HARDWARE & SOFTWARE CODESIGN OF A
JPEG2000 WATERMARKING ENCODER

Jose Antonio Mendoza, B.S.

Thesis Prepared for the Degree of

MASTER OF SCIENCE

UNIVERSITY OF NORTH TEXAS

December 2008

APPROVED:

Elias Kougianos, Major Professor

Saraju P. Mohanty, Co-Major Professor

Robert B. Hayes, Committee Member

Nourredine Boubekri, Chair of the Department of
Engineering Technology

Costas Tsatsoulis, Dean of the College of
Engineering

Sandra L. Terrell, Dean of the Robert B. Toulouse
School of Graduate Studies

Mendoza, Jose Antonio. Hardware and software codesign of a JPEG2000 watermarking

encoder. Master of Science (Engineering Systems) December 2008, 77 pp., 6 tables, 59 figures,
references, 38 titles.

Analog technology has been around for a long time. The use of analog technology is
necessary since we live in an analog world. However, the transmission and storage of analog
technology is more complicated and in many cases less efficient than digital technology. Digital
technology, on the other hand, provides fast means to be transmitted and stored. Digital
technology continues to grow and it is more widely used than ever before. However, with the
advent of new technology that can reproduce digital documents or images with unprecedented
accuracy, it poses a risk to the intellectual rights of many artists and also on personal security.
One way to protect intellectual rights of digital works is by embedding watermarks in them. The
watermarks can be visible or invisible depending on the application and the final objective of the
intellectual work.

This thesis deals with watermarking images in the discrete wavelet transform domain.
The watermarking process was done using the JPEG2000 compression standard as a platform.
The hardware implementation was achieved using the ALTERA DSP Builder and SIMULINK
software to program the DE2 ALTERA FPGA board. The JPEG2000 color transform and the
wavelet transformation blocks were implemented using the hardware-in-the-loop (HIL)

configuration.

Copyright 2008

by

Jose Antonio Mendoza

ACKNOWLEDGMENTS

I would like to thank my thesis advisor Dr. Elias Kougianos and Dr. Saraju P. Mohanty
for their support and advice. | really appreciate all the help and guidance they gave me with my
research and | thank them for providing me with the necessary resources to successfully
accomplish my research objectives. Without the kind help of my thesis advisors and members of
my committee, it would have been impossible for me to successfully complete my thesis.

I would also like to thank my dear host family who has been there for me at all times.
Thank you Howard and Sarah Stone for always believing in me. | am very fortunate to have met
people like Silvia, Magy and her family, Mark, Bri, Bobby, and all the professors in the
department of engineering technology who made my life in college much more pleasant and
bearable.

I thank God for giving me the opportunity of coming to this country and finishing my
bachelor’s and master’s degree at UNT. | dedicate this thesis to my beloved parents, family and

host family and friends.

TABLE OF CONTENTS

ACKNOWLEDGMENTS ...ttt bbbttt bbbt i
LIST OF FIGURES ...ttt bbbttt bbbttt vii
Chapters
1. INTRODUCTION ...ttt sttt 1
11 Border Security and Intellectual Property Protectioncccceovevveinnen, 1
2. THE NEED FOR COMPRESSIONooiiiiiiiiiiciesieieieie e 4
2.1 Reasons for Compression Data..........cccuevveierieeresiieseene e seesie e sieesee e 4
2.2 Data Compression and CODEC...........ccooiiiiiiieniee e 5
2.3 Different Media & Data Compression Modelcccccvevvviveveiieieciecnen, 5
24 Image Compression FrameWOrKcoueiierinie e e 6
2.5 RedUNTANCY TYPES...iciiiieiiieieieerieeie s sie e eeste e taeae e teeae e steeneenreas 8
2.5.1 Coding RedUNANCYccciiiiiiiiiieiesie e e 8
2.5.2 Interpixel RedUNdanCYcccooevviieiieii e 9
3. THE JPEG2000 COMPRESSION STANDARDcccoiiieieiecieseeeseeee e, 17
31 HOW IEWOTKS. ... 17
3.1.2 Analyzing JPEG2000 Compression Ratiosccceevereerenennnnn, 21
3.2 Why JPEG2000 Over Regular JPEG.........cccecevveiecieieese e, 22
4. STEGANOGRAPHY IN GENERAL......ccoiiiiierinieiee e, 24
4.1 DEFINITION .. 24
4.2 HOW IEWOIKS. ..ot 25
4.3 APPHICALIONS ...ttt 26
4.4 Types of Steganographycccceeceiveriiie e 29
o R | [Y/ o= PSPPSR 29
4.4.2 Methods of Hiding Data..........cccoeiveiieiiiieieee e 29
4.5 Digital Watermarkingcoccoveeieiienienieie e 30
5. HARDWARE IMPLEMENTATION OF JPEG2000 WATERMARKING

ENCODER 32

5.1 MATLAB & SIMULINK Architecture For The JPEG2000 Watermarking
Encoder 32
5.2 Hardware Implementation ... 37
5.2.1 Reasons for USING FPGAScccoveiiiiesiese e sn e 38
5.3 RGB-to-YCbCr Color Transform FPGA Implementation 38
5.3.1 Color Transformation............ccoceririnieiieiene e 38
5.3.2 Hardware-In The-Loop (HIL) Using The ALTERA DSP Builder
AN SIMULINK ... 39
5.3.3 DSP Builder VHDL Generation For SIMULINK Color
Transformation STIUCTUIEoveieriirieicceree e, 41
5.3.4 Hardware-In the-Loop (HIL) Set Up Process.........ccccevvvervninnnnn, 43
54 MATLAB, SIMULINK And DSP Builder JPEG2000 Watermarking
PrOCESS FIOW ... e 48
5.4.1 Color Transformation...........c.ccoceiiririiiieiene e 48
5.4.2 Wavelet Domain Watermarkingc.cccocevvevenenneniiesienesie s, 48
55 The ALTERA DSP Builder and Wavelet Transforms...........c.ccocevvvriennen. 49
5.5.1 WaAVEIELS.....oieieiicie et 49
5.5.2 Reasons for Using the Discrete Wavelet Transform..................... 51
5.5.3 -Digital Images and Discrete Wavelet Transforms...............cccc....... 54
5.5.4 Discrete Wavelet Transform Hardware Implementation.............. 55
5.6 Differences on the JPEG2000 and the MATLAB Simulation Algorithm 63
CONGCLUSIONS ...ttt ettt 64
6.1 Analog and Digital Technology........cccccoveiiiiiiiiieiee e, 64
6.2 Reasons for Including Watermarks............cccevevveresiienieene e see s, 64
6.2.1 Intellectual RIGNTScooviiiii e 64
6.2.2 National SECUILYeecveiiiiieie e 64
6.3 Need fOr COMPIESSIONcveiiiiiiieiesiie e 65
6.4 JPEG2000 Functional Diagram and Basic PrinCiples...........ccccccevuvrvennenn. 65
6.5 Areas for Further INVestigationc.ccoocueiiiiniinie s 66
6.5.1 Wavelet Transforms On IMagescccceevverveierivereeiieseeseeeennens 66
6.5.2 Different Watermarking Algorithms..........ccccoccvieiiniiiinniiiinenn, 67
6.5.3 Hardware INtegration.ccceeeevieieeiesie e 67

APPENDIX A ALTERA DSP AND JPEG2000 COMPRESSION/DECOMPRESSION
MATLAB CODE

APPENDIX B FPGA BRAND AND MODEL USED FOR THE HARDWARE
PROTOTYPING OF THE RGB-TO-YCBCR COLOR TRANSFORMATION ALGORITHM 72

REFERENGCESot 75

Vi

LIST OF FIGURES

FIGUIE 1 - CODECiiiii ettt et e s e e ba et e e st e s teete e st e eseeaeeneesreenteeneeaneeneas 5
Figure 2 - Data Compression Model for Compressions SYStEMSccoveveiieriierinie e 6
Figure 3 - General Image Compression FrameWOrK...........cccoveiieiiie e 7
Figure 4 - Interpixel Redundancy EXample ..o 10
Figure 5 — Predictive Coding MOGEL...........c.coviiiieiiee e 11
Figure 6 - Lossless Predictive Coding MOlccooiiiiiiiiiiiieiee e 12
Figure 7 - Lossless Predictive Decoding MOdElcccoveiveieiiiiiececc e 12
Figure 8 - Mapping EXAMPIEooiiiiiie e 14
Figure 9 - Psychovisual Data — Figures A,B,C with different quantization ratios 15
Figure 10 - Basic Blocks for JPEG2000 COMPIESSIONccveruerieiieiiaiesieesiesiesiee e seeseesseesnee e 18
Figure 11 - Wavelet SUD BandScccveiiiiiicece e 19
Figure 12 - Basic Blocks for JPEG2000 DeCOMPIESSIONccvueruirrieeriiaierieesiesiesieesieseeseesseesneenes 19
Figure 13 - - Before and After JPEG2000 Compression IMagesS.......ccvevevvereeieesieesieereeseesseeneenns 20
Figure 14 - Error Calculation On JPEG2000 Compressed IMagecccoevverereeneenesieesesnieseens 21
Figure 15 - Analysis Of JPEG2000 Coefficient Distributioncccoeceviieveniesiiese e 22
Figure 16 - Steganography Process BIOCK DIagramcccoverieieeninienienesie e 25
Figure 17 - Steganograpny 1N AUAIOccooiieieiisieceee e 27
Figure 18 - Visible WatermMarkingccooe e 31
Figure 19 - JPEG2000 Basic BIOCK DIagraimccceiveiierieereeieseeseereesee e siesee e eeesnee e enee e 33
Figure 20 - JPEG2000 SIMULINK MOGEL.......cc.oiiiiiiiiiii e 33
Figure 21- Representation Of EQUALION 5cccuviiiiieii e 34
Figure 22 - Watermarked Image Color COMPONENTS..........oiverieiiriieieeie e 35
Figure 23 — DSP Builder + JPEG2000 Watermarking Architecture In SIMULINK 36
Figure 24 - SIMULINK JPEG2000 Watermarked Output Imageccovveveriieninncnie e 37

