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Abstract 

Animals exhibit a rich repertoire of locomotive behaviors. In the context of legged locomotion, 

i.e. walking, animals can change their heading direction, traverse diverse substrates with 

different speeds, or can even compensate for the loss of a leg. This versatility emerges from 

the fact that biological limbs have more joints and/or more degrees of freedom (DOF), i.e. 

independent directions of motions, than required for any single movement task. However, 

this further entails that multiple, or even infinitely many, joint configuration can result in the 

same leg stepping pattern during walking. How the nervous system deals with such 

kinematic redundancy remains still unknown. One proposed hypothesis is that the nervous 

system does not control individual DOFs, but uses flexible combinations of groups of 

anatomical or functional DOFs, referred to as motor synergies.  

Drosophila melanogaster represents an excellent model organism for studying the motor control 

of walking, not least because of the extensive genetic toolbox available, which, among others, 

allows the identification and targeted manipulation of individual neurons or muscles. 

However, their tiny size and ability for relatively rapid leg movements hampered research on 

the kinematics at the level of leg joints due to technical limitations until recently.  

Hence, the main objective of this dissertation was to investigate the three-dimensional (3D) 

leg joint kinematics of Drosophila during straight walking. For this, I first established a motion 

capture setup for Drosophila which allowed the accurate reconstruction of the leg joint 

positions in 3D with high temporal resolution (400 Hz). Afterwards, I created a kinematic leg 

model based on anatomical landmarks, i.e. joint condyles, extracted from micro computed-

tomography scan data. This step was essential insofar that the actual DOFs of the leg joints in 

Drosophila were currently unknown. By using this kinematic model, I have found that a mobile 

trochanter-femur joint can best explain the leg movements of the front legs, but is not 

mandatory in the other leg pairs. Additionally, I demonstrate that rotations of the femur-tibia 

plane in the middle legs arise from interactions between two joints suggesting that the natural 

orientation of joint rotational axes can extent the leg movement repertoire without increasing 

the number of elements to be controlled. Furthermore, each leg pair exhibited distinct joint 

kinematics in terms of the joint DOFs employed and their angle time courses during swing 

and stance phases. 
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Since it is proposed that the nervous system could use motor synergies to solve the 

redundancy problem, I finally aimed to identify kinematic synergies based on the obtained 

joint angles from the kinematic model. By applying principal component analysis on the mean 

joint angle sets of leg steps, I found that three kinematic synergies are sufficient to reconstruct 

the movements of the tarsus tip during stepping for all leg pairs. This suggests that the 

problem of controlling seven to eight joint DOFs can be in principal reduced to three control 

parameters. 

In conclusion, this dissertation provides detailed insights into the leg joint kinematics of 

Drosophila during forward walking which are relevant for deciphering motor control of 

walking in insects. When combined with the extensive genetic toolbox offered by Drosophila 

as model organism, the experimental platform presented here, i.e. the 3D motion capture 

setup and the kinematic leg model, can facilitate investigations of Drosophila walking behavior 

in the future.  

 

 

 

 



 

v 

 

List of abbreviations  

3D  three-dimensional 

2D   two-dimensional 

AHCA  agglomerative hierarchical cluster analysis 

ANN   artificial neural network  

BPN   bolt protocerebral neurons 

CI   confidence interval 

CNN   convolutional neural network 

CPG   central pattern generator 

CQV   coefficient of quartile variation 

CX   coxa 

CxTr   coxa-trochanter joint 

D-H   Denavit-Hartenberg 

DLC  DeepLabCut 

DOF   degree of freedom 

EMG   electromyogram 

fCO   femoral chordotonal organ 

FE   femur 

FeTi   femur-tibia joint 

IR   infrared 

IQR   interquartile range  

LCS   local coordinate system 

LED   light emitting diode 

PC   principal component 

PCA   principal component analysis 

SD   standard deviation 

SEM   standard error of the mean 

SVD   singular value decomposition 

Tar   tarsus tip 

TAR   tarsus 

ThAp  thorax posterior scutellum apex 



List of abbreviations 

vi 

 

ThCx  thorax-coxa joint 

TI   tibia 

TiTar   tibia-tarsus joint 

TR   trochanter 

TrFe   trochanter-femur joint 

TTL   transistor-transistor logic 

WH  wing hinge



 

1 

 

Chapter 1  

General introduction 

 

1.1 Legged locomotion 

The ability to navigate through their habitats allows animals to perform a huge variety of 

essential behavioral activities such as foraging, mating, and escaping predators or unfavorable 

conditions. Hence, it is not surprising that locomotion was immensely fostered during animal 

evolution resulting in the emergence of a vast diversity of body morphologies optimized for 

a wide range of movement types (Dickinson et al., 2000; Zenkevich, 1945). Animals explore 

their environments by walking, crawling, swimming, and flying, or by more specialized 

modes of locomotion such as brachiation, burrowing, or hopping (Ijspeert, 2002). Despite this 

diversity of locomotion strategies, the fundamental principle of locomotion is that animals 

need to exert force on the external world to propel their bodies towards the intended direction 

(Dickinson et al., 2000; Holmes et al., 2006). This force is generated by rhythmical muscle 

activity, often originating from antagonistic muscle groups and rigorously controlled by the 

nervous system. Since animals live in a dynamic environment, i.e. conditions are constantly 

changing and perturbations can occur at any time, the motor output of the nervous system 

must be continuously updated to cope with unforeseen challenges. For this, animals have 

developed a large variety of sensory organs and the emerging sensory feedback is used to 

adjust the output of the nervous system’s rhythm generating networks or motor neurons. In 

addition, goal-orientated locomotor behaviors are realized by modulatory actions of 

descending input from higher areas of the nervous system on the motor control circuits. In 

summary, locomotion is the outcome of a complex interplay of neural processes, muscle 

activity, biomechanical properties and morphology of body parts used, and external 

influences by the prevailing environmental conditions (Dickinson et al., 2000; Holmes et al., 

2006; Nishikawa et al., 2007; Seipel et al., 2017).  

In the context of terrestrial animals, legged locomotion, is the main mode of locomotion on 

land (Biewener and Patek, 2018). For this, animals perform recurrent and coordinated 
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movements of multi-jointed body appendages, commonly called limbs or legs, to propel the 

body forward. Although a variety of subtypes of legged locomotion is used by some animals 

(e.g. hopping, jumping, or climbing), walking and its faster manifestations such as e.g. 

running can be considered as the standard method of traveling on legs (Alexander, 1992). In 

this context, legs are moved in a cyclic pattern to generate stepping, which can be roughly 

divided in two phases. During the stance or power stroke phase, the leg is in contact with the 

ground and the emerging force is used for propulsion of the body. In contrast, the swing or 

return stroke phase is characterized by the leg being lifted off the ground and moved to the 

starting position of the next stance phase. To produce proper leg steps, the nervous system 

must spatiotemporally coordinate the motion of the multiple leg segments (intraleg 

coordination) and the demands on coordination change dramatically at the transitions 

between the step phases. For instance, mechanical coupling plays a rather minor role during 

the swing phase, while the leg is coupled mechanically to the ground during the stance phase 

(Cruse et al., 2009).  

Although legs usually occur in pairs, animal species differ in the number of legs they possess: 

humans and birds move with two legs (bipeds), most mammals, amphibians, and reptiles 

have four legs (tetrapods), insects use six legs (hexapods), spiders have eight legs (octapods), 

and centipedes or millipedes have even more legs (up to 750). Consequently, the movements 

of individual legs must also be spatiotemporally coordinated among each other (interleg 

coordination) to establish an appropriated gait that propels the body but also stabilizes it at 

the same time (Alexander, 2006). Importantly, gaits are distinct modes of interleg coordination 

optimized for energy consumption at a certain speed and the transition between them is 

discontinuous (Alexander, 1989). Animals therefore change their gait according to traveling 

speed. For instance, a horse walks at low speeds, switch to trot at intermediate speeds, and 

will gallop at high speeds.  

The neural basis of locomotion was extensively studied during the last century. It is now 

generally accepted that central pattern generators (CPGs) are essential for the generation of 

the complex motor patterns that underlie all kinds of animal locomotion (for review: Grillner, 

2006; Grillner and El Manira, 2020; MacKay-Lyons, 2002; Mantziaris et al., 2020) including 

walking (for review: Grillner and Kozlov, 2021; Mantziaris et al., 2020). CPGs are networks of 
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interneurons that can generate the basic rhythmic activity required to organize and drive the 

timing, phasing, and intensity of motor neurons without rhythmic input from descending or 

sensory signals (Harris-Warrick and Ramirez, 2017). However, to allow robust and flexible 

motor behaviors, CPGs process and integrate sensory feedback and their activity is modulated 

by descending signals from higher areas of the nervous system. Although CPGs for e.g. 

swimming are today well understood, there is still a lack of knowledge about how CPGs 

function in the context of legged locomotion (Grillner and Kozlov, 2021). 

 

1.2 Motor control of walking in insects 

Motor control of walking is frequently investigated in insects, because on the one hand insects 

and vertebrates obey many of the same general principles of locomotion (Büschges, 2005; 

Duysens et al., 2000; Pearson, 1993), while on the other hand their relatively simple nervous 

systems facilitate the examination of the underlying neural control mechanisms (Bidaye et al., 

2018).  

Insects have six legs attached pairwise to the three thoracic segments and each leg consists of 

five main segments: the coxa, the trochanter, the femur, the tibia, and the tarsus which 

comprises at least four tarsal segments. In addition, the trochanter is fused to the femur in 

some insect species such as e.g. the stick insect and the locust (Cruse et al., 2009; Frantsevich 

and Wang, 2009), whereas the joint between the trochanter and femur is mobile in other 

species, e.g. the cockroach (Bender et al., 2010).  Movements of segments about the leg joints 

are driven by sets of antagonistic muscles (Bidaye et al., 2018; Büschges, 2005; Mantziaris et 

al., 2020), except for the tarsus which is under control of a single tripartite muscle (Radnikov 

and Bässler, 1991; Soler et al., 2004).  

Neural control of leg stepping in insects is currently best understood in the middle leg of the 

stick insect (for review: Bidaye et al., 2018; Büschges et al., 2008; Mantziaris et al., 2020). Here, 

each of the main leg joints for walking, i.e. the thorax-coxa, the coxa-trochanter, and the femur-

tibia joint, is controlled by a distinct CPG that generate and/or support alternating activity 

between motor neuron pools, which in turn drive the muscle contractions of the antagonistic 
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muscle groups (Büschges et al., 1995; Mantziaris et al., 2020). For proper stepping, the required 

temporal sequence of leg segments movements, i.e. intraleg coordination, is largely shaped 

by sensory feedback signals that couple the activities of the individual CPGs (Bidaye et al., 

2018; Büschges et al., 2008; Mantziaris et al., 2020).  

Insect legs are equipped with a variety of mechanoreceptors that monitor the position and 

movement of the legs or sensing external stimuli (Tuthill and Wilson, 2016). For instance, 

campaniform sensilla sense strain and stress in the cuticle and thus provide feedback on the 

muscle forces and load exerted on the legs (Zill et al., 2004). When considering that the 

mechanical load on a leg changes drastically during the transition between swing and stance 

phase, it is not surprising that sensory feedback from campaniform sensilla has been found to 

assist the initiation and maintenance of stance movements in multiple ways (Akay et al., 2001; 

Akay et al., 2007; Borgmann et al., 2011). In contrast, flexion and extension of leg segments is 

monitored by chordotonal organs (Field and Matheson, 1998). For example, the femoral 

chordotonal organ (fCO) provides detailed information about the movements of the tibia in 

terms of position, velocity, and acceleration (Büschges, 1994; Mamiya et al., 2018; Matheson, 

1990; Usherwood et al., 1968; Zill, 1985) and detects vibrations of the tibia (Mamiya et al., 2018; 

Stein and Sauer, 1999). Evidence for the involvement of the fCO in stepping emerges from the 

findings that experimental manipulations of fCO feedback strongly affect tibial movements 

in active animals (Weiland and Koch, 1987; Weiland et al., 1986; Zill, 1987). Moreover, in 

reduced preparations of the stick insect, flexion and extension signals from the fCO had 

opposite effects on the antagonistic muscles that control leg levation and depression, i.e. the 

trochanter muscles, suggesting that the fCO is involved in the transitions from swing to stance 

and vice versa (Hess and Büschges, 1999). In addition, hair plates and rows, which consists of 

multiple tactile bristles and are commonly located directly at the leg joints, signal when a joint 

is fully flexed (Pearson et al., 1976; Pringle, 1938; Wong and Pearson, 1976) as well as 

multipolar stretch receptors may monitor leg flexion (Desai et al., 2014) and could be involved 

in leg reflex responses (Guthrie, 1967). Altogether, a substantial body of knowledge has 

accumulated on how the combined sensory feedback from the various sensory organs 

contributes to intraleg coordination (Bidaye et al., 2018; Büschges, 2005; Büschges et al., 2008). 

In a nutshell, the transition from swing to stance is initiated by position and movement 

signals, while a reduction in load and position signals of a leg mediate stance to swing 
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transition, and load and movement signals reinforce stance movements. Importantly, sensory 

feedback signals do not only shape the motor output by affecting the activity of CPGs (e.g. 

Akay et al., 2004; Akay et al., 2007; Hess and Büschges, 1999), but can also act directly on motor 

neurons (e.g. Burrows and Pflüger, 1988; Gebehart and Büschges, 2021). Sensory feedback can 

therefore adjust both the timing and the magnitude of the motor output during walking 

(Büschges, 2005).  

In terms of interleg coordination, it is well-established that insects move their legs in different 

prototypical coordination patterns depending on their walking speed (Bidaye et al., 2018; 

Graham, 1972; Wahl et al., 2015; Wilson, 1966; Wosnitza et al., 2013). Insects use a wave gait 

in which the legs step in a sequence from the back to the front along each body side at low 

walking speeds (Hughes, 1952). Consequently, only a single leg is in swing phase at a given 

time, while the remaining five legs are in stance phase. At intermediate, insects use a tetrapod 

coordination pattern (Burns, 1973; Graham, 1972; Wosnitza et al., 2013). Here, four legs are in 

stance phase all the time, while two legs are simultaneously in swing phase. At high speeds, 

the coordination pattern switches to tripod in which the ipsilateral front and hind legs as well 

as the contralateral middle leg are simultaneously in swing phase, while the remaining three 

legs are in stance phase (Delcomyn, 1971; Graham, 1985; Strauß and Heisenberg, 1990; Wahl 

et al., 2015; Wosnitza et al., 2013). In addition, cockroaches uses also a bipedal anti-phase 

coordination pattern of their hind legs during high-speed escape as the anterior body part of 

the animal is lifted and consequently the front and hind legs do not contact the ground (Full 

and Tu, 1991). Remarkably, in contrast to the discontinuous transition between gaits in 

vertebrates, speed-dependent transition between interleg coordination patterns can occur 

seamlessly in insects  (Szczecinski et al., 2018; Wosnitza et al., 2013).  

It was shown that interleg coordination in insects mainly emerges through to two neural 

mechanisms, i.e. direct coupling between intersegmental CPGs (Ayali et al., 2015; David et al., 

2016; Fuchs et al., 2011; Johnston and Levine, 2002) and sensory feedback from other body 

segments (Borgmann et al., 2009; Ludwar et al., 2005; Stein et al., 2006; Zill et al., 2009). 

However, the contribution of each mechanism appears to differ between species or to depend 

on walking speed. In the complete absence of sensory and descending input, CPG 

coordination resemble a tripod walking pattern in fast walking species such as the hawk moth 
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and the cockroach, arguing for strong coupling between the CPGs involved (David et al., 2016; 

Johnston and Levine, 2002). In contrast, only weak coupling between intersegmental CPGs 

was observed in the stick insect, which walks rather slowly (Borgmann et al., 2009; Mantziaris 

et al., 2017). Moreover, when all leg sensory organs were genetically disabled in Drosophila, 

which exhibit a wide range of walking speeds (Wosnitza et al., 2013), the animals were still 

able to walk in a coordinated manner, but the variability in their leg kinematics was much 

higher at slow walking speeds than at high walking speeds (Mendes et al., 2013). All of this 

supports the notion that sensory feedback is more important at low walking speeds, whereas 

interleg coordination is mainly mediated by CPG coupling at high walking speeds (Mantziaris 

et al., 2020).  

In addition, descending control from the brain to the motor circuits in the ventral nerve cord 

play a crucial role for the generation of goal-orientated locomotor behaviors such as initiation, 

maintenance, and termination of walking, as well as for adjusting the walking speed or 

walking direction, i.e. forward, backward, and turning (Bidaye et al., 2018). To date, however, 

little is known about how descending neuronal pathways in insects are structured and 

contribute to walking. Nevertheless, some descending neurons associated to forward and 

backwards walking were recently identified in Drosophila (see 1.3). From the behavioral 

perspective, it is however clear that leg kinematics have to be altered to allow for adjustment 

of walking direction and speed. As walking speed increases, the cycle period and stance 

duration are decreased, while the swing duration remain largely constant across the whole 

range of walking speeds (Mendes et al., 2013; Wosnitza et al., 2013). In contrast, the step 

frequency, stride length, and stance direction in each leg is independently modified when 

insects perform curve walking (Dürr and Ebeling, 2005; Gruhn et al., 2009). 

 

1.3 Drosophila as model organism to study walking 

The fruit fly Drosophila melanogaster represents an excellent model organism for studying 

motor control of walking because animal husbandry is simple and cost effective, there is an 

extensive knowledge base about their genetics, physiology and development, as well as they 
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exhibit robust walking behavior over a wide range of speeds. Furthermore, since the anatomy 

of the brain is well investigated in Drosophila (Ito et al., 2014; Rein et al., 2002; Scheffer and 

Meinertzhagen, 2019) and recent work has begun to focused on capturing the whole 

connectome of the brain (Scheffer et al., 2020) and the motor circuits in the ventral nerve cord 

(Phelps et al., 2021), Drosophila offers tremendous potential to link anatomy, physiology, and 

behavior in respect to the nervous system.  

Research on Drosophila has already led to key discoveries in the field of neuroscience in terms 

of e.g. sleep, learning and memory, circadian rhythm, courtship, and aggressiveness (Bellen 

et al., 2010; Hales et al., 2015), not at least because of the large and versatile genetic toolbox 

available (Hales et al., 2015; Kazama, 2015; Venken et al., 2011). For example, binary 

expression systems such as GAL4/UAS (Duffy, 2002) or LexA/LexAop (Chang et al., 2022) 

allows the exclusive expression of a gene of interest in any targeted cell population including 

neurons or muscles. Both systems work with two components: a transcriptional activator 

transgene (GAL4 or LexA) and a DNA binding sequence (UAS or LexAop). When the 

transcriptional activator is expressed, it binds specifically to its binding sequence which in 

turns drives the expression of a responder gene located directly downstream of the binding 

sequence. Consequently, when the transcriptional activator transgene is linked to a regulatory 

DNA sequence specific for a certain neuron population, the protein synthesis of the responder 

gene is also restricted to those neurons. For Drosophila, the main advantage of these expression 

systems is that flies carrying a transcriptional activator transgene can be crossed with another 

fly strain that has a responder gene with the respective binding sequence in its promoter. That 

allows the study of specific neuron populations or muscles using a wide range of experimental 

techniques in a straightforward manner. The arsenal of commonly used responder genes 

includes, among others, fluorescence proteins for morphological studies, calcium indicator 

proteins for functional imaging of neuronal or muscle activity, or channelrhodopsins that 

allows the transient optogenetic activation or inhibition of neurons by exposure to light 

(Venken et al., 2011). 

These methods already helped to decipher components of the neuronal control of walking in 

Drosophila in the last decade. For instance, descending neurons were identified that drive 

backward walking (Bidaye et al., 2014) or are associated with the initiation of object-directed 
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forward steering or fast straight forward walking (Bidaye et al., 2020). Further investigations 

on Moonwalker Descending Neurons, which are the command-like neurons responsible for 

initiation and maintenance of backward walking, revealed that these target over 30 neuronal 

cell types with diverse responsibilities in the motor circuits of the ventral nerve cord and that 

they act mainly by a distributed low-level modulation of the motor circuit dynamics to 

generate a clear and coordinated transition to backward walking (Feng et al., 2020). Another 

example is the study of sensory organs in the legs and the impact of sensory feedback on 

walking. In this context, the role of the fCO for leg coordination was investigated extensively 

in Drosophila in recent years (Akitake et al., 2015; Chockley et al., 2022; Mamiya et al., 2018; 

Mendes et al., 2013). Several subpopulations of fCO neurons were found that can be 

distinguished by their stereotyped axonal projection patterns in the ventral nerve cord and 

encode different features of tibial movements, i.e. flexion and extension, movement direction, 

and vibrations (Mamiya et al., 2018). Strikingly, while inhibition of all fCO neurons leads to 

profound changes in walking kinematics (Chockley et al., 2022; Mendes et al., 2013), inhibition 

of some subpopulations had surprisingly mild effects on the leg kinematics, suggesting that 

there might be also functionally distinct subgroups of fCO neurons in addition to the 

anatomically identified subpopulations (Chockley et al., 2022).  

The latter finding also supports the notion that investigating individual parts of the nervous 

system in isolation can be misleading and we need to consider also changes in behavior to 

fully understand how the nervous system works (Krakauer et al., 2017; Marom, 2009). In this 

vain, a comprehensive behavioral map of natural leg kinematics is required to link the 

findings from experimental manipulations of the nervous system to the behavioral aspects of 

walking in Drosophila. To date, numerous studies already investigated the kinematics of 

interleg coordination in Drosophila in terms of forward and backward walking, turning and 

curve walking, speed-dependent changes, role of sensory feedback, static stability, 

gravitational load, and leg amputation (Berendes, 2016; Chockley et al., 2022; Feng et al., 2020; 

Mendes et al., 2013; Mendes et al., 2014; Strauß and Heisenberg, 1990; Szczecinski et al., 2018; 

Wosnitza et al., 2013). In contrast, until very recently, the tiny size of Drosophila and its 

capability for relatively rapid movements hampered three-dimensional (3D) motion capture 

at the level of leg joints which is, however, necessary to accurately study also the kinematics 

of intraleg coordination (see 3.1 for more details).  
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1.4 The redundancy problem of motor control and motor synergies 

One of the hallmarks of animal behavior is its enormous flexibility and adaptability. In terms 

of walking, animals can traverse diverse substrates with different speeds, change their 

heading direction, or can even compensate for the loss of a leg (Bidaye et al., 2018; Biewener 

and Patek, 2018; Bockemühl, 2017). This versatility emerges from the fact that the motor 

apparatus has a tremendous number of independent elemental units or degrees of freedom 

(DOFs) at all levels of the motor control chain that can be employed in numerous 

combinations to produce a diversity of complex movement patterns. For instance, each leg in 

Drosophila has nine joints and leg movements are driven by about 14 muscles (Soler et al., 

2004) which are innervated by approximately 50 motor neurons (Enriquez et al., 2015). In 

terms of joint DOFs, the number of available DOFs may be even higher, since biological joints 

can allow rotations about up to three axes depending on their morphology. While this 

neuromechanical complexity is crucial for motor flexibility, it also entails that there is no 

simple one-to-one correspondence between a motor task and a motor solution, or in other 

words: There are multiple or redundant movement solutions for achieving the same task 

(Bruton and O’Dwyer, 2018). For example, animal legs have more joint DOFs than minimally 

required for pure walking (Full and Koditschek, 1999), implying that multiple, or even 

infinitely many, joint configuration can result in the same leg stepping pattern. Although this 

problem of redundancy in motor control was already formulated by Nicolai Bernstein over 70 

years ago (Bernstein, 1967; Bernstein and Latash, 2021), the question of how the nervous 

system revolves it remains an important aspect of the field of neurosciences.  

