59 research outputs found

    Secure and Privacy-preserving Data Sharing in the Cloud based on Lossless Image Coding

    Get PDF
    Abstract Image and video processing in the encrypted domain has recently emerged as a promising research area to tackle privacy-related data processing issues. In particular, reversible data hiding in the encrypted domain has been suggested as a solution to store and manage digital images securely in the cloud while preserving their confidentiality. However, although efficiency has been claimed with reversible data hiding techniques in encrypted images (RDHEI), reported results show that the cloud service provider cannot add more than 1 bit per pixel (bpp) of additional data to manage stored images. This paper highlights the weakness of RDHEI as a suggested approach for secure and privacy-preserving cloud computing. In particular, we propose a new, simple, and efficient approach that offers the same level of data security and confidentiality in the cloud without the process of reversible data hiding. The proposed idea is to compress the image via a lossless image coder in order to create space before encryption. This space is then filled with a randomly generated sequence and combined with an encrypted version of the compressed bit stream to form a full resolution encrypted image in the pixel domain. The cloud service provider uses the created room in the encrypted image to add additional data and produces an encrypted image containing additional data in a similar fashion. Assessed with the lossless Embedded Block Coding with Optimized Truncation (EBCOT) algorithm on natural images, the proposed scheme has been shown to exceed the capacity of 3 bpp of additional data while maintaining data security and confidentiality

    Holographic representation: Hologram plane vs. object plane

    Get PDF
    Digital holography allows the recording, storage and subsequent reconstruction of both amplitude and phase of the light field scattered by an object. This is accomplished by recording interference patterns that preserve the properties of the original object field essential for 3D visualization, the so-called holograms. Digital holography refers to the acquisition of holograms with a digital sensor, typically a CCD or a CMOS camera, and to the reconstruction of the 3D object field using numerical methods. In the current work, the different representations of digital holographic information in the hologram and in the object planes are studied. The coding performance of the different complex field representations, notably Amplitude-Phase and Real-Imaginary, in both the hologram plane and the object plane, is assessed using both computer generated and experimental holograms. The HEVC intra main coding profile is used for the compression of the different representations in both planes, either for experimental holograms or computer generated holograms. The HEVC intra compression in the object plane outperforms encoding in the hologram plane. Furthermore, encoding computer generated holograms in the object plane has a larger benefit than the same encoding over the experimental holograms. This difference was expected, since experimental holograms are affected by a larger negative influence of speckle noise, resulting in a loss of compression efficiency. This work emphasizes the possibility of holographic coding on the object plane, instead of the common encoding in the hologram plane approach. Moreover, this possibility allows direct visualization of the Object Plane Amplitude in a regular 2D display without any transformation methods. The complementary phase information can easily be used to render 3D features such as depth map, multi-view or even holographic interference patterns for further 3D visualization depending on the display technology.info:eu-repo/semantics/publishedVersio

    A Review on Steganography Techniques

    Get PDF
    Steganography is the science of hiding a secret message in cover media, without any perceptual distortion of the cover media. Using steganography, information can be hidden in the carrier items such as images, videos, sounds files, text files, while performing data transmission. In image steganography field, it is a major concern of the researchers how to improve the capacity of hidden data into host image without causing any statistically significant modification. Therefore, this paper presents most of the recent works that have been conducted on image steganography field and analyzes them to clarify the strength and weakness points in each work separately in order to be taken in consideration for future works in such field.   

    DNA and Plaintext Dependent Chaotic Visual Selective Image Encryption

    Get PDF
    Visual selective image encryption can both improve the efficiency of the image encryption algorithm and reduce the frequency and severity of attacks against data. In this article, a new form of encryption is proposed based on keys derived from Deoxyribonucleic Acid (DNA) and plaintext image. The proposed scheme results in chaotic visual selective encryption of image data. In order to make and ensure that this new scheme is robust and secure against various kinds of attacks, the initial conditions of the chaotic maps utilized are generated from a random DNA sequence as well as plaintext image via an SHA-512 hash function. To increase the key space, three different single dimension chaotic maps are used. In the proposed scheme, these maps introduce diffusion in a plain image by selecting a block that have greater correlation and then it is bitwise XORed with the random matrix. The other two chaotic maps break the correlation among adjacent pixels via confusion (row and column shuffling). Once the ciphertext image has been divided into the respective units of Most Significant Bits (MSBs) and Least Significant Bit (LSBs), the host image is passed through lifting wavelet transformation, which replaces the low-frequency blocks of the host image (i.e., HL and HH) with the aforementioned MSBs and LSBs of ciphertext. This produces a final visual selective encrypted image and all security measures proves the robustness of the proposed scheme