vii

Figure 25 - Color Transformation HIL AIgorithm FIOWcccocviiiiiiiiiieee e 40

Figure 26 - DSP Builder RGB-t0-YCDOCR BIOCKScccoiiieiiiiieiiesecic e 42
Figure 27 - DSP Builder BIOCKS FOr SUDSYSIEM Ycoiuiiiiiieiecie e 42
Figure 28 -DSP Builder Blocks For SUDSYStEM Ch........cccviveieiiiiiececc e 42
Figure 29- DSP Builder Blocks FOr SUDSYSEM Crcvviiiiiiiiiiieiieeeee e 43
Figure 30 - HIL SEtup => SEEP #L .o.vieiieecie ettt sbe et ne e 43
Figure 31- HIL Setup => Step #2 =>RUN SYNtNESIS........ccoiiiiiiiieiiei e 44
Figure 32-HIL Setup => Step #3 =>Run QUArtus Fitter...........cccccviiieriieieiiiece e 44
Figure 33-HIL Setup => Step #4 =>Create New SIMULINK Project + Insert HIL Block 45
Figure 34-HIL Setup => Step #5 => Compile + Configure FPGA ..., 45
Figure 35-HIL Setup => FINAl SEP ..ccueiiiiieiieee et 46
Figure 36 - VHDL Synthesis & Vector File SImulation............ccccooeviiie i 47
Figure 37 — Color Transform AlIgorithm RTL VIEWcccoiiiiiiieiieice e 47
Figure 38-Color Transformation BIOCK Diagramccccevvereeieiieenieie e 48
Figure 39 - Wavelet Domain Watermarkingccooceeverieieeienie e 48
Figure 40 - Remaining Steps After Wavelet Watermarking...........cccoovveveiivenesiesieene e 49
Figure 41 — Complete JPEG2000 Watermarking Process FIOW...........ccccovvevinieninnciiie s 49
Figure 42- MOther WAVEIEL............ooiiiiee ettt 50
Figure 43- Translation By "Doo et 51
FIgUIe 44- DIlation BY "a™oo ettt be e e re e 51
Figure 45 - Decomposition FIIter Bank ..o 53
Figure 46 - SYNthesis FIlter BanKccooiiiieiiic e 53
Figure 47 - Input Signal And DSP Builder Filter Bank...........cccocoioieiiiiiiieiinenecee e 56
Figure 48 - SIMULINK-To-DSP Builder 8-Bit INpUt/OULPUL..........cccvevveiiiiiieiecie e 57
Figure 49- FIR Compiler And Filter Bankcccoiiiiiiiiiiiee e 57

viii

Figure 50- Decomposition FIR FIlter BankKccooooiiiiiiiieeece e 58

Figure 51 - Synthesis FIR FIIter BanKccooiiiiiiiiice e 58
Figure 52 - High-Pass Decomposition Filter Set Up => Step L.......ccoooviiiiiiiiniieniencee e 59
Figure 53 - High-Pass Decomposition Filter Set Up => Step 2.......cccccveveviveveniie e 60
Figure 54 - Signal's High, Medium High, Medium Low And Low Frequency Components61
Figure 55 - Filter Bank Ouput. Top = Reconstructed; Bottom = Originalcccccvevvvvereennnne. 61
Figure 56 - DSP Builder VHDL GeNEratioN..........c.ciieiirieiieriesiesiee et 62
Figure 57 - Quartus Project Generated From DSP Builder VHDL File........ccccccooveiviiiiicceee, 62
Figure 58- JPEG2000 Compression/Decompression Basic BIOCKS...........cccoocveiiiiiiiiiiincenn, 65
Figure 59- ALTERA DE2 BOAIU.......cccveiiiiieiieiecie sttt e ettt e et e e naenneenne e e 73

CHAPTER 1
INTRODUCTION

For years, financial institutions and big companies have struggled to protect themselves
against crimes that involve fraudulent documents and forgery. As the ability to reproduce
documents using computer technology and scanners increases, so does the incidence of forgery
and similar crimes (1). In order to hinder criminals from these illegal activities, government
agencies and scientific communities have joined efforts to create ways to encrypt special data or
symbols into documents that can be set apart from imitations (2)(3). Unfortunately, many of
these encryption methods can be cracked or tempered by having the right tools and proper
training. Many of these methods are not very effective because criminals are able to find the data
encrypted on the material that is being forged. Heat-sensitive ink and UV light technologies have
been widely used by banks and industry to hide data. Thus, criminals know what to look for or
when to be suspicious of certain documents. A good approach to encrypt data is to hide it even
from criminals. This approach is a science by itself and it is called steganography. A procedure
like this can be achieved in different ways, one of which is by inserting watermarks using

frequencies above or below the human sensorial system (HSS) frequency spectrum (4).

11 Border Security and Intellectual Property Protection

Not only can this approach be used to keep banks and financial institutions from losing
money, but it can also be used to enhance national border security. During times of war, higher
border security is very important and necessary to avoid a possible enemy attack. In the United
States, for example, millions people cross the U.S borders illegally every year (3). National

security is severely jeopardized since illegal intruders are able to obtain fake identifications and

other important documents once inside the U.S. Border security is increasing and better
technology is being used to keep illegal intrusions through the Canadian and Mexican borders.
However, having more secure passports and proper documentation could make it even harder for
the enemy to enter U.S soil. This approach could be used to watermark names, social security
numbers, and even phone numbers on IDs, passports or visas more effectively (4). Equipment to
encode watermarks and decode such information could be assigned only to the homeland
security department to control it and manage it. Verifying and ensuring the authenticity of
documents is a step towards protecting governmental institutions, banks and even individuals.
Another reason to use hidden watermarks is to protect intellectual property. A
professional photographer, for example, is likely to invest thousands of dollars on high class
equipment to provide good quality pictures. The investment made by photographers and
sometimes artists is jeopardized when pictures and computer artwork are replicated with amazing
accuracy using image processing software and scanning devices. Pictures and artwork are very
vulnerable to forgery attacks when used on websites in the Internet. Once an image or picture has
been placed in the internet, it is nearly impossible to protect it from being downloaded by
internet users. The image is unprotected and false ownership claims can be made if the image is
modified enough from its original. The infringement of intellectual property rights is very
common nowadays and it is hard to keep control over who owns the rights to what. However, it
is essential to keep finding ways to protect the intellectual work of designers and artists to avoid
further economic losses that could affect more areas of the media industry (5). Watermarking
provides a useful and elegant way to deter copy right infringement. By inserting watermarks in
images and artwork, the original designer or creator can claim legal ownership over them (4). In

addition to adding watermarks, intellectual work can be further protected by having the quality

of the work be significantly damaged if the watermarks are removed. This helps original

designers make the necessary claims or changes to protect their intellectual work.

CHAPTER 2
THE NEED FOR COMPRESSION

Digital technology is growing and becoming more widely used than it was a few decades
ago. With the invention of computers, cell phones, and internet, digital representation of data has
become imperative and so the need to create ways to store it more efficiently (6). Digital
technology has occupied nearly all areas of the everyday life for most people nowadays.
Kitchens, cars, appliances and even furniture have now digital technology embedded inside. The
transition from analog to digital is now quite evident and it is primarily due to the many
advantages that can be found in digital technology. As compared with analog data, digital data is
more robust and less sensitive to noise due to electromagnetic fields and other external factors.
Analog data, on the other hand, can be easily lost or degraded if an analog channel is located

near magnetic fields or extreme temperature changes.

2.1 Reasons for Compression Data

In addition to being more resistant to noise, digital data is also more easily reproduced
and stored. The reproduction of analog data requires expensive equipment and its storage does
require large amounts of material. An audio tape, for example, requires several meters of
magnetic tape in order to store a dozen songs. On the other hand, the same tape can be digitalized
and compressed to reduce the amount of material needed to reproduce the same amount of data.
However, even as data becomes digitalized, it does require some compression in order to be
stored and transmitted more efficiently. Memory space and bandwidth are two of the most
common reasons for compressing digital data (6). Prices for memory space and devices have

gone down; nevertheless, the use of bandwidth for telecommunication purposes continues to

increase, thus the need for more efficient compression algorithms is great. A sample of a low-
resolution video file of 30 frames per second, containing 640x480 pixels per frame, for example,
requires storage space of about 95 gigabytes. The transmission of this video file through a
regular communication channel is impossible in its original form. By compressing large files, not
only is it possible to send it through a transmission channel, but it is also easier to store it more

efficiently (6).

2.2 Data Compression and CODEC

Data compression is a method to compress an input signal and represent it with less
number of elements or bits. Figure 1 shows a simplified diagram of a compression system and a
decompression system. When connected both are connected as a single system they form a

CODEC.

F F Reconstructed
Compression Decompression

Input Data —» System System Data

Compressed
Data

Figure 1 - CODEC

A CODEC that outputs data with identical characteristics of the input data it is said that
the systems is operated using “lossless” compression techniques. However, if the output and

input data are not exactly alike, then “lossy” techniques are being used (7)(8).

2.3 Different Media & Data Compression Model

Data compression can be applied to several types of media. Video, audio, and still images

are good examples of media being compressed nowadays to optimize its transmission or storage

requirements. Figure 2 shows a simplified block diagram of a data compression model.