Motor synergies represent a proposed conceptional framework for solving the redundancy 

problem (for review: Bruton and O’Dwyer, 2018; Latash, 2010; Singh et al., 2018; Ting and 

McKay, 2007; Tresch and Jarc, 2009). The basic idea behind motor synergies is that the nervous 

system couples or links individual DOFs instead of controlling them independently. By using 

flexible combinations of such groups of anatomical or functional DOFs as building blocks for 

complex movements, the number of control variables for a behavioral task can be largely 

reduced. Following this line of thought further, motor synergies can be seen as a way to shift 

the control of the motor system from a redundant control space, e.g. the joint angle space, to 
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a hypothetical lower-dimensional motor synergy space that is non-redundant and thus more 

controllable (Bockemühl, 2017).  

Experimental evidence for the existence of motor synergies arises from the fact that after 

applying statistical dimension reduction methods to electromyogram (EMG) data sets from 

frogs (d’Avella et al., 2003; Hart and Giszter, 2004; Tresch et al., 1999), rats (Castillo-Escario et 

al., 2020), cats (Torres-Oviedo et al., 2006), primates (Overduin et al., 2008), and humans 

(Ivanenko et al., 2004; Krishnamoorthy et al., 2003), researchers found consistently that a much 

smaller set of variables, i.e. muscles synergies, can be used to largely reproduce the activity 

time courses of a large number of muscles. For example, d’Avella et al. (2003) showed that 

combinations of three time-varying muscle synergies extracted from recordings of 13 

hindlimb muscles, allowed the reconstruction of the entire spectrum of defensive kicking 

behavior in the frog. In terms of walking, Ivanenko et al. (2004) demonstrated that five muscle 

synergies could reproduce the temporal activation pattern of 32 muscles in humans during 

treadmill walking.  

Some knowledge about how motor synergies might be implemented in the nervous system 

comes from microstimulation experiments in the spinal cord of frogs (Bizzi et al., 1991; Giszter 

et al., 1993) and rats (Tresch and Bizzi, 1999). These studies showed that microstimulation 

elicited activity in groups of muscles that moved the hind limbs of the animals to an 

equilibrium point in space and the final position depended on the location of the stimulation 

in the spinal cord. Strikingly, co-stimulation of two sites in the spinal cord resulted in vector 

summation of the muscle forces generated by each site separately (Mussa-Ivaldi and Bizzi, 

2000). In addition, Overduin et al. (2012) could show that microstimulation in the motor cortex 

of primates evoked muscle synergies in the forelimbs similar to those observed in natural 

reaching and grasping.  

However, it is important to note that the term motor synergies serves as an umbrella term for 

various conceptions and theories of how the elements of the motor apparatus might act 

together (for comprehensive summary: Bruton and O’Dwyer, 2018). Broadly speaking, motor 

synergies are used in the literature either as a descriptive concept, i.e. describing systematic 

correlations between DOFs which in turn indicate reduced dimensionality, or as an 

explanatory concept, i.e. formulating a hypothetical organizing structure in the nervous 
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system for motor control (Diedrichsen et al., 2010). The fact that both concepts are intertwined 

to some degree, complicates the interpretation of the role of the nervous system (explanatory 

concept) for synergies found in empirical data sets (descriptive concept). For instance, 

kinematic synergies  obtained by dimension reduction methods on kinematic parameters such 

as e.g. joint angles also show that a smaller set of variables can explain the majority of the 

observed movement patterns in a variety of animals and tasks  (Bockemühl et al., 2010; 

Catavitello et al., 2018; Federolf, 2016; Huang et al., 2021; Stetter et al., 2020). This does not 

only demonstrate the existence of coordinative structures in the movements studied, but also 

argues for an underlying control structure in the nervous system. However, since other 

biomechanical coupling mechanisms such as sensory feedback, muscle activation pattern, or 

other biomechanical constraints could also contribute to the coordination pattern found 

(Bockemühl et al., 2010), it is difficult to determine the actual involvement of the nervous 

system in movement coordination. Nevertheless, since kinematic synergies can be readily 

obtained from freely behaving animals, they are relevant for identification of hidden patterns 

in the coordination of movements. These coordinative structures can in turn be used to 

formulate hypothesis for the underlying motor control mechanisms of the nervous system. 

 

1.5 Outline of the present work 

As I outlined in the introduction, despite the extensive knowledge of the neural mechanisms 

contributing to walking in insects, there are still many gaps in our understanding of how the 

nervous system ultimately generates walking behavior. One problem might be that it can be 

very difficult to apply findings obtained under experimental constraints and at the level of 

the nervous system to the many manifestations of observable behavior (Krakauer et al., 2017; 

Marom, 2009). Drosophila offers the possibility to study transient manipulations of the nervous 

system in animals that otherwise behave normally (see 1.3). However, this also entails that we 

need to understand all aspects of normal behaviors, such as walking, in order to assess the 

significance of behavioral changes observed during experimental manipulations.  

Although leg kinematics have been extensively studied in terms of interleg coordination in 

Drosophila, there is a gap in our knowledge of the leg joint kinematics due to technical 
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limitations that have only recently been overcome. Thus, the main objective of the present 

work was to investigate the 3D leg joint kinematics of Drosophila during straight forward 

walking. For this purpose, I first established a motion capture setup for Drosophila capable of 

accurate reconstructing the positions of the leg joints in 3D with high temporal resolution 

(chapter 3).  

Afterwards, I created a kinematic leg model of Drosophila based on anatomical joint axes to 

decompose the 3D joint angles from the motion capture data (chapter 4). This step was 

essential insofar that the actual DOFs of the leg joints in Drosophila are currently unknown. 

For example, there is controversy about whether the trochanter-femur joint is mobile or fused 

in Drosophila (Goldsmith et al., 2022). Moreover, kinematic models can not only serve as 

experimental platform for studying the requirement of individual joint DOFs, but also 

provide a more accurate description of joint angles and allow reconstruction of movements 

based on joint angle sets (see chapter 4 for details). By using this kinematic model, I have 

found that a mobile trochanter-femur joint can best explain the leg movements of the front 

legs, but is not mandatory in the other leg pairs. Additionally, the model shows that rotations 

of the femur-tibia plane in the middle legs arise from two joint DOFs in the thorax-coxa joint 

and the coxa-trochanter joint, demonstrating that interactions between joints can extent the 

leg movement repertoire without increasing the number of elements to be controlled.  

Although motor synergies have been studied in many species and behavioral tasks, the 

possibility of motor synergies as a mechanism for reducing the demands on motor control in 

insect walking has been rather ignored to date. Therefore, I finally aimed to identify kinematic 

synergies based on the obtained joint angles from the kinematic model (chapter 5). By using 

principal component analysis (PCA, introduced in chapter 5) on mean joint angle sets of leg 

steps, I found that three kinematic synergies are sufficient to reconstruct the movements of 

the tarsus tip during stepping for all leg pairs. This suggests that the problem of controlling 

seven to eight joint DOFs can be in principal reduced to three control parameters. 
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Chapter 2  

General material and methods 

 

2.1 Experimental animals  

Experiments were performed with three to eight days-old adult male (N=7) and female (N=5) 

Bolt-GAL4>UAS-CsChrimson Drosophila melanogaster flies. This fly strain was genetically 

modified in such that the channelrhodopsin Chrimson (Klapoetke et al., 2014) was exclusively 

expressed in the Bolt protocerebral neurons (BPNs) in the brain of the flies by using the GAL4-

UAS binary expression system (for review: Duffy, 2002). While BPNs are descending neurons 

that project to the ventral nerve cord and are associated with the induction and maintenance 

of straight forward walking (Bidaye et al., 2020), CsChrimson is a light-gated cation channel 

and exposure to red light results in the depolarization of neurons expressing CsChrimson 

(Klapoetke et al., 2014). Therefore, walking in experiments could simply be induced by 

exposure to red light in the here used fly strain. Since there are no evidence that BPN 

activation affects the leg kinematics in any aspect (Bidaye et al., 2020), no specific control 

conditions or comparisons with wild-type flies were considered in this thesis.  

Animals were reared in an incubator at a constant temperature of 25°C and 65% humidity in 

a 12h:12h day:night cycle. Nutrition consisted of a semi-synthetic medium prepared as 

described in Backhaus et al. (1984). 

For producing GAL4-UAS progeny, three to ten days old Bolt-GAL4 males (kindly provided 

by Dr. Salil Bidaye) were mated with two to three days old UAS-CsChrimson female virgins 

(#55134, Bloomington Drosophila Stock Center). The animals were kept in vials with fresh 

food and were removed after an egg laying period of three to four days. Since CsChrimson 

requires all-trans-Retinal for proper functioning which cannot be synthesized by the animals 

(Klapoetke et al., 2014), flies were transferred to fresh vials in which the food was soaked with 

50 µL of a 100 mmol L-1 all-trans-Retinal solution. Prior to experiments, the flies were kept 

under all-trans-Retinal conditions and in the dark for at least three days.  
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2.2 Software development 

All and analysis routines and graphical user interfaces used in this thesis were written in 

Python (version 3.9.5, Python Software Foundation, Delaware, USA, available at: 

https://www.python.org/), if not otherwise stated. Graphical user interfaces based on the 

PyQt5 library version 5.12.3 (Riverbank Computing, Dorchester, UK) and PyQtGraph 

framework (version 0.11.0, PyQtGraph developers, available at: https://www.pyqtgraph 

.org/). Numerical computations and statistical analyses were performed using NumPy 

version 1.20.3 (Harris et al., 2020), SciPy version 1.6.2 (Virtanen et al., 2020), and pandas 

version 1.3.1 (McKinney, 2010) frameworks. Data visualizations were created with seaborn 

version 0.11.2 (Waskom, 2021) and Matplotlib version 3.4.2 (Hunter, 2007), except for Figure 

3.1B and Figure 3.2D which were created with MATLAB (release R2021a, The MathWorks 

Inc., Natick, USA). In addition, images of 3D model postures were created with PyQtGraph. 

Additional used Python frameworks, libraries, or modules are indicated in the material and 

methods sections of the respective chapters. 

 

2.3 Statistical analysis 

Data was expressed as mean ± standard deviation (SD), if not otherwise stated. While N 

denoted the number of experimental animals, n indicated the number of an analyzed feature. 

When the median was used, variability of the data set was indicated by the interquartile range 

(IQR) which was defined as the difference between the 75th and 25th percentiles. Coefficient of 

quartile variation (CQV) served as robust measure for dispersion in data sets and was 

computed using the first (Q1) and third (Q3) quartiles of the respective data set (Eq. 2.1). 

 

For boxplots, whiskers represent the smallest and largest values of the data set which were 

not considered as outliers (Eq. 2.2). 
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In this thesis, no traditional null-hypothesis significance testing was performed because of the 

problem that for data sets with larger n-numbers even meaninglessly small effect sizes are 

often deemed as statistically significant accompanied by very small p values (Altman and 

Krzywinski, 2017; Goodman, 2008; Hubbard and Lindsay, 2008; Nakagawa and Cuthill, 2007; 

Sullivan and Feinn, 2012). Since most of the n-numbers of here analyzed data sets were larger 

than 200, decisions about statistical significance based on p-values might therefore be 

misleading. Thus, 95% confidence intervals (CIs) for mean values were used here as an 

alternative to inform the reader about statistical significance in this thesis (Eq. 2.3; SEM, 

standard error of the mean).  

 

CIs indicate the precision of a point estimate to represent the underlying population, e.g. how 

precisely the obtained sample mean reflects the true mean of the population (Cumming and 

Finch, 2005; Greenfield et al., 1998; Nakagawa and Cuthill, 2007). In other words, CIs are an 

estimated range of values which includes the true population value at a specified probability 

level such as 95% (Cumming and Finch, 2005; Hays, 1973). Importantly, this does not mean 

that there is a 95% chance that the true parameter is covered by a 95% CI obtained from a 

single experiment, but it can be expected that 95% of all calculated CIs from repeating the 

same experiment will contain the true parameter. In addition to providing an indicator for the 

precision of a point estimate by the extent of the range of values covered, CIs can also be used 

to compare independent data sets. For instance, when testing for any value as null hypothesis, 

the resulting p-value would be larger than or smaller than 0.05 depending on whether this 

value is included in or excluded from a 95% CI, respectively (Cumming and Finch, 2005). 

Consequently, when zero is not covered by a 95% CI of the mean of differences between two 

data sets, the differences can be interpreted as statistically significant at a 0.05 level, and vice 

versa (Cumming and Finch, 2005; Nakagawa and Cuthill, 2007; Sullivan and Feinn, 2012). The 

same hold true to some extent when examining the overlap of 95% CIs of means from different 
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data sets. While two means are always significantly different when their 95% CIs do not 

overlap (p < 0.05), the decision of whether the null hypothesis cannot be rejected depends on 

the extent of an existing overlap (Austin and Hux, 2002; Cumming and Finch, 2005; Greenfield 

et al., 1998).  

 

2.4 Data storage and availability  

For this thesis, primary data, i.e. video recordings, were acquired and subsequently analyzed 

with custom-written computer routines/ graphical user interfaces. The used experimental and 

analysis routines are described in detail in this thesis. The primary data, intermediate data, 

and the source code of all analysis routines were archived on the online storage file system for 

institutions of the University of Cologne (https://rrzk.uni-koeln.de/en/data-storage-and-

share/online-storage-sofs). Data integrity is ensured by a routinely backup procedure. Data 

and analysis routines are available from Moritz Haustein or Prof. Dr. Ansgar Büschges upon 

reasonable request.
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Chapter 3  

3D motion capture of forward walking Drosophila  

 

3.1 Introduction 

The essential prerequisite for meaningful study of animal kinematics is the accurate recording 

and tracking of movements. For humans, the most widely used motion capture systems today 

rely on the use of reflective markers attached to anatomical landmarks of the body and 

subsequent recording of their movements with cameras (Cheze, 2014; Colyer et al., 2018; 

Mündermann et al., 2006; Robertson et al., 2014). The main reason for the popularity of 

reflective markers is that computer vision algorithms permit their fast, straight-forward and 

robust tracking (Holstein and Li, 2002; Jiménez Bascones et al., 2019; Silaghi et al., 1998). This 

drastically reduces the workload of researchers compared to traditional methods relying on 

the manual annotation of each video frame.  Moreover, the reconstruction of movements in 

3D can simply be achieved by using multiple cameras recording the scene from different 

viewpoints (Cheze, 2014; Hartley and Zisserman, 2004; Jiménez Bascones et al., 2019). 

Although the use of reflective markers is principally possible for capturing the motion of 

animals, their use is often impractical because attachment of the markers must be done under 

anesthesia and the markers might not be tolerated by the animal or interfere otherwise with 

natural behavior (Jiang et al., 2022; Sellers and Hirasaki, 2014). Moreover, reliable marker 

placement is very challenging in tiny animals such as insects, although some marker-based 

3D motion capture systems have been developed to study locomotion at the joint level for e.g. 

the stick insect (Theunissen and Dürr, 2013), the cockroach (Bender et al., 2010), and the cricket 

(Petrou and Webb, 2012). Given that the body size of Drosophila is only approximately 2 mm, 

it is incredibly difficult to precisely attach markers always at the same positions without 

damaging the legs or sensory organs on them. As a result, most previous studies of Drosophila 

leg kinematics relied on the labor-intensive manual annotation of recorded high-speed videos. 

Consequently, analyses were restricted to a few two-dimensional (2D) anatomical positions, 
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commonly the tarsi tips, taken from a single camera view (e.g. Berendes, 2016; DeAngelis et 

al., 2019; Martin, 2004; Mendes et al., 2013; Strauß and Heisenberg, 1990; Wosnitza et al., 2013). 

To date, only a single study introduced a marker-based method to track leg movements of 

fruit flies using custom-made marker pads soaked with a fluorescent dye (Kain et al., 2013). 

However, the required setup is rather sophisticated as well as expensive and it can only 

support two synchronized cameras with a maximum frame rate of 80 Hz. Moreover, the 

method is limited in that only a single segment per leg, i.e. the femur of the front and hind 

legs and the tibia of the middle legs, can be tracked. However, a suitable 3D motion capture 

system for studying the leg kinematics in Drosophila must not only be able to capture 

movements at the joint level, but also provide higher frame rates to accurately capture the 

rapid movements of fruit fly legs during walking.  

Only recently have advances in deep learning-based pose estimation algorithms permitted 

fast and robust markerless tracking of body parts, referred to in this context as keypoints to 

distinguish from marker-based methods, in animals from video recordings (Colyer et al., 2018; 

Cronin, 2021; Mathis et al., 2020). Fundamentally, deep learning is based on the supervised 

training of artificial neural networks (ANNs) which are built from layers of interconnected 

artificial neurons. These neurons mathematically mimic the functioning of their biological 

equivalents, i.e. when the input of an artificial neuron from preceding neurons exceeds a 

threshold value, the neuron generates an output to all subsequently connected neurons 

(Emmert-Streib et al., 2020; Jain et al., 1996). The output-input relationship between two 

neurons is shaped by a connection weight representing the strength of synaptic coupling 

between them. Learning in the context of an ANN means that the proper connection weights 

have to been determined to enable the network to perform a specific task, i.e. providing the 

appropriated result for a given input (Jain et al., 1996). This is typically accomplished by 

supervised training, i.e. the networks are trained with data for which the correct outcome is 

known and the discrepancy between the desired output and the network’s prediction is used 

to optimize the weights via a backpropagation algorithm until the network prediction error is 

minimal (Cunningham et al., 2008; LeCun et al., 2015).  

Current pose estimation algorithms rely on a specific network architecture, termed 

convolution neural networks (CNNs). This architecture was inspired by the visual cortex 
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ventral pathway, i.e. the first two layers are similar in function to simple cells and complex 

cells (Hubel and Wiesel, 1962), and is therefore very well suited for computer vision tasks  

(Krizhevsky et al., 2012; LeCun et al., 2015; Lindsay, 2021). The first layer comprises a set of 

convolutional filters which are used to extract features such as edges from the image, for 

instance. Since the filters are not applied globally but slide over the image (mathematically, 

this corresponds to a convolution), the output of this layer results in a features map for each 

filter in which spatial relationships of the image are preserved. In the following pooling layer, 

the feature maps are down sampled which reduces their spatial dimensionality while 

retaining the most of the feature information. This step improves the robustness of the 

network and helps to prevent overfitting or false detections by distortions (LeCun et al., 2015; 

Lindsay, 2021). Additionally, some CNNs have two or  more convolutional and pooling layer 

units in sequence to boost task performance (Mathis et al., 2020). The final layers are based on 

a classical ANN structure, i.e. all neurons are fully connected with each other, and are used to 

predict where the learned body parts are on the image. The final output of a CNN is a 

confidence map which shows for each pixel of the image the probability whether this pixel is 

part of the searched body part.  

An important feature of deep learning networks for their usability is their transfer learning 

capability, i.e. while training of a network for a specific tasks from scratch requires a huge 

amount of training data sets and computational time, modifying an already trained network 

to perform a similar, but novel, task can be accomplished by just a few hundred training 

examples (Colyer et al., 2018; Cronin, 2021; Mathis et al., 2020). This has led to the deployment 

of a large number of networks and user-friendly toolboxes for pose estimation of various of 

animals, including Drosophila, in recent years (Arac et al., 2019; Graving et al., 2019; Günel et 

al., 2019; Insafutdinov et al., 2016; Karashchuk et al., 2021; Mathis et al., 2018; Nath et al., 2019; 

Newell et al., 2016; Pereira et al., 2020).  

Hence, to analyze the leg kinematics of walking fruit flies in this thesis, a 3D motion capture 

setup was established based on a deep learning toolbox for pose estimation in combination 

with multiple state-of-the-art digital cameras that allow capturing leg joints at a high frame 

rate and video resolution. 
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3.2 Material and methods 

3.2.1 Motion capture setup 

To capture leg movements, tethered fruit flies walked stationarily on a spherical treadmill 

setup (Figure 3.1A). For this purpose, the flies were cold-anesthetized and placed carefully in 

a fly-sized hollow cut into a custom-built coolable aluminum block. Under visual control 

using a dissection microscope, an L-shaped copper wire (Ø: 0.15 mm) was attached to the 

dorsal side of the thorax with a small drop of light-curing adhesive (ESPE Sinfony, 3M ESPE 

AG, Seefeld, Germany). Emitting blue laser light (460 nm) for a few seconds served to light-

cure the adhesive. Afterwards, the tethered flies were positioned on top of a polypropylene 

ball (Ø: 6 mm; Spherotech GmbH, Fulda, Germany) using a 3D-micromanipulator. As the ball 

was air-suspended, it could be moved freely by the flies in every possible direction during 

walking. To promote natural walking behavior, the flies were centered on the ball so that their 

lateral and vertical orientations were straight relative to the ball surface and their ground 

clearance was adjusted accordingly. Due to the rigidity of the copper wire, a fly’s orientation 

and ground clearance were constant during the experiments.  

Walking behavior was recorded with six synchronized high-speed cameras (acA1300-200um, 

Basler AG, Ahrensburg, Germany) equipped with lenses with 50 mm focal length 

(LM50JC1MS, Kowa Optical Products Co. Ltd., Nagoya, Japan). Cameras were arranged such 

that multi-view images were obtained from either body side with a front, side, and hind aspect 

for subsequent 3D reconstruction (Figure 3.1A). Videos were acquired at 400 Hz and a 

resolution of 896 x 540 pixels (width x height) and camera exposure time was set to 500 µs. A 

supplementary camera (acA1300-200 um) recording the scene from above was used for 

adjusting the animals on the ball and for camera calibration, but not for kinematics data 

acquisition. To illuminate the scene, a custom-built infra-red light emitting diode (IR-LED, 

880nm; wavelength was invisible for the flies (Yamaguchi et al., 2010)) ring was mounted 

above the setup.  

To obtain only straight walking sequences at a relative constant walking speed for subsequent 

analysis, rotations of the ball around all three axes of space were measured by two optical 

sensors (ADNS-9500; Avago Technologies, San Jose, USA) pointing at the ball’s equator and 
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Figure 3.1. Motion capture setup. (A) Schematic illustration of the motion capture system. (B) 

Representative example of a recorded walking trial. The upper panel shows the virtual walking 

trajectory, while the lower panel depicts the forward rotational speed of the ball. 

 

placed orthogonally to each other. The sensor areas were illuminated by two red diode laser 

(660 nm, 1mW; LG series, Lasertechs, Aschaffenburg, Germany) and changes in surface of the 

sensor areas (sampling frequency: 50 Hz) were used to calculate the global rotation of the ball 

(Berendes, 2016; Seelig et al., 2010). This allowed for the reconstruction of the virtual walking 

trajectory and the forward speed of the flies (Figure 3.1B).  

Synchronization of cameras, the motion sensors, and IR-LED ring was achieved via transistor-

transistor logic (TTL) signals send by a custom-built controller device. To adjust for the lower 

sampling frequency of the motion sensors, ball motion data was acquired for every 8th TTL 

signal and interpolated after experiments to obtain the trajectory position and walking speed 

for each video frame.  
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To initiate walking in the Bolt-Gal4>UAS-CsChrimson flies used in this thesis (for details see 

2.1), red laser light (658 nm) was emitted through an optical fiber targeting the animal’s head. 

