
1

Online MoCap Data Coding with Bit Allocation,

Rate Control, and Motion-Adaptive Post-Processing
Choong-Hoon Kwak and Ivan V. Bajić, Senior Member, IEEE

Abstract—With the advancements in methods for capturing
3D object motion, motion capture (MoCap) data are starting to
be used beyond their traditional realm of animation and gaming
in areas such as the arts, rehabilitation, automotive industry,
remote interactions, and so on. As the amount of MoCap data
increases, compression becomes crucial for further expansion
and adoption of these technologies. In this paper, we extend
our previous work on low-delay MoCap data compression by
introducing two improvements. The first improvement is the bit
allocation to long-term and short-term reference MoCap frames,
which provides a 10-15% reduction in coded bitrate at the same
quality. The second improvement is the post-processing in the
form of motion-adaptive temporal low-pass filtering, which is able
to provide another 9-13% savings in the bitrate. The experimental
results also indicate that the proposed online MoCap codec is
competitive with several state-of-the-art offline codecs. Overall,
the proposed techniques integrate into a highly effective online
MoCap codec that is suitable for low-delay applications, whose
implementation is provided alongside this paper to aid further
research in the field.

Index Terms—Motion capture, low-delay compression, rate
control, bit allocation, motion-adaptive filtering

I. INTRODUCTION

THE use of motion capture (MoCap) technology has

diversified into fields such as entertainment, performing

arts, automotive industry, security, and healthcare. Some of

the widely known applications of MoCap technology include

animating virtual characters in movies such as Avatar, King

Kong, and many others. In the gaming industry, MoCap is

used to enable realistic motion of player-controlled virtual

characters in various sports and action games. More recently,

MoCap has found use in clinical applications, such as in

the muscle fatigue monitoring tool in [1], which is used to

help reduce sports injuries caused by incorrect muscle usage

and fatigue. Another clinical application is [2], whose focus

is gait analysis. In new media art, systems such as [3], [4],

[5] utilize MoCap technology to encourage the interaction of

virtual characters with actors and (remote) audience in real

time. Another arts-related project [6] focuses on mapping,

controlling or expressing the motion data in the form of sound

or music.

Early MoCap applications relied on the offline processing

of stored MoCap data, as is the case in the animation of virtual

characters in the film industry. Since one of the requirements

of such applications is storage of MoCap data, the corre-

sponding storage-targeted MoCap compression schemes were

The authors are with the School of Engineering Science, Simon Fraser
University, Burnaby, BC, V5A 1S6, Canada. Tel: 1-778-782-7159. Fax: 1-
778-782-4951. E-mails: cka21@sfu.ca, ibajic@ensc.sfu.ca.

developed. In [7], Arikan studied the compression of an entire

MoCap database rather than individual MoCap clips. In [8],

[9], the authors used the well-known principal component

analysis (PCA) technique to compress MoCap data. PCA is

applied temporally to either the entire MoCap sequence or its

segments. In [10], Tournier proposed a compression method

based on principal geodesic analysis (PGA), an extension of

PCA, combined with the inverse kinematic tool. In the anima-

tion industry, the key frame selection technique is widely used

for MoCap data compression. The encoder stores the important

(key) frames, and the decoder reconstructs in-between frames

using an interpolation tool such as splines. In [11], Lin et

al. analyzed repetitive motion, grouped segments of similar

motion and then applied PCA for the dimensionality reduction.

Furthermore, they used a spline-based approximation of the

coefficients and applied adaptive quantization with entropy

coding for compression. In [12], Váša and Brunnett used

PCA and Lagrangian optimization to compress BVH MoCap

data. In the BVH MoCap format, where the relative positions

of joints are described hierarchically with the help of Euler

angles, the parent joint has more influence on the overall

distortion than the children joints due to error propagation.

Within the Lagrangian framework, the influence of local

distortion of each joint was analyzed in [12] and compression

was adjusted to minimize the overall distortion.

In [13], Chattopadhyay et al. focused on reducing the

power consumption of compression to encourage potential

use on mobile devices. Transform coding based on wavelet

transform or discrete cosine transform (DCT) has also been

used in MoCap data compression. In [14], [15], [16], [17], the

encoder applies the wavelet transform temporally to articulated

human skeletal joints. In [18] and [19], the MPEG-4 bone-

based animation (BBA) was proposed using delta prediction

or temporal differencing followed by temporal DCT transform

applied to 16 consecutive frames. More recently, Hou et

al. [20] proposed a MoCap data compaction technique using

tensor decomposition across spatial and temporal dimensions.

As shown above, the majority of methods for MoCap

compression involve temporal transformation, which requires

buffering MoCap data and delaying compression. In some

cases, the entire MoCap sequence must be stored and pro-

cessed before compression can start. This approach is in-

compatible with the recent trends in MoCap usage, which

emphasize real-time, interactive applications. For this reason,

our focus is online MoCap compression, in which the data

can be encoded immediately after being captured. Our prior

work [21], [22] introduced a hybrid architecture for MoCap

compression, incorporating temporal prediction and spatial

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TMM.2017.2655423

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Simon Fraser University Institutional Repository

https://core.ac.uk/display/83121247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

transformation. From experience with video coding, it is

known that such an architecture is capable of delivering high

compression simultaneously with a low delay. In addition,

error resilience can be built into the system [23], making

it even more suitable for interactive applications across a

network.

In this work, we improve the compression performance

of the codec in [22] in two ways. First, we develop a

bit allocation strategy that allows the adaptive allocation of

bits across different types of MoCap frames to improve the

rate-distortion performance. Second, we develop a decoder-

side post-processing strategy to improve the quality of re-

constructed MoCap data through motion-adaptive filtering.

Together, these strategies reduce the bitrate by 22-26% at the

same reconstruction quality compared to the current state-of-

the-art in online MoCap coding [22]. The resulting codec is

also competitive with well-known offline BVH codecs [10],

[11], [12].

The remainder of this paper is organized as follows. We

begin with a brief review of the coding architecture from [21],

[22] and the relevant quantization, entropy coding and rate

control mechanisms in Section II. Next, the proposed bit

allocation method is presented in Section III, followed by a

description of the post-processing of decoded MoCap data

in Section IV. The experimental results are presented in

Section V, followed by conclusions in Section VI. A MAT-

LAB implementation of the proposed online MoCap codec is

available at http://geomm.ensc.sfu.ca/papers/MoCap-coding/.

II. PRELIMINARIES

A. MoCap data formats

There are several popular data formats for MoCap data.

Since the present paper primarily addresses the C3D and

BVH formats, we will only focus on these two formats. C3D

(coordinate 3D) provides 3D coordinates of motion markers

relative to a chosen origin. A typical C3D file contains three

sections: header, parameter, and data sections. The header

contains the pointer to the start of the parameter and data

sections. The parameter section contains the labels of motion

markers and other information relevant to interpreting the data.

Finally, the data section contains 3D coordinates of motion

markers, which are stored frame-by-frame. The C3D data

format makes no assumptions about the body or object that

the motion was collected from; hence, it is very general.

In contrast to C3D, the BVH file format is tailored to

skeletal data, specifically for human or animal motion. BVH

is popular in the animation community because it allows

easy computation of skeletal motion. Skeletal constraints are

embedded in the data representation by referring the positions

of all joints hierarchically to their parent joints. A BVH

file contains two sections: header and channel. The header

contains the hierarchical information with the initial skeletal

pose. The channel section contains the motion information of

the skeleton in terms of Euler angles, allowing one to represent

such motion with fewer degrees of freedom compared to plain

3D position coordinates.

The efficiency of BVH for describing skeletal motion is also

its limitation in terms of its overall ability to represent motion.

(a)

LTR STR STR LTR STR STR

...

(b)

Fig. 1: (a) Block diagram of the MoCap encoder from [21],

[22]. (b) Prediction structure involving LTR and STR frames.

BVH cannot represent soft tissue motion or, for example, a flag

waving in the wind. C3D does not possess such limitations.

Our original MoCap codec [21], [22] was developed for the

general C3D format, but in this work, we also provide a

version that is adapted to BVH to enable comparison with

BVH MoCap codecs.