Input Reduction of Data L, Reduction of Entropy N Compressed
Data Redundancy Entropy Encoding Data

Figure 2 - Data Compression Model for Compressions Systems

The amount of redundant data found on still images, video and audio is usually quite
large. The higher the digital quality of the media, the more redundant data is contained in it. The
amount of redundancy can be reduced greatly if only human senses are involved on the quality
appreciation of the media to process. Human perception, such as eyes or ears, is quite limited to
a certain frequency spectrum. Redundancy contained in an image above the human sensorial
frequency threshold will be completely invisible to our senses. This type of redundancy is called
“perceptual” redundancy (9). Redundancy in still images, for example, is mostly due to the pixel
correlation on their frequency and spatial values. The variation on these values is so small that
our eyes cannot detect it. Hence it is not “perceived” and it can be taken out without visually
affecting the quality of the picture. By taking out redundant data in an image, further

compression is achieved.

2.4 Image Compression Framework

Figure 3 shows a general compression framework and the two types of compression
schemes which are lossy and lossless data compression. If human sensing is involved on the
quality appreciation of the reconstructed data, then further reduction of redundancy can be

achieved by using quantization (9). Quantization is an irreversible process used in lossy

compressions and it should be avoided if loss of information on media could cause undesired

results. Quantization is part of the “additional preprocessing” block in Figure 3.

Lossy
Encoding Additional

Preprocessing

Decorrelation

or
Preprocessing

Lossless Encoding

Entropy
Encoder

Compressed
Image

Figure 3 - General Image Compression Framework

Input I,
Image

In cases in which data are text or numbers, one must decide carefully if lossy or lossless
compression techniques should be used. Data is composed of pertinent information and
redundancy. In some cases, redundancy is desired and even essential when decompressing data
(6). For example, whenever data compression takes place, redundancy is taken out and only the
compressed data is processed for transmission or storage. However, when decompression takes
place, redundancy must be re-inserted into the data in order to represent it in its original form.
Some amount of redundancy in text and numerical data bases is necessary in order to make sense
of what the information is about after decompression has taken place. For numerical data bases it
would be impossible to determine the order of data properly if a number was missing after a
lossy compression took place. A document would be hard to read if letters “i"" and “e” were left

out because they are the most redundant letters in the English language (6). Careful analysis of

the data is essential when compressing different types of images. Before proceeding to compress

any image, one must decide whether to use lossy or lossless compression techniques. In some
cases when the information conveyed in a picture is not critical, further compression of the
image can take place by using lossy compression techniques. By quantizing and reducing the
number of bits representing the image even further, the image will lose perceptual information
and provide efficient storage and transmission capabilities (9). However, if an important image
such as a mammaography is being compressed, it is obvious that lossless compression must be
used and quantization must be avoided. An improper analysis of these types of images could be
disastrous for the patient being examined.

In summary, image compression is a method to represent an image with less numbers of
bits without damaging the visual and information quality of the image itself. Depending on the
compression technique, whether lossy or lossless, the reduction of redundancy can be small or
great. If lossy compression is used, the amount of redundancy eliminated is greater than using
lossless compression. However, using lossy compression introduces quantization errors on the
final decompressed image. Thus, depending on the application and the final user to analyze the

compressed file, the appropriate compression technique should be used.

2.5 Redundancy Types
In images, compression is accomplished by removing one or more of the three most
common types of redundancies which are coding redundancy, interpixel redundancy and

psychovisual redundancy (9).

2.5.1 Coding Redundancy

Coding redundancy is the result of coding symbols with short and long lengths using the

same code length for all coding regardless of their probability to occur. The gray levels of a gray-
scale image, for example, generate symbols of different length and with different probabilities of
occurring. By assigning short codes to the gray levels that occur the most, and long codes to the
gray levels that occur less frequently, redundancy is reduced and the encoding process is
optimized. Coding redundancy is present when less than optimal symbols or words are encoded

and no consideration is given to the length of the codes (6).

2.5.2 Interpixel Redundancy

Interpixel redundancy occurs when the pixel values of an image are correlated. In most
cases, this type of redundancy can be reduced by applying coding techniques and mathematical
transformations to better represent pixel information (10). An example of a coding technique to
reduce interpixel redundancy is the variable-length Huffman coding technique. Figure 4 shows
two gray scaled images with different pixel alignment. Image A is composed of several pixels
that show no specific pattern, whereas Image B shows a more adjacent or similar pattern among
pixels. The variable-length Huffman coding technique was used to analyze the amount of
entropy contained in the A and B images in Figure 4.

The images entropy analysis was done using MATLAB. See Table 1.

Table 1 - MATLAB Random Entropy and Coding Analysis
f2=imread('Aligned Matches.tif'); = %Read image B

c2=mat2huff(f2); %Apply coding technique

entropy(f2) %Display amount of information

ans = 7.3505

imratio(f2,c2) % Compare ratios between coded and original images
ans = 1.0821

(table continues)

fl=imread('Random Matches.tif'); %Read Image A

cl=mat2huff(f1); %Apply coding technique

entropy(fl) %Display amount of information

ans = 7.4253

imratio(f1,c1) %Compare ratios between coded and original
images

ans = 1.0704

T e T T T
CEEe L RanE e 08 =0 @ CEgE L RAanD & 00 =0

Figure 4 - Interpixel Redundancy Example

Even though Image B has a more predictable pixel pattern than the Image A, the entropy
level remains almost the same after using Huffman coding. No much advantage using the
Huffman coding technique is found with these two images. In pictures where the majority of
pixels have similar values and are adjacent to each other, the difference between adjacent pixels
can be used to represent the image. Transformations that use this type of analysis are called

mappings (9). An example of predictive mapping is given in Figure 8. When mapping can be

10

reversed, that is when input data can be reconstructed from a given transformation, it is called

lossless. Figure 5 shows a lossless mapping predictive coding model.

5
Input ' Symhol
Image

—0

encoder \
Compressed

Predictor Nearest Image ¢
integer o Symbol Decompressed

A .
decoder | .t/ Imege
A
,

Predictor

(+

=

="

Figure 5 — Predictive Coding Model

The model shown in Figure 5 consists of an encoder and decoder, both containing the
same predictor block. As conforming pixels from the input image (fn) flow successively and are
processed by the encoder, the predictor creates an anticipated value based on past values of

pixels previously processed. The values generated from the predictor are then rounded up to the

nearest integer and denoted as f . The difference between the predicted and actual value of the

single pixel been analyzed is called “new information” or prediction error.

Equation 1 - Prediction Error e, en - fn - f n
The prediction error is subsequently coded using a variable-length code by the symbol
encoder. Subsequently, the symbol encoder generates the next element of compressed data

stream. The output is a series of bits representing a compressed version of the input image.

11

P
:s('b

Input ; Symbol
Image = encoder

Predictor Nearest
integer

Figure 6 - Lossless Predictive Coding Model

The lossless predictive coding is able to reduce interpixel redundancy of closely spaced
pixels by taking out only new information in every pixel and encoding it (9). To decode a
compressed image, the inverse process is used by using a predictive decoder. Figure 7 shows the

decoder stage of the lossless predictive coding model.

K S, D d
Compressed Symbol Y " CCOMPresse:
— = O
Image decoder ot/ Image

Predictor

Figure 7 - Lossless Predictive Decoding Model

The compressed data stream representing the compressed image is fed into the symbol
decoder to reconstruct the prediction error en. In order to reconstruct the pixels from the original

image fn, the inverse operation from Equation 1 is performed

Equation 2 — Pixel Reconstruction 1:n = en + f n

f. is found by using the Equation 3:

A m
Equation 3 — Prediction f, =round [Z“i fni:|
=)

Where a; = Prediction coefficients

12

The prediction of pixels is achieved by taking into account the values of previous pixels.

The variable m represents the order of the linear predictor, the round is a function used to
“round” up the coefficients to the nearest integer and ¢; contains i=1,2,3..m prediction

coefficients.

This mapping technique was analyzed and simulated using MATLAB. The results of the
image compression process are shown in Figure 8. The inter-pixel redundancy was further
reduced using the predictive mapping coding rather than using Huffman encoding. Thus, it is
necessary in some cases to try different mapping techniques to achieve greater reduction of inter-
pixel redundancy.

The following MATLAB code was used to compute the mapping of a gray level image.
Note the reduction of entropy from the original amount of entropy in the original image in Figure

8.

>> f=imread('Aligned Matches.tif");
>> e=mat2lpc(f);
>> imshow(mat2gray(e));
>> entropy(e)
ans = 5.9727
Original image = 7.3505 bits/pixel
Coded image = 5.9727 bits/pixel

This reduction of entropy allows for a more efficient encoding of the prediction error image in

Figure 8 .

>> c=mat2huff(e);
>> cr=imratio(f,c)
cr= 1.3311

13

The compression ratio is much better using this mapping coding technique than the Huffman
encoding one.

Mapping CR=1.3311

Huffman CR=1.0821

The histogram of prediction error was obtained to analyze the amount of entropy reduced.

>> [h,x]=hist(e(:)*512, 512);
>> figure; bar(x, h, 'k");

The high peaks around 0 and small value variations on the histogram graph show a lot of
interpixel redundancy been removed by using the prediction and differencing mapping process.
For images when patterns are aligned and pixel values are predictable, mapping techniques are

more effective on reducing redundancy than variable length coding techniques.

Original Image Prediction Error Image Histogram of Prediction Error

. B 8 8 8 8 § ¢

Figure 8 - Mapping Example

2.5.2 Psychovisual Redundancy
As mentioned before, image compression is a method that reduces the number of required

bits to represent the information of a given image. In image compression, there two fundamental

14

concepts which are redundancy reduction, which aims to reduce duplicate information, and
irrelevant reduction, which seeks to eliminate information not perceived by the human visual
system (H.V.S)(11)(12).

