown in the magnified detail at the bottom of the image. Image

by Rgocs (Transferred from en.wikipedia to Wikimedia Commons).

of RNA-seq reads against a reference genome poses additional challenges due to

splicing in eukaryotic cells.

Figure 5.1 illustrates the spliced alignment problem. Genes in eukaryotic

genomes are made up of an alternating sequence of exons and introns. The size

of exons and introns is variable and can range from a few bases up to hundreds

of thousands of nucleotides. After transcription of the genomic DNA, introns

are removed and exons are joined together by a process called RNA splicing . In

accordance to this term, the boundaries between exons and introns are called

splice sites. In most cases, splice sites are either surrounded by GT-AG dinucleo-

tides (canonical splice sites) or less frequently by GC-AG or AT-AC dinucleotides

(semi-canonical splice-sites). In rare cases, however, splice sites are non-canonical,
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meaning that they are not surrounded by any of the previous boundaries. Splicing

does not only pose a greater challenge to mapping algorithms, but the identifi-

cation of splice sites is of independent interest, as splicing errors are related to

diseases [159].

Because introns are usually much larger than the deletions detected by tra-

ditional alignment algorithms, standard DNA read mappers fail to align reads

spanning multiple exons, as illustrated at the bottom of Figure 5.1. However,

many strategies already exist to address or circumvent this computational chal-

lenge. For example, it is possible to map reads to a reference transcriptome

instead of a reference genome. However, an assembled transcriptome is not al-

ways available, relies heavily on the underlying gene model and does not allow

to identify novel genes. Similar to transcriptome mapping, it is possible to use

maps of known splice sites to guide spliced alignment.

For unguided spliced alignment and de novo splice site detection, two main

mapping strategies are employed in practice [81]. These two strategies are illus-

trated in Figure 5.2 and Figure 1.8 contains a list of recently developed mapping

tools. Exon-first mappers first align reads without taking possible splice sites into

account. This stage can be done using traditional read mappers. Reads mapped

this way provide a rough map of all the exons of the reference genome. The un-

mapped reads are split into shorter segments, which are mapped independently.

Finally, connections between the mapped segments are searched to identify the

exact splice site locations. Examples of exon-first mappers are TopHat [240],

TopHat2 [128], MapSplice [251], SpliceMap [17] and SOAPsplice [110].

The second major strategy for spliced alignment is called seed-and-extend or

seed-extend. It uses the same approach taken by many standard DNA mappers,

including ALFALFA (see Chapter 4). The high-level strategy remains unchanged,

but the implementation of the seed and extend phases in spliced aligners differs

from that in DNA mappers. This strategy is used, among others, by GMAP [258],

QPALMA [47], GSNAP [257], and STAR [53].

In addition to the previous dichotomy, spliced aligners are usually also op-

timized for a specific type of input data. Most recent aligners focus on short

RNA-seq reads, whereas GMAP, for example, focuses more on longer cDNA and

EST sequences. In general, spliced aligners using the seed-and-extend approach

are several times slower than their competitors using the exon-first strategy. How-

ever, exon-first approaches are known to miss spliced alignments that map to the

genome contiguously [81]. Many aligners are designed for mapping very short

reads that contain few sequence errors between read and genome. Moreover,
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Figure 5.2: Two major strategies employed for spliced alignment. Black and gray

colors indicate sequences originating from respectively exon 1 and exon 2.

The exon-first approach (a) first maps unspliced reads and often assembles

these mappings into an exon-map. The unmapped reads are divided into

smaller pieces, which are mapped independently. The alignments of each

piece are finally joined into an aligned of the read. The seed-and-extend

approach (b) works similar to the seed-and-extend approach for DNA

mappers (see Chapter 4), with the added feature of closing gaps caused

by splicing in the extension phase. Figure by Garber et al. [81].

many novel spliced aligners are not able to detect rare non-canonical splice sites.

In contrast, mappers that overcome these shortcomings tend to be much slower

than current short read spliced aligners.

ALFALFA is designed for mapping long reads and remains accurate in the

presence of a high number of sequence errors between read and genome. Although

ALFALFA uses the seed-and-extend approach, it could also be used in conjunc-

tion with the exon-first strategy, as this strategy relies on standard DNA mappers

for aligning (pieces) of reads. However, ALFALFA mainly excels at mapping long

reads and the exon-first strategy relies on splitting reads into smaller pieces. Fur-

thermore, long reads can potentially contain more splice sites than shorter reads,

requiring the read to be split into more pieces to obtain alignments that fall

within a single exon.

In order to align reads across intron boundaries, ALFALFA requires adjust-

ments to several phases of the seed-and-extend strategy. To illustrate the need
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for changes to the original algorithm, a chain-guided alignment on a spliced read

is shown in Figure 5.3. In comparison to Figure 4.4, the candidate region (top)

contains two large gaps resulting from spliced out introns. This has an impact

on several key steps in the algorithm.

First, candidate regions need to be much larger encompassing a fragment/seg-

ment of the reference genome that is several times larger than the maximum

expected intron size. As a result, candidate regions will usually contain a higher

number of seeds. Second, more chains will need to be considered due to the in-

creased number of seeds per candidate region. Third, chains should include seeds

from multiple exons, notwithstanding the fact that these exhibit a large skew.

This can clearly be seen in Figure 5.3, in which the skew between seeds on differ-

ent exons is large. Fourth, the standard dynamic programming algorithms will

perform poorly if used to close intronic gaps. Finally, the alignment algorithm

needs to be able to identify the exact splice site locations, taking into account

the existence of canonical and semi-canonical splice sites.

In this chapter, we investigate several solutions to the problems addressed

above. The mapping algorithm that is modified to be able to map cDNA and

RNA-seq reads has been dubbed mesalina. This seed-and-extend spliced aligner

is designed to achieve a high performance on long spliced reads, while maintain-

ing a high accuracy. The algorithm combines ALFALFA with powerful dynamic

programming algorithms introduced by GMAP. Unlike many other novel spliced

aligners, mesalina is also able to detect non-canonical splice sites. The details of

the changes made to the ALFALFA algorithm are documented in Section 5.2. Pre-

liminary testing on a proof-of-principle implementation indicates that mesalina

achieves a high performance for long reads, while maintaining an accuracy that

is comparable to that of GMAP. These results are discussed in Section 5.3.

5.2 Spliced alignment

mesalina is a cDNA and RNA-seq mapper that combines the long read DNA

mapper ALFALFA with additional techniques to compute alignments that bridge

large gaps and identify splice sites. Among the spliced alignment algorithms, it

is classified as a seed-and-extend mapper. Because the mesalina algorithm shares

both its general outline and most of the implementation details with ALFALFA,

this section will focus on the differences between the ALFALFA and mesalina

algorithms. For ease of reading, however, we provide a short summary of the

techniques shared by both algorithms.
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The seed-and-extend strategy consists of first finding short matches between

a read and the reference genome using an efficient index structure. Mesalina

maintains the use of ESSA index structures and MEMs and SMEMs as seeds.

The seeds are utilized to prune the alignment search space to regions that have

around the same size of the final alignment. In case of spliced alignments, the

length of an alignment is several times larger than the length of the read. For

this reason, mesalina employs a different strategy for identifying and selecting

candidate regions. Full alignments between the read and the candidate regions

are calculated in a final extension stage. This is the stage that has seen most

changes to the ALFALFA algorithm. The extension stage continues to rely on

chain-guided alignment. However, gaps spanning an intron are detected using

a special form of dynamic programming, called sandwich dynamic programming,

which was introduced in GMAP [258].

The following sections provide a detailed description of the identification and

selection of candidate regions and chain-guided alignment. For more details on

the first phases of the algorithm, we refer to Chapter 4.

5.2.1 Candidate regions

Similar to ALFALFA, candidate regions consist of a set of seeds that are located

relatively close in the reference genome. In the current proof-of-principle imple-

mentation, however, mesalina uses a less complex candidate region identification

algorithm than the one described in Section 4.2.2. Instead of splitting the set of

seeds in two, mesalina utilizes all seeds found in the previous phase of the algo-

rithm to define new candidate regions. In practice, however, the increase in the

number of candidate regions is small due to an increase in the length of candi-

date regions. Second, mesalina does not recalibrate candidate regions boundaries

using the currently longest seed in the region (see line 18 in Algorithm 4.4). In-

stead, mesalina combines consecutive seeds in the reference genome if they are

no further apart than a user-set maximum intron size.

In detail, MEMs are first sorted by their offset in the reference genome. This

sorted list of MEMs is then processed from left to right. Candidate regions are

formed by consecutive seeds in the sorted list that i) are not separated more than

the user-set maximum intron size in the reference genome, ii) do not overlap in

the reference genome and iii) have a certain user-set maximum overlap in the

read.

Candidate region selection is handled similarly to ALFALFA. Candidate re-

gions are sorted according to the percentage of bases of the read covered by at
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least one seed and only clusters with a high enough coverage are extended. Due

to a higher number of seeds per candidate region, minimum coverage require-

ments are higher (40% by default) than those required by candidate regions in

ALFALFA. To compensate for this more strict parameter setting, no other re-

strictions are imposed on candidate regions in order to qualify for extension in

the next phase of the algorithm.

5.2.2 Candidate region extension

To find alignments within candidate regions, mesalina uses a chain-guided align-

ment, similarly to ALFALFA. The chain-guided alignment strategy is more com-

mon in spliced aligners as bridging gaps caused by introns usually requires an-

chors at both sides of the gap. In contrast to ALFALFA, mesalina currently uses

a simpler heuristical chaining strategy that does not take into account the skew

between two consecutive seeds. The reason for this is again the presence of large

deletions caused by splicing, as can be clearly seen in Figure 5.3. Furthermore,

the proof-of-principle implementation of mesalina currently constructs a single

chain per candidate region. This will likely be changed in future versions of the

tool.

The alignment algorithm used by ALFALFA in Section 4.2.3 has also been

modified. This section covered the procedures used to fill gaps in between con-

secutive seeds of a chain. In this gapped alignment of seeds, gaps can either

result from differences within exonic sequences or span an intron. All gaps are

resolved using specific dynamic programming routines, similar to the ones used

in GMAP [258]. Which dynamic programming algorithm gets chosen depends on

the skew between two consecutive seeds in the chain. To reiterate the definition,

the skew between two seeds is the difference between i) the gap gapG between

the seeds in the reference genome, and ii) the gap gapR between the seeds in the

read sequence.

In addition to the skew, the choice of the dynamic programming algorithm

also depends on a user-set minimum intron length. If the skew is smaller than the

minimum intron length, the algorithm acts similarly to ALFALFA and performs

a basic global banded alignment over the region defined by the gap between the

seeds. Spliced alignment is performed only in case the skew is larger than the

minimum intron size. This case is handled using sandwich dynamic programming ,

which was introduced in GMAP [258] and is discussed in detail below. Only the

case in which gapG is far greater than gapR occurs in practice as this corresponds

to a splice event. The converse case, in which gapR is far greater than gapG, is
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also handled by sandwich dynamic programming but only rarely occurs. The

extra distance in the read is then covered by a single long insertion. Finally,

gaps between the seeds at both ends of the chain and both ends of the read are

handled using standard semi-global alignment. As a result, no introns can be

found that are not surrounded by seeds on both sides of the intron, which is a

known limitation of the seed-and-extend strategy. GMAP solves this problem by

reseeding the candidate region using shorter seeds.

To identify intron boundaries, mesalina uses sandwich dynamic programming

to close the gap between two seeds in a candidate region. Performing a standard

variant of dynamic programming becomes infeasible in case this region spans an

intron, as the intron itself can span several thousand nucleotides. This situation

is illustrated in Figure 5.4a in which the width of the dynamic programming

matrix DP is much higher than its height. Furthermore, standard dynamic pro-

gramming routines do not take into account the presence of a single large gap

and do not allow to take into account additional information such as the presence

of pairs of canonical dinucleotides.

In contrast to the standard dynamic programming routines, sandwich dy-

namic programming consists of filling two smaller dynamic programming matri-

ces and retrieving splice site locations using a combination of the scores in both

matrices.

The sandwich dynamic programming algorithm is illustrated in Figure 5.4b.

The algorithm first performs standard banded dynamic programming between

the gapR region in the read and two regions of similar size gapG′ on the left

and right end of the gap in the reference genome. To allow for indels and some

flexibility in the alignment, gapG′ is a few bases longer than gapR. Both gaps

also include a few bases of the seeds, as depicted by the small overlap of the gap

regions and the seeds in Figure 5.4b. Also note that the matrices DP l and DPr

are filled from opposite corners due to opposite alignment anchor points.

To find the exact location of the splice site, each position in gapR is tested

and receives a score. An intron is inserted at the position with the highest score.

The score for a position is the sum of three terms: i) the maximum score of

that position (row) in DP l, ii) the maximum score of the next position (row) in

DPr and iii) a bonus if the position would result in a canonical or semi-canonical

splice site.

Although this method promotes canonical and semi-canonical splice sites, it is

also able to detect non-canonical splice sites if no canonical splice sites are located

within the region where dynamic programming is performed or if the score for
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Figure 5.4: Dynamic programming routines used to fill the gap between two seeds in

case of a large skew. Seeds on the reference genome G are separated by an

intron, whereas the distance gapR in the read R is much smaller. Standard

dynamic programming (a) would result in low performance due to the

large dimension of the matrix DP. Sandwich dynamic programming (b)

uses two smaller dynamic programming matrices DP l and DPr that have

dimension gapG′×gapR. Location of the exon-intron boundaries is decided

using a combination of the alignment scores in both matrices. The full

alignment consists of traces in DP l, DPr and the intron gap indicated

by the dotted line between the two matrices. Figures adapted from De

Smedt [49].
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a possible non-canonical splice site is much higher than possible canonical splice

sites within the same region.

5.2.3 Implementation

Currently, a proof-of-principle implementation of mesalina is available for down-

load as a stand-alone mapper1. The source code extends version 0.6 of ALFALFA,

which is several steps behind the version presented in Chapter 4. As such,

mesalina does not include all features of the current ALFALFA implementa-

tion. The most important algorithmic differences were outlined in this section,

but differences in the available parameters, as described in Appendix E, should

be checked from the command line. The implementation of sandwich dynamic

programming as first described in GMAP was implemented by Dieter De Smedt.

5.3 Results

To validate the potential of the approach taken in mesalina, we ran the current

implementation on several simulated read sets in addition to a data set of ex-

pressed sequence tags (ESTs). We compared the performance and accuracy of

mesalina against GMAP [258] (v2013-08-19), GNSAP [257] (v2013-08-19) and

TopHat2 [128] (v2.0.9).

The RNASeqReadSimulator program [158] was used to simulate reads from

Arabidopsis thaliana (TAIR102). Three data sets were produced with vary-

ing read lengths of 75bp, 200bp and 500bp. Each data set contained 100 000

reads with uniform expression profile and simulated substitution errors. An error

rate of 5% was used, which is consistent with PacBio CCS (consensus sequence)

data [210]. A data set of 48 438 ESTs used in the original GMAP article were

obtained from the GMAP homepage3 and mapped against the human genome

assembly GRCh37, obtained from the UCSC genome browser website.

All tests with simulated reads were run on a single core of a Dell PowerEdge

R610 server with Intel Xeon processor at clock speed 3.07GHz and 48GB RAM

running Debian 7.2. Tests with ESTs were run on a single core of a PowerEdge

R520 TPM server with Intel Xeon processor at clock speed 1.90GHZ and 8GB

RAM/core running Debian 3.2.41. The tools were run using a single thread

and with default parameter settings. The performance was measured as the

1https://github.com/readmapping/mesalina
2TAIR10 exon 20101028 http://arabidopsis.org/index.jsp(last accessed August 2013
3http://research-pub.gene.com/gmap/(last accessed February 2014)

https://github.com/readmapping/mesalina
http://arabidopsis.org/index.jsp
http://research-pub.gene.com/gmap/
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runtime of the programs using the GNU/Linux time command, excluding index

construction time, as this is independent of the size of the read data set. For

the ESTs, the sensitivity was used as accuracy measure. Accuracy results for

simulated data show the percentage of correctly mapped reads. A read is mapped

correctly if the mapper returns an alignment that maps the read to the correct

simulated mapping position and whose CIGAR string correctly identifies the

intron boundaries set by the gene annotation data.