    Research on digital image watermark encryption based on hyperchaos

    Get PDF
    The digital watermarking technique embeds meaningful information into one or more watermark images hidden in one image, in which it is known as a secret carrier. It is difficult for a hacker to extract or remove any hidden watermark from an image, and especially to crack so called digital watermark. The combination of digital watermarking technique and traditional image encryption technique is able to greatly improve anti-hacking capability, which suggests it is a good method for keeping the integrity of the original image. The research works contained in this thesis include: (1)A literature review the hyperchaotic watermarking technique is relatively more advantageous, and becomes the main subject in this programme. (2)The theoretical foundation of watermarking technologies, including the human visual system (HVS), the colour space transform, discrete wavelet transform (DWT), the main watermark embedding algorithms, and the mainstream methods for improving watermark robustness and for evaluating watermark embedding performance. (3) The devised hyperchaotic scrambling technique it has been applied to colour image watermark that helps to improve the image encryption and anti-cracking capabilities. The experiments in this research prove the robustness and some other advantages of the invented technique. This thesis focuses on combining the chaotic scrambling and wavelet watermark embedding to achieve a hyperchaotic digital watermark to encrypt digital products, with the human visual system (HVS) and other factors taken into account. This research is of significant importance and has industrial application value

    Triple scheme based on image steganography to improve imperceptibility and security

    Get PDF
    A foremost priority in the information technology and communication era is achieving an effective and secure steganography scheme when considering information hiding. Commonly, the digital images are used as the cover for the steganography owing to their redundancy in the representation, making them hidden to the intruders. Nevertheless, any steganography system launched over the internet can be attacked upon recognizing the stego cover. Presently, the design and development of an effective image steganography system are facing several challenging issues including the low capacity, poor security, and imperceptibility. Towards overcoming the aforementioned issues, a new decomposition scheme was proposed for image steganography with a new approach known as a Triple Number Approach (TNA). In this study, three main stages were used to achieve objectives and overcome the issues of image steganography, beginning with image and text preparation, followed by embedding and culminating in extraction. Finally, the evaluation stage employed several evaluations in order to benchmark the results. Different contributions were presented with this study. The first contribution was a Triple Text Coding Method (TTCM), which was related to the preparation of secret messages prior to the embedding process. The second contribution was a Triple Embedding Method (TEM), which was related to the embedding process. The third contribution was related to security criteria which were based on a new partitioning of an image known as the Image Partitioning Method (IPM). The IPM proposed a random pixel selection, based on image partitioning into three phases with three iterations of the Hénon Map function. An enhanced Huffman coding algorithm was utilized to compress the secret message before TTCM process. A standard dataset from the Signal and Image Processing Institute (SIPI) containing color and grayscale images with 512 x 512 pixels were utilised in this study. Different parameters were used to test the performance of the proposed scheme based on security and imperceptibility (image quality). In image quality, four important measurements that were used are Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Mean Square Error (MSE) and Histogram analysis. Whereas, two security measurements that were used are Human Visual System (HVS) and Chi-square (X2) attacks. In terms of PSNR and SSIM, the Lena grayscale image obtained results were 78.09 and 1 dB, respectively. Meanwhile, the HVS and X2 attacks obtained high results when compared to the existing scheme in the literature. Based on the findings, the proposed scheme give evidence to increase capacity, imperceptibility, and security to overcome existing issues

    Hardware realization of discrete wavelet transform cauchy Reed Solomon minimal instruction set computer architecture for wireless visual sensor networks

    Get PDF
    Large amount of image data transmitting across the Wireless Visual Sensor Networks (WVSNs) increases the data transmission rate thus increases the power transmission. This would inevitably decreases the operating lifespan of the sensor nodes and affecting the overall operation of WVSNs. Limiting power consumption to prolong battery lifespan is one of the most important goals in WVSNs. To achieve this goal, this thesis presents a novel low complexity Discrete Wavelet Transform (DWT) Cauchy Reed Solomon (CRS) Minimal Instruction Set Computer (MISC) architecture that performs data compression and data encoding (encryption) in a single architecture. There are four different programme instructions were developed to programme the MISC processor, which are Subtract and Branch if Negative (SBN), Galois Field Multiplier (GF MULT), XOR and 11TO8 instructions. With the use of these programme instructions, the developed DWT CRS MISC were programmed to perform DWT image compression to reduce the image size and then encode the DWT coefficients with CRS code to ensure data security and reliability. Both compression and CRS encoding were performed by a single architecture rather than in two separate modules which require a lot of hardware resources (logic slices). By reducing the number of logic slices, the power consumption can be subsequently reduced. Results show that the proposed new DWT CRS MISC architecture implementation requires 142 Slices (Xilinx Virtex-II), 129 slices (Xilinx Spartan-3E), 144 Slices (Xilinx Spartan-3L) and 66 Slices (Xilinx Spartan-6). The developed DWT CRS MISC architecture has lower hardware complexity as compared to other existing systems, such as Crypto-Processor in Xilinx Spartan-6 (4828 Slices), Low-Density Parity-Check in Xilinx Virtex-II (870 slices) and ECBC in Xilinx Spartan-3E (1691 Slices). With the use of RC10 development board, the developed DWT CRS MISC architecture can be implemented onto the Xilinx Spartan-3L FPGA to simulate an actual visual sensor node. This is to verify the feasibility of developing a joint compression, encryption and error correction processing framework in WVSNs
    corecore