In contrast with coding and interpixel redundancy, psychovisual redundancy is highly
dependent on the H.V.S sensitivity. The reduction of psychovisual redundancy belongs to the
irrelevant reduction concept and it is in most cases desired for the simple visual processing of an
image. However, the reduction of psychovisual redundancy results in information loss due to the
guantization process necessary to eliminate this type of redundancy. The reduction of

psychovisually redundant data results in lossy data compression (9).

Fis G Ve Bwerl Tisk Deskiog Wislew el L E R Fis Bdk Ve leet Tool Destop Wreddes e
DEeae & Aan® = 0B =0 FsEHS LRSS ¢ 0B w0 RS F RANE 0@ O

A B C

Figure 9 - Psychovisual Data — Figures A,B,C with different quantization ratios

The image A in Figure 9, is the original image to process using quantization techniques to
reduce the amount of redundancy. The images B and C are the result of the psychovisual

redundancy reduction of image A. Images A and B have large quantization steps. The

15

quantization effects in B are noticeable on the texture of the base, whereas the image C has
almost no signs of being quantized at all. The image C uses a filter that allows for compensation

when large quantization steps are used.

16

CHAPTER 3
THE JPEG2000 COMPRESSION STANDARD

JPEG2000 is the new standard for image compression and it is the successor to the
former standard JPEG. The word JPEG stands for joint photographic experts group and it was
first considered as a compression standard in 1992 (7)(13). Both JPEG and JPEG2000 standards
were jointly developed by the international electrotechnical commission (IEC) and the
international organization for standardization (ISO). The main purpose of these two standards is
to achieve a good compression performance with variable compression ratios and excellent
decompressions with great quality on reconstructed images (6).

As well as the former JPEG standard, the JPEG2000 standard provides several
compression techniques and different modes of operation. Depending on the application, the
proper technique and mode are used. Nevertheless, JPEG2000 has more modes of operations and
other advantages over base-line JPEG which are mainly due to its compression algorithm based

on the discrete wavelet transform (13).

3.1 How It Works

The standard JPEG2000 relies on the idea that the coefficients obtained from wavelet
transformations to decorrelate pixels on an image are coded more efficiently than the values of
the pixels themselves (14). The basic function of the wavelet transformation is to concentrate the
pixels with the most pertinent visual information into a small number of coefficients. The rest of
the coefficients are then quantized or truncated to zero if lossy compression is being performed
9).

The basic blocks involved in the compression of the image using the JPEG2000 standard

17

are shown in Figure 10 (15)(9).

RGB RGB-to-YCbCr Wavelet Normalizer
Image Color Transform Transform Quantization

Symbol Encoder

Compressed
Image

Figure 10 - Basic Blocks for JPEG2000 Compression

Before applying the wavelet transformation to an RGB image, for example, the pixels of
the image are converted from the RGB domain to the YCbCr color domain. Applying a color
transformation to an image is an excellent way to decorrelate the color information contained in
the image. Once this is done, the wavelet transformation of the image can then be computed (9).
The initial decomposition of the image after one-level wavelet transformation results in 4 sub
bands. The first band is a low-resolution approximation of the image. The remaining bands are
the image’s horizontal, vertical, and diagonal frequency characteristics of the image, see Figure
11. The number of coefficients is then quantized for lossy compressions or encoded if lossless
compression is desired. The result is a set of coefficients that contain image information

regarding its frequency and space characteristics (16)(9).

18

oe
o000 |

aaaaaadaad

Figure 11 - Wavelet Sub Bands

The JPEG2000 decompression of an image is achieved by performing the inverse steps

taken to compress it. Figure 12 shows the basic steps to decompress a JPEG2000 image (9).

JPGIKE

Crompemed.
=g

—_

¥
Svmbol Denormalizar

Decoder il Inversze-0)

Inversa YChCr-to-RGB Dacomprassad
Wawalat Transform " Color Transform = RGB Image

Figure 12 - Basic Blocks for JPEG2000 Decompression

19

Figure 13 shows the original image and the compressed one using the JPEG2000
compression simulation in MATLAB. The image decompressed by JPEG2000 decoder in
Figure 12 was a grayscale image and it was one plane only. If an RGB image is to be compressed
and decompressed, three planes (red, green, blue) must be processed, each plane for each color

component of the image.

original image compressed image

Before JPEG2000 compression After JPEG2000 compression

Figure 13 - - Before and After JPEG2000 Compression Images

The following MATLAB code was used to generate a 42:1 compression ratio. The

JPEG2000 compression of the image was achieved using a five-scale wavelet transformation.

Table 2- MATLAB Commands to JPEG2000 Compression/Decompression

>> f=imread("flower.tif"); % Read image from directory

>> cl=im2jpeg2k(f, 5, [8 7-5]); %Perform JPEG2000 compression (46:1)
>> fl=jpeg2k2im(cl); %Perform JPEG2000 decompression

>> imshow(f1l) %Show compressed image

>> imshow(fF) %Show original image

Notice how the edges of the flower become blurred due to the high compression level. If
regular JPEG had been used to compress the image, there would be “blocking” on the picture

due to the DCT transform that it uses. JPEG2000 uses wavelet transformations and no

20

subdivisions of the image are necessary to decorrelate data, thus there is no “blocking” artifact

(N7).

3.1.2 Analyzing JPEG2000 Compression Ratios
Using the root-mean-square error (RMSE) is one way to calculate how much difference

exists between the original image and the compressed one.

Figure 14 - Error Calculation On JPEG2000 Compressed Image

The error image in Figure 14 show the difference between the original image and the
compressed one. The higher the compression ratio, the more visible the image becomes. This
effect is primarily due to the quantization errors introduced to the compressed image.
Quantization implies that a further process to reduce data redundancy has taken place. When
using quantization, some data is lost due to the rounding of coefficients from the transformations
previously taken. The data loss generates an error that can then be easily appreciated on the

figures above generated from the differences between the original and compressed images.

21

The following histograms in Figure 15 show the amount of interpixel redundancy

removed from the two compressions shown above:

4

RMSE = 4.9213

0 . .
-60 -40 -20 0 20 40 60

Figure 15 - Analysis Of JPEG2000 Coefficient Distribution

The high peaks around zero and small variations reflect the effects on the data
redundancy removal. The sharper the peaks and less variation, the higher the amount of

redundant data that has been removed.

3.2 Why JPEG2000 Over Regular JPEG

The idea behind the development of JPEG2000 is to compress an image only once and
decompress it in many different ways to suit different requirements (7). JPEG2000 was
developed based on the principles of the discrete wavelet transform (DWT). Regular JPEG uses
a different type of transformation called discrete cosine transform (DCT) and lacks the scalable
image compression features achieved by JPEG2000 wavelet transformations (6). The JPEG2000
standard compression has a few other advantages over regular JPEG which are:

e Superior compression performance
JPEG2000 has no perceptible artifacts or “blocking” when bit ratio compressions are

performed. The compression gains of JPEG2000 over regular JPEG are due to the use of

22

sophisticated entropy encoding schemes and the use of discrete wavelet transformations. (7)
e Multiple resolution representation
During the compression process using JPEG2000, the image gets decomposed into a
multiple resolution representation. This multiple resolution representation can serve for further
image analysis beyond just compression. (7)(18)
e Random code stream access and processing
Also known as region of interest (ROI), random code stream access allows for storage or
processing of certain parts of an image. JPEG2000 code streams can be processed separately
using different quality for areas that are more relevant in an image; thus, storage space is

optimized. More advantages are listed on (6)(7).

23

CHAPTER 4
STEGANOGRAPHY IN GENERAL

4.1 Definition

Steganography is derived from the Greek words *“steganos,” which means secret or
covered, and “graphy,” which means drawing or writing. The main purpose of steganography is
to insert hidden information in messages (or other mediums) in such manner that no one, besides
the sender and final recipient, will even realize there is information hiding in the message (11).
This type of technology is quite ancient. The use of steganography can be traced back as far 440
years BC. Demeratus warned his countrymen about a forthcoming attack to Greece by writing a
message on a wooden panel and concealing it by covering the panel with wax. In those days,
wax tablets were commonly used for writing, so no one suspected there could be information
hiding underneath the wax. Only the sender and recipient had knowledge of such hidden
message in the wax tablet. Other examples of steganography used in those days were invisible
ink that became visible with heat, usually milk and similar organic substances were used as ink.
Another way to conceal information was to tattoo a message on the shaved head of a person and
send the message only when the hair had grown back. A steganography message always appears
to be hiding on elements that seem inconspicuous such as a shopping list, an ad on a newspaper
or even a picture. The advantage of steganography over other techniques to covert data is that
messages don’t attract any attention to themselves, the messenger or the receiver (4).

For example cryptology, a technique that scrambles data to conceal its meaning, is not as
effective as steganography because the message is visible even if it is not decipherable. The fact

that the message can be seen but not understood can arouse suspicion and may incriminate the

24

messenger as well as the receiver. In some cases a combination of cryptology and steganography

is used to improve the effectiveness of hiding data from other people.

4.2 How It Works
Figure 16 shows a basic block diagram showing the steps used in steganography to hide a

message.

Message

——) | Encrypting

Optional

Text spacing
Letter size
Pixels on images

—

‘ + Hidden
+ } Message
‘ in Medium

Figure 16 - Steganography Process Block Diagram

A steganography message is first encrypted using traditional means in order to create
cipher-message. The encrypting of the message is optional and it is only done to further protect
the message. Before the message is inserted into the medium, a careful analysis is done to decide
where or how to hide the message. The characteristics of the medium, such as letter size and
spacing in text or even pixel values in images, are manipulated in such a way as to effectively
conceal the message to be sent (4). Only the recipient will then recover the message by

uncovering it using the same technique and by applying the reverse steps shown in the Figure 16.