B. Hybrid MoCap coding

Fig. 1(a) shows a block diagram of the hybrid low-delay

MoCap encoder from [21], [22]. A C3D MoCap data frame

f [n], consisting of 3D coordinates of motion markers at time

n, is reordered by matrix A such that all x-coordinates are

stacked columnwise, followed by y- and z-coordinates, which

concentrate the signal energy at low frequencies. Specifically,

for f [n] = (x1[n], y1[n], z1[n], ..., xm[n], ym[n], zm[n])T , the

reordered frame is g[n] = Af [n], where

A =

1 0 0 0 0 · · · · · · · · · 0
0 0 0 1 0 · · · · · · · · · 0
...

...
...

...
...

...
...

...
...

0 1 0 0 0 0 · · · · · · 0
0 0 0 0 1 0 · · · · · · 0
...

...
...

...
...

...
...

...
...

0 0 1 0 0 0 0 · · · 0
0 0 0 0 0 1 0 · · · 0
...

...
...

...
...

...
...

...
...

,

and g[n] = (x1[n], ..., xm[n], y1[n], ..., ym[n], z1[n], ..., zm[n])T .

It is shown in [21] that such reordering leads to the

concentration of energy in g[n] at low frequencies. Several

recent works have explored alternative representations and

transformations of MoCap data [24], [25], [26].

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TMM.2017.2655423

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

Non-zero

indices?

Magnitudes Sign bits

EOF

Golomb-Rice

coding

Range coding

Fig. 2: Structure of the encoded bitstream for one frame of

MoCap data.

The reordered data frame is then predicted either from

a long-term reference (LTR) frame or from a short-term

reference (STR) frame, and the prediction residual is spatially

transformed, quantized, and entropy coded.

Prediction involving LTR and STR frames is illustrated

in Fig. 1(b). A group of frames (GOF) is defined as a

set of frames starting with an LTR frame and including all

subsequent STR frames until the next LTR frame. An STR

frame is always predicted from the previous frame (either

LTR or STR), similar to the P frame in video coding. The

LTR frame is always predicted from the previous LTR frame,

except for the first frame in the sequence, which is intra-coded.

This type of prediction structure enables a certain level of

error resilience in MoCap transmission because errors in STR

frames cannot propagate beyond the next LTR frame. This fact

can be used to help error concealment [23].

A 1D DCT is applied to the prediction residual of each

frame. Markers with similar motion will end up with similar

prediction residuals, which, after transformation, will result in

the concentration of energy at low frequencies. This is sub-

sequently exploited by quantization (after which many high-

frequency coefficients are zero) and entropy coding (which

exploits non-uniform probabilities of quantized DCT magni-

tudes) to achieve high compression. In particular, a uniform

midtread quantizer is applied to each DCT coefficient x to

obtain the quantization index

q = sign(x) ⌊|x|/∆+ 0.5⌋ , (1)

where ⌊·⌋ denotes the round-down operation and the step

size ∆ is adaptively adjusted as described in Section II-C.

The quantized coefficient magnitudes are entropy coded, first

by adaptive Golomb-Rice coding [27] followed by adaptive

arithmetic coding [28]. The sign-bits of non-zero quantized

transform coefficients are stored uncoded at the end of the

frame’s bitstream, as illustrated in Fig. 2. Readers are referred

to [21], [22] for further details.

C. Rate control

When transmitting encoded MoCap data in a real-time

interactive application, the available bitrate may vary with

time; therefore, it is important to be able to control the

instantaneous output bitrate of the encoder. In [22], a rate

Symbol Description

rt target bitrate (bits per second)

F frame rate (frames per second)

Nc number of DCT coefficients per frame

NGOF number of frames in a GOF

R
t

GOF
target number of bits per GOF

R
t

LTR
target bits per coefficient in LTR

R
t

STR
target bits per coefficient in STR

TABLE I: Notation used in rate control

control method for MoCap data encoding was proposed, in

which the quantizer step size ∆ in (1) is varied depending

on the data statistics and the target bitrate. Statistical tests

in [22] revealed that the prediction residuals of LTR frames

can be modeled as Laplacian random variables, whereas the

residuals of STR frames are better modeled as Gaussian

random variables. The relationship between the rate R and a

uniform midtread quantizer step size ∆ for a Laplacian random

variable in the low-rate regime is given by [29]:

R(∆) = H
(√

θ
)
+
√
θ (1− log2 (1− θ))− 3

√
θ
log2 θ

1− θ
, (2)

where θ = e−λ∆, λ =
√
2/σr, and H(·) is the binary

entropy function. Moreover, the corresponding relationship for

a Gaussian random variable is approximated by [30]:

R(∆) ≈ −
1∑

k=−1

pk log2 pk,

pk =
1

2

(
erf

(
a (2k + 1)

2

)
− erf

(
a (2k − 1)

2

))
,

(3)

where a = ∆/(
√
2σr) and erf(·) is the error function. The

symbol σr in (2) and (3) represents the standard deviation

of the decoded coefficients of the reference frame, which is

thresholded from below by a small number to avoid numerical

instability in the case of very slow motion when the true

standard deviation approaches zero [22].

Algorithm 1 summarizes the rate control scheme from [22]

using the symbols explained in Table I. The target number of

bits per GOF is Rt
GOF, the target number of bits per coefficient

in the LTR frame is Rt
LTR, and the target number of bits per

coefficient in the STR frames is Rt
STR. If Nc is the number of

transform coefficients per frame, then Rt
GOF can be expressed

as

Rt
GOF = NcR

t
LTR +Nc(NGOF − 1)Rt

STR. (4)

Let α = Rt
LTR/R

t
STR be the ratio of target bits per coefficient

in LTR vs. STR frames. Then, from (4), we obtain

Rt
STR =

Rt
GOF

Nc(α+NGOF − 1)
,

Rt
LTR = αRt

STR,

(5)

which is used in Step 2 of Algorithm 1 to compute Rt
LTR.

Further details and discussion can be found in [22].

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TMM.2017.2655423

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

Algorithm 1 Encoder rate control for each GOF

Input: Rt
GOF ⊲ target bits for current GOF

Output: Rt
GOF,next ⊲ target bits for next GOF

1: Ra
GOF ← 0 ⊲ actual bits in current GOF

2: Compute Rt
LTR from (5)

3: Solve R(∆) = Rt
LTR for ∆ using (2)

4: Encode LTR frame; Ra
LTR is the number of bits spent

5: Ra
GOF ← Ra

GOF +Ra
LTR

6: for n = 2 to NGOF do ⊲ for each STR frame

7: Rt
STR ←

Rt
GOF

−Ra
GOF

Nc(NGOF−n+1)

8: Solve R(∆) = Rt
STR for ∆ using (3)

9: Encode STR frame; Ra
STR is the number of bits spent

10: Ra
GOF ← Ra

GOF +Ra
STR

11: end for

12: return Rt
GOF,next = rtNGOF/F +Rt

GOF −Ra
GOF

III. BIT ALLOCATION

In [22], the target ratio between the bits allocated to LTR

and STR frames was fixed at Rt
LTR/R

t
STR = α = 10. This

ratio, however, is not appropriate for all target bitrates. At low

bitrates, when the available bits are scarce, it is advantageous

to invest more of them into LTR frames (i.e., large α), which

directly or indirectly influence all subsequent frames in the

sequence. As the bitrate increases and more bits are available

to distribute, the STR frames’ share should increase (i.e., lower

α). In this section, we analyze the problem of bit allocation

to LTR and STR frames and develop an allocation strategy

that improves the rate-distortion performance across different

bitrates.