5.3.1 Memory footprint

Memory requirements of mesalina are equal to those of ALFALFA as both tools

share the same index structure. For the A. thaliana reference genome, the mem-

ory requirements of mesalina are 1165MB, 378MB and 205MB for sparseness

values of 1, 4 and 12, respectively. In comparison, GMAP and GSNAP share

the same index and thus the same memory footprint, which is 493MB for A.

thaliana. TopHat2 requires 171MB for the A. thaliana reference genome, which

is the lowest memory footprint of the evaluated tools. Overall, mesalina can be

configured to have a memory footprint similar to that of other read mappers, but

has the advantage of being able to boost performance at the cost of memory by

adjusting the sparseness of the index structure.

5.3.2 Performance and accuracy trade-offs

The performance and accuracy achieved on the simulated read data sets are

summarized in Table 5.1. In addition to GMAP, GSNAP and TopHat2, three

different settings of mesalina were tested that differed in the sparseness s of the

ESSA index.

Table 5.1 clearly shows the detrimental impact of read length on both the

accuracy and performance of all tested mappers. This can be explained by an

increased number of reads containing (multiple) introns, especially when reads

are longer than the average exon length (250bp for A. thaliana).

A comparison between mesalina and GMAP is interesting as both seed-and-

extend mappers share several algorithmic techniques. GMAP is the most accu-

rate among all tested spliced aligners, but its runtime is much higher than that

of the other mappers. Although mesalina is generally less accurate than GMAP,

the difference in accuracy is relatively small. For reads of length 200bp, we even

report a slightly higher accuracy, although the absolute difference in mapped

reads is small due to the size of the data sets.
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Table 5.1: Performance and accuracy of spliced aligners on three sets of 100 000 reads,

simulated from the A. thaliana genome. The data sets are identified by the

length of the reads, which are respectively 75bp, 200bp and 500bp.

runtime (seconds) accuracy (% correct)

75bp 200bp 500bp 75bp 200bp 500bp

mesalina (s = 1) 35 41 52 84.4 76.9 62.1

mesalina (s = 4) 59 92 164 82.4 74.4 59.7

mesalina (s = 12) 54 81 136 82.0 73.9 59.2

GMAP 459 849 1532 85.5 76.1 63.6

GSNAP 101 363 1785 88.2 79.2 65.2

TopHat2 23 76 240 83.6 70.1 52.4

TopHat2 is known to be very fast and accurate for short reads, which is also

illustrated by the results of the 75bp data set in Table 5.1. Compared to the

other read mappers, however, its accuracy drops significantly for longer reads

and its performance drops tenfold. Although mesalina is slower than TopHat2

for shorter reads, it becomes more than four times faster than TopHat2 for longer

reads, while maintaining a much higher accuracy.

By default, the sparseness setting of the ESSA index in mesalina is 12, as for

this value the memory footprint of mesalina is comparable to that of the other

mappers. If memory is abundant, the sparseness can be lowered and mesalina can

become more than twice as fast. Lower sparseness settings also positively affect

the accuracy of mesalina. This effect is caused by the fact that the seed-finding

algorithm produces more seeds when sparseness is low. The effect could, however,

be mitigated by more complex seed-finding and candidate region identification

algorithms, such as those that are currently used by ALFALFA.

In addition to the results for simulated reads presented in Table 5.1, we evalu-

ated the performance and the sensitivity of mesalina and GMAP on a data set of

roughly 50 thousand EST sequences. Due to the size of these sequences, TopHat2

and GSNAP were unable to produce meaningful results. Mesalina (with s = 12)

was more than 25 times as fast as GMAP. In contrast, GMAP was able to map

97.1% of the sequences, whereas mesalina was only able to map 91.7% of all

sequences.

These preliminary experimental results indicate that our approach achieves a

new and interesting performance-accuracy trade-off, especially for longer reads.
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5.3.3 Discussion

Many novel spliced aligners are very fast and accurate for mapping short RNA-

seq reads. They are, however, not designed to handle longer reads and few are

able to detect non-canonical splice sites. In contrast, mappers designed to map

ESTs and longer cDNA sequences have a much lower throughput than current

short read mappers. Our goal was to bridge this gap by combining techniques

from ALFALFA and sensitive alignment procedures from GMAP in a novel seed-

and-extend spliced aligner called mesalina.

From an algorithmic perspective, mesalina demonstrates a promising combi-

nation of tried-and-tested techniques. As a result, the algorithm can either be

seen as a speed-boost for seed-and-extend algorithms, such as GMAP, or as tech-

nique to provide spliced alignment support to long read mappers. To the best of

our knowledge, the only algorithm containing a similar combination of techniques

is part of recent versions of the segemehl read mapper [102]. This algorithm uses

a combination of an enhanced suffix array for near-exact matching, seed chaining

and split alignment, which is similar to sandwich dynamic programming.

Preliminary experimental results indicate that mesalina attains the goals that

were set and achieves a new and interesting trade-off between performance and

accuracy. It is much faster than GMAP in all test cases, while being only slightly

less accurate. It is, however, much more accurate than TopHat2. Although

TopHat2 remains faster for shorter reads, mesalina performs better for longer

reads. We should remark that these tests are still preliminary and performed on

a small data set. Furthermore, the low accuracy of TopHat2 could probably be

alleviated by tuning command line parameters.

Although the current version of mesalina already shows promising results,

the algorithm still has much room for improvement to obtain a higher accuracy

for reads that are more difficult to map and the implementation could still be

improved to obtain higher overall performance and a lower memory footprint.

The greedy chaining algorithm is currently the major source of misalignments

and could be replaced by an optimal collinear chaining algorithm that allows re-

strictions on gap size [174]. Other causes of misalignments include failure to

detect splice sites at the end of reads and failure to distinguish between two con-

secutive introns separated by an exon smaller than the minimum seed length. An

example of a misalignment in shown in Figure 5.5. The small exon of length 14,

shown in red, is not detected by mesalina due to a lack of seeds at both sides of

the intron. The latter is caused by the restriction on the minimum seed length.

The runtime could be further decreased by selecting good parameter settings,
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14 161 224 118 206 273 44

Figure 5.5: Alignment showing one of the main causes for misalignments using the

current version of mesalina. The candidate alignment region found by

mesalina (top) and the read (bottom) are shown, together with the exonic

areas (shaded areas) and the size of the introns and exons. The red area

represents a small exon at the beginning of the alignment. Mesalina was

unable to find this gap due to the lack of an anchor seed at the left of the

gap.

such as minimum seed length, but also by, for example, using a bit-parallel dy-

namic programming implementation in the extension stage. The memory foot-

print of the index could further be reduced by bit-encoding the reference genome.

In addition to algorithmic improvements, more rigorous tests need to be per-

formed on large and varied data sets and experimental results need to be com-

pared to a larger set of spliced aligners, using different parameter settings.

Finally, the current implementation of mesalina still lacks some of the features

supported by other spliced aligners, including specific algorithms for the detection

of micro-exons and alternative splicing, and paired-end read mapping.
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Concluding remarks

In this dissertation, novel algorithms were presented for fast and accurate map-

ping of long next generation sequencing reads. Development of these algorithms

is motivated by the (r)evolution in sequencing technology that continues to pro-

duce data at higher speed and lower cost. As a result, computational analysis

and interpretation become true bottlenecks in life science research. In Section 1.2,

we covered the advances made in sequencing technology and discussed the wide

variety of sequencing reads with different features these platforms produce.

Read mapping plays a key role in many genomics analysis pipelines and there-

fore need to adapt to the changing landscape in sequencing technology. In Sec-

tion 1.3.3, we showed that past decade gave rise to many novel mapping algo-

rithms and updates of existing tools (see Figure 1.8). Furthermore, read map-

ping algorithms closely follow the advances in technology and the demand for

new applications. However, few read mappers outright outperform older map-

pers. Instead, many have unique features, or present a unique trade-off between

accuracy, performance and memory requirements. For example, the read map-

pers ALFALFA and mesalina are very fast in accurately mapping sets of long

reads that can contain relatively large numbers of mismatches and/or indels.

Furthermore, the enhanced sparse suffix array index structure utilized by both

mappers can be tuned to further balance processing speed, memory consumption

and mapping accuracy.

Although sequencing technology evolves towards longer reads, many recently

proposed still target short reads and allow for no or low numbers of mismatches

and/or indels. Furthermore, the evaluation of ALFALFA and mesalina shows

that the performance of most current long read mappers still rapidly degrades

with increasing read length. The benchmark results in Chapter 4 also show that

the performance and accuracy of read mappers can depend on other factors. For

example, several mappers are susceptible to the presence of many indel type
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errors or a large variation on the insert size of paired-end reads. There are also

other, more application-specific factors that influence performance, such as the

number of alignments reported per read. As a result, the algorithms presented

in this dissertation make a substantial contribution to the field of read mapping.

The most important component of the algorithms developed in this disserta-

tion is the enhanced sparse suffix array index structure that facilitates fast string

searches in the reference genome. Although index structures are already widely

used to speed up bioinformatics applications, we have found that there is a gap

between the field of index structure research and its application domains. As a

result, most tools are designed using basic implementations of index structures,

without taking full advantage of the latest advances in indexing technology. We

tried to bridge the gap between these two fields of research in Chapter 2 with a

comprehensive review of the basic ideas behind classical full-text index structures

and an overview of the limitations of these data structures as well as the research

done in the last decade to overcome these limitations.

Since the review in Chapter 2 was written [247], several new index structures

have been proposed, some of which are described in Section 2.5. Some of these

recent developments work towards eliminating some limitations pointed out by

us in the review, such as lightweight construction algorithms [22,26,45,196] and

practical implementations of compressed index structures [86].

Although every review will at some point be outdated, our survey of full-

text index structures has already partially achieved its goal of introducing index

structure research to the bioinformatics community. The review has been cited

in research articles to provide a theoretical background [79,168], but also in light

of sequence alignment tools [61, 248], index structure construction [43, 229], and

compression of biological data [46,52,83].

We also contributed to the field of index structure research through the devel-

opment of the enhanced sparse suffix array, which was introduced in Chapter 3.

We applied our index structure to the application of finding all maximal exact

matches between two sequences in the tool essaMEM . The ESSA enhances an ex-

isting SSA design [126] with a sparse variant of the child array present in the ESA

index structure [3]. Sparse child arrays can be seamlessly incorporated in sparse

suffix arrays, with minor modifications to the construction algorithm. In addi-

tion to the sparse child array, we modified the existing MEM-finding algorithm

of Khan et al. [126] by introducing sparseness in the query sequence (sequence

that is not indexed) as well. Both modifications improved the performance of

MEM-finding considerably, without, increasing the memory footprint of the in-
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dex. Later, we improved the performance of essaMEM further by introducing a

k-mer table that connects sequences of fixed length k to the suffix intervals in

the ESSA index structure. This added data structure improves the performance

up to three times.

The evaluation in Section 3.4 not only demonstrate that essaMEM is the

fastest MEM-finding algorithm at that time, but also that the use of ESSA-based

algorithms is a viable option for further research. For example, memory require-

ments can be further improved by compressing the reference genome, whose size

currently dominates the memory footprint of the index. In addition, algorithms

could be developed to efficiently find specific types of MEMs, such as maximal

unique matches and super-maximal exact matches.

Since the initial release of essaMEM , two new MEM-finding tool have been

developed, called slaMEM [61] and GPUMEM [4]. Both tools report to be faster

than essaMEM (which might not yet utilize the k-mer table optimization) on

most of tested data sets. It is, however, shown that essaMEM is the fastest CPU-

based tool available [4], as slaMEM does not implement shared-memory paral-

lelism and GPUMEM is a GPU-based MEM-finding tool. Moreover, GPUMEM

is sometimes outperformed by essaMEM if no load balancing is performed. This

suggests a possible path for future research as essaMEM also currently lacks

methods for load balancing.

The essaMEM algorithm is not only an efficient MEM-finding tool, but is

also forms an important component of the long read mapper ALFALFA, which is

presented in Chapter 4. ALFALFA is extremely fast for accurately mapping long

reads (> 500bp) due to its implementation of the canonical seed-and-extend ap-

proach that is empowered by essaMEM , combined with several new optimizations

and heuristics.

Ideally, seed-finding produces a limited number of long seeds that cover as

much of the mapping location as possible. To this end, ALFALFA finds maxi-

mal and super-maximal exact matches, using either the MEM-finding algorithm

from essaMEM or two new algorithms that more rapidly find a smaller set of

interesting MEMs. ALFALFA implements several heuristics to boost the perfor-

mance of seed-finding, such as automatic calculation of the minimum seed length

and restrictions on the size of the output. We also compared the effect of the

implemented algorithms on the accuracy of the read mapper.

SMEMs and rare MEMs are combined into candidate alignment regions using

the locally longest seeds to define boundaries for the candidate regions. Merg-

ing of overlapping regions is performed to avoid possible loss of information in
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repeated regions. Furthermore, seeds that are not used for candidate regions

identification are recovered later in the algorithm to help prioritize the extension

of candidate regions and during the chain-guided alignment.

The number of candidate regions that are examined depends on the quality of

the seeds within that region. We use various extension criteria that, for example,

take into account read coverage and presence of unique seeds. Candidate region

extension is performed using multiple chain-guided alignments, which potentially

require only a fraction of the computational cost of the typically used banded

alignment routines. Although we employ a greedy chaining algorithm, few sub-

optimal alignments are obtained due to several heuristics, such as restrictions on

the skew between two consecutive seeds in the chain.

ALFALFA also includes several paired-end mapping strategies that follow the

outline of the single-end alignment strategy, but also test the paired-end align-

ment restrictions at different stages of the algorithm. Furthermore, both single-

end and paired-end alignment strategies contain procedures that automatically

overcome to stringent parameter settings and increase the effort made to find an

alignment, if necessary.

The overview of existing read mappers in Section 1.3.3 clearly shows that

no single read mapper evaluation method can take into account all aspects and

features of the tested mappers, especially because there is currently still a lack

of generally accepted benchmarking methods. Nevertheless, we have tried to

perform a fair evaluation of ALFALFA against other read mappers by using a

large number of simulated read data sets with different features and by using

multiple methods for measuring the accuracy of the tested read mappers.

Similar to essaMEM , the ESSA allows balancing the performance and ac-

curacy trade-off. The default sparseness value used for all tests in Section 4.3

results in a memory footprint that is comparable to that of the other mappers in

the benchmark. When memory is abundant, however, ALFALFA can be up to

twice as fast by lowering the sparseness value.

The high performance of ALFALFA on long reads, but also on moderately

sized reads, immediately stands out from the benchmark results. ALFALFA is

several times faster than its closest competitor, and is only outperformed by

other read mappers on the shortest read sets. Furthermore, the performance of

ALFALFA remains high when reporting multiple alignments per read.

ALFALFA is among the most accurate read mappers that were tested, who

are highly accurate in general. Some read mappers are slightly more accurate

than ALFALFA, but the opposite is also true on some data sets. ALFALFA is
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also very robust to different error rates, error models and various measures of

accuracy. Furthermore, ALFALFA has a high sensitivity for mapping real 454

reads and presents a nice trade-off between sensitivity and specificity.

Future versions of ALFALFA might benefit from lower memory requirements

and higher performance through the earlier listed improvements to essaMEM .

Currently, the bottleneck in runtime is situated in the extension of candidate

regions. Further optimizations to the dynamic programming routines might help

alleviate this bottleneck, as well as or heuristics that ensure fewer extensions are

necessary. Because ALFALFA currently supports basic multi-threading shared-

memory parallelism, an important route towards increasing the performance is

implementation of more advanced parallelization techniques.