25

4.3 Applications

Today, steganography is widely used in many areas of the public or private sectors and it
is often associated with high technology where the message to conceal is hidden in an electronic
file rather than in paper. Whereas missing letters on a text document are easy to perceive, it is
harder to find discrepancies on more complex mediums such as audio and images (4). It is very
feasible to slightly change the characteristics of an electronic image or audio file without it been
noticeable for the viewer or listener. In images, for example, redundant bits in pixels can be
removed and still have an image that looks intact to the viewer. The same applies with audio files
in which sounds above the human audible frequency can be removed and still reproduce the
audio without any discrepancies to the listener. In these missing bits, a stego algorithm hides data
by embedding it into an image or audio file. The bigger the file size and quality, the higher the
amount of redundancy that can be used to hide data using steganography (4).

An image, for example, containing a 24-bit bitmap, 8 bits representing red, green and
blue (RGB) for each pixel, will have 2"8 different values of hue for each color. The number of
possible bit combinations is very big and small changes in color hues are not easily perceived by
the human eye. The average human eye can’t detect a small difference in hue values such as
11111110 and 11111111, This undetectable difference in the least significant bit can be used to
hide images or ASCII characters for every three pixels in a picture (4). The same principle can
also be applied to gray scale pictures.

Steganography could be used to protect intellectual property in movies, pictures and
audio. The movie industry, for example, loses money every year due to piracy programs that can
copy DVDs and internet sites that allow individuals to illegally download movies and other

related files. The appropriate use of steganography can provide a way to deter some of the

26

unlawful activities that hurt the intellectual work and rights of many movie makers and media
companies (4).
Another media in which steganography can be used is in audio files. Figure 17 shows the

basic principles to hide data in audio.

TXT Conv Conv

01 001&]0%\
1

Bleep
Audio .
Fie >‘ 10101‘ 10101H 10101‘ ‘ 10101H 101%“ 1010@” 1010 l@ ‘ 10101‘
'ij to The last 2-bits (LSB) can be Data can be hidden in these last
8-bit / Bleep modified without audible effects. two digits

Figure 17 - Steganography In Audio

As already discussed, a stego message requires a covert file (the word “HI”’) and an overt
file (audio file). The covert file to be hidden (text) is converted to ASCII and then translated into
binary. The word to be hidden is “HI” and the respecting values for H is 48 hex and | is 49 hex.
The binary conversion of 48H is 01001000 and 49H is 01001001. By connecting the two
together, the covert message is obtained. The series of bits “0100100001001001” correspond to
the letters H and | (4).

The overt file in Figure 17 is an audio file. An audio file in this figure consists of a series
of bleeps. A bleep is a sound of a given pitch that lasts for a less than a second. By having
enough of these bleeps connected together music and sounds can be reproduced. Songs and

audio files are created by connecting a bunch of individual bleeps, each containing up 8-bits. The

27

most-significant-bit (MSB) is the left-most bit in the bleep and it is also the most audible to the
human ear, and the least-significant-bit is the right-most bit on the 8-bits string and the least
audible. Modifying the left-most significant bit will have a significant an audible impact on the
pitch of the bleep. However, if the modification is done in the right-most bit, which is the least-
significant-bit (LSB), the effect will be minimal and have no audible impact (4).

The two least significant bits can be modified and have almost no impact, or at least not
an audible one, on the final sound. This basic stego technique would require the 2 least
significant bits from each audio bleep and replace it with 2 bits from the hidden message.
Therefore in order to hide a 16-bit message in an audio file, 8 bleeps are necessary so that their
least significant 2 bits can be overwritten with the bits of the message to be concealed.

Another possible use for steganography is to protect the security of the national borders.
Steganography is so versatile that it could be used to improve homeland security by
watermarking information on visas and other important documents. It is primordial to protect the
U.S national borders especially when the nation is at war. With the advent of outstanding image
scanning and sophisticated printing technology, important documents and personal
identifications are in jeopardy of being forged with unprecedented accuracy. Hundreds of
thousands of people enter the borders of the United States daily showing fake visas and IDs (2). .
The flow of undocumented people crossing the U.S border and living here illegally can have a
negative impact on the nation’s security and commonwealth. By using steganography to hide
information on documents such as visas and passports, a better control on who comes or leaves
the U.S territory could be achieved. The names and dates at which people entered or left the U.S
can help to keep better track and prevent illegal entrance to the nation more effectively. People

with fake passports or visas can be more easily detected and stopped from recurring on this type

28

of criminal activity. Personal information such as phone numbers, address, and other pertinent

data can be inserted into photo IDs to prevent forgeries and thefts from occurring less frequently.

4.4 Types of Steganography
Steganography techniques can be categorized in two general ways, which are by type of

host file and by how the data has been hidden (4).

4.4.1 File Type

The type of file is the host or overt file in which the data is hidden. Depending on the file
format the data is hidden in the file. This is due to the fact that different file formats have
different characteristics that control how the data is concealed within the file. In .omp images, for
example, the data is hidden by placing the information in the least significant bits of each pixel.
The choice of bits to alter varies, yet the technique used to hide the information remains the
same. Therefore, knowing the host file type is useful to understand how and where the data

might be hidden.

4.4.2 Methods of Hiding Data

Steganography uses three methods to conceal data: substitution, injection and generation
(4).
4.4.2.1 Substitution

The substitution method replaces insignificant information in the host file with the
desired covert data. In audio files, for example, several bytes are used to construct sounds that

together form music. By modifying the least significant bits, the sounds are modified slightly, yet

29

the modification is very small and the difference cannot be perceived by the average human ear.

4.4.2.2 Injection

The injection method looks for areas in a given file that can be ignored and puts the
covert data in such areas. In most audio files an end-of-file marker (EOF) can be found. This
EOF helps the device playing the audio file to determine when to stop playing. When the device
reaches the marker EOF, it stops playing because it knows that is has reached the end of the file.
The “injection” of the data takes place after the EOF marker has been reached and the covert

data has no effect on the sound of the audio file.

4.4.2.3 Generation

The generation method “generates” a completely different overt file based on the
information contained in the message to be hidden. A picture can be generated based on the bits
contained in the message to be hidden. For example, a patch of green is built for every bit 0 and a
patch of red for every bit 1 found in the covert message. The colors forming the picture are then

based solely on the bit sequence of the covert message.

4.5 Digital Watermarking

Digital watermarking is the method to be used for this thesis to insert data in images
using watermarking algorithms. By the fact that digital watermarking can insert and hide data; it
becomes a form of steganography. Digital watermarking is very useful protecting copyrights and
proving ownership, yet it is not very effective on transmitting information. Digital watermarking

can be used as a measure to protect intellectual property and ensure authenticity of important

30

documents such as passports and other IDs. Digital watermarking works by inserting information
in small amounts throughout a given file in such a way that the file can be analyzed and the
watermark removed if desired (19). Figure 18 shows how visible digital watermarking looks on
an image. The watermark can either be visible or invisible. In some cases it is desired to have the
watermark show on the picture as long as the watermark cannot be removed without damaging

the image. This is done as a way to discourage copy right offenders from stealing the image.

Figure 18 - Visible Watermarking

The goal of invisible digital watermarking is to modify information in a file without
having a noticeable impact on the quality of the image been processed. One must keep in mind
that when a watermark is added to an image file, errors at the bit level are being introduced to the

image. These bit level errors are fine as long as they don’t cause a visible impact on the image

(4).

31

CHAPTER 5
HARDWARE IMPLEMENTATION OF JPEG2000 WATERMARKING ENCODER
5.1 MATLAB & SIMULINK Architecture For The JPEG2000 Watermarking Encoder
A base-line JPEG2000 SIMULINK model was developed along with an additive
watermarking algorithm. The process steps to develop a JPEG2000 standard compression
algorithm were carefully analyzed while implementing the JPEG2000 watermark model in
SIMULINK and the ALTERA DSP Builder. Figure 19 shows the basic steps that must take place
in order to have an image compressed using the JPEG2000 standard. When dealing with RGB
images, the first step is to reduce redundancies by transforming the red, green, and blue
components of the image into another color domain called YCbCr (20). The RGB components

will provide the values to perform the YCbCr conversion based on the Equation 4 (9)(21).

65.481 128.553 24.966 R
128 —37.797 —=74.203 112 |G
Cr 128 112 —93.786 —18.2141 |B

Equation 4-Color Transformation Equation

After the color transformation has been performed, another transformation takes place
called wavelet transform. A wavelet transform provides details regarding the image’s spatial and
frequency characteristics (22). A wavelet transform can further reduce redundancy by
eliminating higher frequency components on an image. The quantization step is optional and it
should not be used if lossless compression is to be achieved. The symbol encoder step is
necessary to represent the most and least occurring symbols more effectively (6). Once all the
steps on Figure 19 have been performed, a base-line JPEG2000 lossy compression has been

achieved.

32

RGB ‘ RGB-to-YCbCr ‘ Wavelet ‘ Normalizer ‘

Image Color Transform ‘ Transform ‘ Quantization ‘ Symbol Encoder
Compressed
Image

Figure 19 - JPEG2000 Basic Block Diagram

Cotwiet g | Conwirtinag
™ to uirsl _'i 15 s

OWT I—-I- inacel MW
012 -}_I_l'rA'_";

prorTa. sl —r T
FIETH

" Imag

image EBom Wodioao nigs Dats Typa g Diata g
[=— =] (=0]

Cerwiet image Carwart inuigs

[
il s [[P

Irranga Brom Wosmcaoe | mage Dais Typs Irrag Daia Tipa
- 3

(==]

Figure 20 - JPEG2000 SIMULINK Model

The JPEG2000 watermarking architecture was done using SIMULINK. Figure 20 shows
the steps involved in compressing and watermarking an M x N x 1 image using the base line
JPEG2000 standard. Each component of the color transformed image is processed separately.