Walking trials were recorded for four seconds and afterwards straight walking sequences 

with at least five steps of each leg were extracted from the trial by manual inspection of the 

walking trajectory and speed. Mean stepping speed for all analyzed walking sequences was 

14.7 ± 4.0 mm per second (n = 2250 steps). A custom-written non-linear contrast enhancement 

function was applied to the videos to improve leg joint and the tarsus tip visibility for 

subsequent tracking. To save hard disc space, videos were compressed using the FFmpeg 

library (version N-93252-gf948082e5f; codex: libx264, constant rate factor: 12, preset: ultrafast). 

Compression settings resulted in a reduction in file size of about 90%, while maintaining over 

98% of the video quality as measured by the structural similarity index (Wang et al., 2004). 

Video acquisition and post-processing were accomplished with a custom-written graphical 

user interface. Camera control was implemented by using Harvester image acquisition library 

(version 1.3.1, available at: https://github.com/genicam/harvesters). If not otherwise stated, all 

devices were designed and built by the Electronics workshop of Zoological Institute of the 

University of Cologne. 

 

3.2.2 Automated tracking of keypoints 

The convolutional neural network toolbox DeepLabCut (DLC) was used (Mathis et al., 2018) 

for time efficient and robust detection of keypoints in the videos. For each leg, six keypoints 

were tracked: the thorax-coxa joint (ThCx), the coxa-trochanter joint (CxTr), the trochanter-

femur joint (FeTi), the tibia-tarsus joint (TiTar), and the tip of the tarsus (Tar). In addition, the 

posterior scutellum apex on the thorax (ThAp), the wing hinges (left, lWH; right, rWH), and 

the antennae (left, lAnt; right, rAnt) were tracked as body reference keypoints. For this, three 

independent ResNet-50 (He et al., 2016) networks were trained to detect the keypoints in 

videos from cameras having the same viewpoint for both sides of the body, i.e. a single 

network was trained for either the both front, both side, and both hind camera views, 

respectively. The training sets for each network were generated by manual annotation of 

walking sequences of three male and three female flies with a total number of 628, 755, 753 

images for the front, side, and hind network, respectively. Since transient occlusion of 
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proximal joint keypoints, i.e. the ThCx, CxTr, and FeTi, by movements of leg segments could 

not be prevented in individual camera views, estimates for occluded keypoints were added 

to the training sets to obtain complete positional sets for subsequent 3D reconstruction. 

Although this was a potential source of inaccuracies of tracked positions for these keypoints, 

the resulting impact can be considered minor because the proximal joints of the legs did not 

change their position much compared to the more distal joints during walking and the area 

of occlusion was relatively small. 

To improve the robustness and generalizability of the networks to detect keypoints in 

previously unseen videos, the training sets were expanded by data augmentation techniques, 

i.e. manipulations such as cropping, rotation, brightness, blur, scaling were randomly applied 

to images and the related annotations of the original training set and subsequently added to 

the set as new data (Shorten and Khoshgoftaar, 2019). For this, the default in-built 

augmentation algorithm of DLC was used.  

After training, the networks were used to predict the keypoint positions in all recorded 

walking sequences. All walking sequences were inspected visually and erroneous keypoint 

estimates were corrected manually afterwards. To evaluate the performance of the networks, 

the Euclidian distance between DLC predicted and manually annotated keypoint positions 

was calculated. All annotations of keypoints and corrections of erroneous estimates were 

carried out with a custom-written graphical user interface. 

 

3.2.3 3D reconstruction of tracked keypoints 

Since images depict the 2D projections of 3D world objects, inversing the camera’s projective 

transformation allows for the extraction of depth information from images (Hartley and 

Zisserman, 2004). In the context of this thesis, this means that since the same keypoint was 

tracked from three different synchronized camera perspectives, it was possible to reconstruct 

the corresponding 3D positions of the keypoints by triangulation. For this, a projective model 

was created for each camera at first. To describe the relationship between the homogenous 3D 

coordinates [X, Y, Z, 1] of a point in space and its corresponding homogeneous 2D pixel 

coordinates [x, y, 1] on the image plane, the cameras were modeled as pinhole camera with 
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lens distortion (Günel et al., 2019; Hartley and Zisserman, 2004; Karashchuk et al., 2021) (Eq. 

3.1). 

 

In the pinhole camera model, the projection matrix P represents a map from 3D coordinates 

to the corresponding 2D image coordinates and is constructed by multiplying the camera 

intrinsics matrix K and the camera extrinsics matrix M (Eq. 3.2).  

 

The projection of a light ray onto the image plane of the camera (Figure 3.2A) is described by 

the camera intrinsics matrix (Eq.3.3), which encompasses the focal length f, the principal point 

c, i.e. the optical center of the camera, and the skew coefficient s between x- and y- axes of the 

image plane. However, as image plane skewing due to an incorrectly installed camera sensor 

is very unlikely in modern cameras (Hartley and Zisserman, 2004), it was generally set to zero. 

 

The location of the camera and the direction in which it is pointing is represented by the 

camera extrinsics matrix (Eq. 3.4). With respect to the global coordinate system, the orientation 

of the camera is defined by the rotational matrix R, while its position is described by the 

translation vector t.  

 

Optical distortion describes the deformation or bending of the straight light rays by the 

camera lens before they reach the camera sensor. The two main types of lens distortion are 

radial and tangential distortion (Brown, 1971). Radial distortion describes the effect that light 

rays are bent more at the edges of a lens than near the center, resulting in a non-linear 
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Figure 3.2. Camera calibration. (A) Projections in the pinhole camera model. The light ray from the 

world point Q is followed to the principal point c. By using the focus length f, the projected point q on 

the image plane can be calculated. (B) Example image for corner detection from used checkerboard 

pattern by OpenCV. (C) Stereo calibration relies on epipolar geometry. The world point Q (colored in 

blue) is projected in both image planes (q1 and q2). While all points (exemplified by the gray circles) on 

the line from the principal point c1 of the left camera to point Q are projected on the same point on the 
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image plane, i.e. q1, the points are depicted on the image plane of the right camera and lie on a line 

called the epipolar line (red). Consequently, points on the image plane of the right camera are on an 

epipolar line on the image plane of the left camera. This relationship is exploited to find the rotation 

and translation parameters for which the epipolar lines intersecting with their corresponding detected 

points. Example images for the result of a real stereo calibration are shown in i. and ii.. The 

checkerboard was detected in the reference camera (i.) and the camera for which the extrinsics 

parameters were determined (ii.). The resulting epipolar lines intersect with the detected corners of the 

checkerboard for both cameras, confirming an accurate calibration result. (D) Resulting camera poses 

after camera calibration of the whole setup. The global coordinate system based on the coordinate 

system of the top camera filming the scene from above. For the left and right camera groups, the camera 

extrinsics were determined pairwise (numbered dashed arrows), from the top to the front camera, from 

the front to the side camera, and from the side to the hind camera. This allowed to reconstruct the pose 

of each camera in the global coordinate system by multiplying the respective camera extrinsics 

matrices. Schemes in A and C were modified from Bradski and Kaehler (2008). 

 

curvature of straight lines in the image. In contrast, tangential distortion emerges when the 

lens and the camera sensor are not perfectly parallel which leads to stretching and/or tilting 

of objects on the image. The distortion function d (Eq. 3.5) was used to model both types of 

distortion by using the coefficients k1 ,k2, k3 and p1, p2 to account for radial and tangential 

distortion, respectively (Bradski and Kaehler, 2008).  

 

Camera calibration is the process for determination of the camera model parameters. 

Although various approaches were developed to accomplish camera calibration, the methods 

that yield high precision rely on imaging a 3D calibration object with a well-known geometry 

(Long and Dongri, 2019; Wang Qi et al., 2010). One of the most popular calibration algorithms 

at present was proposed by Zhang (2000) and is based on the use of planar patterns such as 

checkerboards. In brief, a checkerboard is presented to the camera from various viewing 

angles. Since the distances between the corners of the squares are known and constant, the 

camera parameters can be determined by optimization. For this purpose, the reprojection 
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error, i.e. the distance between corner positions on an image and obtained from the camera 

model for the same image, is minimized for all images by iteratively adjusting the camera 

parameters until a set of parameters is found that can model all captured poses of the 

checkerboard. The root mean squared reprojection errors serves as quality measure, where 

values of less than three pixels are acceptable, but ideally should be less than one pixel 

(Karashchuk et al., 2021). To obtain a checkerboard that was small enough for camera 

calibration of the setup used here, a custom-made checkerboard pattern with 7 x 6 squares 

(square dimension: 399 x 399 µm) was developed on a photographic slide (Gerstenberg Atelier 

für Visuelle Medien, Templin, Germany). The checkerboard pattern was cut out and clamped 

in a custom-made metal frame to flatten the pattern.  

All camera calibration calculations were carried out with the OpenCV software library  

(Bradski, 2000; Bradski and Kaehler, 2008). To calibrate the camera intrinsics, images of the 

checkerboard were acquired at full camera resolution (1280 x 1024 pixels) with positions and 

angles of the checkerboard changing from image to image (n > 60 per camera). For high 

accuracy, subsequent detection of the checkerboard corners was performed on a sub-pixel 

level by using the cornerSubPix function (Figure 3.2B).  Afterwards, the intrinsic matrix and 

the distortion parameters were determined with the calibrateCamera function, resulting in 

reprojection errors of 0.37 ± 0.07 pixels. Importantly, since camera sensors in modern machine 

vision cameras are very accurately installed, the principal point was fixed to the center of the 

calibration images (cx=640, cy=512) and only the focal length was estimated to define the 

camera intrinsics. Determination of the camera extrinsics based on stereo calibration 

(stereoCalibrate function), i.e. the spatial relationship between adjacent cameras, was 

determined. For this, the checkerboard was positioned in a way that it was imaged by two 

cameras (n > 20 per camera pair) and the differences between the corner positions due to the 

different viewing angles were used to derived the rotation matrix and translation vector 

required to match the reference camera to the other camera (Figure 3.2C). The resulting 

reprojection errors were 0.76 ± 0.19 pixels. The global coordinate system was defined by the 

camera recording the scene from above (see 3.2.1) and the results of the pairwise stereo 

calibration calculations were used to determine the position and orientation of each individual 

camera in the global coordinate system (Figure 3.2D).  
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3D reconstruction of keypoint positions was achieved by triangulation. In principle, when the 

orientation and position of multiple cameras are known, the 2D projective coordinates of the 

same 3D object on the image planes of two or more cameras can be used to compute the 

intersection point of the corresponding light rays in space (Hartley and Zisserman, 2004). 

However, since already low levels of noise, as expected in real camera systems, can prevent 

the crossing of the rays in mathematical terms, finding the corresponding 3D locations in 

multi-camera setups is commonly defined as a linear least-squares minimization problem, i.e. 

the reprojection error from the approximated 3D position onto the image planes is minimized 

(Günel et al., 2019; Hartley and Zisserman, 2004). For this, a linear system of equations was 

constructed by using the relationship between the projection matrix P and the corresponding 

image plane coordinates of each camera c in that a certain keypoint was observable (Eq. 3.6). 

To eventually approximate the underlying 3D coordinates, the constructed linear system was 

solved by singular value decomposition (SVD) (Günel et al., 2019; Hartley and Zisserman, 

2004; Karashchuk et al., 2021). 

 

To correct for lens distortion, the inverse distortion function (d-1) of each camera was used to 

convert the 2D coordinates obtained from the video frames to the image plane of the 

respective pinhole camera model (OpenCV undistort function) prior to the SVD procedure. 

Additionally, since the walking sequences were recorded within a cropped region of the 

camera’s full resolution (see 3.2.1), the offset position of the recording region was added to 

the 2D coordinates. The code used for the SVD procedure was based on the open source 

‘Python Projective Camera Model’ module (author: Matej Smid, https://github.com/ 

smidm/camera.py). 
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3.2.4 Establishment of a 3D body coordinate system 

To allow for the analysis of the obtained 3D keypoint positions in relation to the body of the 

animals, a body coordinate system was created for each fly by using the three tracked body 

references keypoints (see 3.2.2). The origin of the body coordinate system was defined by the 

position of the ThAp and the y-axis vector y was the vector between the wing hinges and 

pointed towards the left body side (Eq. 3.7).  

 

To obtain an x-axis pointing towards the anterior direction of the body, the vector between 

the ThAp and the midpoint between the wing hinges was calculated at first (Eq. 3.8), but the 

resulting vector was skewed (xskewed) because the wing hinges were situated ventrally in 

relation to the ThAp (Figure 3.3). 

 

 

 

Figure 3.3. Body coordinate system. (A) Graph displaying the vectors used to calculate the body 

coordinate system axes. (B) Example image of the body coordinate system and the body reference 

keypoints.  



Chapter 3 

30 

 

However, given that xskewed is the hypotenuse of a right triangle, the adjacent leg lies on the 

desired x-axis. Moreover, by calculating the reflection vector from the vector between the 

midpoint m of xskewed to the midpoint between the wing hinges, it was possible to obtain the 

intersection point of the adjacent and the opposite legs which in turn served to define the x-

axis vector x (Figure 3.3). The plane of reflection was defined by the y-axis vector y and the 

axis vector g of the global coordinate system describing the posterior-anterior axis of the flies, 

i.e. the y-axis in the camera coordinate system (see Figure 3.2). By calculating the cross product 

between both vectors, the plane normal nr was obtained and was used to determine the 

reflection vector r (Eqs. 3.9).  

 

Afterwards, the x-axis vector x was calculated (Eq. 3.10). To obtain a right-handed coordinate 

system the cross product of the y-axis vector and the x-axis vector was calculated (Eq. 3.11).   

 

 

However, the obtained axes vectors were not absolutely orthogonal due to small tracking 

errors of the keypoints. To correct for this, the vectors were orthonormalized by the Gram-

Schmidt process (Leon et al., 2013) using a QR factorization algorithm (qr function, linalg 

module, NumPy). It is worth noting that, since no scaling operations were applied, the body 

coordinate system is in the same metric scale as the camera calibration coordinate system, i.e. 

in millimeters.  
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3.3 Results 

3.3.1 Performance of automated tracking of keypoints 

To evaluate the accuracy and robustness of the automated tracking of keypoints by DLC, the 

tracking error was analyzed, i.e. the Euclidean distance between the predicted position of a 

keypoint by the ResNet-50 networks and the corresponding manual annotation. Additionally, 

although small residual tracking errors are associated even with good tracking performance, 

the main objective for using automated tracking was to reduce human labor. For this, the 

percentage of required manual corrections based on the total number of predicted positions 

for each keypoint served as measure of the human workload, regardless of the magnitude of 

the individual misdetection. 

The ResNet-50 networks were generally able to track accurately all keypoints as demonstrated 

by the small tracking error of the training set data (Figure 3.4A). For keypoints tracked in 

video frames of the training sets, the median error was 1.9 pixels (IQR: 1.2 pixels), 2.5 pixels 

(IQR: 1.1 pixels), and 1.6 pixels (IQR: 0.8 pixels) for the front, side, and hind ResNet-50 

network, respectively. Furthermore, the error was smaller than 10 pixels for 98% of all 

keypoints in the training sets. In contrast, in video frames that the networks had never seen 

before and required corrections, the median error was about six to ten times higher with 11.2 

pixels (IQR: 51.8 pixels), 7.2 pixels (IQR: 10.2 pixels), 15.0 pixels (IQR: 59.9 pixels) for front, 

side, and hind ResNet-50 network, respectively.  

While all three ResNet-50 networks showed similar errors for the tracking of the same 

keypoint, the size of error differed for individual keypoints. The tracking error was generally 

larger for most leg keypoints than for the body keypoints (Figure 3.4A). The maximum 

tracking error for body keypoints, i.e. the ThAp, the wing hinges, and the antennae, ranged 

from 7.0 to 27.1 pixels. In contrast, the maximum tracking error for the leg keypoints ranged 

from 128.6 to 766.4 pixels. The largest tracking errors were found for the distal leg parts, i.e. 

the TiTar and the Tar, while the ThCx showed with a maximum error of 12.9 pixels a similar 

tracking error compared to the error observed for the body keypoints. However, the tracking 

error was smaller than 12 pixels for 93% of all tracked keypoints from frames which were not 

part of the training sets, excluding the TiTar and the Tar. While the error for the TiTar was 
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Figure 3.4. Evaluation of the tracking error. (A) In the left panels, the absolute error for individual 

tracked keypoints of the front, side, and hind DLC networks is shown for video frames of the complete 

training sets (light blue) and frames from videos not previously seen by the networks that required 

manual corrections (dark blue). Number of evaluated keypoint positions is indicated to the right to the 

boxplots. In the right panels, the cumulative percentage of the error distribution including errors for 
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the training set and corrected keypoints is shown for the front (blue), side (orange), and hind (green) 

networks. Note that the error is plotted on a logarithmic scale on the x-axis. (B) Percentage of required 

corrections for individual keypoints in all fly postures, i.e. video frames, analyzed in this thesis. 

Percentage is shown for right (R) and left (L) front, middle, and hind legs (1,2,3), for additional thorax 

and head markers as well as for the total amount of required corrections.  

 

smaller than 12 pixels in at least 65% of the tracked positions analyzed, this was the case for 

only 30% of Tar positions. In addition, the observed large tracking inaccuracy of Tar positions 

was often accompanied with assignment of the Tar position to the wrong leg. For instance, 

the Tar for the front legs was frequently detected on the hind legs and vice versa. Nevertheless, 

the majority of keypoints were detected accurately in the experimental walking sequences. In 

total, only 5.6% of all tracked keypoints (n=731,510) in all analyzed video frames required 

manual corrections (Figure 3.4B). The frequency of required corrections for individual 

keypoints was, however, related to the observed tracking error for those keypoints. For 

instance, tracked positions for the Tar that required correction did not only show the largest 

error, but also 22% of all Tar positions from all six legs had to be corrected. 

In summary, the ResNet-50 networks were essentially able to robustly track leg and body 

keypoints, even though their accuracy rate was lower for video frames not included in the 

respective training set. However, although very large tracking errors for individual keypoints 

were observed occasionally, the frequency of required manual corrections was very low. This, 

together with the high video processing rate of approximately 20 Hz, demonstrates the 

efficiency of DLC to reduce substantially the human workload for tracking leg and body 

keypoints in walking fruit flies.   

 

3.3.2 Evaluation of 3D posture reconstruction 

Based on the tracked 2D positions of leg and body keypoints, their 3D positions were 

reconstructed by triangulation (Figure 3.5). It was, however, challenging to evaluate the 

accuracy of the obtained 3D reconstruction of Drosophila leg postures based on the present 

motion capture approach since there is no real ground truth data available. Even if 2D position  



Chapter 3 

34 

 

 

Figure 3.5. Representative example for 3D pose reconstruction. (A) Annotated video frames for all six 

camera views of the same time point. Upper and lower panels display left and right body sides of one 

male fly, respectively. (B) Corresponding 3D reconstruction from the same fly and posture from 

different views. Left and right panels resemble the views from the front and hind cameras, respectively. 

In the upper and lower panels, the left and right body sides of the animal is in the foreground, 

respectively.  
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annotated by humans would be used for comparison, there is no guarantee that the resulting 

3D reconstructions would not be biased by factors such as the human observer variability, for 

instance. However, since the leg segments can be assumed to be rigid in Drosophila due to their 

exoskeleton, the variability of their length was used to assess the quality of 3D reconstructions. 

For this, the length of the coxa, trochanter, femur, tibia, and, tarsus was determined for all 

analyzed 3D postures by calculating the Euclidean distance between the respective connecting 

joints. To prevent bias by sex-specific body size differences (Carreira et al., 2009), the 

variability in the length of segments was separately analyzed for males and females. For the 

comparison of the variability of the length of segments, the coefficient of quartile variation 

(CQV) was used (see 2.3). 

The resulting median lengths for the analyzed segments of the female flies (Figure 3.6) were 

comparable to reported leg segment lengths for female adult flies (Lobato-Rios et al., 2022). 

This demonstrates that the motion capture approach used here was able to reconstruct 3D 

positions in the correct order of magnitude within the metric scale. In addition, ratio of the 

median segment length between female and male flies ranged from 0.97 to 1.03 for almost all 

leg segments except for the tarsus of hind legs, which showed a slightly higher ratio of 1.09, 

indicating that the leg segment length is very similar in both sexes. A similar range of variation 

in the median length was found for the most leg segments, when the right and left body side 

were compared. However, the median length of coxa and trochanter showed larger 

discrepancies between the body sides. For the coxa of the middle and hind legs, the right-left 

ratio of the median length ranged from 0.92 to 1.21. In addition, right-left ratio of the median 

length of the trochanter for all leg pairs ranged from 0.82 to 1.41 and from 0.94 to 1.31 in female 

and male flies, respectively. 

However, the large observed discrepancy was unlikely to result from a poor 3D 

reconstruction, but rather emerges from the fact that the trochanter of all legs and the coxa of 

the middle and hind legs are relatively short compared to the other leg segments (Figure 3.6). 

The variability of the measured length of the individual segments was generally low as 

revealed by the small CQV which ranged from 1.35% to 10.6% for almost all segments 

irrespective of sex and body side. Additionally, the CQV was smaller than 5% for 85.4% of 
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those segments. However, the CQV for the length of the trochanter was larger and ranged 

from 11.1% to 31.6%, which was again explainable by the small length of this segment.  

Taken together, these findings show that 3D reconstruction based on the tracked 2D keypoints 

was reliably achieved. Although the observed differences in the lengths of segments indicate 

that tracked keypoint positions “wobble” around its true position from frame to frame, the 

resulting impact for subsequent kinematic analysis can be considered as neglectable.  

 

 

 

Figure 3.6. Evaluation of leg segment length. Due to sex-specific differences in body sizes, separated 

boxplots show data for females (N = 5, upper boxplots) and males (N = 7, lower boxplots). Boxplots for 

right and left legs are darker and lighter colored, respectively. Colored diamonds represent the median 

of individual flies. The total number (n) of analyzed postures is indicated in the labels of the y-axis.  
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3.4 Discussion 

The motion capture system implemented here allows for the robust and reliable 3D 

reconstruction of leg postures from walking fruit flies. The system runs stably with six 

cameras recording at a high frame capturing rate of 400 Hz and a high video resolution of 896 

x 540 pixels. While other reported 3D motion capture systems for Drosophila walking have a 

similar spatial resolution, these systems achieve only 100 Hz (Günel et al., 2019) or 300 Hz 

(Karashchuk et al., 2021). However, a high temporal resolution is required to adequately 

capture the behavior of rapid moving animals such as Drosophila. For instance, the mean leg 

swing duration of fruit flies is about 31 ms (Szczecinski et al., 2018). Since the motion capture 

system presented here acquires a video frame every 2.5 ms, the time course of leg movements 

during swing phases are not only captured more accurately, but also the timing of transitions 

from swing to stance and vice versa can be determined more precisely.   

The main intention for using automated tracking by DLC was to reduce the human workload. 

However, to obtain high-quality data for subsequent kinematic modeling (see chapter 4), all 

tracked keypoints of the analyzed data set were manually validated afterwards and this work 

did not aim to optimize the performance of the ResNet-50 networks. Nevertheless, the trained 

networks achieved a high tracking accuracy as demonstrated by the fact that less than 6% of 

keypoints had to be corrected manually and the corresponding tracking error was smaller 

than 12 pixels for the majority of them. This level in error is comparable to other pose 

estimation approaches used for Drosophila so far (Günel et al., 2019; Karashchuk et al., 2021; 

Mathis et al., 2018) and is believed to represent the current limit of accuracy for markerless 

tracking (Karashchuk et al., 2021).  