Another direction for improving ALFALFA is manual or automatic tuning

of parameter settings by gathering alignment statistics during the alignment of

the first set of reads. Likewise, optimal default parameter configurations could be

found for each sequencing technology. Because accuracy is already high, however,

extensive testing will be required to achieve even higher accuracy and solutions

might severely harm the current performance.

In addition to improvements to the mapping and alignment algorithm, an

important step for future work is an evaluation of the performance of ALFALFA

using different types of reads and different reference genomes. For example, reads

produced by Pacific Biosciences and Oxford Nanopore contain a higher number

of sequencing errors than the reads used in the current evaluation. Similarly,

mapping reads to prokaryotic genomes and polyploid plant genomes imposes

additional challenges. Finally, it would be interesting to evaluate the accuracy

of read mappers in specific difficult-to-map regions of a genome. To tackle these

challenges, it might be required to search for inexact seeds in addition to MEMs

and SMEMs.

In Chapter 5, we investigated the possibility of using ALFALFA for spliced

alignment of cDNA sequences and long RNA-seq reads. Spliced alignment poses

additional algorithmic challenges due to the presence of large gaps in the align-

ment at splice sites. In contrast to DNA mapping, accurately mapping RNA-seq

reads also becomes more challenging if read length increases. Although ALFALFA

is accurate in mapping DNA reads, modifications are required to several stages

of the algorithm to also work well for spliced alignment. We therefore introduced

mesalina, a prototype of a spliced alignment algorithm based on essaMEM and

ALFALFA. The prototype modifies the candidate region identification and ex-

tension stages of the ALFALFA algorithm. Candidate regions are much larger to
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span multiple exons, chain-guided alignment does not restrict the skew of con-

secutive seeds and the sandwich dynamic programming technique, introduced in

GMAP, is used to span intronic gaps and identify splice sites.

Preliminary evaluation of a proof-of-principle implementation indicate that

mesalina achieves a new and interesting trade-off between performance and accu-

racy. It is much faster than GMAP in all test cases, while being only slightly less

accurate. It is, however, much more accurate than TopHat2. Although TopHat2

remains faster for shorter reads, mesalina performs better for longer reads.

Although the current version of mesalina already shows promising results,

the algorithm still has much room for improvement to obtain a higher accuracy

for reads that are more difficult to map and the implementation could still be

improved to obtain higher overall performance and a lower memory footprint.

The greedy chaining algorithm is currently the major source of misalignments

and could be replaced by an optimal collinear chaining algorithm that allows

restrictions on gap size [174]. Other causes of misalignments include failure to

detect splice sites at the ends of reads and failure to differentiate between two

consecutive introns separated by an exon smaller than the minimum seed length.

A possible solution might be to perform another seed-finding routine that uses a

lower minimum seed length and is limited to the candidate region. In addition,

multiple alignments will need to be performed when short seeds give rise to

multiple possible exon locations.

The algorithms developed in this dissertation have shown to be fast and ac-

curate in mapping various types of long sequencing reads. These results show

that it is possible for read mappers to keep up with the continuous technological

advances in sequencing technology and data growth by using a good combina-

tion of advanced index structures, search algorithms and heuristics. However, as

technology evolves, all read mappers discussed in this dissertation might once be

outdated. We therefore look forward to others building on our ideas, similarly to

how we incorporated previous results into our algorithms.
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List of abbreviations

ALFALFA : a long fragment aligner (2×)

ASCII : american standard code for information interchange

BAM : binary alignment/map format

BLOSUM : block substitution matrix

bp : base pairs

BWT : Burrows-Wheeler transform

cDNA : complementary DNA

CPU : central processing unit

CSA : compressed suffix array

CST : compressed suffix tree

DNA : deoxyribonucleic acid

EBI : european bioinformatics institute

ESA : enhanced suffix array

ESSA : enhanced sparse suffix array

EST : expressed sequence tag

FPGA : field-programmable gate array

Gbp : Giga (billions) base pairs
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GNU : GNU’s Not Unix!

GPU : graphics processing unit

GST : generalized suffix tree

indel : insertion or deletion

I/O : input/output

IUPAC : international union of pure and applied chemistry

kbp : kilo (thousands) base pairs

LCA : lowest common ancestor

LCP : longest common prefix

LF : laft-to-first

LZ : Lempel-Ziv

MAM : maximal almost-unique match

MAPQ : mapping quality

Mbp : Mega (millions) base pairs

MEM : maximal exact match

miRNA : microRNA

MPI : Message Passing Interface

MUM : maximal unique match

N.A. : not available

NCBI : national center for biotechnology information

NGS : next generation sequencing

nt : nucleotide

PAM : point accepted mutation (matrix)

RAM : random-access memory

RNA : ribonucleic acid

ROC : receiver operating characteristic

SA : suffix array

SA−1 : inverse suffix array
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SAM : sequence alignment/map format

SIMD : single instruction, multiple data

sl : suffix link

SMEM : super-maximal exact match

SNP : single-nucleotide polymorphism

SRA : short read archive

SSA : sparse suffix array

succinct suffix array

SSE2 : streaming SIMD extensions 2

ST : suffix tree

XML : extensible markup language
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Appendix B

Sequence alignment and

mapping format

The standard output format for read mappers is the Sequence Alignment/Map

(SAM) format [152], which is a TAB-delimited text file. This format stores

reference genome, read, mapper and alignment information. The alignment in-

formation consists of mapping position, the alignment itself, paired-end mapping

information, mapping quality mapping and other supplementary information. In

addition, the SAM format allows developers to add new fields to an alignment line

to store extra information. SAM files can be compressed in binary form, resulting

in a Binary Alignment/MAP (BAM) file using the SAMtools software package,

which was introduced together with the file format itself [152]. The SAMtools

package also contains various postprocessing tools for indexing, sorting, vari-

ant calling and viewing of the alignment information. This section contains an

overview of all required fields in a SAM file, as well as the optional fields that are

used by ALFALFA (see Chapter 4) and mesalina (see Chapter 5).

B.1 Example

In-depth information on the fields of the SAM format is given in the next sections.

To illustrate the meaning of the SAM lines and fields, an example SAM file is

given below, showing a possible alignment outcome of an alignment for paired-

end reads given in Figure B.1. This figure shows the situation in which a pair of

reads r00/1 with sequence ATAACTCCAGC and r00/2 with sequence ATTCTGTTC are
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Figure B.1: Example of paired-end alignment. The top string is the reference genome

with name ref. Below are two reads r00/1 and r00/2 that are respec-

tively the first and second mate of a pair. The first mate is aligned on the

forward strand and the second in the opposite direction. The positions of

the reference genome are given 1-based, which is in correspondence with

the SAM standard.

mapped against the reference genome ref. The sequence of r00/2 in Figure B.1

is the reverse complement of the actual sequence, as this is the orientation of the

alignment, which is also indicated by the arrow underlining the sequence. The

insert size of the fragment is 28bp according to the alignment, as the first base

of r00/1 is not aligned, but clipped.

@HD VN:1.5 SO:queryname

@SQ SN:ref LN:33

@PG ID:alfalfa CL:... VN:0.8

r00 99 ref 7 60 1S5M2I3M = 25 28

ATAACTCCAGC * AS:i:0 NM:i:2 X0:Z:1S5=2I3=

r00 147 ref 25 60 9M = 7 -28 GAACAGAAT *

AS:i:4 NM:i:2 X0:Z:4=1X4=

SAM lines are TAB-delimited and positions or coordinates in the file format

are 1-based, which differs from the 0-based system used throughout this disser-

tation.

The header in the above example provides some global information about the

SAM file. The SAM version used was 1.5, alignment lines are ordered by the

QNAME field, alignment was performed by ALFALFA version 0.8 and reads were

mapped to a single reference genome ref of size 33.

The example contains two alignment lines, i.e. one for each read. Although

the read names differ, they share the same value for the QNAME field. This value

is obtained by removing the /1 and /2 artifacts from the read names. The order

of the reads (first and second mate) can be retrieved from the FLAG field.
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The value of the FLAG field for the first alignment line is 99, with binary

representation 99 = 26 + 25 + 21 + 20 = 1100011, meaning that the read is paired

(20), both mates are properly aligned and fulfill orientation and insert size criteria

(21), the mate of this read is mapped reverse complemented (25) and this read is

the first mate in the pair (26). The value of the FLAG field of the second alignment

can be written as 147 = 27 + 24 + 21 + 20 = 10010011. From this, we learn again

that this read is part of a pair that is properly aligned (20 and 21) and that this

read is mapped reverse complemented (24) and is the second mate in the pair

(27).

The next two fields after the FLAG give the reference sequence (chromosome)

of the alignment and the mapping position. Note that POS is 1-based and that

the mapping position of the first read refers to its second base, as the first is not

aligned, but clipped from the alignment. The three fields before the SEQ field pro-

vide more paired-end alignment information, respectively the mate’s alignment

reference sequence in RNEXT, mapping position in PNEXT and insert size in TLEN.

As both mates align to the same reference sequence, the value of RNEXT is =. In

addition, the PNEXT value of one mate equals the POS value of the other. TLEN is

the number of bases from the left-most aligned based to the right-most aligned

base. Because the first mate is aligned to the left of the second mate, its TLEN

value is positive, whereas that of the second mate is negative.

Some fields, such as MAPQ, SEQ and QUAL, are self-explanatory. MAPQ is at the

maximum allowed value for the mapper as no other alignment was found. SEQ

shows the aligned sequence, which is the reverse complement of the read sequence

in the case of the second mate. QUAL is marked as * because the quality values

of the read sequences were unknown (which can happen if the reads are given in

FASTA format).

The CIGAR string of the first alignment is 1S5M2I3M, which means that

the alignment consists of a clipped base (not included in the alignment due to

local alignment), followed 5 matches/mismatches, an insertion gap of 2 bases

and another 3 matches/mismatches. In this case, all matches/mismatches are

indeed matches, as indicated by the X0 optional field. This is not the case for the

alignment of the second mate, which contains one mismatch and whose CIGAR

string is 9M. The position of the mismatch is given in the X0 field, whose value is

4=1X4=.

The presence of a mismatch in the alignment of the second mate can also

be seen from the edit distance and alignment score of the alignment, given by

respectively the NM and AS fields. The position of the mismatch could also be
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retrieved in linear time from the alignment and both read and reference sequences.

The alignment score was calculated in this example using a match score of 1, a

mismatch penalty of −4, gap opening penalty of −6 and gap extension penalty

of −1. Note that due to local alignment, the NM and AS fields do not take into

account the first base of the first read.

Header lines

Most SAM files contain the optional header section which contains information

on the SAM file format version used, reference sequences (chromosomes), read

groups and mapping tool information. Header lines start with an ‘@’ symbol

followed by a two-letter line identifier, while alignment lines do not. Each line

contains multiple fields that have a two-letter identifier, followed by a colon. The

header consists of the following lines:

� @HD is the header line containing the fields:

– VN: is required if this line is present and contains the SAM version

number that is supported

– SO: contains the sorting order of the alignments in the file; the possible

values for this field are unknown (default), unsorted, queryname and

coordinate; the first three are self-explanatory, and the last means

that the alignment lines are primary sorted by their RNAME field, with

the order defined by the @SQ lines in the header and secondary sorted

by their POS field

� @SQ lines contain a reference sequence dictionary and have two mandatory

fields and optional fields, which contain more sequence information, but

which we do not utilize; the mandatory fields are:

– SN: reference sequence name

– LN: reference sequence length

� @RG has read group information with information on the sequencing process;

these lines are not reported by our read mappers

� @PG contains program information; these lines contain information on pro-

grams used for alignment; our mapping tools add this line to the output

file with the required ID-tag and the following optional tags:

– ID: unique program identifier, which is a required field
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– CL: command line used for mapping

– VN: version of the mapper

� @CO are comment lines of which more than one are allowed; these lines are

not reported by our mappers.

Alignment lines

The alignment lines in SAM files represent a single alignment of a read against

the reference genome, allowing multiple lines for additional alignments or other

mates of paired-end reads. Each line consists of 11 mandatory fields, which need

to appear in an exact order and several optional fields, which have no particular

order. If information about a field is unavailable, its value can be set to 0 for

integer fields or * for fields containing text strings.

Some fields were generally designed for sets of reads originating from the

same DNA template, such as is the case for paired-end reads. We will give

the description of these fields for paired-end reads, as these are mostly used in

practice, but note that the original definition is more general and allows for more

than two segments per template.

A brief description of all mandatory fields and the optional fields used in this

work are given below and a more detailed description of two fields, FLAG and

CIGAR follow. A highly detailed description of the fields can be found in the SAM

manual1.

The mandatory fields are:

i) QNAME is the field that contains the read name. Multiple lines and align-

ments can be present with the same value of this field. Both mates of pair

should have the same value for this field.

ii) FLAG is a bitwise flag that stores information on the alignment that can

be represented as a boolean value. The meaning of the flags is given in

Table B.1.

iii) RNAME contains reference sequence name of the alignment, corresponding

to a name on the @SQ lines in the header, if present. If the fragment is

unmapped, the value of this field is *, and no assumptions can be made

about POS andCIGAR.

1https://github.com/samtools/hts-specs

https://github.com/samtools/hts-specs
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iv) POS is the 1-based leftmost mapping position of the alignment in the se-

quence specified by RNAME. The value of POS refers to the first matched base

in the read, excluding bases that are clipped in preprocessing or unaligned

when local alignment is used. If the fragment is unmapped, POS is 0.

v) MAPQ contains the mapping quality as an integer value in the interval [0..255],

with 255 representing an unknown mapping quality.

vi) CIGAR is is a run-length encoded form of the alignment representation. More

information about this field is given below. * indicates an unknown value.

vii) RNEXT is the reference sequence name of the mate of this read in the pair.

If the value of this field would equal that of RNAME, = is used instead. For

unmapped mates or single-end reads this field has value *.

viii) PNEXT stores the POS value of the mate’s primary alignment for paired-end

reads and is zero otherwise.

ix) TLEN is a signed value representing the insert size of a paired-end read

alignment. From the aligner’s perspective, TLEN is the number of bases

between the leftmost mapped base and the rightmost mapped base. The

value is positive for the leftmost mate and negative for the rightmost mate

(according to the alignment). It is set to zero for single-end reads or if the

information is unknown.

x) SEQ contains the read sequence. It can be set to * to save space.

xi) QUAL contains the read quality values, as given in the FASTQ file. It can

be set to * to save space.

The optional fields are of the form TAG:TYPE:VALUE, where TAG is a two-letter

identifier, TYPE indicates whether the field is an integer i, a string Z, or another

value. Only integer and string are used in the ALFALFA [249] custom SAM

format.

� AS:i: is the alignment score of the alignment.

� NM:i: is the edit distance of the alignment.

� X0:Z: is the CIGAR string containing match/mismatch information (see

below).
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Table B.1: Description of the bitwise flags making up the FLAG field in an alignment

line of the SAM format. The positions start from the least significant bit

(corresponding to the number 1).

bit index description

1 set for paired-end reads

2 set if both mates are properly aligned according to the aligner

3 set if the read is unmapped

4 set if the mate in this pair is unmapped

5 set if the read is mapped reverse complemented

6 set if the paired mate is mapped reverse complemented

7 set if this read is the first mate in the pair

8 set if this read is the second mate in the pair

9
set if the read is a secondary alignment; this alignment is not

considered the best one by the mapper

10
is platform/mapper unique, does not have a unique definition

and not used in ALFALFA and mesalina

11 set for PCR duplicates and not used in ALFALFA and mesalina

12
set for supplementary alignments indicating chimeric alignments

and not used in ALFALFA and mesalina

Flag field

The value of the FLAG field is an integer consisting of 12 bitwise flags. The flags

are given in Table B.1, ordered by bit index from least significant bit to most

significant bit.