Our goal is to minimize the distortion in a GOF consisting

of one LTR frame and (NGOF−1) STR frames subject to the

total rate constraint

NcR
t
LTR +Nc(NGOF − 1)Rt

STR ≤ Rt
GOF. (6)

Based on the results in [31] for bit allocation to non-identical

random variables in the high-rate regime, an approximate

solution has the form

Rt
LTR = Rt +

1

2
log2

σ2
LTR

ρ2
+

1

2
log2

hLTR

H
(7)

Rt
STR = Rt +

1

2
log2

σ2
STR

ρ2
+

1

2
log2

hSTR

H
(8)

where Rt = (Rt
LTR+(NGOF−1)Rt

STR)/NGOF is the average

number of target bits per coefficient in a GOF, ρ2 is the

geometric mean of the variances of coefficients in LTR and

STR frames, and H is given by

H =
(
hLTR · (hSTR)

(NGOF−1)
)1/NGOF

. (9)

Constants hi, i ∈ {LTR,STR} are related to the probability

density function (pdf) of the corresponding random variable:

hi =
1

12

{∫
∞

−∞

[fi (x)]
1/3

}3

, (10)

where fi is Laplacian pdf for i = LTR and Gaussian pdf

for i = STR. Evaluating (10) for zero-mean unit-variance

Laplacian and Gaussian densities provides

hLTR =
9

2
, hSTR =

√
3π

2
. (11)

Eliminating Rt from (7) and (8), we obtain

Rt
LTR = Rt

STR +
1

2
log2

σ2
LTR

σ2
STR

+
1

2
log2

hLTR

hSTR

≈ Rt
STR +

1

2
log2

σ2
LTR

σ2
STR

+ 0.363,

(12)

where the second line follows from (11). Hence, if the vari-

ances of the LTR and STR frames were equal, each coefficient

in the LTR frame should receive, on average, 0.363 bits

more than a coefficient in the STR frame to account for the

difference in their distributions. If the variances are different,

the allocation changes according to the logarithm of their ratio.

Unfortunately, we cannot use this result directly because

it assumes high-rate quantization and fixed-length coding,

whereas we would like to be able to use variable-length coding

and low to medium rates. To account for the difference arising

from the modeling assumptions, we modify (12) as follows:

Rt
LTR = Rt

STR +
1

2
log2

σ2
LTR

σ2
STR

+ g

(
σ2
LTR

σ2
STR

)
, (13)

where g(·) is a function of the ratio of variances of the LTR

and STR frames. This function g(·) will serve to model the dif-

ference between the high-rate fixed-length coding result (12)

and the corresponding result for our target application, which

involves low-rate variable-length coding. Specifically, we take

g(·) to be a logarithmic function of the variance ratio:

g

(
σ2
LTR

σ2
STR

)
= a · log2

σ2
LTR

σ2
STR

+ b. (14)

With such g(·), the relationship between the target bits per

coefficient for the LTR and STR frames becomes

Rt
LTR = Rt

STR+
1

2
log2

σ2
LTR

σ2
STR

+

(
a · log2

σ2
LTR

σ2
STR

+ b

)
. (15)

To find the ratio α = Rt
LTR/R

t
STR, we substitute Rt

LTR into

equation (4) and solve for Rt
STR to obtain

Rt
STR =

1

NGOF

[
Rt

GOF

Nc
− 1

2
log2

σ2
LTR

σ2
STR

−
(
a · log2

σ2
LTR

σ2
STR

+ b

)]
(16)

Then, dividing (15) by (16) provides

α = 1 +
NGOF

[
1
2 log2

σ2

LTR

σ2

STR

+
(
a · log2

σ2

LTR

σ2

STR

+ b
)]

Rt
GOF

Nc
− 1

2 log2
σ2

LTR

σ2

STR

−
(
a · log2

σ2

LTR

σ2

STR

+ b
) . (17)

To estimate a and b, we encoded 20 training MoCap

sequences (Table II, Section V) at a variety of target bitrates

and GOF sizes NGOF ∈ {20, 30, 40, 50}. For each bitrate

and GOF size, encoding was performed using fixed bit ratios

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TMM.2017.2655423

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

0 100 200 300

−20

0

20

40

σ
2

LTR
/σ

2

STR

g

inlier
outlier

(a) C3D

0 100 200 300
−8

0

8

16

σ
2

LTR
/σ

2

STR

g

inlier

outlier

(b) BVH

Fig. 3: g in (14) vs. σ2
LTR/σ

2
STR.

of 1 ≤ α ≤ 140, and the ratio α that led to the lowest

mean squared error (MSE) was selected. Using this α, the

corresponding value of g was computed from (13), where

Rt
LTR and Rt

STR were computed from (5). Scatter plots of such

values of g are shown against the corresponding variance ratios

σ2
LTR/σ

2
STR in Fig. 3, where Fig. 3(a) corresponds to C3D

MoCap sequences and Fig. 3(b) corresponds to BVH MoCap

sequences. The parameters a and b were then estimated to find

a least squares fit of (14) to the data, with 1% regression-based

outlier removal. For C3D data, the estimated parameter values

were a = −0.4121 and b = 3.2745, whereas for BVH, they

were a = 0.0500 and b = 2.0492. The fitted model is shown

as a green line, and the outliers are indicated by a red X in

Fig. 3.

Fig. 4 shows the α computed from (17) using the estimated

values for the parameters a and b for various target bitrates

and LTR to STR residual variance ratios, σ2
LTR/σ

2
STR. As

shown in this figure, for a given target bitrate, α is predicted to

increase as the ratio σ2
LTR/σ

2
STR increases because the fraction

of bits assigned to LTR frames would need to be larger as

their variance increases relative to STR frames. Moreover, for

a given ratio σ2
LTR/σ

2
STR, α is predicted to decrease as the

target bitrate increases. This result is also logical because as

the number of available bits increases, the fraction assigned

to STR frames can increase, and thus, α decreases. These

predictions made by the model agree well with our intuition.

0 20 40 60 80 100
0

10

20

30

40

50

σ
LTR

2
/σ

STR

2

α

3 kbps

4 kbps

5 kbps

6 kbps

7 kbps

8 kbps

9 kbps

10 kbps

(a) C3D

0 50 100
0

50

100

150

200

σ
LTR

2
/σ

STR

2

α

3 kbps

4 kbps

5 kbps

6 kbps

7 kbps

8 kbps

9 kbps

10 kbps

(b) BVH

Fig. 4: α from (17) vs. σ2
LTR/σ

2
STR for various target bitrates.

For each GOF, rate control with adaptive bit allocation is

accomplished via Algorithm 2, which is similar to Algorithm 1

except for step 2 involved in computing the bit allocation ratio

α between LTR and STR frames. Specifically, step 2 computes

the value of α for the current GOF from (17). This value

involves the estimates of the variances of LTR and STR frames

in the current GOF based on the already encoded LTR and

STR frames from the previous GOF.

IV. POST-PROCESSING

In the proposed MoCap coding system, quantization is

applied to prediction residuals (Fig. 1(a)). At low bitrates,

where the quantizer step size is large, quantization causes

discontinuities between the marker positions in neighboring

frames, resulting in visual judder. This can also be observed

in the frequency domain by analyzing the spectra of the

original and decoded MoCap sequences. Fig. 5 shows the

spectral envelope of marker position signals from test sequence

13 29 (Section V) encoded at various bitrates. Observe that for

frequencies above approximately 5 Hz, the encoded sequences

have considerably higher energy than the original sequence

due to the quantization noise effects mentioned above.

One way to suppress such quantization noise is to apply

temporal low-pass filtering to the decoded marker/joint po-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TMM.2017.2655423

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

Algorithm 2 Encoder rate control with adaptive bit allocation

Input: Rt
GOF ⊲ target bits for current GOF

Output: α ⊲ α to be used in current GOF

Output: Rt
GOF,next ⊲ target bits for next GOF

1: Ra
GOF ← 0 ⊲ actual bits in current GOF

2: Compute α from (17) using σ2
LTR and σ2

STR from

previous GOF

3: Compute Rt
LTR from (5)

4: Solve R(∆) = Rt
LTR for ∆ using (2)

5: Encode LTR frame; Ra
LTR is the number of bits spent

6: Ra
GOF ← Ra

GOF +Ra
LTR

7: for n = 2 to NGOF do ⊲ for each STR frame

8: Rt
STR ←

Rt
GOF

−Ra
GOF

Nc(NGOF−n+1)

9: Solve R(∆) = Rt
STR for ∆ using (3)

10: Encode STR frame; Ra
STR is the number of bits spent

11: Ra
GOF ← Ra

GOF +Ra
STR

12: end for

13: return α
14: return Rt

GOF,next = rtNGOF/F +Rt
GOF −Ra

GOF

sition signals. However, a one-fits-all filter does not appear

to be appropriate because different markers, attached to dif-

ferent body parts, may move in different ways, and signals

corresponding to their positions may have different frequency

contents. Consider, for example, a person standing in place

and waving his arms. His feet are static, and thus, the position

signals for the markers on the feet are constant and have only

DC energy, allowing a low-pass filter with a very low cutoff

frequency. Meanwhile, markers on the arms are moving, and

thus, the filter applied to those signals needs to have a higher

cutoff frequency to accommodate such motion.