However, the correction rate and tracking error were much larger for the most distal leg parts, 

i.e. the TiTar and Tar. Günel et al. (2019) also reported larger tracking errors for the Tar, which 

they attributed to occlusions from the spherical treadmill and a higher positional variance. In 

addition, the ResNet-50 networks employed here often assigned the TiTar or Tar to the correct 

limb location, but to the wrong leg. Although each network was trained to detect keypoints 

in video frames from an equivalent camera position for both the left and right body side, i.e. 

the input video frames were basically mirrored (see Figure 3.5A), this implies that the 



Chapter 3 

38 

 

networks failed to learn correctly the spatial relationship between these keypoints and the 

general body orientation. That further means that the networks must be optimized to allow 

for robust tracking for large data sets in the future without increasing the workload by human 

validation to an unreasonable level.  

The simplest approach to improve the robustness of deep learning-based pose estimation 

algorithms is to retrain the networks with the video frames that required manual corrections, 

commonly referred to as active learning (Mathis et al., 2018; Nath et al., 2019). In general, a 

diverse training set is the key to prevent overfitting of a CNN. Overfitting refers to the fact 

that, although the network learned to efficiently track keypoints in video frames of the 

training set, it fails to track these keypoints in new and previously unseen frames since it 

learned rather specific features of the training set instead of the general pattern of the 

keypoints (Mathis et al., 2020; Nath et al., 2019). Since frames that exhibit false detections 

obviously contain atypical poses or image features with respect to the current training set, the 

generalizability of the networks benefits particularly from adding these frames to the training 

set. The training set can be further enriched by data augmentation techniques (Shorten and 

Khoshgoftaar, 2019). Although the default data augmentation settings from DLC were already 

used for the training of the current networks (see 3.2.2), there are several different algorithms 

and parameters available which can affect the final tracking efficiency (Mathis et al., 2020; 

Nath et al., 2019). In addition, the wobble of keypoint positions by small tracking errors can 

be also reduced by applying filters to the tracked data. Karashuck et al. (2021) examined the 

effects of multiple filter algorithms on 2D and 3D keypoint positions and found a significant 

improvement of their pose estimation results.  

Nevertheless, a general challenge for the robustness of the approach presented here for 3D 

motion capture might be that CNNs only learn to detect keypoints in 2D video frames and 

reconstruction of the 3D positions is achieved by triangulation from 2D positions of multiple 

views afterwards. A recent and very promising approach for 3D pose estimation of animals is 

to train CNNs to directly predict the 3D locations of keypoints, without the detour of first 

detecting 2D positions. For instance, DANNCE uses projective geometry to construct a 3D 

feature space that allows training of a CNN with shared features across multiple camera views 
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and results in a 30-fold higher efficiency for 3D pose reconstruction compared to current 

triangulation approaches (Dunn et al., 2021).  

However, it is also questionable whether automated tracking algorithms will ever reach 100% 

reliability, i.e. the tracked positions show only very small errors which can be interpreted as 

noise and no further human monitoring of the tracked data set is required. Therefore, it would 

be also important to develop user-friendly and efficient validation pipelines for motion 

capture data. One approach to this problem is to automate the identification of misdetections. 

Several strategies were already proposed to facilitate the detection of frames containing such 

tracking outliers. Straight forward methods rely on identifying tracked keypoints for which 

the estimation likelihood of the networks is low or which exhibit large position jumps in 

consecutive video frames (Nath et al., 2019). It is, however, challenging to define efficient 

thresholds for these methods because low likelihoods could also indicate occlusions by other 

moving body parts or the velocity of body parts is not constant, e.g. the tarsus tip moves 

typically faster during the swing phase compared to the stance phase. More sophisticated 

methods exploit the geometric relationship between keypoints to detect outliers or to reduce 

tracking errors. For instance, Graving et al. (2019) trained a CNN to predict not only the 

locations of keypoints, but also the connecting segments between them. Thus, the additional 

information of the resulting likelihood maps can be used to also identify tracking outliers. 

Another approach uses a probabilistic graphical model based on pictorial structures to infer 

the most likely 3D pose from all connected keypoints of a specific body part (Günel et al., 

2019) and discrepancies between the inferred and tracked poses are indicative of 

misdetections.
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Chapter 4  

Decomposition of 3D joint angles by kinematic modeling 

of Drosophila legs 

 

4.1 Introduction 

Since biological legs typically have more joints and/or more degrees of freedom (DOF), i.e. 

independent directions of movements, than required for pure walking, a detailed kinematic 

analysis is required to understand the demands on the underlying motor control system. The 

movements of limbs emerge from joint torques which cause angular motion of the individual 

segments of the limb about the respective joint rotational axes. Thus, joint angles describing 

the extent of these rotations are a natural choice to measure the kinematics of limbs. Moreover, 

the nervous system generates muscle activity to drive angular joint movements and processes 

proprioceptive sensory feedback from these movements to modify the muscle commands to 

accomplish the desired motor task (Büschges, 2005; Nielsen, 2003; Nishikawa et al., 2007). 

Therefore, changes in joint angles are also thought to be better correlated to the underlying 

neuronal activity than changes in the position of the limb segments themselves (Bender et al., 

2010).  

Although leg joint angles for Drosophila can in principle be derived directly from 3D 

reconstructions of markerless motion capture data (Günel et al., 2019; Karashchuk et al., 2021; 

Lobato-Rios et al., 2022), there are limitations regarding the accuracy and interpretability of 

the resulting angles due to the way markerless tracking is usually implemented and 

subsequent angle calculations are performed. Typically, only one keypoint per joint is tracked 

during motion capture and the angle between two segments is calculated by the arccosine of 

the dot product from the vectors of both segments which are defined by three keypoints, i.e. 

the proximal end of the first segment, the joint of interest, and the distal end of the second 

segment (Karashchuk et al., 2021). Although this method is straight-forward and intuitive, 

one has to consider that the resulting angle is derived from a plane formed by the positions of 
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the keypoints and thus the rotational axis is always strictly orthogonal to this plane. However, 

not only can the wobble of tracked markers (see 3.3.2) affect the formed plane and thus the 

spatial orientation of the rotational axis from video frame to video frame, but more 

importantly, the real anatomical joint rotational axis might be skewed with respect to the 

segments. The situation becomes even more complex when considering joints with two or 

three DOFs such as e.g. for the thorax-coxa joint in insects, which is a spherical joint with three 

DOFs (Hughes, 1952; Snodgrass, 1935). To solve this problem of determining three angles 

from only one keypoint, i.e. the thorax-coxa joint, researchers typically construct a body 

coordinate system and use it either to calculate angles from the projections of the coxa on the 

individual body planes (Lobato-Rios et al., 2022) or to calculate an Euler angle sequence to fit 

the body coordinate system to the coxa (Bender et al., 2010; Karashchuk et al., 2021). Although 

this results in conceptually intuitive joint angles which represent movements in relation to the 

body, these methods again do not take into account real anatomical joint axes. Additionally, 

projection angles should generally not be considered as true 3D angles (Robertson et al., 2014) 

and they yield kinematically useful results only under a limited number of conditions 

(Woltring, 1991). 

These issues can be circumvented by using a local Cartesian coordinate system (LCS) for each 

joint and calculating the orientation angles between two subsequent LCSs. For this, at least 

three markers are attached to each segment in a specific non-collinear arrangement that allows 

for the alignment of an LCS to the anatomical joint axis (Robertson et al., 2014). Afterwards, 

the orientation angles are calculated, which represent basically a Euler or Cardan sequence 

describing the required rotations from each axis of the first LCS to match its counterpart from 

the next LCS. This method is widely used in studies of human kinematics (Colyer et al., 2018; 

Robertson et al., 2014) and it has been shown to perform better than markerless pose 

estimation, particularly for rotations about the longitudinal axis of segments (Ceseracciu et 

al., 2014; Colyer et al., 2018; Mathis et al., 2020). However, since the methodological difference 

is not the use of attached markers per se, but simply the number of tracked locations on the 

segments, pose estimation networks could in principle be also trained to detect three or more 

keypoints for each segment. Although this would allow to construct an LCS for each joint, 

clear visual distinguishable anatomical landmarks on each segment are required. These might 

not exist or, in the case of Drosophila, cannot be recognized in current video recordings due to 
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limited optical magnification. In addition, even though Euler or Cardan angles are widely 

used in kinematic studies, it must be mentioned that they are not unique because the resulting 

angles can be significantly different depending on which axes sequence is used for their 

calculation (Crawford et al., 1996; Crawford et al., 1999; Woltring, 1991). Therefore, it is 

somewhat questionable whether Euler/Cardan angles represent the true occurring 

movements of limbs or just an equivalent path of motion (Crawford et al., 1999).  

Kinematic modeling of articulated limbs was originally introduced by engineers to facilitate 

the control of robotic arms (Craig, 2005; Spong et al., 2020a), but was adopted in the 

biomechanical field due to the shared problem of comprehending limb motions. Under the 

assumption that a limb is a series of rigid segments interconnected by joints, a mathematical 

representation of the limb, called kinematic chain, can be constructed and movements of 

segments about the joints are introduced by changing the angles of the related joint DOFs in 

the kinematic chain. For this, however, two further mathematical problems need to be 

addressed: forward and inverse kinematics. Forward kinematics deals with the geometrical 

problem of computing the position and orientation of the end-effector of the kinematic chain 

for a given set of joint angles. Inverse kinematic approaches, on the other hand, attempt to 

solve the problem of determining an appropriated joint angle configuration that results in a 

given position and orientation of the end-effector (Craig, 2005; Singh et al., 2021; Spong et al., 

2020a). In contrast to the computation of forward kinematics, which is well-defined and 

straight-forward because there is always a unique solution, finding solutions for inverse 

kinematics is more complicated. Particularly for kinematic chains with redundant DOFs, there 

might be multiple, or even infinitely many, joint configurations that lead to the very same 

end-effector position (Aristidou et al., 2018). For kinematic studies of biological limbs, this 

issue can be mitigated by using tracked joint positions as additional constraints for the 

computation of the joint angles. Under the term multibody kinematics optimization, this 

strategy has gained more attention in recent decades to alleviate soft tissue artefacts in human 

kinematic studies (Begon et al., 2018). Since markers are usually attached to the skin of the 

probands, movements of the soft tissue between the markers and the bones lead to errors that 

can have the same order of magnitude as the underlying joint motions (Camomilla et al., 2017). 

To compensate for this, a kinematic model of the bones of a limb of interest is constructed and 

the distance between the tracked and the model-derived markers is minimized by applying a 
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global optimization algorithm (Begon et al., 2018; Lu and O’Connor, 1999). In other words, 

the forward kinematics of the model is iteratively optimized until a joint configuration is 

found that results in a model posture that closely matches the tracked marker positions. Since 

the structure of the kinematic chain, i.e. the length of segments and the joint rotational axes, 

is preserved during movements, it is assumed that the resulting model posture is a better 

representation of the orientation of the bones than the posture obtained by the tracked 

markers alone. Another advantage of the resulting joint angles is that these are directly related 

to the anatomical joint rotational axes used in the model.  

Although soft-tissue artefacts do not occur in insects due to their exoskeleton, kinematic 

modeling is promising for circumventing the aforementioned issue of having too few tracked 

joint keypoints per leg segment for computation of real 3D angles. In fact, several kinematic 

leg models were implemented in the last decades to study locomotion of the stick insect 

(Dallmann et al., 2016; Theunissen and Dürr, 2013; Zakotnik et al., 2004), the cockroach 

(Szczecinski et al., 2014), the cricket (Petrou and Webb, 2012), the ant (Arroyave-Tobon et al., 

2022), and more recently Drosophila (Goldsmith et al., 2022; Lobato-Rios et al., 2022). It should 

be kept in mind, however, that even if a model can very closely match the tracked posture of 

an animal leg, the resulting joint angles are highly dependent on the design decisions of the 

model, i.e. the location of the joints, the number of DOFs of each joint, and the orientation of 

their rotational axes (Begon et al., 2018). This also means that a meaningful kinematic model 

must be based on detailed morphological knowledge of the joints, which is challenging in 

insects due to their small size. Thus, most insect leg models relied on assumptions from 

previous kinematic studies and/or anatomical descriptions from morphological studies. 

However, extremely detailed 3D body models of insects can now be created due to recent 

advances in micro-computed tomography (µCT), which allow the precise extraction of joint 

condyle positions (Arroyave-Tobon et al., 2022; Blanke et al., 2017). 

Nevertheless, even though the construction of detailed kinematic model of Drosophila legs can 

be facilitated by µCT data, there is also a huge lack of knowledge about the functionality of 

joints and their DOFs in Drosophila. For example, the functional role of the trochanter-femur 

joint in Drosophila is controversial, with opinions ranging from being fused and immobile 

(Lobato-Rios et al., 2022; Sink, 2006) to at least limited mobility (Feng et al., 2020). 
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In this chapter, to decompose the leg joint kinematics of Drosophila, at first a 3D kinematic leg 

model based on anatomical landmarks, i.e. the joint condyles, was constructed and the 

number of required DOFs to model forward walking was determined by comparing models 

with different DOF configurations. Afterwards, the joint angle time courses were evaluated 

from the model with the most plausible DOF configuration of the kinematic chains.  

 

4.2 Material and methods 

4.2.1 Kinematic leg model based on anatomical landmarks 

To model the motion of articulated limbs, a mathematical representation of the limbs must be 

formulated. In this thesis, all six legs were modeled as kinematic chains, consisting of multiple 

joints interconnected by rigid segments of specified lengths in a Cartesian coordinate system. 

Each kinematic leg chain consisted of a thorax-coxa joint (ThCx), coxa-trochanter joint (CxTr), 

trochanter-femur joint (TrFe), femur-tibia joint (FeTi), tibia-tarsus joint (TiTar) and the tarsus 

tip (Tar). The joints were linked by five leg segments: the coxa (CX), trochanter (TR), femur 

(FE), tibia (TI), and tarsus (TAR). To obtain an anatomical correct model, joint rotational axes 

(for method see:  Blanke et al., 2017) and leg segment lengths were extracted from a µCT scan 

of a single adult female wild-type Drosophila melanogaster specimen which was acquired in a 

previous study (Dinges et al., 2021) (Figure 4.1A). Joint rotational axes and positions were 

derived from the vector between the joint condyles and its center, respectively. Leg segments 

were defined as the vector between consecutive joint positions or tarsus tip position. Due to 

bilateral symmetry of the insect bauplan, the front, middle, and hind leg of the right body side 

were analyzed and positions were mirrored to the left side. Since the actual DOFs in leg joint 

of Drosophila are not yet known, each model joint was defined as spherical joint equipped with 

three DOFs, namely yaw, pitch, and roll (Figure 4.1B). The yaw axis was defined by the 

rotational axis of the joint. To describe longitudinal rotations, i.e. rotations around the leg 

segment, the segment vector was used to specify the roll axis. The pitch axis was introduced 

to complete the full range of motion of a spherical joint and was defined by the cross product 

of the yaw and roll axes. Importantly, single DOFs could be set as movable or fixed, so that 

they could or could not contribute to leg movements, respectively.  
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Figure 4.1. Kinematic leg model. (A) Image of µCT scan used to extract the joint condyles for creating 

the model. Example for joint condyles of the femur-tibia (FeTi) is shown in the dashed box. Black arrows 

point to the joint condyles which are displayed as orange spheres. The magenta-colored sphere 

indicates the position of the joint center. (B) A model joint with three DOFs, i.e. yaw, pitch, roll. 

Movement directions by angle changes in the DOFs are indicated by arrows of the same color. (C) 

Images of the model. The initial posture of the model is shown in front (i.), side (ii.), and top (iii.) view. 
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Close-up view on the left front (iv.), middle (v.), and hind (vi.) leg display the joint positions and the 

rotational axes of the DOFs for each joint. Note that the TrFe-roll was only movable in the front legs of 

the final model, but not in the reference model. Dashed arrows indicate that the tarsus length was 

variable in the model (see text for details). An example walking posture of the model is shown in vii. 

3D coordinate systems indicate directions. The red (x-axis), green (y-axis), and blue (z-axis) arrows 

point towards anterior, left, and dorsal with respect to the fly body. 

 

Fixing of DOFs was achieved by excluding them from global optimization during inverse 

kinematics or omitting updating the respective joint angles generated by inverse kinematics 

(see 4.2.3). Although it was not assumed that all leg joints in Drosophila have three DOFs, this 

approach facilitated the identification of the actual DOF configuration of the legs. 

Additionally, thorax posterior scutellum apex, left wing hinge, and right wing hinge, were 

extracted from the µCT scan data. These positions were used for constructing a body 

coordinate system and for adapting the model to the motion capture data of individual flies 

(see 3.2.4). Positions of joint condyles from µCT data were provided by Prof. Dr. Alexander 

Blanke. 

 

4.2.2 Forward kinematics of kinematic leg chains 

To solve the forward kinematics of the leg chains, i.e. determining the position and orientation 

of each joint and the tarsus tip by a given set of joint angles, DOFs of joints and the tarsus tip 

were represented by LCSs which were constructed according to the standard Denavit-

Hartenberg (D-H) convention (Denavit and Hartenberg, 1955; Lynch and Park, 2017; Spong 

et al., 2020b). The base concept is that the geometrical relationship between LCSs of two 

consecutive DOFs can be described by a homogeneous transformation matrix. As a result, the 

position of any point expressed in an LCS can be considered as constant and its coordinates 

in the global coordinate system depends on orientation and position of the LCS. Moreover, 

since the position and orientation of each LCS of a DOF depends on the LCS of the preceding 

DOF in the chain, joint movements are propagated through the chain by changing the joint 

angle parameter in the respective transformation matrix. The product of transformation 
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matrices from all preceding DOFs to any joint or the end effector of the kinematic chain (Eq. 

4.1) gives eventually the position in coordinates of the first LCS in the chain.  

 

The D-H convention provides specific rules for constructing LCSs: 

1) The z-axis is the rotational axes of the respective DOF. 

2) The x-axis and the origin of the LCS depend on the relationship between the z-axis and 

the rotational axis of the previous DOF: 

a. There is no previous DOF for the first DOF in the kinematic chain. In this case, 

the x-axis and the origin of the LCS can be chosen arbitrarily as long as the 

origin is a point on the z-axis and the x-axis is perpendicular to the z-axis. 

b. When both axes are not coplanar, only a unique common normal, i.e. a line that 

orthogonally intersects the z-axis and the rotational axis of the previous DOF, 

exists. The x-axis coincides with the common normal and points towards the 

next DOF. The origin is determined by the point of intersection on the z-axis.  

c. When both axes intersect, the x-axis is defined by the normal of the plane 

formed by the z-axis and the rotational axis of the previous DOF. The origin is 

the point of intersection of both axes. The direction of the x-axis can be chosen 

arbitrarily in this situation.  

d. When both axes are parallel to each other, there is no single common normal, 

but infinitely many. In this case, the x-axis can be derived from the common 

normal that passes through the joint position of the respective DOF and 

consequently the origin is the joint position.  

3) The y-axis is defined by the cross product of the z-axis and the x-axis to form a right-

handed LCS. 
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When assigning LCSs in this manner, each transformation matrix can be formulated with the 

four D-H parameters (Eq. 4.2):  

1) The joint angle (θ) is the angle between x-axis and the x-axis of the previous DOF about 

the z-axis of the previous DOF. It therefore describes the required rotation about the 

z-axis of the previous DOF to align both x-axes.  Additionally, joint movements are 

achieved by adding the desired angle of rotation to the initial joint angle.  

2) The link twist (α) is the angle between the z-axis and the z-axis of the previous DOF 

about the x-axis. It therefore describes the required rotation about the x-axis to align 

both z-axes. 

3) The link length (r) is the distance between the points of intersection of the common 

normal with the z-axis and the z-axis of the previous DOF.  In case of intersecting DOF 

axes, the link length can be set to zero. 

4) The link offset (d) is the distance between the origin and the intersection point of the 

common normal on the z-axis of the previous DOF. In case of intersecting DOF axes, 

the link length can be set to zero. 

 

In the present leg model, the sequence of DOFs was yaw, pitch, and roll for each leg joint. 

LCSs of the DOFs and the D-H parameters for transformations from yaw to pitch, pitch to roll, 

and roll to the yaw LCS of the next joint were derived iteratively from the positions of joint 

condyles of a joint (Jn) and its following joint (Jn+1). At first, the z-axes (Z-hat) for each DOF 

were defined (Eqs. 4.3).  
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Since z-axes of all DOFs of a joint intersect by definition, the origin of the yaw-LCS was also 

used for all subsequent LCSs. The x-axes (X-hat) of the pitch and roll LCSs were derived from 

the cross product of the respective z-axes (Eqs. 4.4).  

 

In contrast, the origin and x-axis of the yaw-LCS had to be defined in relation to the roll-LCS 

of the preceding joint. Since both rotational axes were always skew, i.e. they were non-

coplanar and non-parallel, the intersection points (c1, c2) of the common normal (n) of both z-

axes were calculated and used to define the x-axis of the yaw-LCS of Jn+1 (Eq. 4.5). 

 

There were two LCSs in the kinematic leg chains which could not be defined by this approach: 

1) The LCS of ThCx-yaw was the first LCS in the chain and thus it did not have a 

preceding roll-LCS. Therefore, the x-axis was defined by the cross product of its z-axis 
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and the x-axis of the body coordinate system and the origin was set to the joint center 

(Eq. 4.6).  

2) Since the tarsus tip was the end effector of the kinematic chain, it did not have a 

rotational axis. The TiTar-roll LCS was duplicated and its origin was translated to the 

tarsus tip position. The intersection point c2 was the tarsus tip position and c1 was the 

point on the TiTar-yaw z-axis with the smallest distance to the tarsus tip position. The 

position of c1 was derived by the facts that the z-axis and the vector between c1 and c2 

are perpendicular to each other, i.e. their dot product must be zero, and that c1 is a 

point on the z-axis. This allowed to solve for c1 by substituting c1 with the line equation 

for the z-axis in the dot product calculation to solve for λ and to use the resulting λ in 

the line equation (Eqs. 4.7). 

 

 

Y-axes (Y-hat) of each LCS were based on the cross product of the z-axis and the x-axes of the 

respective LCS (Eq. 4.8). 

 

After LCSs of the kinematic chain were constructed, the D-H parameters were calculated from 

two successive DOF-LCSs (Eqs. 4.9). Since both θ and α described the required rotational 

angle between two axes about a third rotational axis, they were calculated by constructing 

two planes (Π1: 1st axis x 3rd axis, Π2: 2nd axis x 3rd axis) and determining the angle between 
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their plane normal vectors. The parameters d and r were set to zero when both z-axes 

intersected or otherwise had to be calculated using the common normal. 

 

Importantly, the origin of a LCS must be on the joint rotational axis but is not necessarily the 

joint center according to the D-H convention, joint positions (x’,y’,z’) were stored in 

coordinates of the yaw-LCS of the respective joint. To calculate the body coordinates of each 

joint (x,y,z), its position in the joint-yaw LCS was multiplied by the product of all preceding 

transformation matrices (T) in the kinematic chain and the coordinate space transformation 

matrix B (Eq. 4.10) derived from the ThCX-yaw LCS  (Eq. 4.11). 
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Since the resulting posture of the model was predetermined by the posture of the legs in the 

µCT scan, further adjustments were made to obtain a reference default posture (Figure 4.1C) 

which facilitated the interpretation of the resulting model joint angles. For this, the model legs 

were straightened by manually adjusting the angles of the yaw-DOFs. A classical T-pose, as 

commonly used in computer animation, was not possible because this would have required 

additional adjustments of the pitch and roll DOF orientations. This, however, would have 

disrupted the anatomical relationship between leg segments when these DOFs were immobile 

in the model.  