CIGAR field

The CIGAR string is a run-length encoded representation of the alignment, where

consecutive sequences of matches, mismatches, gaps and other alignment artifacts

are represented by characters preceded by their length. The description of the

symbols in a CIGAR string are given in Table B.2.

As shown in Table B.2, the symbol M represents both matches and mismatches.

Although this decreases the level of information, the exact state of the base can be

derived from the alignment position, CIGAR string and both read and reference

genome. The use of one symbol further decreases the size of the CIGAR string.

Most mappers, including ALFALFA and mesalina, use the M symbol instead of
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Table B.2: Description of CIGAR string in SAM alignment lines. The first column

shows the symbols used in the CIGAR string and the second column pro-

vides a brief description of those symbols.

symbol description

= sequence match

X sequence mismatch

M sequence match or mismatch

I insertion to the reference genome

D deletion from the reference genome

N skipped region in the reference genome

S soft clipping (bases present in SEQ field)

H hard clipping (bases not present in SEQ field)

P silent deletion of bases (padding), not used.

the combination of = and X. The optional X0 field in our custom SAM format

contains the alternative CIGAR string using the distinct symbols for matches

and mismatches.

The symbol N is used to indicate a region skipped in the reference genome.

This can be used by spliced aligners to indicate the location of introns (see Chap-

ter 5).

Soft and hard clipping are used at the ends of an alignment and can be used

by read mappers producing local alignments or read mappers that preprocess

reads by removing low quality bases from the ends of the read.

An example of the CIGAR string is given in Figure B.2. The alignment starts

at base 4 in the read, followed by 8 matches, an insertion-type gap of length 2,

another 10 matches, a mismatch and 5 more matches. The CIGAR string is either

3S8M2I16M using the M symbol or 3S8=2I10=1X5= using the separate symbols for

matches and mismatches.
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A G A C G T G T G C T C T C C A T--AGTACAAGTAC

a c a AGTACAAG

| | | | | | | |

A A A G A C G T G T G C

| | | | | | | | | |

C C T C C A

| | | | |

S S S ======== I I = = = = = = = = = = X = = = = =

3S 8= 2I 10= 1X 5=

3S 8M 2I 16M

(a)

(b)

(c)

(d)

Figure B.2: Example of (a) an alignment between a reference genome (top) and a

read sequence (bottom), (b) the CIGAR characters for the alignment, (c)

the CIGAR string using matches and mismatch characters, and (d) the

CIGAR string with a single character for matches and mismatches.
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Appendix C

Details of the essaMEM

experimental results

This appendix contains additional details on the benchmark method and exper-

imental environment used for the experimental tests performed on essaMEM in

Chapter 3. In addition, this appendix also contains tables with the exact exper-

imental results that are depicted in the figures of Section 3.4.

C.1 Testing environment and experimental mea-

surements

Two different machines were used for testing. Machine 1 is a cluster consisting of

Intel Xeon L5420 CPUs with 16GB RAM/node running scientific Linux 5. Ma-

chine 2 is a cluster with dual-socket quad-core Intel Xeon Nehalem (L5520) pro-

cessors at clock speed 2.27GHz and 12GB RAM/node running Scientific Linux 6.1.

All tests with ` = 100 are run on machine 1 and all tests with ` ≤ 50 are run on

machine 2.

Programs used in testing were compiled locally using gcc v4.1.2, unless the

source code was not freely available. All programs were run single-threaded,

unless state otherwise, on a full node of the cluster and were the single active

process on that node. Due to limitations of the cluster, all tests were limited to

a maximum wall time of 72 hours.

All programs except Vmatch are executed with parameters -maxmatch -l

205
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LENGTH -n reference.fasta query.fasta. The first parameter indicates that

MEMs are calculated, the second sets the minimum length to LENGTH, the third

sets the program to only match the nucleotide characters and the final parameters

are the reference and query sequences. In addition, sparseMEM and essaMEM

are run with parameter -k SPARSE to set the sparseness value s. The compression

factor of backwardMEM was set using the appropriate binary backwardMEMK,

where K is the sparseness factor. Finally, the parameters -suflink 0/1 and

-child 0/1 are used to switch suffix links and sparse child array support on or

off in essaMEM and -skip p sets parameter p to p.

Vmatch first constructs an index using mkvtree -db reference.fasta -dna

-indexname INDEX -pl -allout. Afterwards, Vmatch is run with parameters

vmatch -q query.fasta -qspeedup 0/2 -l LENGTH INDEX. We report results

for Vmatch with -qspeedup 0 and -qspeedup 2. The 32 bit version of Vmatch

was used for the megabase-sized genomes (1-6) because it has a smaller memory

footprint and the 64 bit version was used for data set 9, due to memory limitations

in constructing the index.

Wall times of test runs were measured using the GNU/Linux time command.

In addition, the runtime does not include the time for the index construction

phase, if the program contains such as phase. The resident set size (rss) value

of the Unix ps command is used for memory measurements. Both peak memory

usage and mean memory usage are reported.

C.2 Additional tables
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Appendix D

Details of the ALFALFA

experimental results

This appendix contains additional details on the benchmark method and exper-

imental environment used for the experimental tests performed on ALFALFA in

Chapter 4. In addition, Section D.2 contains tables with the exact experimental

results that are depicted in the figures of Section 4.3.

D.1 Testing environment and experimental mea-

surements

All tests were run on a cluster with dual-socket quad-core Intel Xeon Nehalem

(L5520) processors at clock speed 2.27GHz and 12GB RAM/node running Sci-

entific Linux 6.5. This machine was also used for benchmarking essaMEM in

Chapter 3, but differs in the version of the operating system.

Programs used in testing were compiled locally using gcc v4.4.7, except for

GEM . All programs were run single-threaded on a full node of the cluster and

were the single active process on that node. Due to limitations of the cluster, all

tests were limited to a maximum wall time of 72 hours.

The human genome assembly GRCh37, obtained from the UCSC genome

browser website, was used as a reference genome for both simulation and mapping

processes.
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216 Details of the ALFALFA experimental results

D.1.1 Data sets

ALFALFA achieves a high performance in mapping long sequencing reads that

are expected to become commonplace in the near future. As mapping of this

type of read data has not yet been benchmarked and sequencing platforms show

various error rates, we examined a broad range of different read lengths, error

models and error rates using two existing read simulators.

The wgsim package is not designed to simulate reads for particular sequencing

technologies, but allows to specify a uniform error rate and a relative fraction of

indels over mutations in generating simulated reads. In order to evaluate the

robustness of read mappers against different error models, we explored error

rates ranging from 2% to 10% with either low (10%) or high (90%) indel rates.

The Mason read simulator generates reads with errors modeled after the ones

produced by Illumina and 454 sequencing technologies. Although these technolo-

gies do not (yet) produce reads having lengths as the ones covered in our bench-

mark study, future sequencing technologies attaining such read lengths could

produce errors resembling those of current technologies. The Mason simulated

read sets also test the robustness of mappers against different error models.

To prove the competitiveness of ALFALFA on current moderately sized se-

quencing reads, artificial data sets were simulated using Mason to resemble reads

generated by current sequencing platforms. This was done using the same pa-

rameter settings as used in the Bowtie 2 and RazerS3 benchmarks [141,253]. We

also used a read data set of shorter reads, simulated using wgsim. In addition, we

also included several real read sets in the benchmark study. Note that simulated

data allow for an evaluation of the accuracy of read mappers in addition to mea-

suring their speed of execution, whereas real data sets only allow for evaluation

of performance.

Real reads

The real Illumina data set included in the benchmark study consists of sequencing

run ERR024139 of the ERX009608 experiment (EBI Short Read Archive). It

contains over 26 million paired-end 100bp reads with an average insert size of

300bp. This data set was also used in the benchmark study of CUSHAW2 [163].

The 454 read set that is part of our benchmark has NCBI Short Read Archive

accession number SRR003161 and consists of approximately 1.3 million reads

with an average length of 574bp. This data set is also part of the benchmark

undertaken for several other mappers [141,151,179].
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Wgsim simulated reads

A total of 18 read sets of 200 000 reads were simulated with wgsim v0.3.1-r13 [149]

using all possible combinations of 3 read lengths, 3 error rates and 2 indel rates.

To simulate different indel models, both the mutation rate and indel fraction

were set, but base error rate was set to zero. The following command line and

arguments were used to generate the read sets:

wgsim -e 0.00 -1 <read length > -N 200000 -R <indel rate >

<reference.fa> <reads.fq >

� read length = {1000, 5000, 10 000}

� error rate = {0.02, 0.05, 0.1}

� indel rate = {0.1, 0.9}

A final read set of 600bp single-end reads was used to compare the specificity of

read mappers and was obtained using the following command line:

wgsim -h -R 0.3 -1 600 -N 500000 -r 0.01 -S 11 <reference.fa>

<reads.fq>

Mason simulated reads

Read sets with Illumina and 454 error models were simulated with Mason v0.1.1

using either default parameters (100bp and 200bp data sets), parameters used

in Bowtie 2 [141] (longer 454 data sets) or RazerS3 [253] (longer Illumina data

sets). Due to the long execution time and memory requirements of the Mason

read simulator, some data sets were generated in parts (using different seeds for

the random generator) and concatenated afterwards. The following command

line arguments were used:

1 million 2× 100bp and 2× 200bp read pairs following the Illumina error model.

mason illumina -N 1000000 -o <output_name > -sq -ll 300 -le 30 -mp

-rn 1 -n 100 <reference.fa>

mason illumina -N 1000000 -o <output_name > -sq -ll 3000 -le 300 -mp

-rn 1 -n 200 <reference.fa>

1 million 600bp and 800bp reads and 2×600bp and 2×800bp read pairs following

Illumina and 454 error models. The simulation was performed in two parts of

each 0.5 million reads with seeds 0 and 2 000 000.
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mason illumina -N 500000 -o <output_name > -s <seed > -sq -hs 0.006

-hM 32 -n 600 -pi 0.0001 -pd 0.0001 <reference.fa>

mason illumina -N 500000 -o <output_name > -s <seed > -sq -hs 0.006

-hM 32 -n 800 -pi 0.0001 -pd 0.0001 <reference.fa>

mason illumina -N 500000 -o <output_name > -s <seed > -sq -ll 3000

-le 300 -mp -rn 1 -hs 0.006 -hM 32 -n 600 -pi 0.0001

-pd 0.0001 <reference.fa>

mason illumina -N 500000 -o <output_name > -s <seed > -sq -ll 3000

-le 300 -mp -rn 1 -hs 0.006 -hM 32 -n 800 -pi 0.0001

-pd 0.0001 <reference.fa>

mason 454 -N 500000 -o <output_name > -s <seed > -sq -hn 2 -nm 600

-ne 60 -k 0.3 -bm 0.4 -bs 0.2 <reference.fa>

mason 454 -N 500000 -o <output_name > -s <seed > -sq -hn 2 -nm 800

-ne 80 -k 0.3 -bm 0.4 -bs 0.2 <reference.fa>

mason 454 -N 500000 -o <output_name > -s <seed > -sq -ll 3000

-le 300 -mp -rn 1 -hn 2 -nm 600 -ne 60 -k 0.3 -bm 0.4 -bs 0.2

<reference.fa>

mason 454 -N 500000 -o <output_name > -s <seed > -sq -ll 3000

-le 300 -mp -rn 1 -hn 2 -nm 800 -ne 80 -k 0.3 -bm 0.4 -bs 0.2

<reference.fa>

100 000 1kbp reads following Illumina and 454 error models.

mason illumina -N 100000 -o <output_name > -sq -hs 0.006 -hM 32

-n 1000 -pi 0.0001 -pd 0.0001 <reference.fa>

mason 454 -N 100000 -o <output_name > -sq -hn 2 -nm 1000 -ne 100

-k 0.3 -bm 0.4 -bs 0.2 <reference.fa >

50 000 5kbp reads following Illumina and 454 error models. The simulation was

performed in five parts of each 10 000 reads by increasing the seed by 5 million

for each part, starting from zero.

mason illumina -N 10000 -o <output_name > -s <seed > -sq -hs 0.006

-hM 32 -n 5000 -pi 0.0001 -pd 0.0001 <reference.fa>

mason 454 -N 10000 -o <output_name > -s <seed > -sq -hn 2 -nm 5000

-ne 500 -k 0.3 -bm 0.4 -bs 0.2 <reference.fa>

10 000 10kbp reads following Illumina and 454 error models. The simulation was

performed in ten parts of each 1000 reads by increasing the seed by 10 million

for each part, starting from zero.

mason illumina -N 1000 -o <output_name > -s <seed > -sq -hs 0.006 -hM

32 -n 10000 -pi 0.0001 -pd 0.0001 <reference.fa>

mason 454 -N 1000 -o <output_name > -s <seed > -sq -hn 2 -nm 10000

-ne 1000 -k 0.3 -bm 0.4 -bs 0.2 <reference.fa>
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D.1.2 Performance and accuracy measurements

Wall times of test runs were measured using the GNU/Linux time command. In-

dex construction time was not taken into account, but can be found in Table 4.1.

Peak memory measurements in Table 4.1 were obtained using the Python script

ps_mem.py [31]. Tools for measuring recall rate and accuracy are custom devel-

oped for this benchmark study and are available using the ALFALFA evaluate

command. The true positive rate and false positive rate were obtained using the

wgsim_eval.pl script, which is part of the wgsim tool.

For the accuracy measure, a read is considered to be mapped correctly if at

least one of the reported alignments maps within 10bp of the original simulated

position, or if it has at least one alignment with an edit distance that is not

higher than that of the simulated read. The recall rate only takes the distance to

the simulated origin into consideration. Quality values reported by read mappers

were used for the ROC curves in Section 4.3.3.

The commands that were used to evaluate accuracy using the ALFALFA

evaluate command require all input files to be sorted by read name, which can

be done using SAMtools [152].

For the real read data sets, ALFALFA evaluate summary is used to provide in-

formation on the number of mapped reads for which the actual mapping locations

are unknown.

alfalfa evaluate summary [--paired] -i <results.sam > -o <output >

--reads <number of reads in the data set >

ALFALFA evaluate sam is used to evaluate the accuracy for reads simulated

by Mason. It requires a SAM file containing the original mapping positions as

produced by the Mason simulator. The reference genome is required to compute

the edit distance from the CIGAR string.

alfalfa evaluate sam -r <reference.fa> -i <results.sam >

-o <output > --reference -sam <reference sam.sam >

ALFALFA evaluate wgsim is used to evaluate the accuracy for reads simulated

by wgsim. Because wgsim stores information about the original location and the

number of differences in the name of a read, no additional SAM file is required.

The reference genome is required to compute the edit distance from the CIGAR

string.

alfalfa evaluate wgsim -r <reference.fa > -i <results.sam >

-o <output >
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D.1.3 Read mappers

Many long read mappers have been developed over the last couple of years. As it

is practically infeasible to evaluate all read mappers in a single benchmark study,

we limited ourselves to five state-of-the-art read mappers whose properties resem-

ble those of ALFALFA, namely Bowtie 2, BWA-MEM , BWA-SW , CUSHAW3

and GEM . All these mappers are reported to have a high performance in map-

ping next generation sequencing data, including currently available long reads,

but are not specifically designed for a single sequencing technology. They are

accurate in the presence of many indels, have a low memory footprint and are

freely available. If possible, the tested read mappers were built from source code

and their index structures were generated locally. Read mappers were configured

with default parameter settings, unless their authors suggested specific settings

for certain types of data.

ALFALFA (v0.8) commands

The sparseness of the index structure has to be specified during index construc-

tion. The results in this paper use sparseness 12, unless stated otherwise. We

also explored the effect of the sparseness in Figure 4.18. Parameter -a was used

the set the maximum number of reported alignments. Results in Chapter 4 were

obtained using -a 1. Tables in Section D.2 also contains results for -a 4. For

the wgsim data sets, edit distance was specified as the percentage of differences

that were generated using the parameter -e. For all remaining data sets, the

default edit distance was used. Global alignment was specified for data sets with

read length < 500bp, whereas local alignment was specified for longer reads.