We therefore propose a post-processing module, as illus-

trated in Fig. 6. The decoded position signal p[n], which

represents the x-, y- or z-coordinate of a given marker (or

skeletal joint in the case of BVH data) at frame n, is fed to

the motion analysis module, whose task is to decide which

filter is appropriate for the corresponding signal. The filters

in the filterbank are temporal low-pass filters with different

cutoff frequencies. Upon filtering, the decoded value p[n] is

replaced by the filtered value pf [n]. Note that only the decoded

position signal p[n] is needed to select a filter from the filter

bank, without any side information. Since filtering is needed

mostly to suppress large quantization noise at low to medium

bitrates, the filter bank may be switched off at high bitrates

to avoid smoothing out the occasional high-frequency feature

of the natural motion, such as an impact of an object with a

hard surface.

A. Filters

In the simulations presented in Section V, we used Nf = 3
finite impulse response (FIR) filters with cutoff frequencies

of 1, 3, and 5 Hz in the filterbank. These FIR filters were

designed using the window method [32]. Specifically, to obtain

the filter’s impulse response, we applied the Hamming window

w[n] = 0.54 + 0.46 cos

(
2πn

2K + 1

)
, (18)

−60 −40 −20 0 20 40 60
−35

−30

−25

−20

−15

−10

−5

0

Frequency (Hz)

A
m

p
lit

u
d

e
 (

d
B

)

original
3 kbps
4 kbps
5 kbps
6 kbps
7 kbps

(a) C3D (13 29)

−60 −40 −20 0 20 40 60
−35

−30

−25

−20

−15

−10

−5

0

Frequency (Hz)

A
m

p
lit

u
d

e
 (

d
B

)

original
3 kbps
4 kbps
5 kbps
6 kbps
7 kbps

(b) BVH (85 12)

Fig. 5: Normalized energy spectral envelopes of test sequence

at various bitrates.

Motion

analysis

Filter 1

Filter 2

Filter Nf

...

p[n] pf [n]

Fig. 6: Motion-adaptive post-processing.

where |n| ≤ K and (2K + 1) is the filter length, to the ideal

low-pass filter impulse response

hD[n] =

{
sin(2πfcn)

πn if n 6= 0,

2fc if n = 0,
(19)

where fc is the cutoff frequency in Hz. The filter takes 2K+1
samples of the position signal p[n], namely, p[n −K], p[n −
K + 1], ..., p[n + K], where n represents the current frame,

and applies the impulse response to compute pf [n]. Hence,

buffering K future frames is necessary to execute this filtering

operation, which introduces a K-frame delay at the decoder

when filtering is used. The effect of filter length on the final

distortion is further analyzed in Section IV-C.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TMM.2017.2655423

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

B. Motion Analysis

To decide which filter to use for the particular position

signal, we employ a second-order motion predictor [33] to the

past (and already filtered) signal values and check how well

it predicts the current signal value. Specifically, we compute

the estimates of velocity (v̂), acceleration (â) and position (p̂)

as follows:

v̂[n− 1] = pf [n− 1]− pf [n− 2], (20)

â[n− 1] = v̂[n− 1]− v̂[n− 2], (21)

p̂[n] = p[n− 1] + v̂[n− 1] + â[n− 1]/2, (22)

and then compare the predicted position value p̂[n] with the

decoded value p[n]. Under constant acceleration, the second-

order predictor is accurate [33]. If the difference |p̂[n]− p[n]|
is sufficiently small, it means that the constant-acceleration

assumption employed in the predictor (approximately) holds,

which means that the motion is smooth. Therefore, the filter

with the lowest cutoff frequency can be applied. As the

difference between p̂[n] and p[n] increases, the constant-

acceleration assumption becomes less true, which requires

the use of filters with higher cutoff frequencies. For filters

arranged in ascending order of cutoff frequency, the decision

criterion that we used was:

if |p̂[n]− p[n]| ≤ T1 use Filter 1,

if T1 < |p̂[n]− p[n]| ≤ T2 use Filter 2,

if |p̂[n]− p[n]| > T2 use Filter 3.

(23)

The empirical values for T1 and T2 that were found to work

well on the MoCap data in our simulations were T1 = 20 and

T2 = 120.

C. Filter Length

The effect of filter length on the final distortion is shown

in Fig. 7 for various target bit rates for sequence 85 12.

Similar results were obtained for other sequences. The signal-

to-quantization noise ratio (SQNR, defined in (24) in Sec-

tion V-A) is shown vs. filter length for C3D sequences in

Fig. 7(a). For BVH data, the mean error (ME, defined in (25)

in Section V-A) has commonly been used as a distortion

metric [12], so ME is shown vs. filter length in Fig. 7(b) for

BVH sequences. At each data point, the length of all three

filters in the filterbank is the same. For each target bitrate, the

distortion without filtering is shown as a horizontal dashed line

of the same color, for reference.

From digital signal processing [34], it is known that in

window-based filter design, the longer the filter is, the better

the passband characteristics and the sharper the roll-off in the

stopband. Short filters do not provide much attenuation to

high-frequency quantization noise, whereas their poor pass-

band characteristics distort the main low-frequency signal;

thus, short filters have worse performance (lower SQNR,

higher ME) than no filtering. As the filter length increases,

the performance improves and becomes better than that of no

filtering for lengths above approximately 20, depending on

the bit rate. As the filter length further increases, its sharper

10 20 30 40
0

5

10

15

20

25

Filter Length

S
Q

N
R

 (
in

 d
B

)

3 kbps

4 kbps

5 kbps

6 kbps

7 kbps

(a) C3D

15 20 25 30 35 40
0

2

4

6

8

10

Filter Length

M
E

3 kbps

4 kbps

5 kbps

6 kbps

7 kbps

(b) BVH

Fig. 7: Distortion vs. filter length for various target bitrates

for 85 12. Dashed horizontal lines indicate distortion with no

filtering for the corresponding target bitrate.

roll-off causes ever more attenuation at high frequencies, and

the performance eventually starts to degrade because the filter

overly suppresses not only the quantization noise but also the

high-frequency components of the motion signal itself. This

is visible in Fig. 7 at higher bit rates, where the amount of

quantization noise is comparatively lower. At lower bit rates,

the effect occurs for larger filter lengths, beyond those shown

in Fig. 7. This phenomenon can be explained by Wiener filter

theory [35], which states that the optimal filter gain at a

given frequency is governed by the signal-to-noise ratio at

that frequency. Hence, when the sharper roll-off causes the

gain to drop below the optimal value, the filtering performance

will degrade. This also suggests that side information in

the form of a motion model (for example, a bio-mechanical

model of human motion for human MoCap coding) may be

helpful in improving the filtering performance by allowing the

decoder to estimate the energy of a (noise-free) uncompressed

signal within a (noisy) compressed signal and thereby select

the optimal filter gain at each frequency. This would be an

interesting topic for future research.

Based on the results in Fig. 7 and similar experiments

with other MoCap sequences, we have selected a filter length

of 25 (corresponding to K = 12) for our experiments. A

larger K leads to better performance (up to a point), but the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TMM.2017.2655423

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

downside is increased buffering in the post-processing module,

which increases end-to-end latency. The appropriate level of

latency will depend on the application. According to [36], for

example, the most demanding classes of games (e.g., first-

person shooters) should limit the latency to 100 msec to

maintain a reasonable level of player performance. For the

120 Hz MoCap data used in our simulations, the chosen value

of K = 12 makes the buffering delay exactly 100 msec.

A more recent study [37] found that 45 msec is a better

estimate of the latency demands of the most fast-paced games.