The first step is to convert both the watermark image and the carrier image to unsigned
integer with a value range of 28 (0 — 255). Secondly, the image is then converted to class

“double.” The term “double” simply means that the values have been transformed to floating-

33

point numbers. This data class conversion is done because MATLAB expects to do all numerical
computations using “double” quantities.

The watermark image has to be equal or smaller than the carrier image. If the watermark
image is smaller than the carrier one, then image zero-padding is performed on the watermark.
Once both images, watermark and carrier, are the same size, they are both decomposed into
vector frames and subsequently transformed into the wavelet domain. The watermarking takes
place in the wavelet domain and the strength of the watermark depends on the 3 value. The
watermark strength B value range is from 0 to 1. The visible additive watermarking used for

JPEG2000 watermarking architecture is described by the Equation 5 (15) (23).

Oa00c i

Uaag

doodooo
I
1LILIC]

I |
B.
I| I]ll‘

oo

g
g

[

I

In

I o o o o
N nm}

[N]

Equation 5 - Additive Watermarking

Watermarked
Image

Figure 21- Representation of Equation 5

34

The watermarking strength B can be modified by modifying the “gain” SIMULINK block
on Figure 20. After the watermark has been added to the carrier image in the wavelet domain, the
wavelet coefficients are then quantized and encoded by the uniform encoder block on the
SIMULINK model (24). The result is an image that has been watermarked and compressed using
the base-line JPEG2000 compression standard. In order to decompress the image, the reverse
process is performed. The image is decoded, and the inverse wavelet transform is applied. The
image is then transformed from frame vectors into a matrix, and then converted into data class
single and uint8. The final output image is shown in Figure 24 using the SIMULINK video
viewer block. This process is repeated for each component of the YCbCr image (25). In other
words, the image component Y undergoes the JPEG2000 watermarking algorithm, followed by

the Cb image component and finally the Cr image component. Each image component is of the

sizeMx N x 1.

Figure 22 - Watermarked Image Color Components

After the watermark has been added to Y, Cb and Cr, the matrix for each of the three
components is concatenated in order to form an M x N x 3 YCbCr image. Once the YCbCr

image is being formed, the reverse color YCbCr-to-RGB color transformation takes place and

35

the “red,” “green” and “blue” components are input to the SIMULINK video viewer block. The
steps involved in watermarking an image using the JPEG2000 standard are illustrated in Figure
23 and the resulting image is shown in Figure 24.

The first step is to separate the RGB components of the image and to input each image
component (R, G, and B) to the DSP Builder block and apply the color transformation to the
three components. The second and final step is to take the color transformed components and
input them into the SIMULINK JPEG2000 block and process each component according to the

JPEG2000 standard and output a watermarked RGB image.

g S Color
‘ Transformation
:‘ T - _ I E_:I
e o]
' = @
JPEG2000
2 e ® Watermarking

Figure 23 — DSP Builder + JPEG2000 Watermarking Architecture In SIMULINK

36

Figure 24 - SIMULINK JPEG2000 Watermarked Output Image

A good understanding of the compression and decompression principles of the JPEG2000
algorithm has been obtained using the image processing toolbox in MATLAB and other
functions from the Gonzalez Image Processing book (9). Compression and error analysis
techniques were based on the algorithms described in appendix A. The JPEG2000 compression
and decompression algorithms were slightly modified to input and output images using the DSP

builder and SIMULINK software.

5.2 Hardware Implementation

The hardware implementation for this thesis was done using a field programmable gate
array (FPGA) device, SIMULINK and the ALTERA DSP Builder software. FPGAs are
semiconductor devices that have built in logic blocks that are programmable. The logic blocks
can be configured to operate as basic logic gates such as AND, XOR and NOT in order to build
more complex logic functions. These logic blocks and nodes can be programmed by a designer

to implement any logic function in order to achieve a desired task. The ALTERA DE2 Board

37

with the Cyclone Il 2C35 microprocessor FPGA in a 672-pin package was used for the hardware
prototyping of the RGB-to-YCbCr color transformation algorithm. The ALTERA DSP Builder
and SIMULINK software were used for hardware integration purposes. Similar research on
SIMULINK-based hybrid codesign in FPGA work has been done in Torino, Italy. For details see

(26).

5.2.1 Reasons for Using FPGAs

The reasons for using the ALTERA DE2 FPGA to prototype the watermarking algorithm
using the JPEG2000 standard are low cost, re-programmable capabilities and debugging
flexibility. In addition to the advantages already mentioned, research shows that the ALTERA
DSP Builder and DE2 FPGA provide better results than the Xilinx FPGA counterpart (27). More
details on the FPGA brand and model used for the color transformation hardware prototyping

can be found in appendix B.

5.3 RGB-to-YCbCr Color Transform FPGA Implementation
5.3.1 Color Transformation

The color transformation block from the JPEG2000 CODEC, see Figure 19, was
implemented using the DE2 ALTERA FPGA board. In order to program the FPGA, a hardware
description language (HDL) was necessary. The most common HDLs are VHDL and Verilog.
These languages generate a “netlist” that can be fitted to the actual FPGA and map the path to
create the desired logic to execute.

The VHDL code for the RGB-to-YCbCr transformation was generated using the

ALTERA DSP Builder, MATLAB and SIMULINK software.

38

5.3.2 Hardware-In The-Loop (HIL) Using The ALTERA DSP Builder And SIMULINK

The hardware-in-the—loop configuration is often used to implement architectures in
hardware more rapidly by converting SIMULINK files into VHDL files using the ALTERA DSP
Builder (16). In some instances, it is less cumbersome to use HIL and let a computer handle
memory allocation, image reading and writing setups than to configure an FPGA manually to
read and write images in memory and subsequently process an algorithm. Practicality is one of
the reasons the HIL configuration was used in this thesis. The other reason for using HIL is the
great troubleshooting capabilities and fast VHDL code generation for SIMULINK architectures
to be implemented. Figure 25 shows the block diagram of the process involved in transforming
an RGB image into a YCbCr image using the HIL configuration.

The results of the color transformation algorithm implemented in hardware were
compared with the “rgb2ycbcr” MATLAB command. The root-mean-square error was less than
3, which is a satisfactory result. The steps involved in the HIL algorithm flow are explained the
following way:

The MATLAB block reads the RGB image and converts it into unsigned integers of rage
28 (uint8 class). After this conversion has taken place, the RGB image has values in each plane
that are unsigned integers that range from 0-to-255. Once the image is converted into data class
uint8, the planes red, green and blue are separated and converted into structures so that they can
be transferred to SIMULINK. This process is performed using the MATLAB code
“ed_in2_script.m” described in appendix A.

The SIMULINK block receives the structured RGB planes from the image and processes
the structured values from the image based on the timing and solver parameters given to

SIMULINK.

39

SIMULINE

Compars
Hr

'MATLAB 'DSP B-YChCr
YCbCrImage (| Image (

|Difference Histogram

Small RMSE

RMSE = 2.9628
Root Mean Square Error (RMSE)

Image

Figure 25 - Color Transformation HIL Algorithm Flow

Once the simulation has finished successfully, the appropriate DSP Builder blocks are

included and simulated to verify that both SIMULINK and DSP Builder architectures provide

40

exact results. The DSP Builder color transformation blocks used for the HIL hardware
prototyping can be seen in Figure 26.

The SIMULINK block at the output receives the color-transformed values and stores the
values in the variables “simout, simoutl, simout2,” and sends them to MATLAB.

The MATLAB block uses the code “ed_out_2script.m” to process the color-transformed
values. The Y, Cb, and Cr components of the input image are converted from structures to
matrices. Each matrix represents a color component. Once Y, Cb and Cr have been transformed
into matrices, MATLAB concatenates them into one single image and compares the DSP Builder
results with the results obtained from the rgh2ycbcr MATLAB command. An error image and a

histogram are generated to provide a visual representation of the analysis of results.

5.3.3 DSP Builder VHDL Generation For SIMULINK Color Transformation Structure

The SIMULINK blocks R2, G2, and B2 in Figure 26 are sources that output structures
generated in MATLAB by the “ed_in2_script.m” code. Each block has the corresponding values
for each color component of the image.

The inputs inl, in2, and in3 go to a set of DSP Builder multipliers and adders. These
blocks implement the color transformation for Y, Cb, or Cr. The details for each subsystem can
be seen in Figure 27, Figure 28 and Figure 29. Notice how each input terminal has a
SIMULINK-to-DSP Builder converter block. The blocks in Figure 48 convert SIMULINK
values into bits. The number of input/output bits and logic involved in the image color

processing can be modified at will.

41

[~]

-
From P 02 Cwtl
Workspace1 wlina
Subsystem ¥
P In
G2 pelinz Outl
From - in2 .
Workspace? = Cb In2
Subsystem Cb 1na
el int Subsystem
o] In
f»{In2 OQuti

B2 Ljw{ In3 o
From Subsystem Cr
Workspace3

Figure 26 - DSP Builder RGB-to-YCbCR Blocks

Constant

Constant1

Para|lel Adder Subtractor

Constant2

Constant3

Figure 27 - DSP Builder Blocks For Subsystem Y

Constant4

In1 R1

Constant5
In2 G1

Faral(el Adder Subtractor!

Constantd

In3 B1

Constant?

Figure 28 -DSP Builder Blocks For Subsystem Cb

42

In1 R1

In2 G1

In2 B1

Figure 29- DSP Builder Blocks For Subsystem Cr

Constant4

Constants

T
Constant8 o o

5.3.4 Hardware-In the-Loop (HIL) Set Up Process

Faral|el Adder Subtractort

After the DSP Builder blocks have been simulated successfully, the first step is to insert

the DSP “signal compiler” block located in the ALTERA block set library in SIMULINK (28).