Index construction:

alfalfa index -r <reference.fa> -p <index_prefix > -s <sparseness >

Single-end reads:

alfalfa align -i <index_prefix > -0 <reads.fq> -o <output.sam >

-e <max edit distance > -a <alignment count > [--local]

Paired-end reads:

alfalfa align -i <index_prefix > -1 <mate1.fq> -2 <mate2.fq > -I

<min_insert_size > -X <max_insert_size > -o <output.sam > -e <max

edit distance > -a <alignment count > [--local]
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BWA-MEM (v0.7.9a) commands

Both BWA-MEM and BWA-SW use the same index construction command from

the BWA-suite. The parameter -a was used to report multiple alignments and

the parameter -I was used to set the mean insert size. The default insert size

standard deviation was used.

Index construction:

bwa index -p <index_prefix > <reference.fa>

Single-end reads:

bwa mem [-a] <index_prefix > <reads.fq > > <output.sam >

Paired-end reads:

bwa mem [-a] -I <mean_insert_size > <index_prefix > <mate1.fq>

<mate2.fq> > <output.sam >

BWA-SW (v0.7.9a) commands

Both BWA-MEM and BWA-SW use the same index construction command from

the BWA-suite. BWA-SW does not allow the user to specify a maximum per-

centage of errors nor does it allow to specify bounds on the insert size.

Index construction:

bwa index -p <index_prefix > <reference.fa>

Single-end reads:

bwa bwasw -f <output.sam > <index_prefix > <reads.fq >

Paired-end reads:

bwa bwasw -f <output.sam > <index_prefix > <mate1.fq > <mate2.fq>

Bowtie (v2-2.2.3) commands

We mainly used the default parameter settings of Bowtie 2. To report multiple

alignments, we used parameter -k 4. For the results requiring a single alignment

per read, we omitted parameter -k. Global alignment was specified for data

sets with read length < 500bp, whereas local alignment was specified for longer

reads. For paired-end reads, we also specified minimum and maximum insert size.
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Index construction:

Bowtie 2-build <reference.fa > <index_prefix >

Single-end reads:

Bowtie 2-align -x <index_prefix > -U <reads.fq> -S <output.sam >

[--bwa -sw-like] [-k 4]

Paired-end reads:

Bowtie 2-align -x <index_prefix > -1 <mate1.fq> -2 <mate2.fq >

-S <output.sam > -I <min_insert_size > -X <max_insert_size >

[--bwa -sw-like] [-k 4]

CUSHAW (v3.0.3) commands

We mainly used the default parameter settings of CUSHAW3, but used param-

eter -multi to specify the maximum number of alignments to be reported. We

specified average insert size and standard deviation for paired-end reads.

Index construction:

cushaw3 index -p <index_prefix > <reference.fa>

Single-end reads:

cushaw3 align -r <index_prefix > -f <reads.fq> -o <output.sam >

[-multi <alignments >]

Paired-end reads:

cushaw3 align -r <index_prefix > -q <mate1.fq> <mate2.fq > -o

<output.sam > -avg_ins <avg_insert_size > -ins_std

<std_insert_size > [-multi <alignments >]

GEM (build 1.376 beta) commands

A pre-built GEM index was downloaded from the GEM website as the indexer

of this mapper ran into a fatal error on our test environment. By default, GEM

does not report its results into SAM format but provides a tool to convert its

output to SAM format. For FASTQ input files, GEM requires setting the quality

value offset. For real and simulated data generated by the Mason read simulator,

we set this quality value to offset-33. Because wgsim does not produce mean-

ingful quality values, we set the quality offset to ignore for data sets generated

by this read simulator.
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Parameter settings were mainly taken from the original GEM publication [179],

including --fast-mapping option. We used parameter -d to set the maximum

number of reported alignments per read. For paired-end reads, minimum and

maximum insert size were set using the definition in the GEM paper. These

parameter settings deviate from the definition used by other read mappers. For

wgsim data, error percentages for the -m and -e options were set to the values

used by the simulator (2%, 5% or 10%). For 454 data, we used -m 0.08 -e

0.08. For Illumina data we used -m 0.06 -e 0.06. Lower values were tried as

well for Illumina data sets, but these resulted in a significant drop in accuracy.

Single-end reads:

gem -mapper -q <quality -offset > -m <error_percentage >

-e <error_percentage > --fast -mapping -I <index_name >

-i <reads.fq> -o <output_prefix >

gem -2-sam -q <quality -offset > --expect -single -end -reads

-i <output_prefix.map > -o <output.sam >

Paired-end reads:

gem -mapper -q <quality -offset > -m <error_percentage >

-e <error_percentage > --fast -mapping -p -E 0.30

--min -insert -size <min_insert_size >

--max -insert -size <max_insert_size > -I <index_name >

-1 <mate1.fq > -2 <mate2.fq> -o <output_prefix >

gem -2-sam -q <quality -offset > --expect -paired -end -reads

-i <output_prefix.map > -o <output.sam >

D.2 Additional tables

The following tables contain accuracy and performance results for several read

mappers on an extensive benchmark of long and moderately sized read sets. In

addition to the read mappers shown in Section 4.3, results for ALFALFA with an

index built using sparseness value 4 are also included. The difference in memory

requirements between both indexes of ALFALFA can be found in Table 4.1.

For most mappers, results for two parameter settings are reported. The first

setting triggers read mappers to return 4 alignments per read, or all for BWA-

MEM . The second setting allows mappers to report only a single alignment per

read. As an exception, BWA-SW does not provide the option to report multiple

alignments.



224 Details of the ALFALFA experimental results

Wall times for read mapping are reported excluding the time needed to build

the index, but including time needed to generate the SAM output file. Some of

the read mappers were run on a reduced set of reads due to long runtimes for

certain data sets. These cases are reported with the description of the individual

data sets.

For all simulated data sets, the accuracy and recall rates are given. The

recall rate is measured as the percentage of reads for which an alignment was

found within 10bp of the simulated origin. For accuracy, a read is considered to

be successfully mapped if an alignment was found within 10bp of the simulated

origin or if an alignment was found containing fewer differences than the number

of simulated errors.

Table D.1: Data set with 499 998 simulated single-end reads, having a length of 600bp

and containing 1% errors.

multiple alignments single alignment

mapper runtime accuracy recall runtime accuracy recall

ALFALFA (s = 4) 0:06 99.91 99.76 0:06 99.27 98.36

ALFALFA (s = 12) 0:14 99.93 99.78 0:14 99.31 98.41

BWA-MEM 0:45 99.95 99.80 0:35 99.33 98.44

BWA-SW 0:50 99.19 98.31

Bowtie 2 2:09 98.20 97.71 1:58 99.07 98.16

CUSHAW3 4:07 99.95 99.79 1:33 99.36 98.44

GEM 1:08 99.99 99.98 1:09 99.90 99.89

Table D.2: Data set with 199 980 simulated single-end reads, having a length of 1kbp

and containing 2% errors of which 10% are indels.

multiple alignments single alignment

mapper runtime accuracy recall runtime accuracy recall

ALFALFA (s = 4) 0:03 99.98 99.88 0:03 99.67 98.70

ALFALFA (s = 12) 0:06 99.98 99.87 0:06 99.66 98.67

BWA-MEM 0:20 99.98 99.87 0:17 99.68 98.71

BWA-SW 0:41 99.56 98.68

Bowtie 2 2:30 99.16 98.59 2:13 99.60 98.62

CUSHAW3 5:21 99.98 99.87 1:46 99.69 98.74

GEM 0:04 94.79 94.78 0:04 94.77 94.74
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Table D.3: Data set with 199 980 simulated single-end reads, having a length of 1kbp

and containing 2% errors of which 90% are indels.

multiple alignments single alignment

mapper runtime accuracy recall runtime accuracy recall

ALFALFA (s = 4) 0:03 99.88 99.86 0:03 98.99 98.65

ALFALFA (s = 12) 0:06 99.90 99.87 0:07 99.00 98.67

BWA-MEM 0:22 99.89 99.86 0:19 99.00 98.67

BWA-SW 0:41 98.95 98.60

Bowtie 2 2:35 99.13 98.72 2:13 99.02 98.66

CUSHAW3 5:23 99.90 99.87 1:43 99.10 98.73

GEM 0:05 68.95 68.94 0:05 68.92 68.81

Table D.4: Data set with 199 980 simulated single-end reads, having a length of 1kbp

and containing 5% errors of which 10% are indels.

multiple alignments single alignment

mapper runtime accuracy recall runtime accuracy recall

ALFALFA (s = 4) 0:05 99.93 99.85 0:04 99.42 98.61

ALFALFA (s = 12) 0:08 99.95 99.86 0:07 99.45 98.66

BWA-MEM 0:31 99.96 99.86 0:26 99.48 98.69

BWA-SW 0:32 99.40 98.63

Bowtie 2 2:18 99.13 98.07 2:05 99.38 98.53

CUSHAW3 4:46 99.95 99.86 1:35 99.54 98.69

GEM 0:17 99.27 99.26 0:17 99.21 99.13

Table D.5: Data set with 199 980 simulated single-end reads, having a length of 1kbp

and containing 5% errors of which 90% are indels.

multiple alignments single alignment

mapper runtime accuracy recall runtime accuracy recall

ALFALFA (s = 4) 0:05 99.85 99.85 0:05 98.82 98.67

ALFALFA (s = 12) 0:07 99.85 99.84 0:07 98.81 98.66

BWA-MEM 0:30 99.88 99.86 0:25 98.92 98.74

BWA-SW 0:32 98.80 98.51

Bowtie 2 2:21 99.18 98.28 2:07 98.80 98.58

CUSHAW3 4:47 99.85 99.83 1:33 98.88 98.64

GEM 0:17 78.01 77.98 0:17 77.97 77.74
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Table D.6: Data set with 199 980 simulated single-end reads, having a length of 1kbp

and containing 10% errors of which 10% are indels.

multiple alignments single alignment

mapper runtime accuracy recall runtime accuracy recall

ALFALFA (s = 4) 0:07 99.47 98.95 0:06 98.76 97.75

ALFALFA (s = 12) 0:10 99.81 99.67 0:10 99.11 98.44

BWA-MEM 0:36 99.92 99.84 0:30 99.31 98.64

BWA-SW 0:23 99.16 98.39

Bowtie 2 1:59 99.09 96.99 1:53 98.98 98.16

CUSHAW3 2:43 98.42 98.32 1:23 97.88 97.15

GEM 4:24 99.97 99.94 4:23 99.88 99.71

Table D.7: Data set with 199 980 simulated single-end reads, having a length of 1kbp

and containing 10% errors of which 90% are indels.

multiple alignments single alignment

mapper runtime accuracy recall runtime accuracy recall

ALFALFA (s = 4) 0:07 99.53 99.28 0:07 98.34 98.03

ALFALFA (s = 12) 0:10 99.72 99.67 0:10 98.59 98.46

BWA-MEM 0:32 99.83 99.75 0:27 98.81 98.55

BWA-SW 0:25 97.83 97.01

Bowtie 2 2:06 99.14 97.56 1:56 98.59 98.28

CUSHAW3 2:51 95.52 95.37 1:22 94.51 94.16

GEM 4:01 91.60 91.50 3:59 91.53 91.06

Table D.8: Data set with 199 976 simulated single-end reads, having a length of 5kbp

and containing 2% errors of which 10% are indels. §Measurements re-

stricted to the first 2000 reads.

multiple alignments single alignment

mapper runtime accuracy recall runtime accuracy recall

ALFALFA (s = 4) 0:15 99.99 99.98 0:15 99.61 99.36

ALFALFA (s = 12) 0:20 99.99 99.98 0:20 99.63 99.39

BWA-MEM 1:40 99.99 99.98 1:36 99.66 99.43

BWA-SW 2:30 99.61 99.37

Bowtie 2§ 2:28 99.90 99.90 1:01 99.90 99.85

CUSHAW3§ 5:44 100.00 100.00 1:08 99.90 99.85

GEM 2:06 99.95 99.95 2:06 99.93 99.89
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Table D.9: Data set with 199 976 simulated single-end reads, having a length of 5kbp

and containing 2% errors of which 90% are indels. §Measurements re-

stricted to the first 2000 reads.

multiple alignments single alignment

mapper runtime accuracy recall runtime accuracy recall

ALFALFA (s = 4) 0:15 99.98 99.98 0:15 99.39 99.37

ALFALFA (s = 12) 0:20 99.98 99.98 0:19 99.40 99.38

BWA-MEM 1:40 99.98 99.98 1:36 99.44 99.42

BWA-SW 2:25 99.36 99.33

Bowtie 2§ 2:43 99.90 99.85 0:58 99.80 99.80

CUSHAW3§ 5:40 100.00 100.00 1:04 99.80 99.80

GEM 3:04 79.10 79.10 3:05 79.08 78.97

Table D.10: Data set with 199 976 simulated single-end reads, having a length of 5kbp

and containing 5% errors of which 10% are indels. §Measurements re-

stricted to the first 2000 reads.

multiple alignments single alignment

mapper runtime accuracy recall runtime accuracy recall

ALFALFA (s = 4) 0:25 99.98 99.98 0:24 99.48 99.35

ALFALFA (s = 12) 0:36 99.98 99.98 0:35 99.48 99.37

BWA-MEM 2:08 99.99 99.98 2:03 99.52 99.39

BWA-SW 2:03 99.48 99.35

Bowtie 2§ 2:19 99.90 99.90 0:52 99.90 99.85

CUSHAW3§ 5:11 100.00 100.00 1:01 99.90 99.85

GEM 9:57 99.99 99.99 9:52 99.95 99.88

Table D.11: Data set with 199 976 simulated single-end reads, having a length of 5kbp

and containing 5% errors of which 90% are indels. §Measurements re-

stricted to the first 2000 reads.

multiple alignments single alignment

mapper runtime accuracy recall runtime accuracy recall

ALFALFA (s = 4) 0:24 99.98 99.98 0:24 99.38 99.38

ALFALFA (s = 12) 0:34 99.98 99.98 0:33 99.38 99.37

BWA-MEM 2:05 99.98 99.98 1:57 99.39 99.38

BWA-SW 1:58 99.27 99.23

Bowtie 2§ 2:18 99.20 99.20 0:54 99.20 99.15

CUSHAW3§ 5:10 100.00 100.00 0:52 100.00 100.00

GEM 10:37 93.72 93.70 10:42 93.69 93.46
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Table D.12: Data set with 199 976 simulated single-end reads, having a length of 5kbp

and containing 10% errors of which 10% are indels. §Measurements re-

stricted to the first 2000 reads.

multiple alignments single alignment

mapper runtime accuracy recall runtime accuracy recall

ALFALFA (s = 4) 0:29 99.95 99.92 0:29 99.43 99.35

ALFALFA (s = 12) 0:42 99.97 99.97 0:42 99.47 99.42

BWA-MEM 2:20 99.98 99.98 2:14 99.51 99.42

BWA-SW 1:42 99.43 99.33

Bowtie 2§ 2:10 99.95 99.95 0:45 99.70 99.70

CUSHAW3§ 2:00 100.00 100.00 0:30 99.75 99.75

GEM§ 3:07 100.00 100.00 3:07 99.95 99.90

Table D.13: Data set with 199 976 simulated single-end reads, having a length of 5kbp

and containing 10% errors of which 90% are indels. §Measurements re-

stricted to the first 2000 reads.