 

4.2.3 Inverse kinematics by global optimization  

To determine the joint angle configurations of leg poses that the animals adopted during 

walking, the kinematic leg chains were fitted to motion capture data of walking sequences. 

For this, forward kinematics of the leg chains were optimized by using an iterative conjugate 

gradient descent approach that minimized the sum of squared distances between tracked and 

model-derived keypoint positions. For this purpose, a nonlinear trust-region reflective 

algorithm (Branch et al., 1999) was applied (least_squares function, SciPy optimization 

package version 1.6.2, The SciPy community). Termination conditions for changes in the cost 

function, the resulting joint angles, and the norm of the gradient were set to 10-3 and the 

maximum number of iterations was 100-times the number of moveable DOFs in the used 

model. These conditions were validated with a smaller subset of leg postures (see 4.2.6) and 

showed costs of final solutions that were comparable to more strictly defined termination 

criteria, but at a 4.8-times higher computational speed. Joint angle constraints (Table 4.1) were 

introduced to prevent solutions that result in unnatural leg postures. Since the actual angular 

ranges of leg joints in Drosophila are not known, joint constraints were empirically adjusted to 

ensure an appropriated model fit, but did not result in solutions that reached the range limits. 

Pitch DOFs were generally restricted to a range of 170° to prevent gimbal lock, i.e. the loss of 

one DOF of the joint when the pitch and yaw rotational axes are aligned in parallel. In contrast, 

angular ranges for yaw and roll DOFs were stepwise restricted until unnatural leg poses did 

not occur. The cost function (Eq. 4.12) based on the distances between the CxTr, TrFe, FeTi, 

TiTar, and Tar positions (P) of the model and their motion captured counterparts. Initial 
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experiments showed that weighting (w) the distances between TrFe, FeTi, and TiTar positions 

by 1.5, 2.0, and 1.5, respectively, improved the model fit for front legs, but was not required 

for inverse kinematics of middle and hind legs.  

 

For each motion captured walking sequence, an initial estimate of model positions was 

determined by individually optimizing each model joint angle to fit the respective model joint 

position with its corresponding motion captured position for the first leg poses in a walking 

sequence. This reduced the chance that the subsequent global optimization procedure was 

directed to an imperfect local minimum. Afterwards, the optimization algorithm was applied 

globally, i.e. all model joint angles were optimized simultaneously to fit the model leg 

positions with the motion captured data. For all following leg poses of an experiment, the 

model joint angles determined from the previous time point served as initial estimate for the 

global optimization procedure. 

 

Table 4.1 Joint angle constraints of the kinematic model 

 

Note that values indicate constraints for joint DOFs of right legs. The sign had to be inverted to obtain 

values for yaw and roll DOFs of left legs, but not for pitch DOFs.  
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4.2.4 Adaptation of model and tracked animal data 

Since flies differed in their body size and length of leg segments, prior adjustments of the 

model and the motion capture data were required for each fly to facilitate the inverse 

kinematic procedure.  

To ensure equal body coordinate systems, reference triangles for the model and the motion 

capture data were formed by connecting the median positions of the thorax posterior 

scutellum apex (A), left wing hinge (L), and right wing hinge (R). A scale matrix (S) was 

calculated for scaling the model to fit it to the motion capture data (Eqs. 4.13).  

 

Afterwards, positions of the motion captured keypoints of each leg were translated to ensure 

comparable initial locations of the kinematic leg chains and the motion captured leg positions. 

For this, the vector (v) between the ThCx position of the kinematic leg chain and the median 

motion captured ThCx position was subtracted from each subsequent keypoint position of the 

same leg (Eqs. 4.14).  

 

As a final step, the leg segment lengths of the model were adjusted to the median lengths of 

the motion captured leg segments. For each segment, the segment vector between the 

proximal and distal keypoint positions (P) was calculated and scaled to the desired length. To 

adjust the length of the model segment, the distal keypoint position was translated in direction 
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of the scaled segment vector (Eqs. 4.15). All adjustments were carried out prior to the 

construction of the kinematic model for each individual fly. 

 

 

4.2.5 Analysis of the model error and joint angles 

The model error of a leg keypoint was the distance between its position in the model and its 

tracked position. Since the positions were in body coordinates after inverse kinematics, they 

were first converted to world coordinates of the motion capture system for scaling the error 

to metric units (µm or mm). Afterwards, the Euclidian distance between both positions was 

calculated (Eq. 4.16).  

 

Since there is no defined zero angle position for the joint DOFs of Drosophila, most resulting 

joint angles of the model were reported in relation to the initial posture of the model (Figure 

4.1C). To simplify the interpretation for movements the angles of two main DOFs, namely the 

CxTr-yaw and the FeTi-yaw, were post-processed. Because the leg segments were 

straightened at the zero-angle position for these DOFs, subtracting or adding the resulting 

angles for the CxTr-yaw and the FeTi-yaw to 180 degrees, respectively, allowed to obtain zero 

degrees for a fully flexed posture and 180 degrees for a fully extended posture. Furthermore, 

to combine joint angles for contralateral legs, the sign of angles for the yaw and roll DOFs of 

the left legs were inverted, but not for angles of pitch DOFs. 

To compare model errors and joint movements of different flies, the time courses were 

normalized to the swing and stance phases. For this, lift-of and touch-down events for each 

step were determined from the motion capture data set. Since the flies walked on a ball with 

a known diameter (see 3.2.1), it was assumed that during the stance phase the distance of the 
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tarsus tip of the legs to the center of the ball must be approximately the radius of the ball, 

while the distance must be larger when the legs were in swing phase. To estimate the center 

of the ball, an optimization function for the center position and radius of a sphere was used 

to minimize distance of the tracked tarsus tips to the radius of the sphere (least_squares 

function, SciPy optimization package version 1.6.2, The SciPy community). A penalty factor 

of 100 was multiplied to distances of the tarsus tip positions smaller than the sphere radius 

within the cost function to ensure that the tracked tarsus tip positions of legs in stance phase 

were on the surface of the sphere but not inside the sphere. Afterwards, a leg was assumed to 

be in swing phase when the tarsus tip positions showed a larger distance than 1.05-times the 

estimated radius of the sphere. To eventually obtain normalized phases with equal durations 

ranging from zero to one, data sets of the individual swing and stance phases were linearly 

interpolated to a sample size of 100.  

 

4.2.6 Hierarchical cluster analysis of DOF configurations 

To explore a wide variety of DOF configurations of the kinematic leg chains and their potential 

to explain forward stepping in Drosophila, an agglomerative hierarchical cluster analysis 

(AHCA) was performed. In AHCA, data objects are grouped based on their proximity in a 

hierarchical cluster tree, also known as dendrogram, by using an iterative bottom-up 

algorithm (Hastie et al., 2009). To determine the proximity, the distance of features between a 

pair of data objects or clusters is calculated and the resulting values are recorded in a distance 

matrix for all possible pairs. The algorithm starts with each object as a single cluster and then 

iteratively merges the closest clusters, i.e. with the smallest distance, until only one cluster is 

left. After each iteration, the distances between the new set of clusters is calculated and used 

for the next iteration. The resulting dendrogram visualizes the hierarchy of clusters by 

highlighting at which distance two clusters were merged. Finally, to obtain a definite number 

of separated clusters, the dendrogram is cut at a certain threshold level.  

In this thesis, AHCA was used to cluster 112 DOF configurations based on the similarity of 

their DOF states and the resulting model error. DOF configurations were represented as 

binary feature vectors, i.e. the state of each DOF in the configuration was described by zero or 
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one, depending on whether it was fixed or moveable, respectively. The hamming distance, 

which counts the number of differences between two DOF vectors (Eq. 4.17), served as 

measure for the distance of DOF states between DOF configuration pairs. 

 

To determine the pairwise distance of the model error, the absolute difference between the 

mean error of DOF configuration pairs was calculated. The mean error was calculated from a 

subset of leg postures in order to minimize the computational time for inverse kinematics. 

Therefore, the first, middle, and last leg posture of the swing and stance phases of the first 

two steps from each leg of each examined fly were extracted, i.e. in total 288 leg postures for 

each leg pair were analyzed for each DOF configuration.  

Distance matrices for the DOF states and the model error of each leg pair were formed and 

normalized by dividing by the largest distance value in each distance matrix. For each leg 

pair, the average distance matrix of the DOF states and respective leg pair model error 

distance matrices was used as input for the AHCA algorithm (linkage function, SciPy cluster 

package version 1.6.2, The SciPy community). To compute the distance between two clusters, 

the Ward variance minimalization criterion was used (Ward, 1963). The cut threshold for each 

dendrogram was set manually to define a reasonable number of clusters for the following 

analysis. The threshold was chosen to obtain clusters which predominantly contained DOF 

configurations showing similar mean model errors. 

For a detailed analysis of the obtained clusters, clusters were sorted by their minimum, mean, 

and maximum model error and the DOF configurations within each cluster were sorted by 

their mean error. This resulted in an ascending order of DOF configurations with respect to 

their mean model error, but while preserving the DOF state similarity obtained from 

clustering. To group DOF configurations exhibiting a similar model error beyond cluster 

boundaries, the 95% CI of the model error was used as criterion (see 2.3). Sets with similar 

model errors were formed sequentially. When the 95% CI of the mean error of a DOF 

configuration did not include the mean error of the first DOF configuration in a set, it was 
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assumed that the two mean errors were different. Consequently, the mean error of a DOF 

configuration was used to define a new set if it could not be assigned to an existing set.  

 

4.3 Results 

4.3.1 Creation of a reference model to study leg kinematics 

Since the actual DOF configuration of the Drosophila legs is not known, an initial reference 

model  based on reported DOFs for Drosophila and other insects (Bender et al., 2010; Cruse 

and Bartling, 1995; Lobato-Rios et al., 2022; Soler et al., 2004) was created at first (Figure 4.1C).  

The ThCx was implemented as ball-and-socket joint with all three DOFs (yaw, pitch, and roll). 

All other major joints in insect’ legs are usually described as hinge joints with one DOF 

(Ritzmann and Bender, 2010). Thus, only the yaw DOF which represented the rotational axis 

derived from joint condyles was set to be moveable in the CxTr and FeTi. Because whether 

the TrFe is moveable in Drosophila is unknown, it was not considered in the reference model.  

Since motion capture of all tarsal joints was not feasible, the tarsus was implemented as a 

single segment in the present model. During initial modeling attempts using only the yaw 

DOF for the TiTar, it became clear that tarsal motion could not be fitted well with a single 

DOF and a constant length of the tarsus. This was mainly due to the fact that the tarsus bent 

during stance phase (Figure 4.2A). Consequently, the model tarsus was often too short or too 

long for an optimal fit of the TiTar and the Tar positions. To compensate for this, the length of 

the tarsus was adjusted in a frame-by-frame manner to the length of the tracked tarsus. 

Furthermore, since tarsal bending occurred also bi-directionally, the pitch DOF of the TiTar 

was added to all models by default. This allowed to model the complexity of tarsal motion 

with only three parameters.  
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4.3.2 Evaluation of the reference model fit to tracked animal leg 

postures 

To measure how well the reference model can adopt natural leg postures, the model error, i.e. 

the distance between model and tracked animal keypoints, was determined after the model 

was fitted by inverse kinematics.  

The summed mean model error was largest for front legs (Figure 4.3). Moreover, the error 

was not constant during step phases, but showed a minimum of 281 ± 82 µm at the middle of 

the stance phase and a maximum 553 ± 131 µm at the end of the swing phase (n: 241/242, 

swing/stance). The increase in error during swing phase was mainly caused by the inability 

of the model to accurately adopt the positions of TrFe, FeTi, and TiTar. While the errors for 

the TrFe and FeTi model positions increased at the stance-to-swing transition and were 

relatively constant afterwards, the model error for the TiTar increased gradually during the 

swing phase. That was accompanied by a misalignment of model and tracked leg segments, 

which was particularly evident in the late swing phase. Here, the model’s tibia did not align 

properly with its tracked counterpart, but the two were crossed over (Figure 4.2B). In 

addition, the misalignment of segments also affected the model’s ability to fit the tracked Tar 

position, resulting in a 2- to 3-fold increase of model error for the Tar during the late swing 

phase (Figure 4.3). 

For middle and hind legs, the mean model error for all leg keypoints was consistently smaller 

than for the front legs (Figure 4.3). The summed mean model error was similar for middle and 

hind legs and ranged from 104 ± 35 µm to 132 ± 40 µm (n: 256/258, swing/stance) and from 

111 ± 56 µm to 152 ± 47 µm (n: 263/272, swing/stance), respectively. Furthermore, there was 

no strong relationship to phase of the model error for either middle or hind legs as observed 

for the front legs, and consequently a proper alignment of model and tracked leg segments 

was achieved throughout the stepping cycle (Figure 4.2B).  

In summary, the reference model was already able to adopt very well to the tracked leg 

postures of the middle and hind legs. For the front legs, however, it showed only an acceptable 

fit to tracked keypoints during the stance phase, but failed to adopt to the tracked leg postures 

during the swing phase.   
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Figure 4.2. Representative model leg postures. (A) Example for bending of the tarsus and its influence 

on the model. The left panel depicts a video frame showing a walking fly with a bent middle leg tarsus. 

The dashed white outline indicates shape of the tarsus. The resulting posture for a model without 

(middle panel) and with adjustments for tarsus fitting (left panel). Note that the model cannot fit 

accurately the leg posture without adjustments, i.e. equipping the TiTar with two DOFs and adjusting 

the length of the tarsus for each frame. (B) Example model postures for front, middle, and hind legs for 
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middle of swing phase, swing to stance transition, middle of the stance phase, and stance to swing 

transition. For front legs, resulting postures for the reference model without (1st row) or with an 

additional TrFe-roll DOF. Joints/tarsus tip and leg segments of the model (solid) and the tracked fly 

legs (pale, transparent) are displayed as spheres and cylinders, respectively. 3D coordinate systems 

indicate directions. The red (x-axis), green (y-axis), and blue (z-axis) arrows point towards anterior, left, 

and dorsal with respect to the fly body. 

 

 

Figure 4.3. Evaluation of model error. Model error for front, middle, and hind legs during swing or 

stance phase. Dashed lines represent the mean time course of the model error for individual leg 

keypoint positions (blue) or their sum (red) during swing and stance. The colored (red/blue) areas 

indicate the standard deviation. Solid colored lines show the mean time courses of single flies.  
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4.3.3 Impact of fixing DOFs of the ThCx on the model error 

Next, it was examined whether all three DOFs of the ThCx were required for modeling the 

tracked leg postures. For this purpose, one or two DOFs were systematically fixed by 

excluding them from inverse kinematics procedure and the relative percent change of the 

resulting mean model error to the reference mean model error was evaluated. On average, the 

elimination of one or two DOFs always resulted in a by 10% to 333% higher model error for 

all three leg pairs compared to the reference model error, but effects varied between leg pairs 

(Figure 4.4A).  

For the front legs, the pitch DOF was most important for the model fit around the swing-to-

stance transition, while the roll DOF influenced mainly the model error around the stance-to-

swing transition (Figure 4.4A). Removal of the pitch DOF had the strongest influence on the 

model error which was approximately 287% higher compared to the reference model error at 

the end of the swing phase. All tested DOF combinations without pitch showed a similar time 

course, beginning with a steady increase of the error at the middle of the swing phase, a peak 

at the swing-to-stance transition, and a steady decrease until the late stance phase (Figure 

4.4A: yaw, roll, yaw + roll). In contrast, when the roll DOF was eliminated, the model showed 

higher errors around the transition from stance-to-swing (Figure 4.4A: yaw, pitch, yaw + 

pitch), but the error decreased during the remaining step phase for DOF combinations 

containing the pitch DOF. Moreover, the model error was only ~ 23% to 54% higher when the 

model ThCX was equipped with both, i.e. pitch and roll DOFs, while the model error showed 

a combinational adverse effect when both were missing, i.e. the ThCx had only the yaw DOF. 

Although that argues for a less important role of the yaw DOF for forward stepping of the 

front legs, the yaw-DOF was able to reduce the model error when the roll DOF was absent. 

During the late stance phase, the error was more pronounced when the ThCx was equipped 

with the pitch DOF only compared to all other DOF combinations tested, but adding the yaw 

DOF partially improved the model fit (Figure 4.4A: yaw + pitch). 

In contrast to the front legs, the yaw DOF was more important for the model fit of the middle 

legs throughout the step cycle. The model error was similar for ThCx configurations including 

the yaw DOF which was about 15% to 83% higher than the reference model error and did not 

show a strong phase dependency (Figure 4.4A: yaw, yaw + pitch, yaw + roll). The model error 
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was most increased when the ThCx was equipped with the roll or the pitch DOF only (Figure 

4.4A). When only the roll DOF was available, the increase of the model error was highest from 

the middle of the stance phase to the stance-to-swing transition with a peak increase of 333% 

at the begin of the swing phase followed by a decline during the swing phase. It rose again at 

the begin of the stance phase. In contrast, the error increase was biphasic, peaking at the 

middle of the stance and swing phases and was minimal at the transitions between the step 

phases when the ThCx had the pitch DOF only. Except during the late the swing phase and 

during the early stance phase, the increase in error was also much smaller for this ThCx 

configuration compared when only the roll DOF was available. Interestingly, combining roll 

and pitch DOFs resulted in a model error relatively similar to joint configurations including 

the yaw DOF during most of the swing phase and the early stance phase (Figure 4.4A). 

For the hind legs, the model fit was most affected when the ThCx was equipped with the pitch 

DOF, only resulting in an 73% to 251% higher error. Here, the error increased steadily from 

the beginning of the swing phase until it reached its peak during the early stance phase and 

decreased steadily until the end of the stance phase (Figure 4.4A). In contrast, the error for all 

other tested configurations showed a relative constant or only a slight gradual increase during 

the swing phase and was 13% to 91% higher than the error of the reference model. During the 

stance phase, the relative increase in error exhibited a hump between the beginning and the 

middle of the stance phase which was differently pronounced for individual DOF 

combinations. Additionally, the increase of model error was lowest when the roll and pitch 

DOFs were moveable in the ThCx. 

Taken together, these findings show that individual DOFs of the ThCx contribute 

differentially to leg stepping of the leg pairs in a step phase-dependent manner. Additionally, 

the best model fit for all leg pairs was always achieved when all three DOFs were moveable 

in the ThCx.  
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Figure 4.4. Change of model error by removal or addition of DOFs compared to reference model. (A) 

Removal of one or two DOFs of the ThCX joint. (B) Addition of one to two DOFs in the TrFe joint or 

addition of the roll DOF in CxTr joint. Error is represented as relative difference to reference model 

error in percent. Colored lines and areas show the mean change and the 95% CI during swing or stance 

phase, respectively. Dashed black lines indicate zero change, i.e. no difference to the error of the 

reference model. n indicates the number of phases used for the analysis. 
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4.3.4 Impact of adding DOFs to the TrFe or the CxTr on the model 

error 

To test whether the TrFe could play a role in straight forward walking of Drosophila, the 

relative mean change of the model error was evaluated when one DOF of the TrFe was set 

moveable during the inverse kinematics procedure at first.  

For the front legs, the model error was drastically reduced throughout the step cycle when the 

TrFe was equipped with either the yaw or the roll DOF, while utilizing of the pitch DOF 

showed only a slight decrease of the error at the step phase transitions (Figure 4.4B). The 

maximum reduction occurred at about one-third of the swing phase with a relative mean 

decrease of -62% and -67% when the yaw or roll DOF was added to the TrFe, respectively. The 

reduction was, however, smaller at the transitions between swing and stance and vice versa. 

This was particularly apparent at the swing to stance transition when the TrFe was equipped 

with the yaw DOF with a relative error reduction of -11%. Moreover, the relative error 

reduction was smaller almost throughout the entire stance phase compared to the swing 

phase, but the maximal reduction was still -37% and -51% when the yaw or the pitch DOF 

were moveable, respectively (Figure 4.4B).  Strikingly, when the roll DOF was moveable, the 

observed misalignment between the model and the tracked animal tibia during the swing 

phase disappeared, but was still present when one of the other DOFs was moveable. 

Based on the finding that the roll DOF improved the model fit most, it was further tested 

whether a second DOF in the TrFe, in addition to the roll DOF, would result in an even better 

fit. Additionally, the relative change of the model was investigated when, in addition to the 

yaw DOF, the CxTr was provided with a roll DOF, since existence of this DOF in Drosophila 

was suggested by Lobato-Rios et al. (2022). For a combination of a jaw and a roll DOF in either 

the TrFe or the CxTr, the reduction in model error was very similar to the situation when the 

TrFe was equipped with the roll DOF only. Additionally, the model fit was only slightly more 

improved when the pitch and roll DOFs were together moveable in the TrFe (Figure 4.4B). 

In contrast to the front legs, addition of one or two DOFs did not remarkably improve the 

model fit for neither the middle legs nor the hind legs (Figure 4.4B). For the middle legs, there 

was a consistent but only small reduction of the model error throughout the step cycle when 
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a pitch DOF was added to the TrFe, i.e. pitch or pitch + roll, with a relative change of the model 

error ranging from -4% to maximal -17%. All other tested DOF configurations did not improve 

the model fit or even showed a slight increase of error. This was also observed for the hind 

legs for which only addition of a yaw DOF to the TrFe could improve consistently the model 

fit throughout the swing phase. Additionally, all tested DOF configuration, except for the TrFe 

having a pitch DOF only, exhibited a temporary relative reduction of the model error for the 

hind legs at the early stance phase which was maximally about -12% to -18%.  

In summary, these findings indicate that a roll DOF in the TrFe or CxTr is required to explain 

forward leg stepping of the front legs. For the middle or hind legs, despite the fact that some 

DOF configurations resulted in an up to maximal -18% lower model error compared to the 

reference model error, this reduction was often not consistent throughout the step cycle. 

Moreover, the impact on the model fit might be rather negligible when considering that the 

absolute model error was already low for the reference model. This suggests that the addition 

of DOFs to the kinematic leg chains of these leg pairs might not be necessary to properly model 

forward stepping. 

 

4.3.5 Systematical evaluation of putative DOF configurations  

Although removing or adding individual DOFs had already provided vital information for 

determining the natural DOF configuration of Drosophila legs, this approach was limited in 

that only a small number of DOF configurations could be meaningfully compared. Moreover, 

the interpretation of results could be complicated when considering the compensating effects 

of redundant systems such as kinematic chains, e.g. the absence of an individual DOF could 

be compensated by the remaining DOFs. To obtain a comprehensive picture of the 

requirement of individual DOFs for explaining forward stepping, various putative DOF 

configurations were examined using a systematical approach.  

In principle, 4096 combinations of DOF states would be possible, ranging from no moving 

joint to all joints are ball and socket joints with three DOFs, considering only the ThCx, CxTr, 

TrFe, and FeTi. However, because many of these combinations are not biologically plausible, 
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a subset of 112 DOF configurations was selected. The following assumptions were used to 

define and constrain this set:  

1) The ThCx has one to three DOFs. 