If this, or even lower, latency is required, the filtering can

simply be turned off at the decoder. In such a case, the bitrate

may need to be increased somewhat to reach the required level

of accuracy.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental setup

To evaluate the compression effectiveness for C3D data,

we use the well-known signal-to-quantization-noise ratio

(SQNR) [31]. Let f [n] be the n-th frame containing the

original 3D marker coordinates and N be the total number of

frames in the sequence. Then, the SQNR in dB is computed

as:

SQNR = 10 log10

1
N

∑N
n=1 (f [n])

T (f [n]))
1
N

∑N
n=1 (f [n]− f̂ [n])T (f [n]− f̂ [n])

,

(24)

where f̂ [n] is the decoded n-th frame.

Meanwhile, for BVH data, mean error (ME) [12], which is

the average error per joint, is a more common metric. Let Nj

be the number of joints in the skeleton, and let pj [n] be the

3D coordinate of the j-th joint in frame n. Then, the ME is

defined as:

ME =
1

N ·Nj

N∑

n=1

Nj∑

j=1

√
(pj [n]− p̂j [n])T (pj [n]− p̂j [n]),

(25)

where p̂j [n] is the decoded position of the j-th joint in frame

n.

Table II shows the 20 MoCap sequences used in the

training. These sequences were available in both C3D and

BVH formats; thus, they provided a convenient training pool

to estimate model parameters a and b in Section III. C3D

coding is examined first in the next section, followed by BVH

coding in Section V-C.

B. C3D MoCap coding

Four MoCap sequences from the CMU database [38]

were used for testing C3D coding: 13 29 (jumping), 85 12

(breakdance), 86 02 (walking) and 86 08 (walking). Each test

sequence consists of position signals for 41 markers attached

to a human body, stored in the C3D format, and the sampling

frequency is 120 Hz. All the experiments use NGOF = 30.

Four codecs are compared:

• MOD is the MoCap codec from [22] without rate control,

• RC is the codec from [22] with rate control and with

fixed bit allocation ratio α = 10,

Sequence Description Total Frame

01 01 long jump 2750

05 02 dance - expressive arms, pirouette 1123

14 09 jump up to grab, reach for, tiptoe 3287

16 02 jump up once 466

17 06 whistle, walk jauntily 6200

47 01 walk forward turn around walk back 1319

49 01 modern dance, gymnastics 625

64 03 golf 443

85 01 jump twist 998

94 15 Indian dance 2210

105 11 lavish walk 1863

105 17 quick walk 1520

105 57 walk forward 1177

118 17 long jump 646

124 02 baseball pitch 1319

125 01 swimming 4257

131 04 start hop stop 1086

132 02 walk with arms out, balancing 1141

135 01 martial arts walks 2000

135 04 front kick 1316

TABLE II: MoCap training data from [38].

Seq.
BD SQNR (dB) BD bitrate (%)

RC RCA FIL RC RCA FIL

13 29 3.24 5.44 7.35 −19.96 −35.45 −44.16

85 12 2.04 3.47 5.42 −18.39 −29.51 −41.21

86 02 2.45 4.61 6.49 −8.41 −21.38 −34.31

86 08 3.94 6.12 8.02 −17.79 −30.53 −40.22

TABLE III: BD SQNR and BD bitrate compared to MOD for

C3D data.

• RCA is the MoCap codec that uses adaptive bit allocation

in Algorithm 2 (Section III) without any post-processing,

• FIL is the same as RCA but with post-processing de-

scribed in Section IV.

Hence, RCA and FIL are the new methods developed in the

present paper, whereas MOD and RC are from previous works.

Figs. 8-9 show the operational rate-distortion curves of the

four methods on the four test sequences for bitrates between 3

and 7 kbps. As shown in these figures, adaptive bit allocation

(RCA) improves the performance by up to 2.5 dB compared to

fixed bit allocation (RC), whereas post-processing (FIL) adds

another 1-3 dB to the SQNR. In addition, we observe that the

RCA curve approaches the RC curve as the bitrate increases

to 7 kbps. This is because at 7 kbps, the optimal bit allocation

ratio α is close to 10 (the fixed value used in RC) for a wide

range of LTR/STR variance ratios, as illustrated in Fig. 4(a).

As a summary of the operational RD performance on C3D

data, Table III shows the Bjontegaard Delta (BD) [39] for

SQNR and bitrate using MOD as the reference. As shown in

this table, RC provides, on average, 8-20% bitrate reduction

compared to MOD at the same SQNR. RCA offers additional

bitrate reduction by 10-15% over RC, whereas post-processing

(FIL) allows an additional 9-13% reduction in bitrate. Overall,

the full-featured method FIL, which includes both adaptive

bit allocation and post-processing, developed in this paper

improves the SQNR by 5-8 dB (alternatively, reduces the

bitrate by 34-44%) compared to the previous state-of-the-art

for online MoCap coding [22].

As indicated by the above results, adaptive bit allocation

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TMM.2017.2655423

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

2 4 6 8
5

10

15

20

25

Rate (kbps)

S
Q

N
R

 (
d

B
)

MOD

RC

RCA

FIL

(a) 13 29

2 4 6 8
5

10

15

20

Rate (kbps)

S
Q

N
R

 (
d

B
)

MOD

RC

RCA

FIL

(b) 85 12

Fig. 8: SQNR vs. bit rate (C3D).

Target
RC RCA

Actual Error (%) Actual Error(%)

2.98 3.00 0.67 3.00 0.67

4.01 4.03 0.50 4.02 0.25

5.05 5.05 0.40 5.04 0.20

5.99 6.00 0.17 6.00 0.17

6.99 7.00 0.14 7.00 0.14

TABLE IV: Rate control results in terms of bitrate (kbps) on

13 29 (C3D).

improves the operational RD performance of MoCap coding.

However, it is also important to examine whether the rate

control performance is compromised in the process. To this

end, we encoded the test sequences at several bitrates using

the MOD codec [22]; then, we measured the exact bitrate

produced by the MOD codec and used those values as the

target bitrates for RC and RCA. The results for 13 29 and

85 12 are shown in Tables IV and V, respectively, and similar

results were also obtained on other sequences. As shown in the

tables, RCA has a very similar overall rate control performance

as RC, despite having better RD performance. The errors in

the final produced bitrates are well within 1% of the target

bitrate. Note that post-processing does not play a role in this

case; thus, the FIL results are not shown (since they are the

same as those of RCA).

To examine the instantaneous bitrate, Fig. 10 illustrates the

actual number of bytes produced per GOF by the MOD, RC

2 4 6 8
5

10

15

20

25

Rate (kbps)

S
Q

N
R

 (
d

B
)

MOD

RC

RCA

FIL

(a) 86 02

2 4 6 8
5

10

15

20

25

Rate (kbps)

S
Q

N
R

 (
d

B
)

MOD

RC

RCA

FIL

(b) 86 08

Fig. 9: SQNR vs. bit rate (C3D).

Target
RC RCA

Actual Error (%) Actual Error(%)

3.00 3.01 0.33 3.01 0.33

3.98 3.99 0.25 3.98 0.00

5.00 5.01 0.20 5.01 0.20

5.98 5.99 0.17 5.99 0.17

7.02 7.02 0.00 7.03 0.14

TABLE V: Rate control results in terms of bitrate (kbps) on

85 12 (C3D).

and RCA codecs at the target bitrate of 6 kbps. As shown in

Fig. 10, the instantaneous bitrate of MOD fluctuates widely,

whereas RC and RCA both keep the instantaneous bitrate

much closer to the target.

Table VI shows a more quantitative view of the instanta-

neous bitrate produced by the three methods. In particular, this

table shows the standard deviation of bytes per GOF across

five target bitrates for each test sequence to quantify how much

the instantaneous bitrate fluctuates around the target value.

As shown in this table, RC and RCA produce considerably

lower standard deviations than MOD, indicating that they are

better able to keep the instantaneous bitrate close to the target

value. We do observe, however, that RCA produces a slightly

higher standard deviation, which was not obvious in Fig. 10.

Therefore, we conclude that the rate control performance of

RCA is slightly worse than that of RC. However, this slight

loss in rate control performance comes with a considerable

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TMM.2017.2655423

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

Sequence MOD RC RCA

13 29 42.5 12.9 14.5

85 12 50.4 10.4 9.7

86 02 60.3 10.8 13.1

86 08 51.5 9.3 10.4

TABLE VI: Average standard deviation of bytes per GOF on

C3D data.

gain in RD performance, which we believe is a good tradeoff.