multiple alignments single alignment

mapper runtime accuracy recall runtime accuracy recall

ALFALFA (s = 4) 0:30 99.90 99.89 0:31 99.23 99.22

ALFALFA (s = 12) 0:42 99.91 99.91 0:41 99.28 99.27

BWA-MEM 2:15 99.91 99.91 2:07 99.30 99.28

BWA-SW 1:47 98.53 98.03

Bowtie 2§ 2:00 94.25 94.25 0:48 94.10 94.10

CUSHAW3§ 2:02 99.20 99.20 0:28 99.05 99.05

GEM§ 2:43 99.60 99.45 2:42 99.55 99.25

Table D.14: Data set with 199 922 simulated single-end reads, having a length of

10kbp and containing 2% errors of which 10% are indels. §Measurements

restricted to the first 2000 reads.

multiple alignments single alignment

mapper runtime accuracy recall runtime accuracy recall

ALFALFA (s = 4) 0:32 99.99 99.99 0:32 99.64 99.57

ALFALFA (s = 12) 0:36 100.00 99.99 0:35 99.64 99.57

BWA-MEM 3:19 99.99 99.99 3:11 99.71 99.65

BWA-SW 5:34 99.69 99.61

Bowtie 2§ 12:17 99.90 99.90 5:00 99.95 99.95

CUSHAW3§ 43:51 100.00 100.00 7:55 99.95 99.95

GEM 12:19 99.99 99.99 12:27 99.97 99.93
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Table D.15: Data set with 199 922 simulated single-end reads, having a length of

10kbp and containing 2% errors of which 90% are indels. §Measurements

restricted to the first 2000 reads.

multiple alignments single alignment

mapper runtime accuracy recall runtime accuracy recall

ALFALFA (s = 4) 0:33 99.99 99.99 0:33 99.59 99.59

ALFALFA (s = 12) 0:36 99.99 99.99 0:36 99.60 99.59

BWA-MEM 3:13 99.99 99.99 3:15 99.63 99.63

BWA-SW 5:04 99.56 99.54

Bowtie 2§ 12:15 99.70 99.70 5:18 99.65 99.65

CUSHAW3§ 43:33 100.00 100.00 7:37 99.85 99.85

GEM 18:23 86.24 86.24 18:36 86.23 86.12

Table D.16: Data set with 199 922 simulated single-end reads, having a length of

10kbp and containing 5% errors of which 10% are indels. §Measurements

restricted to the first 2000 reads.

multiple alignments single alignment

mapper runtime accuracy recall runtime accuracy recall

ALFALFA (s = 4) 0:45 99.99 99.99 0:45 99.62 99.59

ALFALFA (s = 12) 0:54 99.99 99.99 0:54 99.63 99.60

BWA-MEM 4:15 99.99 99.99 4:01 99.66 99.62

BWA-SW 4:21 99.63 99.59

Bowtie 2§ 10:57 99.95 99.95 4:12 100.00 100.00

CUSHAW3§ 39:43 100.00 100.00 6:57 99.95 99.95

GEM 64:15 99.99 99.98 62:43 99.95 99.87

Table D.17: Data set with 199 922 simulated single-end reads, having a length of

10kbp and containing 5% errors of which 90% are indels. §Measurements

restricted to the first 2000 reads.

multiple alignments single alignment

mapper runtime accuracy recall runtime accuracy recall

ALFALFA (s = 4) 0:49 99.98 99.98 0:48 99.54 99.54

ALFALFA (s = 12) 0:56 99.98 99.98 0:56 99.54 99.54

BWA-MEM 4:05 99.99 99.99 4:02 99.60 99.60

BWA-SW 3:55 99.24 99.09

Bowtie 2§ 12:00 96.60 96.60 5:08 96.55 96.55

CUSHAW3§ 40:04 100.00 100.00 6:45 99.95 99.95

GEM§ 0:39 98.10 98.10 0:39 98.10 98.10
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Table D.18: Data set with 199 922 simulated single-end reads, having a length of

10kbp and containing 10% errors of which 10% are indels. §Measurements

restricted to the first 2000 reads.

multiple alignments single alignment

mapper runtime accuracy recall runtime accuracy recall

ALFALFA (s = 4) 1:03 99.96 99.87 1:01 99.55 99.46

ALFALFA (s = 12) 1:09 99.98 99.97 1:07 99.59 99.57

BWA-MEM 4:29 99.99 99.99 4:27 99.64 99.61

BWA-SW 3:30 99.60 99.56

Bowtie 2§ 10:26 99.85 99.85 3:43 99.85 99.85

CUSHAW3§ 15:11 100.00 100.00 3:08 99.95 99.90

GEM§ 25:22 100.00 100.00 23:56 100.00 99.95

Table D.19: Data set with 199 922 simulated single-end reads, having a length of

10kbp and containing 10% errors of which 90% are indels. §Measurements

restricted to the first 2000 reads.

multiple alignments single alignment

mapper runtime accuracy recall runtime accuracy recall

ALFALFA (s = 4) 1:10 99.91 99.88 1:08 99.44 99.41

ALFALFA (s = 12) 1:14 99.93 99.92 1:10 99.48 99.47

BWA-MEM 4:30 99.92 99.92 4:22 99.50 99.50

BWA-SW 3:43 97.43 96.02

Bowtie 2§ 9:50 90.60 90.60 3:59 90.60 90.60

CUSHAW3§ 15:49 99.80 99.80 3:02 99.75 99.75

GEM§ 21:48 99.95 99.85 21:39 99.95 99.85

Table D.20: Data set with 2 × 1 million simulated paired-end reads, having a length

of 100bp and generated with Illumina error model. Insert size is 300bp

with a standard deviation of 10%.

multiple alignments single alignment

mapper runtime accuracy recall runtime accuracy recall

ALFALFA (s = 4) 0:23 99.53 98.30 0:21 99.48 97.02

ALFALFA (s = 12) 0:14 99.56 98.51 0:14 99.51 97.23

BWA-MEM 0:10 99.95 97.88 0:09 99.95 97.88

BWA-SW 0:27 99.91 95.95

Bowtie 2 0:27 99.85 98.90 0:21 99.89 97.75

CUSHAW3 0:41 99.95 99.40 0:38 99.92 97.76

GEM 0:08 99.92 99.73 0:08 99.92 99.73
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Table D.21: Data set with 2 × 1 million simulated paired-end reads, having a length

of 200bp and generated with Illumina error model. Insert size is 3kbp

with a standard deviation of 10%.

multiple alignments single alignment

mapper runtime accuracy recall runtime accuracy recall

ALFALFA (s = 4) 0:11 99.89 99.52 0:10 99.80 98.51

ALFALFA (s = 12) 0:21 99.89 99.56 0:20 99.80 98.57

BWA-MEM 0:18 99.88 98.57 0:19 99.88 98.57

BWA-SW 1:17 99.83 97.58

Bowtie 2 3:10 99.80 99.33 2:06 99.85 98.49

CUSHAW3 1:35 99.98 99.76 1:05 99.89 98.54

GEM 0:15 99.99 99.97 0:15 99.99 99.97

Table D.22: Data set with 1 million simulated single-end reads, having a length of

600bp and generated with Illumina error model.

multiple alignments single alignment

mapper runtime accuracy recall runtime accuracy recall

ALFALFA (s = 4) 0:14 98.97 98.96 0:13 97.82 97.77

ALFALFA (s = 12) 0:30 98.99 98.97 0:31 97.83 97.78

BWA-MEM 0:51 99.05 99.04 0:41 97.94 97.90

BWA-SW 2:12 98.47 98.28

Bowtie 2 4:47 98.46 98.28 4:17 98.26 98.20

CUSHAW3 7:26 99.46 99.42 3:20 98.35 98.27

GEM 1:09 97.21 97.21 1:08 97.11 97.11

Table D.23: Data set with 2 × 1 million simulated paired-end reads, having a length

of 600bp and generated with Illumina error model. Insert size is 3kbp

with a standard deviation of 10%.

multiple alignments single alignment

mapper runtime accuracy recall runtime accuracy recall

ALFALFA (s = 4) 0:26 99.84 99.83 0:25 99.17 99.13

ALFALFA (s = 12) 0:57 99.85 99.83 0:59 99.18 99.14

BWA-MEM 1:21 99.08 99.03 1:21 99.08 99.03

BWA-SW 4:53 98.20 96.56

Bowtie 2 23:01 99.07 99.00 15:29 99.03 98.97

CUSHAW3 37:33 99.91 99.90 6:56 99.10 99.04

GEM 1:16 99.92 99.92 1:16 99.92 99.92
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Table D.24: Data set with 1 million simulated single-end reads, having a length of

800bp and generated with Illumina error model.

multiple alignments single alignment

mapper runtime accuracy recall runtime accuracy recall

ALFALFA (s = 4) 0:28 99.06 99.06 0:28 98.02 98.00

ALFALFA (s = 12) 0:43 99.08 99.08 0:45 98.03 98.02

BWA-MEM 1:14 99.01 99.00 0:58 97.97 97.95

BWA-SW 2:48 98.53 98.42

Bowtie 2 8:47 98.57 98.40 7:54 98.36 98.35

CUSHAW3 13:31 99.48 99.47 5:30 98.45 98.42

GEM 1:53 98.17 98.17 1:51 98.06 98.06

Table D.25: Data set with 2 × 1 million simulated paired-end reads, having a length

of 800bp and generated with Illumina error model. Insert size is 3kbp

with a standard deviation of 10%.

multiple alignments single alignment

mapper runtime accuracy recall runtime accuracy recall

ALFALFA (s = 4) 0:55 99.89 99.89 0:57 99.25 99.24

ALFALFA (s = 12) 1:30 99.90 99.90 1:30 99.26 99.25

BWA-MEM 1:55 99.14 99.12 1:55 99.14 99.12

BWA-SW 6:16 97.83 96.39

Bowtie 2 40:10 99.01 98.94 26:42 99.09 99.07

CUSHAW3 71:50 99.93 99.93 11:25 99.16 99.14

GEM 2:02 99.97 99.97 2:03 99.97 99.97

Table D.26: Data set with 100 000 simulated single-end reads, having a length of 1kbp

and generated with Illumina error model.

multiple alignments single alignment

mapper runtime accuracy recall runtime accuracy recall

ALFALFA (s = 4) 0:03 99.09 99.09 0:03 98.13 98.13

ALFALFA (s = 12) 0:06 99.11 99.11 0:05 98.11 98.11

BWA-MEM 0:09 99.01 99.01 0:07 97.99 97.99

BWA-SW 0:20 98.53 98.43

Bowtie 2 1:28 98.61 98.44 1:14 98.41 98.40

CUSHAW3 2:28 99.44 99.43 0:53 98.47 98.46

GEM 0:18 98.71 98.71 0:17 98.56 98.56
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Table D.27: Data set with 50 000 simulated single-end reads, having a length of 5kbp and

generated with Illumina error model. §Measurements for single alignment re-

stricted to the first 5000 reads. †Measurements for multiple alignments re-

stricted to the first 5000 reads.

multiple alignments single alignment

mapper runtime accuracy recall runtime accuracy recall

ALFALFA (s = 4) 0:09 99.10 99.10 0:09 98.63 98.63

ALFALFA (s = 12) 0:15 99.12 99.12 0:15 98.65 98.65

BWA-MEM 0:25 99.12 99.12 0:24 98.66 98.66

BWA-SW 0:46 96.85 96.56

Bowtie 2§ 20:05 98.93 98.47 3:06 81.60 81.60

CUSHAW3† 13:03 99.80 99.80 27:18 99.09 99.09

GEM 7:32 99.88 99.88 7:32 99.78 99.78

Table D.28: Data set with 10 000 simulated single-end reads, having a length of 10kbp and

generated with Illumina error model. §Measurements for single alignment re-

stricted to the first 1000 reads. †Measurements for multiple alignments re-

stricted to the first 1000 reads.

multiple alignments single alignment

mapper runtime accuracy recall runtime accuracy recall

ALFALFA (s = 4) 0:03 98.97 98.97 0:03 98.62 98.62

ALFALFA (s = 12) 0:04 98.98 98.98 0:04 98.69 98.69

BWA-MEM 0:12 98.98 98.98 0:11 98.70 98.70

BWA-SW 0:23 94.63 93.70

Bowtie 2§ 21:21 99.23 98.47 3:31 57.5 57.5

CUSHAW3† 19:43 99.95 99.95 40:23 99.16 99.16

GEM 14:56 99.86 99.86 12:51 99.73 99.73

Table D.29: Data set with 1 million simulated single-end reads, having an average

length of 600bp and generated with the 454 error model.

multiple alignments single alignment

mapper runtime accuracy recall runtime accuracy recall

ALFALFA (s = 4) 0:15 99.64 99.54 0:15 98.73 98.36

ALFALFA (s = 12) 0:26 99.75 99.69 0:25 98.86 98.54

BWA-MEM 1:44 99.84 99.77 1:21 99.02 98.59

BWA-SW 1:26 98.63 97.87

Bowtie 2 4:08 98.39 97.43 3:51 98.71 98.28

CUSHAW3 6:46 99.71 99.63 2:51 99.00 98.45

GEM 2:19 99.93 99.91 2:16 99.88 99.76
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Table D.30: Data set with 2×1 million simulated paired-end reads, having an average

length of 600bp and generated with the 454 error model. Insert size is

3kbp with a standard deviation of 10%.

multiple alignments single alignment

mapper runtime accuracy recall runtime accuracy recall

ALFALFA (s = 4) 0:30 99.64 99.39 0:28 99.18 98.65

ALFALFA (s = 12) 0:51 99.81 99.70 0:51 99.38 99.00

BWA-MEM 2:44 99.53 99.02 2:46 99.53 99.02

BWA-SW 3:22 99.32 98.07

Bowtie 2 21:35 99.22 98.55 14:50 99.36 98.81

CUSHAW3 19:29 99.53 98.94 9:24 99.48 98.73

GEM 2:05 99.99 99.99 2:23 99.99 99.99

Table D.31: Data set with 1 million simulated single-end reads, having an average

length of 800bp and generated with the 454 error model.

multiple alignments single alignment

mapper runtime accuracy recall runtime accuracy recall

ALFALFA (s = 4) 0:21 99.77 99.74 0:21 98.86 98.65

ALFALFA (s = 12) 0:37 99.83 99.80 0:38 98.93 98.72

BWA-MEM 2:13 99.87 99.83 1:54 99.03 98.74

BWA-SW 1:53 98.83 98.28

Bowtie 2 7:50 98.64 97.68 7:20 98.78 98.48

CUSHAW3 10:27 99.69 99.64 4:40 98.91 98.52

GEM 4:08 99.97 99.96 4:06 99.92 99.81

Table D.32: Data set with 2×1 million simulated paired-end reads, having an average

length of 800bp and generated with the 454 error model. Insert size is

3kbp with a standard deviation of 10%.

multiple alignments single alignment

mapper runtime accuracy recall runtime accuracy recall

ALFALFA (s = 4) 0:41 99.79 99.70 0:40 99.32 99.05

ALFALFA (s = 12) 1:16 99.88 99.83 1:15 99.43 99.19

BWA-MEM 3:37 99.48 99.11 3:35 99.48 99.11

BWA-SW 4:27 99.20 98.29

Bowtie 2 36:40 99.24 98.50 26:27 99.32 98.94

CUSHAW3 26:05 99.41 98.96 13:26 99.35 98.80

GEM 4:16 100.00 99.99 4:17 100.00 99.99
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Table D.33: Data set with 100 000 simulated single-end reads, having an average

length of 1kbp and generated with the 454 error model.

multiple alignments single alignment

mapper runtime accuracy recall runtime accuracy recall

ALFALFA (s = 4) 0:03 99.81 99.78 0:03 98.96 98.81

ALFALFA (s = 12) 0:05 99.86 99.84 0:05 99.03 98.86

BWA-MEM 0:16 99.89 99.87 0:14 99.10 98.89

BWA-SW 0:14 98.94 98.56

Bowtie 2 1:20 98.86 97.88 1:14 98.89 98.66

CUSHAW3 1:52 99.68 99.64 0:44 98.96 98.67

GEM 0:39 99.98 99.96 0:39 99.92 99.81

Table D.34: Data set with 50 000 simulated single-end reads, having an average length of

5kbp and generated with the 454 error model. §Measurements for single align-

ment restricted to the first 5000 reads. †Measurements for multiple alignments

restricted to the first 5000 reads.

multiple alignments single alignment

mapper runtime accuracy recall runtime accuracy recall

ALFALFA (s = 4) 0:08 99.97 99.97 0:08 99.46 99.46

ALFALFA (s = 12) 0:10 99.97 99.97 0:10 99.43 99.43

BWA-MEM 0:42 99.98 99.98 0:38 99.45 99.45

BWA-SW 0:44 99.24 96.12

Bowtie 2§ 28:08 99.72 98.00 2:53 99.30 99.30

CUSHAW3† 8:20 99.5 99.5 19:35 98.97 98.83

GEM 19:35 100.00 100.00 19:31 99.93 99.88

Table D.35: Data set with 10 000 simulated single-end reads, having an average length of

10kbp and generated with the 454 error model. §Measurements for single align-

ment restricted to the first 1000 reads. †Fatal error encountered during mapping

process.

multiple alignments single alignment

mapper runtime accuracy recall runtime accuracy recall

ALFALFA (s = 4) 0:04 99.46 98.45 0:04 99.23 98.22

ALFALFA (s = 12) 0:03 99.89 99.79 0:04 99.60 99.50

BWA-MEM 0:44 99.96 99.96 0:42 99.60 99.60

BWA-SW 0:19 99.98 94.81

Bowtie 2§ 35:23 99.95 97.92 3:25 99.30 99.30

CUSHAW3† N.A. N.A. N.A. N.A. N.A. N.A.