Once the signal compiler block has been inserted, the FPGA chip family and device is specified

by double-clicking on the compiler block. See Figure 30.

e ; T

& CEPBuilder - Signal Campder
Deseription

This bluck controls the compilation of the design,

Quartus T Project: analizando_dspbuilderanalizando.qpf

Famiy: | Cyctaned | I™ Use Bosed Block to Specify Device

Device: EPICISFATICH

Simple | Advanced | Sgramapn|
thep 1 - Compile Design

Rep 2 - Select Devace bo Program

_Sanlug |

Shep 3 - Program Deate

Figure 30 - HIL Setup => Step #1

To finalize the first step, one should click on the compile button to simulate the SIMULINK and

generate the HDL for the DSP Builder blocks. One should also click on the “advanced” tab and

click on the ‘generate Quartusll project button.”

43

The second step on setting up the HIL for the file is to create a Quartusll project and to
synthesize the VHDL code generated in step 1. Figure 31 shows the signal compiler settings
window and the “synthesis” button. By pressing this button the Quartusll project and VHDL

generated in step 1 are synthesized and everything is ready for step 3.

b D3PRusicier - Sxgnal Compiler (=1 ——
Description
This block cantrali the compilation of the denign.

artuz B Project: snalizando, dipbuilderansizands qpf

Famidy: [Cyetones =

Daice: EpaCISFEI2CE

o Advanced | SgnaTap 1|

I Use Baurd Block to Speciy Device

Creats Progect | Craste Qi 0 Project.
Syrthesis || Fun Quartas I Synehesi

—C Ticter Fun Quartu 1 Fitter,
- Program Telected Device.

Figure 31- HIL Setup => Step #2 =>Run Synthesis
The next step after running the Quartusll project and VHDL synthesis is to add a “clock”
block from the ALTERA block set and use the fitter button to run the Quartusll assembler.

Notice that on the lower left “messages” window, the status of the Quartusll project is shown.

8 USPuliiner - Sigral ompier e pm——
Cescriptian
This bleck controls the compdation of the design.
[=
Trem ot [
womss - L T | Guaris D Propeck: meaiando, diplustieshanabruncis. ol
rm—— X - v
Famity | Syclone® =]
™ Use Board Block to Specify Device
.lrm | Deace: [raCISFEIICE it
o Sctapater €8

.........

Figure 32-HIL Setup => Step #3 =>Run Quartus Fitter

44

After the synthesis and assembler have run successfully, the fourth step is to open a new
SIMULINK file and insert an HIL DSP Builder Block like the one shown in Figure 33. By
double-clicking on the HIL block, one can select the number of inputs and outputs, clock pin,
and resolution . Notice that on the left-upper window in Figure 33 there is a little section that
says “select the Quartusll Project.” It is in this little window where the Quartusll project

generated in step 1 is selected.

P2 b efin o o] BEBS: REARS
B

Figure 33-HIL Setup => Step #4 =>Create New SIMULINK Project + Insert HIL Block
Once the Quartusll project has been selected and the inputs and outputs have been
assigned, for step 5 one should click on the “next page” button to compile the FPGA device and

configure it using Quartusl (28)I. See Figure 34.

[

B Ftima o Lo - page 2t 2

IMarctenen i o locp - page 3 ot 3

§ Compe L dma

WCAdeee JFrR

it s

FF P j

1
Prem———y |
Dwscwmiman [@) EFICH eOMBEOC) - |

| Formabieg AL ey i ey e L e AR AL PRV L " eyt
oty I] e e ez L

ompser mce IR

Kb sl 1L o

gy 93 TR g (B s P85

)

| 8 Commgate 1L S
T I

g vy Sk |

7 B e VA

ST S T]

fraensen [g0 P08 DomEext: -]

Bk

Figure 34-HIL Setup => Step #5 => Compile + Configure FPGA

45

After completing step five, the final result is a block with the necessary logic, inputs and
outputs to operate as the DSP Builder Blocks. See Figure 35. The final step is to connect all the

input and output terminals appropriately and input the right signal sources and sinks.

From
Gz
Workspace2
From| o o |Frem
Worispace Rz 82 Worispace3.

snalizande_Subsystem_Y_B(7:0)
B
» 0 - izando_Subsystem_Y_R(7:0) vis0)
R

[70 | =nzlizandc_Subsystem_Ch_G1(7:0)

Cr

analizande_Subsystem_Cr_B1(7:0)
o 70 | anslizande_Subsystem_Cr_R1(7:0) Cb(18:0)
Rz
» 70 - izande_Subsystem_Y_G(7:0)

Figure 35-HIL Setup => Final Step

The simulation time for this structure is determined by the number of columns times the
number of rows of single plane image plus 1. In other words Tsimuiation= #Columns x #Rows + 1
(29). The results from the HIL color transformation can be seen in Figure 25.

A vector waveform file was generated in Quartusll to test part of the VHDL code needed
to perform the RGB-to-YCbCr color transformation. Figure 36 and Figure 37 show the
simulation results of the vector file and the RTL view of the VHDL code. One of the advantages
of using the ALTERA DSP Builder HIL is that MATLAB does all the steps necessary to read
and write an image in the FPGA automatically. No extra VHDL code is necessary to program the
FPGA to allocate memory to store the input image; as a result, more time is spent on the analysis

of the algorithm to implement than on the FPGA set up.

46

& e Edit View Progect Assagnmen

&5 Procesing Took Window Help
NEedd & B | o | [cootrans A s @ES T - BB S0
R L y— | @ Corpiin gt oSy | B oo | @ imeion hapan - Simsa. | FIL Ve
Entty [LopeCets
- ; — = Simulation Waveforms
dy Oroone & FERFEET S Legel Notice Smvdation mode” Functional
- i colotmng 27578
= e o0 : BT Flow Sumnmaey
S5 Flow Seltings
= @ Simulator
. [y Mt Tine Bar 1685 | | Poter Nine Inhereat 168 St Erd
SR Sumemary
S5 Setting: A Ve [M0ns 20ns Mfes 0ra S0 E00ra M0rs B0na Hfra 100m 11000 1200
G snulstion Weveloms | 36 Hame H 15550
- Seulaticn Coverage
S5 NI Usage & w0l | @R 52
& 5 Messages | @6 H
m w5 | HE 52
“ CERRERS 51
. . ~ o2 | 3 52
L * @8 | Bo 52
dyHmarchy | B Fis | dF Degn Urats =
Slakis x EJ.
[reaae 7 | Tome &
Smineer D004
*|_Tope [Message
LY
"y
y
u
¥
[
B\ Systen (2280), Processing [9) f_Extalnio), Inof3] |, Wemng A ChcalWanng } Coe J Suepressed) og |
I[Mescege 015 4| ¥ [Locsin B |

For Help, press FL GeleE | [NUM

Figure 36 - VHDL Synthesis & Vector File Simulation

o : —‘:i\
c_y B
E

Figure 37 — Color Transform Algorithm RTL View

47

54 MATLAB, SIMULINK And DSP Builder JPEG2000 Watermarking Process Flow

5.4.1 Color Transformation

The color transformation takes place in the DSP Builder HIL block. The red, green and

blie color components of the input image are separated and structured in MATLAB and input

into SIMULINK to be processed by DSP Builder blocks.

RGE
uint8
Image

MxN=x3

5.4.2 Wavelet Domain Watermarking

®)

uintl - Mx N

(G)

uintd - Mx N

®)

uintf - Mx N

RGB
TO
YChCr

DSP B.

COLOR
TRANSFORM

Y)

uintl - M=x N

(Cb)
uintl - Mx N

(Cr)
uintl - M=x N

Figure 38-Color Transformation Block Diagram

DSPB.
YChCr
uint8&
Image
MxN=x3

The wavelet transformation, quantization and encoding of the input image takes place in

SIMULINK. The DSP Builder color-transformed image is input into the SIMULINK JPEG2000

structure in Figure 20. The steps on watermarking an image in the wavelet domain are shown in

Figure 39. The encoding, quantization and encoding steps are illustrated in the block diagram in

Figure 40.

DSPE.
YCbCr
umt8 MxNx3
Image

G-WMK

wintf -Mx N

(Y)

mimtl - Mx N

(Chb)

wimtd - Mx M

(Cr)

wintd - M=z N

WVT

Figure 39 - Wavelet Domain Watermarking

WVT
Warcalet
Transfoem

48

[_"I.Tr'_"'."T
Wavele
Transfoem

(Y wmkd)

uintf-MzN

(Chwmkd)

uintf - M x M

{'CI".':r:lld}
uwintd-Mx N

(V) Quantizati Yeber
intE - M x N l:'| > 01 I:'l = — TO
- Enceding | RGEBE
(Chwaya) Quantization —
et - M X N > —> Decodiﬂg__v’ Color

C) Quantization : — Transform
LI{:I':J]TE MxN l::>'

Figure 40 - Remaining Steps After Wavelet Watermarking

The block diagram shown in Figure 41 shows the SIMULINK blocks that watermarks
and RGB image using the JPEG2000 baseline standard. Notice how the color components of the

output image get transformed from YCbCr to RGB for the final representation of the image.