C. BVH MoCap coding

As previously mentioned, in the animation community, the

BVH format for skeletal motion data has been very popular.

Although our codec was developed for the general C3D data,

it is also interesting to compare it against state-of-the-art BVH

codecs. For this purpose, we used four BVH MoCap sequences

from the CMU database: 17 08, 17 10, 85 12, and 15 04.

Compression results on these sequences were reported in [12]

for several BVH codecs, which allows us to compare the BVH

version of our codec to these earlier codecs.

A popular way to compute the distortion of a compressed

BVH file is via mean error (ME) [12], shown in (25). To

compute the ME for a typical BVH codec, as illustrated in

Fig. 11(a), one would encode the BVH file and then decode

it and convert Euler angles of the joints to 3D coordinates

(denoted XYZ in the figure). The ME is then computed in

the Cartesian 3D coordinate space. Since our codec operates

on C3D data, which is already in the XYZ format, we first

take the BVH file and convert it to XYZ coordinates, and then

we run the codec on these coordinates and compute the ME,

as shown in Fig. 11(b). For the BVH version of our codec,

some minor modifications had to be made compared to the

C3D version. For example, there are 38 joints in the BVH files

used in this comparison, whereas there were 41 markers in the

C3D MoCap files in the previous section. Additionally, the bit

allocation model parameters a and b (Section III) are different

from those for C3D. Nonetheless, parameter estimation for

BVH data follows the same procedure as for C3D data, and

the codec architecture (including post-processing) is the same.

We compared the BVH version of our codec to the three

BVH codecs considered in [12]. One of them is the codec

proposed in [12], which we denote VASA, and the other two

are from earlier works: LTC from [11] and TWC from [10].

According to the results in [12], VASA is the state-of-the-

art in BVH MoCap coding. Figs. 12 and 13 show the ME

vs. file size for the four test sequences. The data points for

VASA, LTC and TWC come from Table 1 in [12]. For our

codec, we show two curves. One is for RC, which is the codec

from [22], without adaptive bit allocation (using fixed α = 10)

and no post-processing. The other curve is for FIL, which is

our full-featured codec that includes adaptive bit allocation

from Section III and post-processing from Section IV.

As shown in the figures, even RC by itself is better than LTC

and TWC in most cases and competitive with VASA on 85 12

and 17 10. Meanwhile, FIL outperforms VASA on 85 12 and

17 10 and achieves comparable performance on the other two

sequences. This result is particularly encouraging considering

0 50 100 150
0

100

200

300

GOF index

b
y
te

s
 i
n

 G
O

F

MOD

RC

RCA

(a) 13 29

0 50 100 150
0

100

200

300

GOF index

b
y
te

s
 i
n

 G
O

F

MOD

RC

RCA

(b) 85 12

0 100 200 300
0

100

200

300

400

GOF index

b
y
te

s
 i
n

 G
O

F

MOD

RC

RCA

(c) 86 02

0 100 200 300
50

150

250

350

GOF index

b
y
te

s
 i
n

 G
O

F

MOD

RC

RCA

(d) 86 08

Fig. 10: Bytes per GOF at 6 kbps for C3D

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TMM.2017.2655423

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

(a) BVH MoCap codecs from [10], [11], [12]

(b) BVH version of the proposed MoCap codec

Fig. 11: Computing ME for BVH MoCap codecs in the

comparison.

1 2 3 4

x 10
4

0

2

4

6

8

File Size (bytes)

M
E

RC

FIL

VASA

LPT

TWC

(a) 85 12

0.5 1 1.5 2

x 10
5

0

0.5

1

1.5

2

2.5

File Size (bytes)

M
E

RC

FIL

VASA

LPT

TWC

(b) 15 04

Fig. 12: ME vs. file size

that our codec is an online codec with very low end-to-end

delay, suitable for interactive applications. For illustration,

end-to-end delay (in frames), which includes both encoding

and decoding delays, is shown in Table VII. As shown, the

existing BVH codecs typically require access to all the frames

in the sequence before even starting the encoding process.

Meanwhile, our encoder uses only causal prediction and is

therefore able to encode a MoCap frame as soon as it is

captured, without waiting for the next frame. The only delay

in our FIL codec comes from post-processing at the decoder,

and it is equal to approximately half the filter length of the

1 2 3 4 5

x 10
4

0

1

2

3

4

File Size (bytes)

M
E

RC

FIL

VASA

LPT

TWC

(a) 17 08

1 1.5 2

x 10
4

0

1

2

3

File Size (bytes)

M
E

RC

FIL

VASA

LPT

TWC

(b) 17 10

Fig. 13: ME vs. file size

1 2 3 4

File Size (bytes) ×10
4

0

2

4

6

8

M
E

RC

FIL

VASA

LPT

TWC

Fig. 14: ME vs. file size including virtual markers for 85 12

post-processing filter.

Although the results in Figs. 12 and 13 indicate the accuracy

of representing joint positions, these data are not directly

usable in skinning applications for human motion animation

because rolling rotations around bones are not captured by

joint positions alone. To overcome this problem, the concept

of “virtual markers” has been proposed [7]. In Fig. 14, we

show the ME vs. file size for sequence 85 12, where virtual

markers are included in the data. The inclusion of virtual

markers makes the raw data size three times larger than just

the joint positions [7], but it also makes it easier to use the data

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TMM.2017.2655423

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12

Codec End-to-end delay (frames)

VASA [12] All frames in the sequence

LTC [11] Variable, but at least 200

TWC [10] All frames in the sequence

RC and RCA 0

FIL 12 (with 25-tap post-processing filter)

TABLE VII: End-to-end delay (in frames) for various codecs.

Target
RC RCA

Actual Error (%) Actual Error(%)

3.00 3.00 0.00 3.00 0.00

4.00 4.00 0.00 4.00 0.00

5.00 5.00 0.00 5.00 0.00

6.00 6.00 0.00 6.00 0.00

7.00 7.00 0.00 6.99 0.14

TABLE VIII: Rate control results in terms of bitrate (kbps)

on 85 12 (BVH).

in skinning applications. By comparing Fig. 12(a) and Fig. 14,

we observe that the inclusion of virtual markers increases the

compressed file size by approximately 50% to 100%. This is

less than the three-fold increase in raw data size because there

is some statistical redundancy in the virtual markers, which is

being exploited by our encoder. Regardless, our codec remains

competitive with VASA and better than LTC and TWC.

Next, we examine the accuracy of rate control on BVH data.

We encoded test sequences with target bitrates set at 3, 4, 5,

6, and 7 kbps and measured the exact bitrate produced by RC

and RCA (FIL has the same bitrate as RCA). The results are

shown in Tables VIII and IX for 85 12 and 17 10, and similar

results were obtained on the other two sequences. As shown in

these tables, the rate control for BVH data is quite accurate; the

actual produced bitrate is well within 1% of the target value,

as was the case with the C3D data. The actual number of bytes

produced per GOF by the MOD, RC and RCA codecs at 6

kbps is shown in Fig. 15. As was the case with the C3D data,

we see that codecs with rate control (RC and RCA) produce

a smaller deviation from the target compared to MOD. This

is also confirmed quantitatively in Table X, which shows the

standard deviation of the instantaneous bitrate.

Sample BVH data produced by the four codecs (MOD, RC,

RCA, and FIL) at 7 kbps are shown in Fig. 16 for visual

comparison. In this figure, the original skeleton is shown

in red, and the reconstructed skeleton is shown in blue. As

shown in this figure, the reconstructed skeleton approaches

the original skeleton as the codec effectiveness improves, from

MOD to RC, RCA and finally FIL. Several animation videos

are available online1 for further illustration, along with codec

implementation.