GEM 33:27 100.00 100.00 33:13 99.94 99.88
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Appendix E

ALFALFA command line

structure

This section provides details on the command line options that can be used to

tweak ALFALFA, default settings and general usage tips. The software package

offers separate commands for index construction, read mapping and evaluating

mapping accuracy. Index construction can also be combined with read mapping

during a single run of the package. The alfalfa command has the following

general anatomy

alfalfa <command > [<subcommand >] [options]

where command is either index, align or evaluate. Only the evaluate command

requires an additional subcommand. The command line atonomy of ALFALFA

is graphically represented in Figure E.1.

In what follows we describe the options associated with each of the commands.

Options can have a single-letter (preceded by a single hyphen) or multi-letter

(preceded by a double hyphen) name, or both. In the latter case, both names of

the option can be used interchangeably. Each description of an option starts with

its name or names (separated by a forward slash), followed by a tuple (between

round brackets) indicating the data type and default value of the argument that

has to be passed to the option. If no default value is given, it is mandatory to

pass an argument to the option. Options for which no tuple is given are used as

toggles to enable/disable certain features and need no extra argument.
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alfalfa

index

-r

--reference

-s

--sparseness

-p

--prefix

--no-child

--suflink

--no-kmer

-h

--help

align

I/O

-r

--reference

-i

--index

--save
-0

--single

-1

--mates1

-2

--mates2

-o

--output

alignment

-a

--alignments

--no-forward

--no-reverse

-e

--edit-distance

--no-rescue-t

--threads

seed
--seed

-l

--min-length

-m

--max-seeds
--max-smems

--max-mems

--min-mem-length

--no-sparseness

extend

--max-alignments

-f

--max-failures

--reset-failures

--skip-unique

-c

--min-coverage

--local

-b

--bandwidth

-M

--match

-U

--mismatch

-O

--gap-open

-E

--gap-extend --full-dp

paired-end

-I

--min-insert

-X

--max-insert
--orientation

--no-mixed

--no-discordant

--dovetail

--no-contain

--no-overlap

--paired-mode

--paired-rescue

miscellaneous

-v

--verbose

-h

--help

evaluate

-i

--input-sam

-o

--output

-q

--quality

-p

--print

-h

--helpsummary--paired

--reads

sam

-r

--reference
-w

--window

--input-edit

--reference-sam

--reference-edit

wgsim

-r

--reference
-w

--window

--input-edit

Figure E.1: Command line anatomy of ALFALFA. Options can be used to customize

the read mapper and are grouped per command, subcommand and cat-

egory. See Supplemental Data for further details on the options used by

ALFALFA.
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E.1 Indexing a reference genome

The index command is used to construct the data structures for indexing a given

reference genome. The constructed index is stored to disk over multiple files that

are contained in the same directory and that have names sharing the same prefix.

Index files contain bookkeeping information (extension .aux) and individual ar-

rays of an enhanced sparse suffix array: reference genome (extension .ref), suffix

array (extension .sa), longest common prefix array (extension .lcp), inverse suf-

fix array (extension .isa; optional), child array (extension .child; optional) and

10-mer lookup array (extension .kmer; optional). The inverse suffix array is the

only array that is not constructed by default. The child array and 10-mer lookup

array are not strictly necessary and may be omitted in order to save memory,

but at the cost of a drop in performance. The index command can be skipped

as the align command also provides the option to generate an index and store

it to disk. All options for customizing the index command can therefore also be

used in combination with the align command.

E.1.1 Options

-r/--reference (file). Specifies the location of a file that contains the refer-

ence genome in multi-FASTA format.

-s/--sparseness (int, 12). Specifies the sparseness of the index structure as

a way to control part of the speed-memory trade-off.

-p/--prefix (string, filename passed to the -r option). Specifies the

prefix that will be used to name all generated index files. The same prefix

has to be passed to the -i option of the align command to load the index

structure when mapping reads.

--no-child. By default, a sparse child array is constructed and stored in an

index file with extension .child. The construction of this sparse child

array is skipped when the --no-child option is set. This data structure

speeds up seed-finding at the cost of (4/s) bytes per base in the reference

genome. As the data structure provides a major speed-up, it is advised to

have it constructed.

--suflink. Suffix link support is disabled by default. Suffix link support is

enabled when the --suflink option is set, resulting in an index file with

extension .isa to be generated. This data structure speeds up seed-finding
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at the cost of 4/s bytes per base. It is only useful when sparseness is less

than four and minimum seed length is very low (< 10), because it conflicts

with skipping suffixes in matching the read. In practice, this is rarely the

case.

--no-kmer. By default, a 10-mer lookup table is constructed that contains the

suffix array interval positions to depth 10 in the virtual suffix tree. It

is stored in an index file with extension .kmer and requires only 8MB

of memory. The construction of this lookup table is skipped when the

--no-kmer option is set. The lookup table stores intervals for sequences

of length 10 that only contain {A,C,G,T}. This data structure speeds up

seed-finding if the minimum seed length is greater than 10.

-h/--help. Prints to standard error the version number, usage description and

an overview of the options that can be used to customize the software

package.

E.2 Mapping and aligning a read set

The align command is used for mapping and aligning a read set onto a reference

genome. As this process can be customized through a long list of options, we

have grouped them into several categories.

E.2.1 I/O options

-r/--reference (file, part of the index). Specifies the location of a file that

contains the reference genome in multi-FASTA format.

-i/--index (string). Specifies the prefix used to name all generated index files.

If this option is not set explicitly, an index will be computed from the

reference genome according to the settings of the options that also apply

to the index command.

--save. Specifies that if an index is constructed by the align command itself,

it will be stored to disk. This option is ignored if the index is loaded from

disk (option -i).

-0/--single (file). Specifies the location of a file that contains single-end

reads. Both FASTA and FASTQ formats are accepted. If both single-end

and paired-end reads are specified, single-end reads are processed first.
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-1/--mates1 (file). Specifies the location of a file that contains the first mates

of paired-end reads. Both FASTA and FASTQ formats are accepted.

-2/--mates2 (file). Specifies the location of a file that contains the second

mates of paired-end reads. Both FASTA and FASTQ formats are accepted.

-o/--output (file, filename passed to the -r option with additional

.sam extension). Specifies the location of the generated SAM output file

containing the results of read mapping and alignment.

E.2.2 Alignment options

-a/--alignments (int, 1). Specifies the maximum number of alignments re-

ported per read.

--no-forward. Do not compute alignments on the forward strand.

--no-reverse. Do not compute alignments on the reverse complement strand.

-e/--edit-distance (float, 0.08). Represents the maximum percentage of

differences allowed in accepting alignments and used in combination with

the dynamic programming score function to calculate the minimum align-

ment score.

--no-rescue. Disables rescue procedures that are normally initiated when no

seeds and/or alignments are found with the current parameters.

-t/--threads (int, 1). Number of threads used during read mapping. Using

more than one thread results in reporting read alignments in a different

order compared to the order in which they are read from the input file(s).

E.2.3 Seed options

--seed (MEM | SMEM | PSMEM, SMEM). Specifies the type of seeds used for read

mapping. Possible values are MEM for maximal exact matches, SMEM for

super-maximal exact matches, and PSMEM for SMEMs with additional rare

MEMs. The use of SMEMs generally boosts performance without having

a negative impact on accuracy compared to the use of MEMs. On the

other hand, there are usually many more MEMs than SMEMs, in general

resulting in a higher number of candidate genomic regions. Reporting all

MEMs might be useful if reporting more candidate mapping locations is

preferred.
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-l/--min-length (int, auto). Specifies the minimum seed length. This value

must be greater than the sparseness value used to build the index (option

-s). By default, the value of this option is computed automatically using

the following procedure. A value of 40 is used for reads shorter than 1kbp.

The value is incremented by 20 for every 500bp above 1kbp, with the total

increment being divided by the maximum percentage of errors allowed in

accepting alignments (option -e).

-m/--max-seeds (int, 10 000). Specifies the maximum number of same-length

seeds that will be selected per offset in the read sequence. The value passed

to this option is multiplied by the automatically computed skip factor that

determines sparse matching of sampled suffixes from the read sequence. As

a result, the actual number of seeds per starting position in the read might

still vary. Higher values of this option result in higher numbers of seeds,

increasing in turn the number of candidate genomic regions.

--max-smems (int, 10). Specifies the maximum number of SMEMs per offset in

the read sequence to allow MEM-finding. This only applies to PSMEM

seeds.

--max-mems (int, 20). Specifies the maximum number of MEMs per offset in

the read that can be used for candidate region identification.

--min-mem-length (int, 50). Specifies the minimum length MEMs need to have

to be used for candidate region identification.

--no-sparseness. Disables the use of sparseness in the read sequence during

seed-finding.

E.2.4 Extend options

--max-alignments (int, 5000). Specifies the maximum number of alignments

calculated per read. This value should be higher than the number of re-

ported alignments (option -a). Decreasing this value can increase perfor-

mance of the algorithm, at the cost of a lower accuracy and worse mapping

quality estimation.

-f/--max-failures (int, 10). Specifies the maximum number of successive

candidate regions that are investigated without success before ALFALFA

stops extending the candidate regions of a read. Extension can be restarted

only if the remaining candidate regions contain unique seeds.
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--reset-failures. If set, the counter of successive candidate regions that are

investigated without success is reset if a feasible alignment is found. By

default the counter is only reset if a new best alignment is found.

--skip-unique. By default, ALFALFA extends all candidate regions containing

unique seeds. If this flag is set, the uniqueness criterion is not taken into

account when deciding upon the extension of a candidate region.

-c/--min-coverage (float, 0.25). Specifies the minimum percentage of the

read length that candidate regions containing a single seed need to cover

before extension of the candidate region is taken into consideration.

--local. By default, ALFALFA uses global alignment during the last phase of

the mapping process. Global alignment in essence is end-to-end alignment,

as it entirely covers the read but only covers the reference genome in part.

Local alignment is used during the last phase of the mapping process if the

--local option is set, which may result in soft clipping of the read.

-b/--bandwidth (int, 100). Specifies the maximum bandwidth that is used by

the banded alignment algorithm. The bandwidth used is automatically

inferred from the specification of the maximum percentage of errors allowed

in accepting alignments (option -e), but is bound by this parameter.

-M/--match (int, 1). Specifies the positive score assigned to matches in the

dynamic programming extension phase.

-U/--mismatch (int, -4). Specifies the penalty assigned to mismatches in the

dynamic programming extension phase.

-O/--gap-open (int, -6). Specifies the penaltyO for opening a gap (insertion or

deletion) in the dynamic programming extension phase. The total penalty

for a gap of length ` equals O + ` · E. The use of affine gap penalties can

be disabled by setting this value to zero.

-E/--gap-extend (int, -1). Specifies the penalty E for extending a gap (inser-

tion or deletion) in the dynamic programming extension phase. The total

penalty for a gap of length ` equals O + ` · E.

--full-dp. By default, ALFALFA uses chain-guided alignment to retrieve the

CIGAR alignment. If this parameter is set, banded dynamic programming

is performed instead. Activating this setting can greatly increase runtime,

but can sometimes lead to more optimal alignments.
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E.2.5 Paired-end mapping options

-I/--min-insert (int, 0). Specifies the minimum insert size.

-X/--max-insert (int, 1000). Specifies the maximum insert size.

--orientation (fr | rf | ff, fr). Specifies the orientation of mates. fr means a

forward upstream first mate and reverse complemented downstream second

mate or vice versa. rf means a reverse complemented upstream first mate

and forward downstream second mate or vice versa. ff means a forward

upstream first mate and forward downstream second mate or vice versa.

Note that these definitions are literally taken over from Bowtie 2.

--no-mixed. Disables searching for unpaired alignments.

--no-discordant. Disables searching for discordant alignments.

--dovetail. Allows switching between upstream and downstream mates in the

definition of their orientation (option --orientation).

--no-contain. Disallows concordant mates to be fully contained within each

other.

--no-overlap. Disallows concordant mates to overlap each other.

--paired-mode (1 | 2 | 3 | 4 | 5 | 6, 1). Specifies the algorithm used to align

paired-end reads. The possible algorithms are discussed in detail in the

methods section. Algorithms 1 and 2 do not use information from candidate

regions. Algorithms 3 and 4 prioritize extension of candidate regions over

both reads. Algorithms 5 and 6 filter the list of candidate regions using

the paired-end constraints. Algorithms with an odd number pair mapped

reads after alignment. Algorithms with an even number perform dynamic

programming across a window defined by the insert size restrictions to

search for a bridging alignment reaching the other mate.

--paired-rescue. Enables a rescue procedure if no concordant alignment is

found using the current parameter settings.

E.2.6 Miscellaneous options

-v/--verbose (int, 0). Turns on lots of progress reporting about the alignment

process. Higher numbers give more verbose output. Information is printed
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to standard error and is useful for debugging purposes. The default value 0

disables progress reporting. The maximum verbosity level currently sup-

ported is 7.

-h/--help. Prints to standard error the version number, usage description and

an overview of the options that can be used to customize the software

package.

E.3 Evaluating mapping accuracy

The evaluate command is used for evaluating the accuracy of simulated reads

and summarizing statistics from the SAM formatted alignments reported by a

read mapper. It requires an additional subcommand that influences both the

functionality and the input of the evaluate command. Currently supported

subcommands are summary, sam and wgsim.

The evaluate command requires all input files to be sorted by read name.

This can easily be done using SAMtools. Furthermore, read names of both mates

should be identical for paired-end reads.

E.3.1 Options shared by all subcommands

-i/--input-sam (file). Specifies the location of a SAM file that contains the

read mapping alignments that need to be evaluated.

-o/--output (file, standard output). Specifies the location of the file that

will contain the generated output.

-q/--quality (comma-separated list of ints between 0 and 255, 0). The

values in the list represent quality thresholds. For each specified quality

threshold, output is produced that reports only on the subset of alignments

with quality value greater than or equal to the threshold.

-p/--print. Triggers the generated output to contain a list of all reads from the

input SAM file followed by a binary value. Zero indicates that the read

is either unmapped or incorrectly mapped and one indicates that the read

was mapped (summary subcommand) or mapped correctly (other subcom-

mands).
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-h/--help. Prints to standard error the version number, usage description and

an overview of the options that can be used to customize the software

package.

E.3.2 Summary subcommand options

The evaluate summary subcommand reports statistics about the number of

mapped reads for which the actual mapping locations are unknown.