2) The CxTr is usually described as hinge joint and thus always has the yaw DOF. 

3) The CxTr might have a roll DOF (Lobato-Rios et al., 2022), but no pitch DOF. 

4) The TrFe might be movable with one to three DOFs. However, it might also be fixed 

with no DOF. 

5) The FeTi is commonly described as hinge joint and thus always has the yaw DOF, but 

no other DOF. 

6) The TiTar was always modeled with a yaw and a pitch DOF (see 4.3.1). 

Inverse kinematics were performed on a leg posture subset (n=288, see 4.2.6) for all 112 DOF 

configurations. Front legs exhibited the largest mean model errors for DOF configurations 

ranging from 153 ± 63 µm to 1,000 ± 614 µm, while middle and hind legs showed comparable 

smaller ranges of mean errors with 120 ± 34 µm to 332 ± 131 µm and 134 ± 49 µm to 311 ± 113 

µm, respectively. To group DOF configurations with respect to their DOF state similarity and 

the resulting model error, a hierarchical cluster analysis was performed (Figure 4.5). The 

resulting dendrograms displayed that DOF configurations were differently grouped for each 

leg pair (Figure 4.5B). Moreover, the model fit of the front legs was affected by larger number 

of DOF configurations than the other leg pairs. For the front legs, 41% of DOF configurations 

resulted in a relative model error higher than 0.5. In contrast, this was the case for only 4% 

and 2% of DOF configurations for the middle and hind legs, respectively. This indicates that 

the kinematics of front leg were more dependent on specific DOFs, while the movement of 

the other leg pairs can be modeled relatively accurately by a large variety of DOF 

configurations.   

To obtain clusters for further analysis, cutting the dendrograms at a distance of 0.04, 0.05, and 

0.03 resulted in 38, 35, and 46 clusters for front, middle, and hind legs, respectively. The 

clusters were predominately homogenous in terms of their minimum, mean, and maximum 

relative model error, demonstrating that the used clustering method was efficient in grouping 

DOF configurations with similar model errors (Figure 4.6). After sorting the clusters according 

to their relative model errors and the DOF configurations within each cluster according to  
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Figure 4.5. Hierarchical clustering of DOF configurations. (A) Normalized distance matrices for DOF 

configuration and model error of the front, middle, and hind legs. (B) Dendrograms resulting from 

hierarchical cluster analysis for front (left panel), middle (middle panel), and hind (right panel) legs 

and the relative model error for each DOF configuration. Relative error ranged from zero to one and 

based on the minimum and maximal observed absolute error, respectively. Absolute observed errors 

were indicated above the color bars for each leg pair. The dashed gray lines in the dendrograms indicate 

the used cut distance threshold for obtaining a defined number of clusters (color-coded). For clarity, 

the x-axes were scaled differently before and after the cut threshold. 
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their absolute mean model error, the resulting order of DOF configurations revealed that 

many configurations exhibited very similar error levels even beyond the cluster boundaries 

with numerically only slightly different means. That, however, implied that the quality of 

model fit cannot be meaningfully distinguished within subsets of DOF configurations. Hence, 

in the next step, these subsets of model error were identified by using the 95% CI of the 

absolute mean errors as criterion (Figure 4.6, color-coded bars showing the mean of the 

absolute error), i.e. a DOF configuration was assigned to a subset when its CI of the mean 

included the first mean of the respective subset (see 4.2.6 for details). Since DOF 

configurations of the same subset were considered equivalent in terms of model error, their 

DOF state compositions were further examined to gain insight into the necessity of individual 

DOFs for explaining forward stepping of the leg pairs. 

The subsets with the smallest model error included 16, 12, and 38 DOF configurations for the 

front, middle, and hind legs, respectively. Eight DOF configurations were shared among all 

leg pairs, but there were also configurations unique for each leg pair (front: 2, middle: 1, hind: 

21). With six to nine movable DOFs all of the shared configurations had a larger number of 

available DOFs than the reference model (5 DOFs, without TiTar which was identical in all 

configurations). It is, however, important to bear in mind that a larger number of available 

DOFs generally increases the flexibility of kinematic chains in fitting data points, and 

consequently, a better fit does not necessarily mean that the model reflects reality more 

closely. For example, it was not surprising that the DOF configuration in which all nine tested 

DOFs were moveable was always found in the subset with the smallest model error for all leg 

pairs. On the other hand, and also not surprisingly, configurations with a small number of 

DOFs were more often associated with a larger model error and thus accumulated at the 

bottom of the sorted order of configurations (Figure 4.6), indicating that a minimum number 

of DOFs is required for proper kinematic modeling. Further evaluation of the subsets showing 

the best model fit was therefore focused on identifying a minimum set of DOFs to model 

appropriately the kinematics of each leg pair and drawing conclusions for the potential of 

specific DOFs to compensate the absence of others. Additionally, configurations with many 

moveable DOFs were also considered to provide information about the importance of 

individual DOFs when they resulted in a higher model error, as this was indicative for the 

lack of an essential DOF that could not be compensated for by the remaining DOFs.  



Chapter 4 

70 

 

 

Figure 4.6. Sorting of clusters obtained by hierarchical cluster analysis. Sorted order of clusters and 

DOF configurations are shown for front (A), middle (B), and hind (C) legs. The left panel displays the 

relative minimum, mean, and maximum model error (color-coded) for each cluster. The following 

panels from left to right depict the movable (orange) and fixed (blue) DOFs (for clarity, only tested 

DOFs are displayed, other moveable DOFs in each configuration were CxTr-yaw, FeTi-yaw, TiTar-yaw, 

and, TiTar-pitch), the number of movable DOFs including all DOFs in the kinematic chains, and the 

mean ± 95% CI of the absolute error for each DOF configuration which were sorted in ascending order 

with respect to their model error. To highlight equivalent model errors, i.e. those that were 

indistinguishable from each other, between DOF configuration, the same color was used for the mean 

error bars. The asterisks indicate the position of the reference model.  n: 288 leg postures.  
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For the front legs, the ThCx was equipped with all three DOFs in 75% of configurations within 

the subset with the smallest model errors, while in the remaining 25% the roll DOF was absent. 

At least two additional DOFs were, however, required to compensate the lack of the roll-DOF. 

Strikingly, all configurations of the best model subset included a moveable roll DOF in either 

the CxTr or the TrFe supporting the previous finding that an additional roll-DOF is required 

for proper kinematic modeling of the front legs. Additionally, it was found that the ThCx-

pitch DOF was most importantly for modeling of front leg kinematics. Generally, its absence 

resulted in a dramatical increase of the model error (Figure 4.6A), while fixing the yaw or roll 

DOF only moderately increase the error as long as the ThCx-pitch DOF and an additional roll 

DOF were available (e.g. see cluster 21 in Figure 4.6A). Moreover, the model error was 3.44 

and 4.74 times higher when only the pitch DOF was missing compared to when only the yaw 

or roll DOF was absent, respectively (last configurations in cluster 38, cluster 10, cluster 24).  

In contrast to the front legs, drawing conclusions for the other leg pairs was much more 

challenging. This was mainly because the model error for the order of DOF configurations did 

not increase as dramatically as for the front legs. For the middle legs, in the subset of 

configurations exhibiting the smallest model errors, all configurations had at least two 

moveable DOFs in the ThCx, but the pitch DOF was always included (Figure 4.6B). When a 

DOF was absent in the ThCx, an additional roll DOF in either the CxTr or TrFe was required 

to compensate (see cluster 3 and cluster 27). Interestingly, in all configurations the TrFe was 

equipped with the pitch DOF. However, when it was added to the reference model, it only 

slightly reduced the model error by 4% (error with TrFe-pitch: 125 ± 35 µm vs. error without 

TrFe-pitch: 131 ± 39 µm).  

For the hind legs, The DOF configuration subset with the smallest error for the hind legs 

already comprised 31% of all tested configurations including the reference model (Figure 

4.6C). This effectively prevented this analytic approach from providing more meaningful 

insights into the specific requirements of DOFs for modeling walking. On the other hand, 

these findings suggest that the joint movements of the hind legs are more simplistic compared 

to the other leg pairs, at least for forward walking. 

In conclusion, there were two minimal DOF configurations with a small model error which 

contained all three DOFs in the ThCx and an additional roll-DOF in the CxTr or the TrFe for 
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the front legs. Since the CxTr is commonly reported to have only one DOF in insects and the 

TrFe is not fixed in all insects, the TrFe-roll DOF was added to the model in all following 

experiments. This improved the model fit substantially as already described in 4.3.4. 

However, it is noteworthy that despite the better model fit, the model of the front legs still 

had problems to reach the tracked TrFe position in the swing phase with high accuracy. For 

the middle and hind legs, there was no strong evidence to support the addition of an 

additional DOF or the explicit exclusion of a specific DOF to model forward stepping and thus 

the reference model kinematic chains were kept unchanged.  

 

4.3.6 Joint angle time courses and leg segment movements 

After defining the DOF configurations capable of fitting properly the model to the tracked 

animal leg postures of each leg pair, the resulting joint angle trajectories and their significance 

for the associated leg segment motion were evaluated to provide a detailed description of the 

kinematics. The yaw and pitch DOF of the TiTar were not included in this analysis, because 

the way the tarsal movements were modeled allowed only limited conclusions to be drawn 

for the natural contribution of the TiTar to leg stepping. For completeness, however, joint 

angle time courses for are shown in Figure 4.7. 

The coxa of the front legs was vigorously moved during forward stepping and its motion was 

primarily associated with protraction and retraction of the leg. The main contribution to this 

motion was generated by rotation about ThCx-pitch DOF axis. The mean angle increased 

gradually from 18.3 ± 4.2 degrees to 51.1 ± 7.0 degrees during swing phase and decreased 

afterwards to 6.6 ± 4.2 degrees until the late stance phase (Figure 4.7A). Interestingly, 

promotion of the coxa already begun shortly before the lift-off of the tarsus. The ThCx-yaw 

DOF allowed abduction and adduction of the coxa within a range of 33.2 ± 11.6 degrees. The 

coxa was moved rapidly towards the body midline between the late stance phase and the 

beginning of the swing phase. During swing phase, slight adduction was maintained until the 

middle of the swing phase and was moved gradually away from the midline afterwards until 

the late stance phase. Rolling of the coxa about the ThCx-roll DOF within a range of 79.1 ± 9.0 
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degrees was further found. During the swing phase, the coxa was rotated counterclockwise 

(medial), while the rotation in the stance phase was clockwise (lateral).   

The front legs were the only leg pair equipped with an additional TrFe-roll DOF in the model 

which governed rotation of the femur-tibia plane. There was a counterclockwise (lateral) 

rotation which started early in the swing phase and was completed at the middle of the swing 

phase (Figure 4.7A). During the stance phase, the counterclockwise (lateral) rotation was 

resumed until the middle of the stance phase and turned into a clockwise rotation (medial) 

which lasted until the end of stance.  

Rotation about the CxTr-yaw DOF ranging from 31.6 ± 4.5 degrees to 136.0 ± 11.5 degrees in 

average (Figure 4.7A) resulted in elevation and depression of the trochanter and femur 

segments. During the swing phase, the femur was depressed which contributed to the 

straightening of the leg, while it was elevated in the stance phase which moved the femur 

towards the coxa. Additionally, the tibia was extended in relation to the femur during the 

swing phase, while flexion at the FeTi occurred during the stance phase. This was governed 

by rotations about FeTi-yaw DOF within a range of 130.5 ± 10.8 degrees. 

In the middle legs, protraction and retraction was mainly achieved by promotion and 

remotion of the coxa as well as rotating the femur-tibia plane. This rotational motion 

effectively resulted in an anteriorly pointing of the tarsus tip at the end of the swing phase 

which was reversed during the stance phase. Unexpectedly, both motions were mainly carried 

out by rotations about ThCx-yaw DOF axis (see also 4.3.7) with a rotational range of 56.0 ± 

13.0 degrees (Figure 4.7B). Although the pitch and roll DOFs of the ThCx contributed less to 

stepping, both affected the leg movements. ThCx-roll DOF led to a slight back and forth swing 

of the leg (Figure 4.7B: clockwise was towards posterior, counterclockwise was towards 

anterior). Additionally, abduction and adduction movements by the ThCx-pitch DOF 

supported elevation and depression of the leg during the swing phase, respectively. Rotations 

about the CxTr-yaw DOF axis within a range of 62.7 ± 15.3 degrees resulted again in elevation 

and depression of the trochanter-femur segments. Interestingly, this cyclic motion was not 

separated by the transitions of the leg cycle as in the other legs, but instead elevation was 

carried out from the beginning of the swing phase until the late swing phase, while depression 

started only in the middle of stance phase (Figure 4.7B). Additionally, extension and flexion 
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Figure 4.7. Model joint angle time courses. The angle time courses are shown in relation to the 

normalized swing and stance phases for front (A), middle (B), and hind (C) legs. Angles were calculated 

in relation to the initial posture of the model, except for CxTr-yaw and FeTi-yaw. These were post-
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processed to show the relationship between the linked segments: zero degrees indicates a complete 

overlap of both segments, while 180 degrees indicates that both segments are on a straight line. Blue 

dashed lines and blue areas represent the mean ± SD, while solid colored lines represent the mean of 

individual flies. n-numbers of analyzed phases are indicated at the top for each leg’s swing and stance 

phase. For roll DOFs, anatomical directions for clockwise and counterclockwise rotations are described 

in the main text. Abbreviations: abd., abduction; add., adduction; pro., promotion; re., remotion; ext., 

extension; flx., flexion; cw., clockwise; ccw., counterclockwise; n.a., not available. 

 

of the tibia in relation to the femur was not separated by the phase transitions. While the tibia 

was only slightly flexed during the swing phase, flexion increased strongly during the first 

half of the stance phase and the tibia was extended in relation to the femur only during the 

second half. 

The rotational movements by ThCx of the hind legs were comparable to those of the front 

legs, i.e. promotion/remotion, abduction/adduction, and rolling of the coxa. However, in 

contrast, the ThCx-yaw DOF governed promotion and remotion, while the ThCx-pitch 

allowed abduction and adduction. Although movements of the coxa were less prominent in 

the hind legs compared to the front legs, the rotational ranges for ThCx DOFs were relatively 

similar, except for the smaller range for the roll DOF (Figure 4.7C; mean ranges: ThCx-yaw: 

44.2 ± 15.7 degrees, ThCx-pitch: 45.8 ± 16.1 degrees, ThCx-roll: 17.3 ± 6.1 degrees; for ThCx-

roll: clockwise was towards posterior, counterclockwise was towards anterior). However, the 

ranges used by individual flies were commonly smaller. The yaw DOF of FeTi and CxTr 

showed the opposite movements compared to the front legs with respect to the step cycle 

phases (Figure 4.7C). The femur was lifted and depressed within a rotational range of 141.7 ± 

11.9 degrees, while the tibial flexion and extension within a rotational range of 132.8 ± 10.3 

degrees occurred during swing phase and stance phase, respectively.  

In conclusion, the kinematics of each leg pair showed distinct leg kinematics accompanied by 

joint angle time courses which were characteristic for the respective leg pairs. Forward 

stepping of front and hind legs was primarily executed in the anterior-posterior plane, but 

respective movements in the swing and stance phases were opposite for both leg pairs. For 

example, swing of front legs was mainly performed by promotion of the coxa, depression of 
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the femur and tibial extension. In contrast, remotion of the coxa, elevation of the femur and 

tibial flexion was observed in the hind legs during the swing phase. The middle legs, on the 

other hand, showed an idiosyncratic kinematic pattern as e.g. rotation of the femur-tibia plane 

played a major role for protraction and retraction of the legs. 

 

4.3.7 Rotation of femur-tibia plane in the middle legs 

Remarkably, although the middle legs showed a prominent rotational movement of the tibia-

femur plane during forward walking, the model did not require any additional roll DOF for 

adopting leg postures, as was the case for the front legs. Moreover, mainly the ThCx-yaw DOF 

appeared to govern the plane rotation. To gain a deeper understanding of the kinematic origin 

of the tibia-femur plane rotations, the capability of single and combinations of DOFs to rotate 

the plane were studied in an in silico experiment (Figure 4.8A). Therefore, for each analyzed 

step (n: 210), the model middle legs were set to its initial posture of either the stance or swing 

phase by using all joint angles. Afterwards, only the angles of selected DOFs were updated 

for all subsequent leg postures of the respective phase. The rotational range of the plane for 

each phase was measured by the angle between the plane normal at the beginning and its 

orientation at the end of the examined phase.  

Under control conditions, i.e. angles for all present model DOFs were updated including the 

three DOFs of the ThCx as well as the CxTr-yaw, the median of the rotational range was 

comparable for swing and stance phases with 38.2 degrees (IQR: 15.0 degrees) and 40.9 

degrees (IQR: 9.2 degrees), respectively (Figure 4.8B). Strikingly, most other tested DOF 

configuration showed a reduction in the rotational range. The reduction was strongest when 

either the pitch or roll DOF of the ThCx were movable only (mean ± 95% CI for swing / stance: 

ThCx-pitch only: -32.4 ± 1.4 degrees / -35.3 ± 1.2 degrees, ThCx-roll only: -28.3 ± 1.0 degrees / -

34.1 ± 1.0 degrees). In contrast, the rotational range was larger when the ThCx-yaw was the 

only moveable DOF in the kinematic chain, but it was still reduced by -11.3 ± 0.3 degrees and 

-12.3 ± 0.3 degrees for the swing and stance phase (mean ± 95% CI), respectively. Adding the 

pitch, the roll DOF, or both to the ThCx-yaw DOF did not further increase the rotational range 

of the femur-tibia plane (Figure 4.8B). When only the CxTr-yaw DOF was updated during 
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Figure 4.8. Rotation of femur-tibia plane in the middle legs. (A) Example for a left middle leg showing 

the impact on the femur-tibia plane normal when different DOF combinations were updated in the 

model during either the swing phase (upper panels) or the subsequent stance phase (lower panels) of 

one step. Displayed example DOF combinations were from left to right: all ThCx DOFs and the CxTr-

yaw DOF (control), only ThCx-pitch, only ThCx-yaw, or ThCx-yaw and CxTr-yaw were updated. The 

initial posture of the leg for each phase is represented as stick-and-ball model in green. The orientation 

of the femur-tibia plane normal for each leg posture of the respective phase is represented as colored-

coded lines from black (initial posture) to light blue (final posture). Dashed arrows indicate the 

direction of the tarsus tip and the plane normal movements during the respective phase. Abbreviations: 

a, anterior; p, posterior; m, medial; l, lateral; v, ventral; d, dorsal. (B) Analysis of the rotational range of 

the femur-tibia plane during the swing (left panels) and stance (right panels) phases. The range of plane 
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normal rotation for each analyzed step is represented by the angle between the plane normal of the 

initial and the final leg posture of the examined phase which was depicted in the left panel of the 

respective phase analysis. To compare DOF configurations, the absolute difference to the rotational 

range under control condition for each analyzed phase was depicted in the right panel of the respective 

phase analysis. Black solid lines represent the mean and the 95% CI of the absolute differences. Dashed 

horizontal black line indicates zero differences. The used DOF configuration is indicated in the x-axis 

labels (+: movable DOF, -: fixed DOF).  

 

each step phase, the rotational range was larger than for model configurations without the 

ThCx-yaw DOF (Figure 4.8B), although a pronounced reduction of the range was observed 

(mean ± 95% CI for swing / stance: -19.5 ± 1.1 degrees / -23.5 ± 0.9 degrees). Interestingly, the 

combination of the ThCx-yaw and the CxTr-yaw DOFs resulted in a recovery of the rotational 

range, which was, however, slightly larger compared to the control DOF configuration (mean 

± 95% CI for swing / stance: +2.1 ± 1.8 degrees / +1.0 ± 1.3 degrees) (Figure 4.8B). 

Taken together, the ThCx-yaw and the CxTr-yaw DOFs were the main contributors of the 

kinematic model to the rotation of the femur-tibia plane of the middle legs. The finding that 

the rotational range was also slightly larger when only these two DOFs were used suggests 

that the other DOFs also have a small influence on the general orientation of the femur-tibia 

plane.  

 

4.4 Discussion 

In this chapter, a kinematic leg model for Drosophila was introduced, analysed in depth, and 

used to decompose the joint kinematics of forward walking. The obtained findings have not 

only implications for the technical aspects of kinematic modeling, but more importantly 

provide insights into the understanding of walking in Drosophila.  

Although insects share a common blueprint for their legs (Snodgrass, 1935), there are 

numerous differences between species that are evident not only in the morphological 

appearance of leg segments, but also in the number of functional DOFs of the individual joints. 
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Therefore, the first aim was to determine the minimum number of DOFs required to 

accurately model the kinematics of tracked fruit flies for each leg pair by comparing the model 

error of a reference model (seven DOFs in total: ThCx, three DOFs; CxTr, one DOF; FeTi, one 

DOF; TiTar, two DOFs) to the resulting errors of a variety of alternative configurations of the 

kinematic leg chains with more or less DOFs. In the following paragraphs, the main findings 

and the results for joints with a focus on the ThCx and TrFe are discussed in detail. 

One of the major findings was that the front legs required an additional roll DOF to allow 

rotation of the femur-tibia plane, while the reference model was already sufficient to adapt to 

the leg postures of middle and hind legs. This is in stark contrast to the kinematic model used 

in two previously studies (Goldsmith et al., 2022; Lobato-Rios et al., 2022), which are the only 

two 3D leg models for Drosophila published to date. Lobato-Rios et al. (2022) needed to add a 

roll DOF in all three leg pairs to prevent out-of-plane leg movements for their 

neuromechanical model of Drosophila. In addition, Goldsmith et al. (2022) aimed to determine 

the three most crucial DOFs in the middle and hind legs for the design of a Drosophila-inspired 

walking robot that can closely approximate the leg movements of real fruit flies. Under this 

assumption, they found that the combination of a CxTr-yaw, TrFe-roll, and FeTi-yaw was able 

to mimic the leg movements while balancing necessary robotic platform considerations. In 

this setting, they also concluded that the TrFe-roll DOF was necessary to prevent out-of-plane 

leg movements. One explanation why the TrFe-roll DOF was not required in the middle and 

hind legs in the kinematic model presented here might be that the main joint rotational axes 

based on anatomical landmarks, i.e. the joint condyles. In contrast, in both studies mentioned 

above, these axes were positioned rather generically in an orthogonal orientation with regard 

to the leg segments. This not only highlights the importance of considering anatomical axes 

for kinematic modeling, but also demonstrates that slanted joint axes, as often found in 

biological limbs, can yield evolutionary and functional benefits such as minimizing the 

number of required DOFs for specific movements. This notion is supported by the finding 

that the slanted and therefore non-orthogonal axes orientation between the two hinge joints 

that allow movements of the antennae in the stick insect improves the efficiency of active 

tactile sensing (Krause and Dürr, 2004).   
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In insects, the ThCx is assumed to be a ball-and-socket joint with three DOFs at least in the 

front legs, whereas the middle and hind legs typically use only two DOFs of the ThCx during 

forward stepping (Bender et al., 2010; Hughes, 1952). Moreover, in walking stick insects only 

one DOF is mainly involved in protraction and retraction, while the second DOF is little used 

for walking in all legs (Cruse and Bartling, 1995; Cruse et al., 2009). To determine the required 

number of DOFs for walking fruit flies, the resulting model error of different DOF 

configurations with one to three DOFs in the ThCx were compared. The best model fit for all 

legs was always achieved when the all three DOFs of the ThCx were available and at least two 

additional DOFs in the kinematic chain were needed to compensate the removal of a single 

DOF in the ThCx. In contrast to the other leg pairs, the front legs showed pronounced 

movements of the coxa, which were mainly governed by promotion and rotation via the pitch 

and the roll DOFs of the ThCx, respectively. However, adduction and abduction by the ThCx-

yaw DOF were also observable. Moreover, the range of rotations of the coxa in the front legs 

was much larger than in the middle and hind legs. Such extensive use of all three DOFs 

accompanied by a pronounced rotation of the coxa was also previously observed in the front 

legs of the cockroach (Kram et al., 1997; Ritzmann et al., 2004; Tryba and Ritzmann, 2000). In 

contrast, the coxa of the middle and hind legs is not only smaller in Drosophila, but also did 

not exhibit marked movements. The ThCx mainly mediated promotion/remotion and 

adduction/abduction of coxa in these leg pairs. That is again similar to the middle and hind 

legs of the cockroach, although here the promotion/remotion of the coxa results rather in 

depression/levation due to the anatomical posture of these limbs (Bender et al., 2010). 