D. Subjective evaluation

Similar to [40], we conducted a subjective experiment

to test the perceptual quality of animations produced from

decoded bitstreams. Animations were produced from decoded

C3D sequences 85 12 (breakdance) and 86 08 (walking) at

four compression ratios (40:1, 60:1, 80:1, and 100:1) using

1http://geomm.ensc.sfu.ca/papers/MoCap-coding/

0 50 100 150
0

100

200

300

GOF index

b
y
te

s
 i
n

 G
O

F

MOD

RC

RCA

(a) 85 12

0 50 100 150 200

100

150

200

250

GOF index

b
y
te

s
 i
n

 G
O

F

MOD

RC

RCA

(b) 17 08

0 20 40 60 80
100

150

200

250

300

GOF index

b
y
te

s
 i
n

 G
O

F

MOD

RC

RCA

(c) 17 10

0 100 200 300
0

100

200

300

GOF index

b
y
te

s
 i
n

 G
O

F

MOD

RC

RCA

(d) 15 04

Fig. 15: Bytes per GOF at 6 kbps for BVH

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TMM.2017.2655423

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

13

Target
RC RCA

Actual Error (%) Actual Error (%)

3.00 3.01 0.33 3.02 0.67

4.00 4.01 0.25 4.01 0.25

5.00 5.00 0.00 5.00 0.00

6.00 6.00 0.00 6.00 0.00

7.00 7.00 0.00 6.99 0.14

TABLE IX: Rate control results in terms of bitrate (kbps) on

17 10 (BVH).

−10
1 2−5

0

5

5

10

15

20

25

(a) MOD (ME = 0.7228)

−10
1 2−5

0

5

5

10

15

20

25

(b) RC (ME = 0.4658)

−10
1 2−5

0

5

5

10

15

20

25

(c) RCA (ME = 0.3829)

−10
1 2−5

0

5

5

10

15

20

25

(d) FIL (ME = 0.1947)

Fig. 16: Decoded BVH skeleton at frame 2008 from sequence

17 08 coded at 7 kbps with (a) MOD, (b) RC, (c) RCA,

and (d) FIL. The original skeleton is shown in red, and the

reconstructed skeleton is shown in blue. The mean error (ME)

is shown below each figure.

MotionBuilder. They were played to 20 participants on a Dell

1704FPTT monitor in accordance with the DSCQS proto-

col [41] with a 5-point quality scale (1-Bad, 2-Poor, 3-Fair,

4-Good, and 5-Excellent). A sample frame from the animation

Sequence MOD RC RCA

85 12 51.7 11.9 12.4

17 08 24.9 10.5 9.3

17 10 30.4 11.9 12.6

15 04 56.7 16.6 13.9

TABLE X: Average standard deviation of bytes per GOF on

BVH data.

(a)

100 80 60 40

D
M

O
S

-1

0

1

2

3

4

85_12 86_08

(b)

Fig. 17: (a) Illustration of a frame from the animation used in

subjective testing. (b) Average DMOS vs. compression ratio,

with error bars indicating the standard deviation of DMOS.

is shown in Fig. 17(a). The results are shown in Fig. 17(b),

where the bar height is the average differential mean opinion

score (DMOS) between animations produced by compressed

and uncompressed MoCap sequences, and the error bars

indicate standard deviation. Similar to [40], we found that at a

compression ratio of 40:1, DMOS is well within one standard

deviation from zero, indicating that the animation produced

from the compressed MoCap sequence is very similar to the

one produced from the original uncompressed sequence. As

the compression ratio increases, the difference becomes more

obvious and DMOS becomes closer to 2.

E. Complexity

Finally, we present a note on complexity. Table XI shows

the encoding and decoding times for RCA running on BVH

data. These were measured in MATLAB R2011a on a laptop

machine with an Intel Core i5-5200 @ 2.20 GHz processor.

On average, the encoding takes 14 milliseconds per frame,

whereas the decoding takes 11 milliseconds per frame. If

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TMM.2017.2655423

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

14

Sequence Target Enc. Dec. Dec. + post-proc.

85 12 3.00 0.0108 0.0089 0.0119

4.00 0.0128 0.0096 0.0124

5.00 0.0132 0.0100 0.0129

6.00 0.0137 0.0105 0.0133

7.00 0.0142 0.0110 0.0138

15 04 3.00 0.0116 0.0141 0.0168

4.00 0.0183 0.0148 0.0159

5.00 0.0171 0.0149 0.0164

6.00 0.0175 0.0145 0.0156

7.00 0.0167 0.0157 0.0170

17 08 3.00 0.0122 0.0098 0.0125

4.00 0.0135 0.0102 0.0129

5.00 0.0136 0.0104 0.0131

6.00 0.0138 0.0104 0.0131

7.00 0.0134 0.0105 0.0132

17 10 3.00 0.0158 0.0084 0.0111

4.00 0.0124 0.0087 0.0116

5.00 0.0129 0.0092 0.0119

6.00 0.0131 0.0095 0.0123

7.00 0.0133 0.0098 0.0126

Average 0.0140 0.0110 0.0135

TABLE XI: Encoding and decoding times in seconds per frame

for BVH data at various target bitrates (in kbps).

post-processing is enabled, the average decoding time is 13.5

milliseconds per frame.

In comparison, the codec from [12] implemented as a

Windows executable and tested on a somewhat more pow-

erful processor (Intel Core i7-920 CPU @ 2.67 GHz) was

reported to encode up to 3000 frames per second without pre-

processing, whereas the pre-processing took approximately

twice the time of the actual encoding, bringing the total

encoding time to 1000 frames per second. This is equivalent

to 1 millisecond per frame, or approximately 14 times faster

than our encoding. However, we believe that an optimized

version of our encoder implemented as an executable on a

faster processor could be comparable with that of [12] in terms

of speed. As an illustration, simply replacing MATLAB-based

adaptive arithmetic codec by an executable version generated

from C++ would bring our encoding time per frame down to

5.2 milliseconds and decoding time down to 2.6 milliseconds.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an online MoCap codec with

several novel features. The first is an adaptive bit allocation

between LTR and STR frames, which works within a rate

control module and decides on the bit allocation ratio that

will minimize the distortion for the given bitrate. The second

novel feature is a motion-adaptive post-processing strategy

that filters the decoded signals and suppresses quantization

noise at high frequencies. Combined, the two new features

bring about a significant gain in operational rate-distortion

performance, with a minimal increase in algorithmic delay

and with excellent rate control accuracy. Moreover, we adapted

our MoCap codec to the popular BVH skeletal data format and

compared it with state-of-the-art BVH codecs. The comparison

showed that the BVH version of our codec is competitive

with state-of-the-art BVH codecs in terms of rate-distortion

performance, despite being an online codec and using only

causal encoding. In addition, unlike other BVH codecs, our

approach offers accurate rate control, making it more suitable

for interactive applications across a network, such as online

gaming. Future improvements to online MoCap coding could

include more advanced spatial transforms (for example, graph-

based transform [26]), which might be able to better exploit

the structure of MoCap data.

REFERENCES

[1] F. Mokaya, B. Nguyen, C. Kuo, Q. Jacobson, and P. Zhang, “[MARS] a
real time motion capture and muscle fatigue monitoring tool,” in Proc.

ACM Conf. Embedded Network Sensor Systems, 2012, pp. 385–386.

[2] E. Wade and M. J. Mataric, “Design and testing of lightweight inexpen-
sive motion-capture devices with application to clinical gait analysis,” in
Proc. IEEE Int. Conf. Pervasive Computing Technologies for Healthcare

(PervasiveHealth’09), 2009, pp. 1–7.

[3] A. Andreadis, A. Hemery, A. Antonakakis, G. Gourdoglou, P. Mauridis,
D. Christopoulos, and J. N. Karigiannis, “Real-time motion capture
technology on a live theatrical performance with computer generated
scenery,” in Proc. IEEE PCI’10, Tripolis, Greece, 2010, pp. 148–152.

[4] Q. Wu, P. Boulanger, M. Kazakevich, and R. Taylor, “A real-time
performance system for virtual theater,” in Proc. ACM SMVC, 2010,
pp. 3–8.

[5] F. Hülsken, C. Eckes, R. Kuck, J. Unterberg, and S. Jörg, “Modeling
and animating virtual humans for real-time applications,” Int. J. Virtual

Reality, vol. 6, no. 4, pp. 11–20, 2007.

[6] C. Dobrian and F. Bevilacqua, “Gestural control of music: using the
vicon 8 motion capture system,” in Proc. Conf. New Interfaces for

Musical Expression. National University of Singapore, 2003, pp. 161–
163.

