16 research outputs found

    Online MoCap Data Coding with Bit Allocation, Rate Control, and Motion-Adaptive Post-Processing

    Get PDF
    With the advancements in methods for capturing 3D object motion, motion capture (MoCap) data are starting to be used beyond their traditional realm of animation and gaming in areas such as the arts, rehabilitation, automotive industry, remote interactions, and so on. As the amount of MoCap data increases, compression becomes crucial for further expansion and adoption of these technologies. In this paper, we extend our previous work on low-delay MoCap data compression by introducing two improvements. The first improvement is the bit allocation to long-term and short-term reference MoCap frames, which provides a 10-15% reduction in coded bitrate at the same quality. The second improvement is the post-processing in the form of motion-adaptive temporal low-pass filtering, which is able to provide another 9-13%savings in the bitrate. The experimental results also indicate that the proposed online MoCap codec is competitive with several state-of-the-art offline codecs. Overall, the proposed techniques integrate into a highly effective online MoCap codec that is suitable for low-delay applications, whose implementation is provided alongside this paper to aid further research in the field

    Development of a simple force prediction model and consistency assessment of knee movements in ten-pin bowling

    Get PDF
    The aim of this research is to use LabVIEW to help bowlers understand theirjoint movements, forces acting on their joints, and the consistency of their knee movements while competing in ten-pin bowling. Kinetic and kinematic data relating to the lower limbs were derived from bowlers’ joint angles and the joint forces were calculated from the Euler angles using the inverse dynamics method with Newton-Euler equations. An artificial-neural-network (ANN)-based data-driven model for predicting knee forces using the Euler angles was developed. This approach allows for the collection of data inbowling alleys without the use of force plates. Correlation coefficients were computed after ANN training and all values exceeded 0.9. This result implies a strong correlation between the joint angles and forces. Furthermore, the predicted 3D forces (obtained from ANN simulations) and the measured forces (obtained from force plates via the inverse dynamics method) are strongly correlated. The agreement between the predicted andmeasured forces was evaluated by the coefficient of determination (R2), which reflects the bowler’s consistency and steadiness of the bowling motion at the knee. The R2 value was beneficial in assessing the consistency of the bowling motion. An R2 value close to 1 implies a more consistent sliding motion. This research enables the prediction of the forceson the knee during ten-pin bowling by ANN simulations using the measured knee angles. Consequently, coaches and bowlers can use the developed ANN model and the analysis module to improve bowling motion

    Biomechanics

    Get PDF
    Biomechanics is a vast discipline within the field of Biomedical Engineering. It explores the underlying mechanics of how biological and physiological systems move. It encompasses important clinical applications to address questions related to medicine using engineering mechanics principles. Biomechanics includes interdisciplinary concepts from engineers, physicians, therapists, biologists, physicists, and mathematicians. Through their collaborative efforts, biomechanics research is ever changing and expanding, explaining new mechanisms and principles for dynamic human systems. Biomechanics is used to describe how the human body moves, walks, and breathes, in addition to how it responds to injury and rehabilitation. Advanced biomechanical modeling methods, such as inverse dynamics, finite element analysis, and musculoskeletal modeling are used to simulate and investigate human situations in regard to movement and injury. Biomechanical technologies are progressing to answer contemporary medical questions. The future of biomechanics is dependent on interdisciplinary research efforts and the education of tomorrow’s scientists

    Decomposition of 3D joint kinematics of walking in Drosophila melanogaster

    Get PDF
    Animals exhibit a rich repertoire of locomotive behaviors. In the context of legged locomotion, i.e. walking, animals can change their heading direction, traverse diverse substrates with different speeds, or can even compensate for the loss of a leg. This versatility emerges from the fact that biological limbs have more joints and/or more degrees of freedom (DOF), i.e. independent directions of motions, than required for any single movement task. However, this further entails that multiple, or even infinitely many, joint configuration can result in the same leg stepping pattern during walking. How the nervous system deals with such kinematic redundancy remains still unknown. One proposed hypothesis is that the nervous system does not control individual DOFs, but uses flexible combinations of groups of anatomical or functional DOFs, referred to as motor synergies. Drosophila melanogaster represents an excellent model organism for studying the motor control of walking, not least because of the extensive genetic toolbox available, which, among others, allows the identification and targeted manipulation of individual neurons or muscles. However, their tiny size and ability for relatively rapid leg movements hampered research on the kinematics at the level of leg joints due to technical limitations until recently. Hence, the main objective of this dissertation was to investigate the three-dimensional (3D) leg joint kinematics of Drosophila during straight walking. For this, I first established a motion capture setup for Drosophila which allowed the accurate reconstruction of the leg joint positions in 3D with high temporal resolution (400 Hz). Afterwards, I created a kinematic leg model based on anatomical landmarks, i.e. joint condyles, extracted from micro computed-tomography scan data. This step was essential insofar that the actual DOFs of the leg joints in Drosophila were currently unknown. By using this kinematic model, I have found that a mobile trochanter-femur joint can best explain the leg movements of the front legs, but is not mandatory in the other leg pairs. Additionally, I demonstrate that rotations of the femur-tibia plane in the middle legs arise from interactions between two joints suggesting that the natural orientation of joint rotational axes can extent the leg movement repertoire without increasing the number of elements to be controlled. Furthermore, each leg pair exhibited distinct joint kinematics in terms of the joint DOFs employed and their angle time courses during swing and stance phases. Since it is proposed that the nervous system could use motor synergies to solve the redundancy problem, I finally aimed to identify kinematic synergies based on the obtained joint angles from the kinematic model. By applying principal component analysis on the mean joint angle sets of leg steps, I found that three kinematic synergies are sufficient to reconstruct the movements of the tarsus tip during stepping for all leg pairs. This suggests that the problem of controlling seven to eight joint DOFs can be in principle reduced to three control parameters. In conclusion, this dissertation provides detailed insights into the leg joint kinematics of Drosophila during forward walking which are relevant for deciphering motor control of walking in insects. When combined with the extensive genetic toolbox offered by Drosophila as model organism, the experimental platform presented here, i.e. the 3D motion capture setup and the kinematic leg model, can facilitate investigations of Drosophila walking behavior in the future

    NASA Tech Briefs, April 1992

    Get PDF
    Topics covered include: New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences

    Rehabilitation Engineering

    Get PDF
    Population ageing has major consequences and implications in all areas of our daily life as well as other important aspects, such as economic growth, savings, investment and consumption, labour markets, pensions, property and care from one generation to another. Additionally, health and related care, family composition and life-style, housing and migration are also affected. Given the rapid increase in the aging of the population and the further increase that is expected in the coming years, an important problem that has to be faced is the corresponding increase in chronic illness, disabilities, and loss of functional independence endemic to the elderly (WHO 2008). For this reason, novel methods of rehabilitation and care management are urgently needed. This book covers many rehabilitation support systems and robots developed for upper limbs, lower limbs as well as visually impaired condition. Other than upper limbs, the lower limb research works are also discussed like motorized foot rest for electric powered wheelchair and standing assistance device
    corecore