Although the roll DOF was less used in the middle and hind legs, its actions resulted in 

recurrent movement patterns specific for each leg pair during stepping.  

Although the TrFe is moveable in many insects, its role in walking or other behaviors remains 

still elusive (Frantsevich and Wang, 2009). Because of the observed limited mobility of the 

TrFe and small size of the trochanter, the TrFe is commonly neglected in kinematic studies for 

the sake of simplicity and its role in walking was examined in only a few publications to date. 

In cockroaches, the TrFe is thought to assist in the initiation of the swing phase by lifting the 

tarsus from the ground through rotation of the tibia in the middle and hind legs, but not in 

the front legs (Bender et al., 2010; Szczecinski et al., 2014). Additionally, it was further 

proposed that the TrFe might compensate rotational constraints of the coxa and/or it might 
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act as damping mechanism counteracting disturbances by external forces during walking 

(Frantsevich and Wang, 2009). In this work, no conclusive evidence was found for or against 

the TrFe being used for forward walking in Drosophila. On the one hand, although many of 

the DOF configurations that showed an improved model fit included one or more DOFs in 

the TrFe in the middle and the hind legs, the model error was only slightly smaller compared 

to the reference model with a fixed TrFe. Based on this finding, however, it is impossible to 

decide whether the TrFe is moveable and contributes only little to walking or whether the 

kinematic model simply benefits from an additional DOF to minimize the distances between 

model and tracked leg keypoints. On the other hand, the TrFe-roll DOF was required to 

appropriately fit the kinematics of the front legs. However, the model error did not differ 

when the CxTr-roll DOF, as proposed by Lobato-Rios (2022), was used instead. The main 

argument for favoring the TrFe-roll over the CxTr-roll DOF in this model was that the CxTr is 

commonly described as hinge joint with only one DOF for levation and depression of the 

femur (Büschges et al., 2008; Cruse and Bartling, 1995; Cruse et al., 2009; Kram et al., 1997; 

Tryba and Ritzmann, 2000) and there is no evidence to date for the existence of an additional 

roll DOF of the CxTr in insects, whereas the trochanter has muscles innervated by the nervous 

system in Drosophila (Enriquez et al., 2015; Soler et al., 2004). In addition, the need for a 

movable TrFe to fit movements of the front legs but not for the other leg pairs was also found 

in a kinematic model of the cricket (Petrou and Webb, 2012). However, to definitively answer 

the question of whether the TrFe is functional in Drosophila, future studies focusing on a wider 

variety of locomotive behaviors or experimental manipulations such as optogenetic activation 

or inhibition of the muscles in the trochanter or the motor neurons that innervate those, for 

instance, are needed.  

Interestingly, the front and the middle legs exhibited a rotation of the femur-tibia plane during 

stepping. This rotation was very prominent in the middle legs and seemed to contribute 

largely to protraction and retraction of the leg. In contrast, this rotation was rather unobtrusive 

in the front legs, but still necessary for modeling of the leg kinematics. Femur-tibia plane 

rotations were already reported for middle legs of the cockroaches (Bender et al., 2010) and 

Drosophila (Karashchuk et al., 2021) during walking. For the cockroach, it was proposed that 

this rotation emerges from actions of the TrFe (Bender et al., 2010). In the present model, a 

putative involvement of the TrFe for the femur-tibia plane rotations was only found for the 
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front legs. In the middle legs, surprisingly, these rotations were exerted by combined actions 

of the ThCx-yaw and CxTr-yaw DOFs, which can most likely be attributed to the alignment 

of their rotational axes. This not only emphasize the aforementioned importance of the 

orientation of anatomical axes for explaining leg kinematics, but also invites speculations 

about the relationship between leg morphology and the underlying motor control circuits in 

insect middle legs. For example, stick insects do not show such a prominent plane rotation in 

the middle legs and it is widely accepted that protraction/retraction and levation/depression 

of the leg during stepping is performed by the ThCx and the CxTr, respectively (Büschges et 

al., 2008). In the present Drosophila leg model, the very same movements emerged from 

rotations about the ThCx-yaw and CxTr-yaw DOFs. This could be interpreted to mean that 

similar neuronal commands are generated in both species to drive a basic leg stepping pattern, 

but morphological differences such as the orientation of joint rotational axes lead mainly to 

the huge dissimilarity in the observed movements of middle legs.  

Some adaptations of the model were necessary to fit accurately the tarsal movements of the 

tracked animals. The tarsus of real fruit flies showed complex movements which are due to 

the fact that the tarsus consists of five segments linked by ball-and-socket joints (Tajiri et al., 

2010). To simplify this complexity, the tarsus was modeled with two DOFs in the TiTar and 

its length was adjusted in a frame to frame manner, i.e. approximately 12-15 DOFs could be 

efficiently reduced to only three parameters. However, taken under consideration that 

Drosophila practise a kind of “toe walk” and the tarsus is the leg segment that interacts directly 

with the ground, the tarsus evidently has an important role for walking. From a biomechanical 

perspective, the tarsus comprises a large percentage of the total leg length, serves as adhesive 

pad and has a passive swing effect which contributes to ground force transmission 

(Manoonpong et al., 2021). Additionally, multiple campaniform sensilla have been found on 

the tarsus in Drosophila (Dinges et al., 2021), making it to a potential site for providing sensory 

feedback for mechanical load during walking. All of this suggests that a more detailed 

kinematic model of the tarsus will be needed in the future, particularly for dynamic 

simulations of Drosophila walking. On the other hand, tarsal segments do not have intrinsic 

muscles allowing independent control by the nervous system, but can be actively moved only 

together by muscle tension on the long tendon (Soler et al., 2004), which is known as retractor 

unguis apodeme in other insects. From studies in cockroach and stick insects, it was suggested 
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that active tension on the retractor unguis apodeme supports the leg lift-off at the beginning 

of the swing phase and influences the general stiffness of the tarsus (Frazier et al., 1999; 

Radnikov and Bässler, 1991). This further implies that observable tarsal movements are 

mediated, at least in part, by passive forces on the tarsus. Consequently, the present kinematic 

model with a simplified tarsus incorporates already the majority of joints which are under 

active control of the nervous system. 

Other limitations of the modeling approach to determine the actual DOF configuration of 

Drosophila legs presented here must be mentioned. It is important to bear in mind that all 

findings discussed here are based only on tracked data of forward walking fruit flies. This 

means that individual DOFs that could be excluded by this model may still be required in 

other behaviors, locomotive or otherwise. For example, curve walking or turning in insects 

involves numerous adaptations of the leg kinematics (DeAngelis et al., 2019; Dürr and 

Ebeling, 2005; Gruhn et al., 2016; Jindrich and Full, 1999; Strauß and Heisenberg, 1990) and 

may also involve DOFs that are not used or used to a lesser extent during forward walking. 

In addition, although the joint orientations in the model were based on anatomical landmarks, 

only the rotational axes of yaw DOFs were derived directly from locations of the joint 

condyles. While this does not directly affect the conclusions for movements of the CxTr or the 

FeTi, as they were modeled as hinge joints with the yaw DOF being the only active DOF, it 

might have implications for interpretations for joints that include the pitch and/or the roll 

DOF of the model. For example, the rotational axes of all roll DOFs were placed along the leg 

segment to be influenced. However, the natural rotational axes could be also skewed, 

resulting in a tumbling rotation about the leg segment, which could affect the resulting angles 

of all other DOFs. Furthermore, the joint condyles were extracted from a single µCT of a 

female fly. Although the model could adapt appropriately to leg postures of all male and 

female flies examined in this work (e.g. see mean error time courses of individual flies in 

Figure 4.3), it cannot be, however, excluded that there are inter-individual differences in the 

location and orientation of the joint rotational axes in Drosophila. Another limitation is the lack 

of knowledge of the rotational ranges of the DOFs in Drosophila. It is generally challenging to 

make specific statements about the contribution of individual DOFs in an over-articulated 

limb system, because one DOF might be able to compensate the absence of another. Restricting 

the joint constraints to physiological ranges would at least limit this compensatory ability to 
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a natural level. Future morphological or kinematic studies should shed light on the natural 

orientation of all occurring joint axes and their range constraints. Additionally, kinematic 

studies could benefit from applying the systematically approach proposed here, i.e. 

hierarchical cluster analysis to sort a wide variety of DOF configurations according to their 

model error. Although this analysis was only helpful to draw conclusions for the front legs 

because the differences between the mean error of the tested DOF configurations were too 

small for the middle and the hind legs, the addition of leg postures from other locomotive 

behaviors that exhibit different leg kinematics compared to forward walking might narrow 

the number of DOF configurations that are capable to adapt to all presented leg postures. 

Nevertheless, since each leg pair showed distinct kinematics, the results of the kinematic 

model presented here have some general implications for the demands of the underlying 

motor control system. The prevalent hypothesis of insect leg stepping is that each leg joint is 

controlled by a distinct CPG and the rhythmical activity of several CPGs is coupled by sensory 

feedback to generate coordinated leg stepping (Bidaye et al., 2018; Mantziaris et al., 2020). For 

instance, it is well-established that the fCO in insects encodes the position, velocity, 

acceleration, and vibration of the tibial movements (Büschges, 1994; Chockley et al., 2022; 

Mamiya et al., 2018; Matheson, 1990). However, the here presented kinematic data indicate 

that sensory feedback from the fCO might be shaped differently for the leg pairs with regard 

to the step phase they occur in. Although the extent of angular changes of the FeTi was 

comparable in front and hind legs, tibial flexion occurred during the stance or swing phase 

for front and hind legs, respectively, and vice versa during the opposite phase. That implies 

that the same sensory signal can mediate a different information about which step phase a leg 

is in. In addition, in the middle legs flexion and extension was less pronounced but occurred 

during both step phases. Hence, sensory feedback of the fCO must be integrated differently 

for each leg pair to contribute meaningfully to stepping. This notion is supported by a recent 

study by Chockley et al. (2022) which found that optogenetic inhibition of the fCO in 

Drosophila most strongly elongated the stance phase of the front legs and the swing phase of 

the hind legs. In addition, most knowledge of the neural mechanisms of CPGs in leg stepping 

emerged from studies of the middle leg of the stick insect (Mantziaris et al., 2020) and it is 

currently unknown whether all insects share the same CPG organization for all of their legs 

or if the CPG networks were evolved differently between species and/or between leg pairs to 
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allow distinct kinematic leg stepping patterns. However, it could also be that differences in 

leg kinematics arise from morphological differences such as joint structure or muscle 

arrangement. To answer this question, future biomechanical and neurobiological studies of 

insect walking should be more guided by the actual kinematic patterns of the individual legs 

of the species of interest.
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Chapter 5  

Kinematic synergies of straight walking in Drosophila 

 

5.1 Introduction 

To execute leg stepping during walking, the nervous system must cope with the problem of 

coordinating a number of joint DOFs in the legs that is larger than required for the task. Motor 

synergies were proposed as a general organizational principle of the nervous system to 

simplify the control of movement in such a redundant motor system (see 1.4). Motor synergies 

represent the spatiotemporal coupling of the independent elemental units of the motor 

system, muscles or DOFs, for instance, and thus can be seen as the building blocks for complex 

movements (Bruton and O’Dwyer, 2018; Singh et al., 2018). In this notion, instead of having 

to constantly control all elemental units independently, the nervous system would generate 

complex movements by modulating the contribution and timing of a much smaller number 

of synergies. In fact, numerous studies found that the movement of individual body parts and 

segments are highly coupled and correlated across a wide variety of tasks (Balasubramaniam 

and Feldman, 2004; Bockemühl et al., 2010; d’Avella et al., 2003; Haid et al., 2018; Halliday et 

al., 2003; Majed et al., 2017; Santuz et al., 2019; Stetter et al., 2020; Wang et al., 2013).  

Although motor synergies were already studied directly at the level of the nervous system by 

e.g. using microstimulation in the spinal cord of frogs and rats (Bizzi et al., 1991; Giszter et al., 

1993; Tresch and Bizzi, 1999), these experiments are highly invasive, rather sophisticated, and 

might interfere with the natural behavior of interest. Therefore, most research on motor 

synergies to date relied on a behavioral approach, i.e. on recordings of the overall output of 

the elemental units of the motor system. When considering that one of the main features of 

synergies is the coordination between the elemental units, synergies can be examined by 

identifying covariations or correlations in the motor output. Motor synergies are thus 

typically studied by utilizing dimension reduction methods on movement data (Bruton and 

O’Dwyer, 2018) and consequently come in different variants depending on the type of the 

acquired data: Muscle synergies are derived from electromyograms (Barroso et al., 2014; 
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d’Avella et al., 2003; Nazifi et al., 2017; Singh et al., 2018), kinematic synergies are based on 

kinematic parameters such as e.g. joint angles (Bockemühl et al., 2010; Catavitello et al., 2018; 

Huang et al., 2021) or their Cartesian positions (Federolf et al., 2012; Stetter et al., 2020), and 

kinetic synergies are extracted from force measurement data (Hooke et al., 2012; Kipp et al., 

2012; Santello and Soechting, 2000).  

Dimension reduction methods are a natural choice for the identification of motor synergies 

from movement data because they exploit covariations in a redundant high-dimensional data 

set to transform the original values into a low-dimensional space while preserving as much 

information, i.e. variability, as possible from the original data set (for review: Ma and Zhu, 

2013). Principal component analysis (PCA) is the most popular method for the analysis of 

kinematic synergies (Bockemühl et al., 2010; Bruton and O’Dwyer, 2018; Catavitello et al., 

2018; Daffertshofer et al., 2004; Federolf, 2016; Schütz and Schack, 2013; Stetter et al., 2020; 

Tang et al., 2019; Wang et al., 2013). By identifying covariations or correlations between single 

variables in a data set, PCA constructs linear combinations of the original variables called 

principal components (PCs) which are ordered descendingly by the amount of variance they 

explain, i.e. the first PC captures more variance of the data set than the next PCs, and so on. 

Geometrically, PCs can be thought of representing the axes of a new coordinate system which 

is used to describe the original data set in directions of its largest variance. Although the 

number of PCs is identical to the number of variables, the first few PCs commonly explain 

most of the variance in the data set which consequently allows the reduction of dimensionality 

by omitting the subsequent PCs from the following analyses.  

In terms of kinematic synergies derived from parameters such as e.g. joint angles, the rationale 

for using PCA is that if movements of limb segments are coupled, the joint angles should co-

vary (Bockemühl et al., 2010; Schütz and Schack, 2013). Moreover, the more the coupling is 

synchronized and the covariance between joint angles is constant, i.e. can be described by a 

fixed magnitude ratio, the more the underlying coordination can be described as a linear 

relationship which can be captured by PCA. The resulting PCs are interpreted as follows: the 

PCs accounting for the majority of variance represent the invariant patterns of the motor 

output, i.e. the kinematic synergies, whereas PCs accounting for only a small fraction of 
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variance capture random noise of the motor system or the measurement method and can 

therefore be neglected (Wang et al., 2013). 

Since behavioral motor synergies are derived from movement data, they however do not 

allow direct inference of how the nervous system generates an appropriated motor output, 

but should rather be interpreted as theoretical constructs which are nonetheless related to 

functioning of the nervous system (Federolf, 2016; Wang et al., 2013). In addition, it was also 

argued that identified synergies might rather reflect the biomechanical constraints of a studied 

task and the experimental conditions than the underlying neural control strategy (Lambert-

Shirzad and Van der Loos, 2016; Rearick et al., 2003; Steele et al., 2015; Todorov and 

Ghahramani, 2004). Nevertheless, there is accumulating evidence that identified motor 

synergies can be shared between different tasks (Barroso et al., 2014; d’Avella and Bizzi, 2005; 

Huang et al., 2021; Nazifi et al., 2017; Stetter et al., 2020) or even between animals (Catavitello 

et al., 2018) and it was suggested that, at least in vertebrates, a flexible neural network 

substrate for the control of functional synergies, i.e. motor synergies as defined here, exists 

(McMorland et al., 2015). This supports the notion that behavioral motor synergies can indeed 

serve to formulate hypotheses for the underlying motor control mechanisms of the nervous 

system. 

Although some studies used dimension reduction methods on kinematic parameters to 

analyze walking in Drosophila (e.g. DeAngelis et al., 2019; Karashchuk et al., 2021), there is no 

study to date that investigated kinematic synergies at the leg joint level in Drosophila in detail. 

Hence, PCA was utilized in this thesis to identify and analyze kinematic synergies derived 

from the angular time courses of the leg joint DOFs of straight walking fruit flies.  

 

5.2 Material and methods 

5.2.1 Extraction of kinematic synergies by PCA 

Kinematic synergies were extracted by performing PCA. Mathematically, PCA decomposes 

the covariance matrix or the correlation matrix of the original data set into the PC 

eigenvectors, eigenvalues, and scores (Bockemühl et al., 2010; Daffertshofer et al., 2004; Jolliffe 
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and Cadima, 2016; Stetter et al., 2020). The eigenvectors represent the PCs and thus indicate 

the directions of the largest variations in the data set. In addition, each eigenvector consists of 

the coefficients which describe the contribution for each variable of the data set to the 

respective PC. The eigenvalues indicate the amount of the total variance accounted for by each 

PC and therefore is used to order the PCs. Finally, the scores represent the projections of the 

original variables onto each PC, i.e. they describe the location of all values in the coordinate 

system of the PC space. 

Since the main goal of the analysis presented here was to identify general kinematic synergies 

for straight walking in Drosophila, independent PCAs were performed on the mean angles 

time courses of the DOFs for each leg pair and fly (see Figure 4.7). This effectively minimized 

the influence of leg-specific differences as well as inter-individual and step-to-step variability 

on the resulting PCs and thus allowed to identify independent movement patterns shared by 

individual flies for each leg pair.  

Prior to PCA, data sets had to be normalized in order to prevent bias from different units or 

ranges of the original variables. For this, the joint angle time curves for each DOF were 

centered by subtracting their mean. Because all variables had the same unit, i.e. angular 

degrees, further normalization by dividing through the SD to obtain z-scores was not 

performed (this step is often performed when the variables on which the PCA is based have 

very different absolute amplitudes or units). Consequently, the performed PCAs was based 

on the covariance matrix of the joint angle data. As a consequence, single DOFs which show 

larger variations during a leg step than others might dominate the resulting PCs. The 

implications of using the covariance matrix on the resulting PCs are addressed further in the 

discussion (see 5.4). Eventually, all PCAs were performed using the decomposition package 

of the Scikit-learn software library version 0.24.2 (Pedregosa et al., 2011). 

There are various methods proposed to determine the minimum number of PCs that is 

sufficient to capture most of the variance in the data set (Peres-Neto et al., 2005; Valle et al., 

1999; Wang et al., 2013). However, since the decision which PCs must be retained (because 

they contain relevant information) or which PCs can be omitted (because they mainly capture 

noise) strongly depends on the underlying data set, the number of relevant PCs might differ 

between methods and must be interpreted in the light of data set. Thus, two commonly used 
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criteria for the minimum number of PCs were evaluated in this analysis. First, the explained 

variance of each PC was compared to the hypothetical explained variance that can be expected 

from an uncorrelated data set with the same overall statistics, i.e. the joint angles would not 

co-vary (Peres-Neto et al., 2005). For this, the time course of joint angles for each DOF was 

randomly permutated which resulted in a data set with the same size and values, but in which 

any systematic relationship between joint angles that formed the natural leg postures was 

broken. When the explained variance of a PC based on the original joint angle data set was 

higher than that of the hypothetical data set, this PC should be retained. The second criterion 

used here based on the cumulative percent variance to determine the minimum number of 

PCs (Bockemühl et al., 2010; Valle et al., 1999; Wang et al., 2013). Since the first PCs usually 

capture most of the total variance in the data set, PCs were retained until the cumulative 

fraction of explained variance was equal or exceeded a 95% of the total variance.  

 

5.2.2 Reconstruction of movements from PCs 

Since PCA projects the original data set into a new PC space, the PC scores can also be 

transformed back into the joint angle space by reversing the calculations. For each DOF, the 

products of the score (s) and coefficient (c) of the DOF for each of the used PCs (n) were 

summed and added to the mean angle of this DOFs (Eq. 5.1). 

 

Importantly, the original data set can be completely recovered when all PCs are used, while a 

reduced set of PCs can only approximate the original data set (Bockemühl et al., 2010). 

Nevertheless, since the loss of accuracy depends on the cumulative fraction of explained 

variance of the number of PCs used, reconstructed joint angles from a smaller set of PCs 

typically contain the main aspects of the underlying leg postures. To eventually obtain leg 

postures from the reconstructed joint angle data sets, the joint angles were inserted into the 

previously described kinematic leg model (see chapter 4). 
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5.3 Results 

5.3.1 PCA of mean steps from individual flies 

PCA showed that a few PCs were able to sufficiently capture the variance, i.e. changes of joint 

angles to adopt the leg postures occurring within the mean steps, for all flies and leg pairs 

(Figure 5.1A). The first PC already accounted for a very large percentage of variance with 86.7 

± 3.1% and 94.2 ± 2.8% for the front and hind legs, respectively.  In addition, the explained 

variance for the second and third PC was higher for the front legs (PC2: 10.0 ± 2.6%; PC3: 2.4 

± 0.7%) than for the hind legs (PC2: 4.9 ± 2.6%; PC3: 0.56 ± 0.19%). In contrast, the first PC 

captured less variance (67.6 ± 7.8%) for the middle legs and its amount varied more between 

flies (Figure 5.1A). Moreover, while the explained variance of the second PC (25.5 ± 6.9%) was 

much higher for the middle legs, the amount of variance captured by the third PC (5.9 ± 2.0%) 

was similar compared with the other legs. The remaining PCs for all legs accounted in average 

for less than 1% of the total variance (front legs: 0.8 ± 0.2%; middle legs: 0.9 ± 0.6%; hind legs: 

0.3 ± 0.1%). In general, these findings indicate strong couplings between the involved joint 

angles in all legs. 