[7] O. Arikan, “Compression of motion capture databases,” ACM Transac-

tions on Graphics, vol. 25, no. 3, pp. 890–897, 2006.

[8] Z. Karni and C. Gotsman, “Compression of soft-body animation se-
quences,” Computers & Graphics, vol. 28, no. 1, pp. 25–34, 2004.

[9] G. Liu and L. McMillan, “Uniform threshold scalar quantizer per-
formance in Wyner-Ziv coding with memoryless, additive Laplacian
correlation channel,” in Proc. SCA’06, Sep. 2006, pp. 127–135.

[10] M. Tournier, X. Wu, N. Courty, E. Arnaud, and L. Reveret, “Motion
compression using principal geodesics analysis,” Computer Graphics

Forum, vol. 28, no. 2, pp. 355–364, 2009.

[11] I.-C. Lin, J.-Y. Peng, C.-C. Lin, and M.-H. Tsai, “Adaptive motion data
representation with repeated motion analysis,” IEEE Trans. Visualization

and Computer Graphics, vol. 17, no. 4, pp. 527–538, 2011.

[12] L. Váša and G. Brunnett, “Rate-distortion optimized compression of
motion capture data,” Computer Graphics Forum, vol. 33, no. 2, pp.
283–292, 2014.

[13] S. Chattopadhyay, S. M. Bhandarkar, and K. Li, “Human motion capture
data compression by model-based indexing: A power aware approach,”
IEEE Trans. Visualization and Computer Graphics, vol. 13, no. 1, pp.
5–14, 2007.

[14] P. Beaudoin, P. Poulin, and M. van de Panne, “Adapting wavelet
compression to human motion capture clips,” in Proc. Graphics Interface

(GI’07), 2007, pp. 313–318.

[15] A. Firouzmanesh, I. Cheng, and A. Basu, “Perceptually guided fast
compression of 3-D motion capture data,” IEEE Trans. Multimedia,
vol. 13, no. 4, pp. 829–834, 2011.

[16] C.-H. Lee and J. Lasenby, “An efficient wavelet-based framework
for articulated human motion compression,” in Advances in Visual

Computing. Springer, 2008, pp. 75–86.

[17] S. Li, M. Okuda, and S.-i. Takahashi, “Compression of human motion
animation using the reduction of interjoint correlation,” EURASIP J.

Image and Video Processing, vol. 2008, pp. 1–15, 2008.

[18] M. Preda, B. Jovanova, I. Arsov, and F. Prêteux, “Optimized MPEG-4
animation encoder for motion capture data,” in Proc. ACM Web 3D,
May 2007, pp. 181–190.

[19] B. Jovanova, M. Preda, and F. Preteux, “MPEG-4 part 25: A generic
model for 3D graphics compression,” in Proc. IEEE 3DTV Conference

(3DTV-CON), 2008, pp. 101–104.

[20] J. Hou, L.-P. Chau, N. Magnenat-Thalmann, and Y. He, “Scalable and
compact representation for motion capture data using tensor decompo-
sition,” IEEE Signal Processing Letters, vol. 21, no. 3, pp. 255–259,
March 2014.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TMM.2017.2655423

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

15

[21] C.-H. Kwak and I. V. Bajić, “Hybrid low-delay compression of motion
capture data,” in Proc. IEEE ICME’11, Barcelona, Spain, Jul. 2011, pp.
1–6.

[22] ——, “Mocap data coding with unrestricted quantization and rate
control,” in Proc. IEEE ICASSP’13, Vancouver, BC, May 2013, pp.
3741–3745.

[23] ——, “Error concealment strategies for motion capture data streaming,”
in Proc. IEEE ICME’11 Workshops - StreamComm, Barcelona, Spain,
Jul. 2011, pp. 1–6.

[24] J. Hou, L.-P. Chau, N. Magnenat-Thalmann, and Y. He, “Low-latency
compression of mocap data using learned spatial decorrelation trans-
form,” Comput. Aided Geom. D., vol. 43, no. C, pp. 211–225, Mar.
2016.

[25] J. Hou, L. P. Chau, N. Magnenat-Thalmann, and Y. He, “Human motion
capture data tailored transform coding,” IEEE Trans. Vis. Comput.

Graphics, vol. 21, no. 7, pp. 848–859, Jul. 2015.
[26] J. Y. Kao, A. Ortega, and S. S. Narayanan, “Graph-based approach for

motion capture data representation and analysis,” in Proc. IEEE ICIP,
Oct. 2014, pp. 2061–2065.

[27] D. S. Taubman and M. W. Marcellin, JPEG2000: Image compression

fundamentals, standards, and practice. Kluwer Academic Publishers,
2002.

[28] M. Servais, Range Coding in MATLAB. [Online]. Available:
http://www.ee.surrey.ac.uk/CVSSP/VMRG/hdtv/code.htm.

[29] V. Sheinin, A. Jagmohan, and D. He, “Uniform threshold scalar quan-
tizer performance in Wyner-Ziv coding with memoryless, additive Lapla-
cian correlation channel,” in Proc. IEEE ICASSP’06, vol. 4, Toulouse,
France, May 2006, pp. 217–220.

[30] V. Sheinin and A. Jagmohan, “Low rate uniform scalar quantization of
memoryless Gaussian sources,” in Proc. IEEE ICIP’06, Atlanta, GA,
2006, pp. 793–796.

[31] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression.
Kluwer Academic Publishers, 1992.

[32] E. C. Ifeachor and B. W. Jervis, Digital Signal Processing: A Practical

Approach. Addison-Wesley, 1993.
[33] R. Azuma and G. Bishop, “A frequency-domain analysis of head-motion

prediction,” in Proc. ACM Conf. Computer Graphics and Interactive

Techniques, 1995, pp. 401–408.
[34] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-time signal

processing, 2nd ed. Prentice Hall, 1999.
[35] H. Stark and J. W. Woods, Probability, statistics, and random processes

for engineers, 4th ed. Pearson Prentice Hall, 2012.
[36] M. Claypool and K. Claypool, “Latency and player actions in online

games,” Communications of the ACM, vol. 49, no. 11, pp. 40–45, 2006.
[37] K. Raaen and T.-M. Grønli, “Latency thresholds for usability in games:

A survey,” in Proc. Norwegian Informatics Conference (NIK), Nov.
2014, pp. 1–12.

[38] The CMU Motion of Body (MoBo) Database. [Online]. Available:
http://mocap.cs.cmu.edu.

[39] G. Bjontegaard, “Calculation of average PSNR differences between RD-
curves,” ITU-T VCEG-M33, 2001.

[40] I. Cheng, A. Firouzmanesh, and A. Basu, “Perceptually motivated
LSPIHT for motion capture data compression,” Computers & Graphics,
vol. 51, pp. 1–7, Oct. 2015.

[41] ITU-R, “Recommendation ITU-R BT.500-13: Methodology for the
subjective assessment of the quality of television pictures,” Jan. 2012.

Choong-Hoon Kwak received the B.S. and M.S.
degrees in Electrical Engineering from Rensselaer
Polytechnic Institute, Troy, NY, USA, in 1999 and
2002. He is currently pursuing the Ph.D degree
in the School of Engineering Science at Simon
Fraser University, Burnaby, BC, Canada. His current
research interests include signal processing, motion
capture and dynamic 3D mesh data compression, and
multimedia communications.

Ivan V. Bajić (S’99-M’04-SM’11) is Associate
Professor of Engineering Science at Simon Fraser
University, Burnaby, BC, Canada. His research in-
terests include signal, image, and video processing
and compression, multimedia ergonomics, and com-
munications. He has authored about a dozen and co-
authored another eight dozen publications in these
fields. He has served on the organizing and/or pro-
gram committees of various conferences in the field,
including GLOBECOM, ICC, ICME, and ICIP. He
was the Chair of the Media Streaming Interest Group

of the IEEE Multimedia Communications Technical Committee from 2010 to
2012. He is currently serving as Associate Editor of IEEE TRANSACTIONS

ON MULTIMEDIA and IEEE SIGNAL PROCESSING MAGAZINE, and the Chair
of the Vancouver Chapter of the IEEE Signal Processing Society.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TMM.2017.2655423

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