--reads (int). Specifies the number of reads given as input to the read mapper

that produced the input SAM file (option --input-sam). This number

can be different from the number of reads contained in the input SAM file

(option --input-sam) if for example unmapped reads are not reported.

--paired. By default, the input SAM file (option --input-sam) is supposed

to contain single-end reads. If the --paired option is set, it is supposed

to contain paired-end reads. The summary for paired-end reads contains

information on the number of reads mapped as paired and unpaired, as

indicated by the flag field of the SAM format.

E.3.3 Sam subcommand options

The evaluate sam subcommand is used to evaluate the accuracy for sequencing

reads generated by the Mason simulator and other read simulators that produce

a reference SAM file containing alignments for the simulated reads.

-r/--reference (file). Specifies the location of a file that contains the refer-

ence genome in multi-FASTA format.

-w/--window (comma-separated list of ints, 10). The values in the list

represent window sizes around the position in the reference genome from

which the simulated read was extracted. An alignment is considered to

be mapped correctly if it is mapped within a given window around the

simulated position. Output is generated for each individual value.

--input-edit (string, NM). Specifies the field of the SAM format that contains

the edit distance of the alignments in the input SAM file (option -i). If

no such field exists, the edit distance is computed from the CIGAR string,

the read sequence and the reference genome. An alignment that is not

mapped within a certain window around the simulated position (option
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-w) is considered accurately mapped if its edit distance is less than the

edit distance of the alignment taken from the reference SAM file (option

--reference-sam).

--reference-sam (file). Specifies the location of a reference SAM file contain-

ing alignments of the simulated reads as generated by the Mason simulator.

Alignments contained in this file should be sorted by read name, which is

easily done using SAMtools.

--reference-edit (string, XE). Specifies the field of the SAM format that

contains the edit distance of the alignments in the reference SAM file (op-

tion --reference-sam). The default value is set to XE because this is the

field used by the Mason simulator.

E.3.4 Wgsim subcommand options

The evaluate wgsim subcommand is used to evaluate the accuracy for reads

simulated by wgsim.

-r/--reference (file). Specifies the location of a file that contains the refer-

ence genome in multi-FASTA format.

-w/--window (comma-separated list of ints, 10). The values in the list

represent window sizes around the position in the reference genome from

which the simulated read was extracted. An alignment is considered to

be mapped correctly if it is mapped within a given window around the

simulated position. Output is generated for each individual value.

--input-edit (string, NM). Specifies the field of the SAM format that contains

the edit distance of the alignments in the input SAM file (option -i). If

no such field exists, the edit distance is computed from the CIGAR string,

the read sequence and the reference genome. An alignment that is not

mapped within a certain window around the simulated position (option

-w) is considered accurately mapped if its edit distance is less than the

edit distance of the alignment taken from the reference SAM file (option

--reference-sam).
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[54] A. Döring, D. Weese, T. Rausch, and K. Reinert. SeqAn: an efficient,

generic C++ library for sequence analysis. BMC Bioinformatics, 9(1):11,

2008.

[55] R. Drmanac, A.B. Sparks, M.J. Callow, A.L. Halpern, N.L. Burns, B.G.

Kermani, P. Carnevali, I. Nazarenko, G.B. Nilsen, G. Yeung, et al. Human

genome sequencing using unchained base reads on self-assembling DNA

nanoarrays. Science, 327(5961):78–81, 2010.

[56] P. Elias. Universal codeword sets and representations of integers. IEEE

Transactions on Information Theory, 21(2):194–203, 1975.

[57] B. Ewing and P. Green. Base-calling of automated sequencer traces using

phred. II. error probabilities. Genome Research, 8(3):186–194, 1998.



254 Bibliography

[58] M. Farrar. Striped Smith–Waterman speeds database searches six times

over other SIMD implementations. Bioinformatics, 23(2):156–161, 2007.

[59] J. Felsenstein, J. Archie, W. Day, W. Maddison, C. Meacham, F. Rohlf,

and D. Swofford. The Newick tree format. http://evolution.genetics.

washington.edu/phylip/newicktree.html, 1986.

[60] F. Fernandes, P.G.S. da Fonseca, L.M.S. Russo, A.L. Oliveira, and A.T.

Freitas. Efficient alignment of pyrosequencing reads for re-sequencing ap-

plications. BMC bioinformatics, 12(1):163, 2011.

[61] F. Fernandes and A.T. Freitas. slaMEM: efficient retrieval of maximal exact

matches using a sampled LCP array. Bioinformatics, 30(4):464–471, 2013.

[62] E. Fernandez, W. Najjar, and S. Lonardi. String matching in hardware

using the FM-index. In Field-Programmable Custom Computing Machines,

pages 218–225. IEEE, 2011.

[63] P. Ferragina. Data structures: time, I/Os, entropy, joules! In European

Symposium on Algorithms, pages 1–16. Springer, 2010.

[64] P. Ferragina and J. Fischer. Suffix arrays on words. In Combinatorial

Pattern Matching, pages 328–339. Springer, 2007.

[65] P. Ferragina, T. Gagie, and G. Manzini. Lightweight data indexing and

compression in external memory. Algorithmica, 63(3):707–730, 2012.
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[173] V. Mäkinen, G. Navarro, J. Sirén, and N. Välimäki. Storage and retrieval
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Nederlandstalige

samenvatting

Onderzoek in bioinformatica wordt momenteel gedomineerd door een (r)evolutie

op het gebied van sequeneringstechnologie. Deze technologie produceert korte

strings (reads) die de exacte volgorde van de basen in een DNA fragment bevat-

ten. De continue evolutie in deze technologie heeft ervoor gezorgd dat biologische

sequenties steeds sneller en goedkoper kunnen worden geproduceerd, wat op zich

geleid heeft tot nieuwe toepassingsmogelijkheden en prestigieuze projecten. Ech-

ter, de huidige programma’s voor het analyseren van deze data kunnen de groei

moeilijk bijhouden. In huidige projecten wordt de bottleneck gevormd door onder

andere opslagcapaciteit, computationele analyse en interpretatie van de data.

Eén van de belangrijkste onderdelen in het analyseren van biologische sequen-

ties is het afbeelden van reads op een referentiegenoom. In dit proces wordt voor

elke read de posities binnen het genoom gezocht waarbij de read het kleinste aan-

tal verschillen vertoont met het overeenkomstig deel van het referentiegenoom. Zo

een alignering van een read met een fragment van het referentiegenoom bevat ook

een lijst met alle verschillen en gelijkenissen tussen beide sequenties. Het Olym-

pische motto citius, altius, fortius is goed van toepassing in dit computationeel

en algoritmisch uitdagend probleem, aangezien van de afbeeldingsprogramma’s

wordt verwacht een optimale balans te vinden tussen maximale snelheid, mini-

maal geheugenverbruik en maximale nauwkeurigheid. Verder moeten afbeeldings-

programma’s ook rekening houden met andere snel wijzigende eigenschappen van

de reads, zoals de lengte en de soort en het aantal sequeneringsfouten. De hui-

dige generatie afbeeldingsprogramma’s is ontwikkeld voor het afbeelden van korte

reads die geen of slechts een klein aantal mutaties en/of kleine inserties en deleties

bevatten. Daartegenover staat dat, met de huidige trend in sequeneringstechno-

logie, reads steeds langer worden, een groter aantal fouten bevatten en meer en
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lange inserties en deleties bevatten.

In deze doctoraatsthesis ontwikkelen we geavanceerde algoritmen en index-

structuren om snel en nauwkeurig lange reads af te beelden op een referentie-

genoom. De ontwikkelde programma’s steunen op een combinatie van efficiënte

indexstructuren, zoekalgoritmen en groot aantal slimme heuristieken. De struc-

tuur van de thesis benadrukt het belang van elk van deze componenten, waarvan

de meeste ook toepasbaar zijn op andere problemen binnen de analyse van bio-

logische sequenties.

Het eerste hoofdstuk bevat inleidende begrippen en notaties rond de con-

cepten string, biologische sequenties en soorten gemeenschappelijke sequenties.

Veel van deze begrippen zijn vertrouwd voor iemand met een achtergrond in

bioinformatica en kunnen dus veilig worden overgeslaan. Verder bevat het inlei-

dednde hoofdstuk achtergrondinformatie over sequeneringstechnologie, waaron-

der een historisch overzicht en een vergelijking van de huidige platformen voor

sequenering. Verder bespreken we ook de eigenschappen van de read sequen-

ties, waaronder de kwaliteitswaarden die aan afzonderlijke basen kunnen worden

gekoppeld en bepaalde geavanceerde technieken die bij het sequeneren worden

gebruikt. Deze eigenschappen hebben ook invloed op de keuzes die gemaakt zijn

tijdens de ontwikkeling van onze afbeeldingsalgoritmen.

Naast de eigenschappen van de data, worden ook de algoritmische doelstellin-

gen besproken. Er worden definities en notaties opgesteld voor het aligneren van

sequenties en het afbeelden van reads op een referentiegenoom. Verder geven we

ook een overzicht van de reeds beschikbare afbeeldingsprogramma’s, met als doel

het aantonen van de diversiteit binnen de beschikbare programma’s en het kiezen

van programma’s die gebruikt kunnen worden om onze methoden te evalueren.

Tot slot bespreken we in dit hoofdstuk ook enkele vaak gebruikte algorit-

men voor het aligneren van sequenties die gebruik maken van dynamisch pro-

grammeren. Niettegenstaande deze algoritmen algemeen bekend zijn binnen de

bioinformatica, is een herhaling van deze concepten nuttig doordat geoptimali-

seerde versies van deze algoritmen een belangrijke component vormen binnen de

afbeeldingsalgoritmen.

Het tweede hoofdstuk bevat een overzicht van de klasse van indexstructuren

die in deze thesis gebruikt worden. Indexstructuren zijn gespecialiseerde data-

structuren die vaak worden gebruikt binnen de bioinformatica omdat ze snelle

zoekopdrachten binnen grote sequenties mogelijk maken. Ze worden ook gebruikt

als onderdeel van afbeeldingsalgoritmen om snel overeenkomsten te vinden tus-

sen delen van een read en een referentiegenoom en zo de verdere zoekruimte te
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beperken. Verder bepaalt de grootte van de indexstructuur ook de hoeveelheid

geheugen dat nodig is voor het afbeeldingsalgoritme.

Alhoewel indexstructuren veelvuldig worden gebruikt binnen de bioinforma-

tica, zijn hun structuur, eigenschappen en beperkingen minder gekend. Verder

werden er de afgelopen jaren vele nieuwe indexstructuren ontwikkeld met nieuwe

complexe structuren die een andere balans vertonen tussen geheugeneisen en

snelheid. In dit hoofdstuk willen we een overzicht geven van de structuur van

de meest gebruikte indexstructuren en recent ontwikkelde varianten. We bespre-

ken verbanden tussen indexstructuren, hun eigenschappen en beperkingen en de

balans die ze bereiken tussen snelheid en geheugen.

In het derde hoofdstuk introduceren we een nieuwe indexstructuur, enhan-

ced sparse suffix array genaamd. Deze indexstructuur is gebaseerd op suffixtabel-

len die de lexicografische ordening van de suffixen van een string bevatten. Het

woord sparse duidt op het feit dat slechts een beperkt aantal suffixen gëındexeerd

wordt. Het woord advanced duidt op de extra informatie die wordt bijgehouden

over de langste gemeenschappelijke prefixen van opeenvolgende waarden in de

suffixtabel. Deze extra informatie zorgt voor een significante versnelling van

zoekopdrachten.

Verder wordt ook een nieuw algoritme voorgesteld voor het vinden van maxi-

male exacte matches tussen twee sequenties. Een gelijke substring of match tussen

twee sequenties wordt maximaal genoemd indien de karakters links en rechts van

de match niet overeenkomen in de twee sequenties. Deze maximale exacte mat-

ches worden vaak gebruikt in programma’s voor het aligneren van sequenties als

ankers waar de aligering kan worden gestart. In het bijzonder kunnen ze ook

worden gebruikt in afbeeldingsprogramma’s, vooral voor het afbeelden van lange

reads.

Het programma essaMEM bevat het algoritme dat gebruik maakt van de

nieuwe indexstructuur om snel maximale exacte matches te vinden tussen twee

sequenties. Onze testresultaten tonen aan dat essaMEM sneller is dan andere

veelgebruikte programma’s voor het vinden van maximale exacte matches, waar-

onder sparseMEM [126]. Verder presteert essaMEM ook goed in vergelijking met

backwardMEM [201], dat steunt op de complexe gecomprimeerde suffixtabel in-

dexstructuur. Hiermee tonen we aan dat het gebruik van de categorie sparse

indexstructuren een interessante piste is voor verder onderzoek.

In het vierde hoofdstuk komen we tot het hoofdresultaat van deze the-

sis. We introduceren ALFALFA: een nieuw algoritme dat specifiek werd ont-

wikkeld om snel en nauwkeurig lange DNA reads af te beelden op een referen-
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tiegenoom. ALFALFA implementeert de veelvuldig toegepaste seed-and-extend

techniek, waarbij voor het eerste deel gesteund wordt op de resultaten uit Hoofd-

stuk 3. De enhanced sparse suffix arrays worden gebruikt om gedeeltelijke mat-

ches te vinden tussen de read en het referentiegenoom. Deze seeds worden gefil-

terd en gegroepeerd om zo kandidaatregio’s af te bakenen in het referentiegenoom.

Hierbij worden algoritmen en heuristieken gebruikt die specifiek gekozen werden

om te kunnen omgaan met lange reads. Een alignering tussen een afgebakende

regio van het referentiegenoom en een read wordt bekomen door eerst een ket-

ting te bouwen van seeds en daarna gebruik te maken dynamisch programmeren

algoritmen om de gaten tussen opeenvolgende seeds in de ketting op te vullen

(extension stap).

We hebben ALFALFA vergeleken met andere afbeeldingsprogramma’s op ba-

sis van snelheid, nauwkeurigheid en geheugenverbruik. De tests omvatten vele

datasets met een grote verscheidenheid aan eigenschappen en verschillende maat-

staven voor het meten van nauwkeurigheid. De resultanten tonen aan dat AL-

FALFA heel snel en nauwkeurig is voor heet afbeelden van lange reads (> 500bp)

en nog steeds competitief is voor middelgrote reads (> 100bp). De bekomen

balans tussen snelheid, geheugengrootte en nauwkeurigheid kan ook worden aan-

gepast naar de specifieke behoeften van gebruikers via het aanpassen van enkele

parameters.

In het vijfde hoofdstuk worden de algoritmen uit het vorige hoofdstuk aan-

gepast zodanig dat ook cDNA sequenties en reads bekomen uit RNA-seq experi-

menten kunnen worden afgebeeld. Genen van eukaryoten bestaan uit opeenvol-

gende regio’s exonen en intronen. Na transcriptie verdwijnen de intronen echter

door splicing, waardoor aligneringen van cDNA sequenties en RNA-seq reads met

een referentiegenoom grote gaten kunnen bevatten. Traditionele afbeeldingspro-

gramma’s kunnen moeilijk overweg met deze sequenties doordat intronen meestal

groter zijn dan de deleties die kunnen worden gedetecteerd.

Voor deze toepassing hebben we ALFALFA gecombineerd met nieuwe algo-

ritmen voor het combineren van seeds en krachtige dynamisch programmeren al-

goritmen die werden gëıntroduceerd door GMAP [258]. Een prototype voor een

nieuw afbeeldingsprogramma met deze combinatie van technieken werd mesalina

gedoopt. Voorlopige rersultaten tonen aan dat mesalina heel snel is in vergelij-

king met gelijkaardige programma’s, vooral voor langere reads. Verder blijkt het

prototype ook competitief te zijn op het vlak van nauwkeurigheid.

Alle ontwikkelde algoritmen werden gëımplementeerd in C++ en zijn vrij be-

schikbaar op https://github.com/readmapping.

https://github.com/readmapping
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