Next, the minimal number of PCs required to sufficiently reconstruct the observed leg 

postures was determined. When comparing the explained variance of individual PCs to the 

respective mean captured variance of the permutated data sets, values for PC1 were higher 

for all flies and legs (Figure 5.1A). In contrast, the captured variance of the second PC was 

only higher in 7 of 12 flies for the middle legs than for its permutated counterpart, and the 

third PC never captured more variance than in the permutated data sets. However, the 

explained variance for the permutated data sets was relatively high for the first three PCs, 

suggesting that a few joint angle variables dominated the data sets even when permutated, 

most likely due to their wider angular range. When the second criterion used here, i.e. 

accepting all PCs required to explain at least 95% of the total variance, was evaluated, the first 

two PCs explained more than 95% of variance for the front and hind legs of all flies, but for 

the middle legs the third PC was required to reach the 95% cut-off criterion for over 80% of 

flies (Figure 5.1B). Additionally, for about half of the flies, the first PC of the hind legs was  
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Figure 5.1. Variance explained by PCA. (A) Explained variance of PCA for front, middle, and hind 

legs. Filled blue circles represent individual flies (n=12), while gray bars display the mean explained 

variance from permutated versions of all data sets. (B) Cumulative explained variance of the first three 

PCs of individual flies for front, middle, and hind legs. 

 

already sufficient to explain more than 95% of variance, while two PCs were needed to meet 

this criterion for the front legs. 

In conclusion, although one or two PCs for all legs were sufficient to meet the evaluated 

criteria for the majority of flies, the cumulative explained variances of the first three PCs was 

almost always over 99% and never lower than 97.4% (Figure 5.1B). Thus, the first three PCs 

were considered for the following analyses to better compare the results between all flies. 

Moreover, even when more PCs were used than might be necessary to adequately reconstruct 

the joint angles for the respective leg postures of individual flies, the reduction of 
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dimensionality was still high considering that three variables were enough to model the 

underlying joint angles of seven to eight DOFs.  

 

5.3.2 Evaluation of single PCs 

Since each PC consists of a constant coefficients vector and a varying score vector describing 

the relationship between the PC and the underlying DOFs of a leg and the required scaling 

factor to obtain different sets of angles from this PC, respectively, the time course of scores 

can be interpreted as a kind of time-varying control signal for the kinematic synergy 

represented by a PC. Strikingly, the time courses of the scores showed very similar shapes for 

the evaluated PCs of the individual legs for all flies, except for PC1 and PC2 of the middle legs 

in three flies (Figure 5.2). For PC1, the scores decreased steadily from the beginning during 

the swing phase and increased continuously during the stance phase, forming a cosine-like 

pattern with relatively constant amplitudes for each leg. Interestingly, the minimum of the 

scores were reached at the transition between swing and stance or shortly after for the front 

and hind legs, respectively, while its timing varied more around the swing-to-stance 

transition for the middle legs (Figure 5.2).  

The majority of scores’ time courses of PC2 of middle and hind legs exhibited an inverted 

sinus-like shape and their amplitudes varied more between individual flies (Figure 5.2B+C). 

In contrast, front leg PC2 scores increased during the swing phase either constantly or until 

they reached a plateau at the middle of the swing phase, while the shape of their time course 

was similar to the other legs during the stance phase, i.e. they increased until the middle of 

the stance phase and decreased afterwards (Figure 5.2A). Additionally, the time courses for 

PC3 scores for all legs resembled a W-like pattern, i.e. during both the swing and stance phase, 

the scores decreased from the beginning to the middle of the respective phase and increased 

afterwards until the end of the phase (Figure 5.2).  

Interestingly, with respect to the middle legs, three flies exhibited time courses of PC1 scores 

that were more similar to those of PC2 from the other flies when flipped (Figure 5.2B: pink 

lines vs. blue lines). Correspondingly, the PC2 scores’ time courses of these flies were more 

comparable to PC1 score courses of the other flies even without flipping.  One explanation for  
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Figure 5.2. Time courses of scores from single PCs. Scores of the first three PCs are shown for the front 

(A), middle (B), and hind (C) legs for individual flies (n=12). For the middle legs, the pinkish lines 

highlight score time courses of flies for which PC1 and PC2 seemed to be swapped, i.e. the time courses 

of PC1 exhibit a similar shape when flipped compared to the time courses of PC2, while PC2 time 

courses resemble those of PC1 from the other flies. Time courses are normalized to step cycle phase 

(zero to one: swing/ one to two: stance) and dashed black lines indicate the transition from swing to 

stance.  
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this observation might be that PC1 and PC2 together describe a similar 2D plane in the joint 

angle space for all flies, but which of these two PCs explains most of the variance was 

determined by inter-individual variations in the mean steps between the flies. 

Since the coefficients of each PC can be interpreted as the strength of coupling between the 

leg DOFs within the respective PC, the magnitude of a coefficient for a single DOF allows to 

draw conclusion about the contribution of this DOF to the respective PC (Figure 5.3). 

Coefficients of PC1 did not differ much between flies for the front middle legs, whereas they 

varied more for the middle legs. Strikingly, for all legs, PC1 was mainly dominated by CxTr-

yaw and FeTi-yaw. Further contributions of additional DOFs to PC1 were observable for each 

leg (front: ThCx-roll and ThCx-pitch; middle: ThCx-yaw; hind: TiTar-pitch) as indicated by 

median coefficients with magnitudes over 0.2. The direction of all coefficients was identical 

for PC1 of the front and hind legs, but ThCx-yaw was negatively correlated with CxTr-yaw 

and FeTi-yaw in the middle legs. In contrast, PC2 and PC3 were dominated by different 

groups of DOFs with respect to the legs and coefficients were more variable between flies than 

observed for PC1 (Figure 5.3). Interestingly, the coefficients of PC2 and PC3 of the front legs 

for all flies showed the same direction for the main contributing DOFs and the variability 

between flies was lower compared to the other legs.  

To obtain a more intuitive description of the main aspects of captured movements by the first 

three PCs, leg movements were reconstructed by using a single PC at a time. Strikingly, PC1 

captured most of the protraction and retraction movements of all legs in the majority of flies, 

i.e. PC1 mainly captured the straightening and flexing of the front and hind legs for all flies, 

while it accounted mostly for promotion and remotion of the coxa of the middle legs in 10 of 

12 analyzed flies. However, PC1 drove also flexion and extension of the tibia of the middle 

legs in 6 of 12 analyzed flies and this was the main observed movements in the two flies which 

did not show protraction/retraction movements in PC1. 

In contrast, reconstructions based on PC2 resulted in depression and levation movements of 

the front and hind legs. Additionally, PC2 was also associated with rotational movements of 

the coxa and the femur of the front legs. For the middle legs, however, PC2 captured a mixture 

of leg movements, i.e. reconstructions exhibited primarily leg promotion/remotion of the coxa 

in 7 of 12 flies, levation/depression in 5 of 12 flies, and tibial flexion/extension in 2 of 12 flies.  
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Figure 5.3. Coupling strengths between DOFs in single PCs. The coupling strength is expressed by 

the coefficients of the individual PCs. Coefficients of PC1 (upper panels), PC2 (middle panels), and PC3 

(lower panels) are displayed for front (A), middle (B), and hind (C) legs. Filled circles represent the 

coefficients for individual flies (n=12), while gray bars represent the median for each DOF in the 

respective PC. For middle legs, pink filled circles highlight flies in which PC score time courses seem 

to be swapped between PC1 and PC2 (see text and Figure 5.2).  
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Importantly, promotion/remotion of the coxa was more pronounced in flies which did not 

already show movements of the coxa in reconstructions from PC1. In addition, PC3 mainly 

resulted in leg levation/depression in the front and middle legs for all flies. For the hind legs, 

however, reconstructions based on PC3 resulted in levation/depression in only two flies, while 

mainly slight promotion/remotion of the coxa was observed in the other flies. 

 

5.3.3 Reconstruction of tarsus tip movements by PCs 

When considering that propulsion of the body in Drosophila is mainly driven by force 

transmission of the tarsal tips to the ground in the stance phase, it can be assumed that the 

generation of an appropriate trajectory of the tarsal tips constitutes one of the main goals for 

the motor control of leg movements during walking. Thus, the next step was to evaluate how 

well the kinematic synergies, i.e. the PCs derived from PCA, were able to reconstruct the 

tarsus trajectory of the legs. Since reconstructions of leg movements for both body sides was 

based on the same PCs, the resulting trajectories were identical, except for the fact that the 

positions in the transversal plane were mirrored. Therefore, only the trajectories of the tarsal 

tips from the right body side were considered in the following analysis.  

The mean trajectory of the tarsus tip of the mean steps from all flies (n=12) showed for all legs 

an ellipsoid-like shape in the transverse plane, while it was rather semicircular-like or 

governed by the ball surface of the motion capture setup in the sagittal plane during the swing 

and stance phase, respectively (Figure 5.4A). Additionally, the mean steps between flies were 

more variable in the sagittal plane than in the transverse plane as indicated by the higher 

standard deviation (Figure 5.4A). When only PC1 was used for reconstruction, the tarsus tip 

of the front and hind leg was moved only on a line in both planes and thus failed to 

reconstitute the majority of the trajectories, particularly in the sagittal plane (Figure 5.4B). In 

addition, although the reconstructed mean trajectory exhibited an ellipsoid-like shape for the 

middle leg, the original mean trajectory was not recovered accurately. In contrast, 

reconstructions based on the first two PCs were able to fit largely the original tarsal tips 

trajectories of the legs (Figure 5.4B). However, the reconstructed trajectory still deviated 

noticeably in the sagittal plane for the front leg and the middle leg when only two PCs were  
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Figure 5.4. Reconstruction of tarsus trajectory for legs of the right body side. The trajectory of the 

tarsus is shown for front, middle, and hind legs. For each leg, positions of the tarsus are shown for 

transversal plane view (x-y; upper panels) and sagittal plane view (x-z; lower panel). (A) Original tarsus 

tip trajectory. Dashed gray lines represent the mean trajectory derived from mean steps of all flies (n=12) 

and the gray areas indicate the SD. Arrows indicate the direction of the tarsus movements from start of 
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the swing phase to end of stance phase. (B) Tarsus trajectory reconstructed from either the first (left 

panels), first two (middle panels), and first three (right panels) PCs. Blue lines represent the resulting 

mean trajectory of all reconstructed trajectories, while blue areas exhibit the 95% CI. Abbreviations: a, 

anterior; p, posterior; m, medial; l, lateral; d, dorsal; v, ventral.  

 

used. Eventually, a high correspondence between the original and the reconstructed trajectory 

was achieved by using the first three PCs (Figure 5.4B).  

 

5.4 Discussion 

For all legs, the first three PCs not only explained almost all of the variance in the DOF angle 

time courses, but were also sufficient to reconstruct the movements of the tarsus tip with high 

accuracy. This means that the coordination of leg movements in straight walking fruit flies 

can be captured by only three linear kinematic synergies. In other words, the problem of 

controlling seven to eight joint DOFs can essentially be reduced to a three-dimensional control 

space. That further indicates that a bijective, i.e. one-to-one, mapping between the 3D PC space 

and the 3D Cartesian space is possible, suggesting that the redundancy problem could be 

simply solved at least for movements of the tarsus tip. 

Strikingly, leg protraction/retraction was the dominant movement pattern for PC1 for all legs 

in most flies and the scores’ time courses of all PCs were similar between flies. This suggests 

that all leg pairs could principally be controlled by congeneric motor or pre-motor activation 

patterns, although the stepping movements of the leg pairs differed in terms of joint angle 

time courses and use of DOFs (see Figure 4.7). However, despite the fact that time courses 

were comparable for most PCs, the shape of PC2 time courses for the front legs deviated from 

the middle and hind legs at the swing phase and at the end of the stance phase. This is 

presumably explained by the use of the TrFe-roll DOF in the front legs, since PC2 captured 

most of its joint angle changes as indicated by the high coefficient for this DOF (Figure 5.3A).  
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The coefficients for many PCs were comparable across flies to a great extent. However, there 

were qualitative differences between the individual leg pairs. All PCs for the front legs 

showed the lowest variability between flies, while the coefficients for single or multiple DOFs 

in the middle and hind legs exhibited not only more varying coupling strengths but also 

different signs for some flies (Figure 5.3). One interpretation of this finding is that the stepping 

pattern of the front legs in Drosophila is more stereotypic than that of the other leg pairs and 

therefore can be better captured by the same PCs. Following this view and considering that 

PCs are ordered according to their importance for the leg movements, stepping of the hind 

legs is more similar between flies than stepping of the middle legs, since PC1 of the hind legs 

exhibited very similar coefficients, whereas only PC3 showed less variability of the 

coefficients for the middle legs. This is, however, a surprising finding, because the front legs 

seemed to show the most complex movements during walking and had more joint DOFs.  

While the first two PCs exhibited one oscillation for a complete step, the time courses of PC3 

scores consistently oscillated at twice the stepping frequency and thus PC3 contributed 

equally to stepping during the swing and the stance phase. The occurrence of such phase 

relationship between the first few PCs were also observed in human walking and was 

associated with higher-frequency secondary features of body movement during walking. For 

instance, PCs with a doubled frequency was found by Daffertshofer et al. (2004) for the second 

and fourth PC, which captured knee and ankle bending or body sway, respectively. 

Additionally, Troje (2002) identified such a phase relationship for the third and fourth PC, 

which represented a hop-like or bounce-like motion of the body. However, both studies not 

only studied bipedal walkers, but also utilized a set of body markers for the whole body and 

analyzed their positional changes which is in contrast to the approach applied here, i.e. an 

independent joint angle-based analysis for each leg pair. Although a direct comparison is 

therefore not possible, the repeated observation of movement components oscillating at twice 

the stepping frequency points toward a general aspect of walking movements across species.  

Although already two PCs explained over 90% of the total variance in most flies for all legs 

and the third PC seemed to contribute only little, three PCs were required for an accurate 

reconstruction of the tarsus trajectory for at least the front and middle legs. This suggests that 

in terms of kinematic synergies, the use of traditional cut-off criteria to determine the 
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minimum number of PCs should be used with caution and additional considerations, such as 

positioning the end-effector (tarsus tip) in 3D Cartesian space, must be taken into account. 

Another interpretation of this observation is that even when reconstructed joint angles match 

the original joint angles very closely, the resulting movements might still show a larger 

discrepancy. For instance, when considering that motions of a joint DOF affects the positions 

of all subsequent joints in a kinematic chain (see chapter 4), e.g. motions of the ThCx as the 

first joint of insect legs influence the whole leg posture in Drosophila, already subtle differences 

in angles can result in meaningful changes of the final posture and tarsal position. This further 

argues for a general use of kinematic models, if available, to validate kinematic synergies 

derived from PCAs of joint angles. 

Data normalization is a crucial step for PCA and the results depend on whether the covariance 

(non-normalized) or correlation matrix (normalized) is used (Jolliffe and Cadima, 2016; Wang 

et al., 2013). Using the covariance matrix results in greater coefficients in the PCs for variables 

that vary over a larger absolute range, whereas the correlation matrix is agnostic to the range 

covered by variables because the amplitudes for each variable is normalized separately. 

Additionally, the use of the covariance matrix usually results also in a larger fraction of 

explained variance for the first PCs (Jolliffe and Cadima, 2016; Wang et al., 2013). Here, the 

covariance matrix was used and joint DOFs with larger angle ranges are likely to dominate 

the PCs. Consequently, while the contribution of single DOFs to a PCs might have been partly 

obfuscated by this normalization approach, DOFs were highlighted that were more important 

for the underlying leg movements as they had to vary over a wider range.   

Although the consistency of the kinematic synergies found here for straight walking between 

flies argues for the existence of a common control mechanism based on the coupling of joint 

DOFs, how these synergies might be embedded in the nervous system is a difficult question 

to answer. Since the kinematic synergies were derived here from the overall motor output at 

the behavioral level, i.e. changes in joint angles, they do not allow to draw direct conclusions 

for the individual contributions of the output of the motor neurons, the underlying muscle 

physiology and their activation patterns, other biomechanical constrains such as interaction 

torques that arise by mechanical coupling between the leg segments, as well as sensory 

feedback influencing the movement patterns identified by the individual PCs (Bockemühl et 
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al., 2010). As such, the kinematic synergies are relatively abstract and combine the 

contributions of all of these levels in a holistic manner.  

Studying muscle synergies might be an alternative to obtain results that are closer to the 

output of the nervous system. However, the methods used to date for recording muscle 

activity in Drosophila might interfere with the natural walking behavior. Muscle activity can 

be measured either by using electrodes to perform extracellular recordings (Akitake et al., 

2015; Azevedo et al., 2020; Jin et al., 1998) or by using calcium imaging (Azevedo et al., 2020; 

Lehmann et al., 2013; Lindsay et al., 2017). Extracellular recordings are, however, highly 

invasive since the electrode must be poked through the cuticle and consequently the leg 

segment containing the muscle of interest must be immobilized. In addition, extracellular 

recordings usually allow only the simultaneous investigation of a limited number of muscles 

(Lindsay et al., 2017). In contrast, although calcium imaging allows simultaneous recording of 

all muscles expressing a calcium indicator protein directly through the cuticle (Vajente et al., 

2020), the temporal resolution is much lower compared to extracellular recordings  (Lindsay 

et al., 2017) and, with respect to leg muscles, it requires also immobilization of leg segments 

to prevent movement artefacts (Azevedo et al., 2020). Recently, however, another much more 

promising experimental approach was developed. Two studies demonstrated that it is 

possible to perform calcium imaging of neurons of the ventral nerve cord in walking fruit flies 

(Chen et al., 2018; Hermans et al., 2022). This would allow for the examination of kinematic 

synergies in direct relation to the output of motor neurons or other neuron populations 

associated with the motor control of walking, provided that a sufficient temporal resolution 

can be achieved (Chiappe and Jayaraman, 2012). 
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Chapter 6  

General discussion and future outlook 

 

In this dissertation, I established an experimental platform based on a motion capture setup 

for the precise spatiotemporal tracking of leg joint positions in 3D (chapter 3) and a kinematic 

leg model used here to extract the joint angles of forward walking fruit flies (chapter 4). 

Finally, I used the angle time courses of all joint DOFs obtained from the kinematic model to 

identify and analyze kinematic synergies for forward walking in Drosophila (chapter 5). 

Since the anatomical DOF configuration of the leg joints in Drosophila is currently unknown, 

the kinematic model was extremely useful for determining a putative DOF configurations for 

all leg pairs. For this, the model error, i.e. the distance between the joint positions of the model 

and the motion capture data, was evaluated after fitting the model to the motion capture data 

(see 4.3). An appropriated model fit was achieved when the middle and hind legs were 

equipped with seven joint DOFs (ThCx, three DOFs; CxTr, one DOF; FeTi, one DOF; TiTar, 

two DOFs). In contrast, the front legs required an additional roll DOF in the TrFe.  

The main advantage of kinematic leg model presented here, in contrast to the other two 

previously published models for Drosophila legs (Goldsmith et al., 2022; Lobato-Rios et al., 

2022), is that it takes into account the anatomical orientation of the main rotational axes of 

each joint. As a result, an additional DOF in the CxTr or TrFe was not required in the middle 

and hind legs to prevent out-of-plane leg movements (see 4.3.4). This was particularly 

surprising for the middle legs as they exhibited a pronounced rotation of the femur-tibia plane 

during stepping, which at first glance argues for an additional roll DOF close to the femur. 

However, in the kinematic model presented here, this rotation resulted from the combined 

movements of the ThCx and the CxTr (see 4.3.7). Interestingly, both joints were already 

associated with other essential movement components of stepping, i.e. the ThCx and CxTr 

were mainly responsible for protraction/retraction and levation/depression in the middle legs, 

respectively. This suggests that the natural movement repertoire of legs can be expanded 

through biomechanical interactions between joints without directly increasing the demands 

on the nervous system for motor control. 
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In addition, a roll DOF in the TrFe was required to adequately fit the kinematic model to the 

movements of the front legs (see 4.3.4). This provides new arguments for the debate on 

whether the TrFe is mobile in Drosophila legs (Goldsmith et al., 2022; Lobato-Rios et al., 2022). 

Although a mobile TrFe was not required to model forward walking in the other leg pairs, it 

cannot be excluded that the TrFe of the middle and hind legs is involved in other walking 

behaviors such as e.g. curve walking. Hence, further studies are needed to conclusively 

answer the question of whether the TrFe is functional in Drosophila. An elegant approach 

might be to analyze the effects of optogenetic activation or inhibition of the muscles of the 

trochanter or the motor neurons innervating them on a range of natural occurring leg 

movements. 

The aforementioned findings obtained from the kinematic model are also critical for 

developing more sophisticated models of leg movements in Drosophila. Dynamic models for 

determination of joint torques (e.g. Dallmann et al., 2016) , musculoskeletal models (e.g. Full 

and Ahn, 1995), and complete neuromechanical models (e.g. Guo et al., 2018; Lobato-Rios et 

al., 2022) are all build on top of a kinematic model that specifies the allowed direction and 

ranges of leg segment movements during walking. Consequently, deviations from the natural 

occurring joint DOFs and their rotational axes could lead to misleading results from these 

models.  

Although the kinematic leg model presented here can serve as a starting point for such models 

in future, there are still gaps to be filled in our understanding of the leg kinematics in 

Drosophila. For instance, the complexity of the tarsus was simplified in the kinematic model 

used here. Instead of modeling all five segments which are linked by ball-and-socket joints 

(Tajiri et al., 2010), i.e. the tarsus has approximately 12-15 DOFs, here movements of the tarsus 

were modeled by only three parameters. Additionally, despite the rotational axis of the first 

DOF of each joint, referred to as yaw in this dissertation, was derived from the locations of 

the joint condyles, the real anatomical orientations of rotational axes of the other DOFs, i.e. 

pitch and roll, in joints such as the ThCx are not yet known. Another limitation is the lack of 

knowledge of the physiological rotational ranges of the joint DOFs. These points should be 

addressed in future morphological, biomechanical, and kinematic studies.  
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Strikingly, the results of the PCA of the mean angle time course of the joint DOFs showed that 

three kinematic synergies, i.e. PCs, were sufficient to reconstruct very accurately the 

movements of the tarsus tip of all three leg pairs during stepping (see 5.3.3). This implies that 

the control of seven to eight joint DOFs can be shifted in a hypothetical three-dimensional 

motor synergy control space. Importantly, this further suggests that a bijective, i.e. one-to-one, 

mapping is possible between the position of the tarsus tip in the 3D Cartesian space and the 

3D kinematic synergy space. This would simply solve the redundancy problem, at least with 

respect to the movements of the tarsus tip. Additionally, despite all leg pair showed distinct 

kinematics in terms of joint DOFs (see 4.3.6), the time courses of all PCs were relatively similar 

between flies and the first PC captured mainly leg protraction/retraction for all leg pairs. This 

suggests that the nervous system could theoretically control all leg pairs by the same 

congeneric motor or pre-motor activation patterns.  

Although kinematic synergies combine the contributions of all neuromechanical components 

of the motor apparatus and thus do not allow direct inference for the exact role of the nervous 

system, these finding demonstrate that a coordinative structure exists and the nervous system 

would benefit from using it to simplify the motor control of walking. Since in this dissertation 

kinematic synergies were only extracted from forward walking fruit flies, future studies 

should aim to identify kinematic synergies in other walking behaviors such as e.g. curve 

walking or backwards walking. Thereby, it would be possible to find shared kinematic 

synergies across different locomotor behaviors which in turn would argue for an underlying 

common coordination scheme (e.g. Huang et al., 2021; Stetter et al., 2020).  

In conclusion, this dissertation provides detailed insights into the leg joint kinematics of 

Drosophila which are relevant for deciphering motor control of walking in insects. When 

combined with the extensive genetic toolbox offered by Drosophila as model organism, the 

experimental platform presented here, i.e. the 3D motion capture setup and the kinematic leg 

model, will facilitate deeper investigations of Drosophila walking behavior in the future. 
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