[reep—r— Y e
¥ aemponent

— 3 N
. e
[— Calor Seace u
[- Ch S Comesnien Vina Vi
b comporant by b Ce
i L
T e Cr g vz OUTPUT IMAGE

Figure 41 — Complete JPEG2000 Watermarking Process Flow

55 The ALTERA DSP Builder and Wavelet Transforms

55.1 Wavelets
Wavelets were first used in the area of seismology as tools to analyze and describe the

turbulence produced by pulses generated by earthquakes. It was only after 1982, that the

49

scientists Morlet and Grossman worked on extending the wavelet mathematical theory to
describe in terms of translation (movement/position) and scaling (magnitude) any random signal.
However, it was Mallat who, in 1989, set forth the theory of signal analysis using the principle of
multi-resolution decomposition of signals in time-scale space using wavelets(6)(30) Nowadays a
wavelet is considered a mathematical tool used by many professionals in the area of signal
processing to analyze the frequency and spatial characteristics of a given signal. Unlike the

Fourier transform, there are more than two equations to describe a wavelet transform.(9)

1 [t-b
Yap (0= EW(T)
Equation 6 - Wavelet Transform
Wavelets are generated by a single function called mother wavelet (y). The mother
wavelet is a function of translations, shifts generated by b, and dilation, scaling caused by a, in
the time and frequency domain. Figure 42 shows a mother wavelet without any translation or

dilation.

Figure 42- Mother Wavelet

The effects of varying b and a in Equation 6 can be appreciated on Figure 43 and Figure 44.

50

"N [——
q—vb -

Figure 43- Translation By "'b"

_._E_._.a.;y=>.§'-::’aff

" - -~

Figure 44- Dilation By "a"

Wavelets allow for frequency and time analysis of a signal because wavelets concentrate
their energy in time while still preserving their periodic wavelike characteristics. This special
feature of wavelets allow for better analysis of non-stationary signals, which are statistically
unpredictable on regions where discontinuities exists. An example of such a region can be found
on the edges of most digital images (6)(31). Another advantage of using wavelet transforms is
that it provides a multi-resolution analysis of an image when wavelets are used for image

compression and coding algorithms (32).

5.5.2 Reasons for Using the Discrete Wavelet Transform

Because most input signals to be analyzed by the JPEG2000 watermarking algorithm are

51

digital images, it is necessary to go from the continuous domain to the discrete domain. The
definition of a discrete wavelet transform into is very similar to the definition of the continuous
wavelet transform; the only difference between them lies on the discrete values for “a” and “b.”

Equation 7 - Discrete Wavelet Transform

—m

Ipm,n(t:} = anTlp[an_mt _nbn)

Where:a=al b=nb,al®

The discrete wavelet transform can be used to improve compression algorithms thanks to
its ability to reduce redundancy. High to medium quality digital images contain large amounts of
redundant information such as spectral and spatial data. The redundant information contained in
digital images can be further reduced by implementing wavelet transformations to decorrelate the
image information. (33)

There are many ways to implement a wavelet transform depending on the application and
speed of operation(34). Some researches use the lifting scheme due to its fast operation whereas
in some cases filter banks are used to minimize hardware complexity(35)(36). For details on
research done in VHDL lifting wavelet scheme implementation using SIMULINK and the DSP
Builder software see (37). The type of wavelet also depends on the coefficients for the filters and
the mathematical characteristics of the wave, such as Haar, Daubechies, Symlets and discrete
Meyer wavelets(9).

The wavelet transform analyzed on this thesis is a Daubechies 4 and it is implemented
using two four-channel FIR filter banks based on the filter banks described in (9)(38)(33). The
first filter bank, Figure 45, is a “decomposition” filter bank and it separates an input signal in its
high and low frequency components. The first set of filters is a low pass and a high pass filter in

parallel followed by two more low-pass and high-pass filters in parallel as well. The second filter

52

bank in Figure 46 is a synthesis filter bank. The synthesis filter bank does the inverse wavelet

transformation by reconstructing the original signal from the coefficients outputted by the

decomposition filter .

CA;

CAj+1

Approximation

CDj+1
Vertical

CDj+1
Horizontal

CDj+1
Diagonal

Lo-D 2
I’(())WS l
Hi-D

I’OIWS & l

Lo-D
Columns

Hi-D
Columns

Lo-D
Columns

Hi-D
Columns

)
i
3

g

Figure 45 - Decomposition Filter Bank

Lo-R
2
T Columns
ZT Hi-R
Columns
21 Lo-R
Columns
Hi-R
2
T Columns

Figure 46 - Synthesis Filter Bank

2t

53

Lo-R
rows

Hi-R
rows

CAj+1

Approximation

CDj+1
Vertical

CDj+1
Horizontal

CDj+1
Diagonal

+ CA;

5.5.3 -Digital Images and Discrete Wavelet Transforms

A digital image is usually represented as a two-dimensional array of coefficients. Each
coefficient of that array represents the color and brightness level at a given point of the image.
When analyzing the graphical characteristics of an image, it is hard to determine what
coefficients are the most or least significant on the quality of the image by just looking at the
coefficients values. Nearly all digital images have small color variations on smooth regions. The
fine details on images are found on the sharp edges among the borders of the smooth regions.
The sharp edges and fine details are the high frequency components of a given image, whereas
the smooth color variations are the low frequency components. (33)

An image consists in its majority of smooth regions with small color variations (low
frequency components) and not so much of high frequency components, which only provide the
fine details that refine the quality of the image. Therefore, major consideration must be placed on
the low frequency components than the details of an image when processing a digital image.
When performing a wavelet transform, a signal is split into detailed and approximation
coefficients. The approximation coefficients represent the low-frequency components of the
signal. The high-frequency components are the detailed coefficients.(5)

The number of coefficients obtained after a wavelet transform has been performed on a
signal is usually twice as much as the original signal coefficients. As a result, the transformed
signal has to undergo downsampling to reduce the number of coefficients to process. The process
of generating the wavelet coefficients and downsampling is accomplished by a decomposition
filter bank. The process of assembling the wavelet coefficients to generate the original signal is
called inverse wavelet transform. This process is accomplished by upsampling the wavelet

coefficients and processing them through a synthesis filter bank. See Figure 46.

54

The use of two-channel filter banks is essential on the implementation of the discrete
wavelet transform (DWT) (38). The forward discrete wavelet transform (FDWT) breaks down an
input signal into different frequency components using a decomposition filter bank and
downsampling. The FDWT can be performed on a signal using high-pass and low-pass filters
with the decomposition coefficients generated by db7, db4 or Haar. The inverse discrete wavelet
transform (IDWT) is performed by upsampling the forward discrete wavelet transform
coefficients and inputing the coefficients through a synthesis filter bank. Note that the IDWT
filter bank must have the right set of synthesis coefficients (db7,db4,etc) in order to reconstruct

the signal successfully (33).

5.5.4 Discrete Wavelet Transform Hardware Implementation

The ALTERA DSP Builder was used to build the filter bank using high-pass and low-
pass FIR filters. The wavelet used for this filter bank was designed using the Daubechies 4
coefficients. The Daubechies decomposition and reconstruction coefficients can be found on

Table 4 and Table 5.

Table 3 — DB4- Decomposition Coefficients for FIR Filter Bank

Mo. Coeff | LP_D Coefficients | HP_D Coefficients
1 -0.0106 -0.2304
2 0.0329 0.7148
3 0.0308 -0.6309
4 -0.1870 -0.02580
5 -0.0280 0.1870
& 0.6209 0.0308
7 0.7148 -0.0329
a8 0.2304 -0.0106

55

Table 4 — DB4- Reconstruction/Synthesis Coefficients for FIR Filter Bank

Mo. Coeff | LP_R Coefficients | HP_R Coefficients
1 0.2304 -0.0106
2 0.7148 0.0329
3 0.6309 0.0208
4 -0.0250 -0.1870
5 -0.1870 -0.0280
i} 0.0308 0.e309
7 0.0329 0.7148
8 -0.0106 0.2304

The input testing signal for the DSP Builder filter bank is a sinusoidal signal that contains
high and low frequencies components, see Figure 47. This sinusoidal signal is the result of the

addition of two other sinusoidal signals containing low and high frequencies.

hed& .%—hu's 7 = mal || 0 g B & BRE®
T EE Y T E scope
SR PLLL HEER " L o
ouz
o ous E
out ous Output
qu outs Seope
E g ous
: our
soope3 o ous
- - Outi outs
E "o 0 1000 »line outto
ot
Sins Wave s
Low Frequency surts
B¢ ourid
ourls
ourte
S, ou?
Sine Wave1 v outs
High Frequeqcy out
B Scopet =@ 5z [} Subsystem Subsystem
, — i
SH|LLL AB ? || Fiereen Filier B

Cemparing the cuput of the first filter beny
and checking the input vs the filter outputy

0250 e
0250 -

alysis filter
bt LP-D first filter bank

w250 -
w250 _ S
5

HighiHigh

200 400 BOO 800 1000

HighiLow

[]

LowlHigh

¥ ¥ ¥ ¥

Low/Low

Figure 47 - Input Signal And DSP Builder Filter Bank

Once the input signal is generated, the next step is to convert the signal from a

SIMULINK signal into a binary signal that can be understood by the DSP Builder blocks. This is

56

done by inserting a DSP Builder block like the one shown in Figure 48. Notice that it is an 8-bit

input that it is used for the filter bank since our signal desired value range is from 0 — 255, or 28.

Input Output

Figure 48 - SIMULINK-To-DSP Builder 8-Bit Input/Output
After converting the SIMULINK signal into bits, the FIR compiler must be opened in

order to configure the FIR filters with the proper coefficients and generate the desired wavelet

for the signal transformation. See Figure 49.

Out
outz
outt I
oz Outs SGEE,
ou2 outs Outpat
Sud ot Scape
outs :
It Sui o ous
outr >
27 out?
cuts outs
outto
guie out
outt2 iz outto
outt3 .
outla out
omis outt
outte .
gue e outs
outtg » outta
oty .
Outzn out
otz out
outz2
quz - outt?
ovza— urts
out
Subsystem Subsystem

AnalysisiDecomposition
Filter bank Filtes Bank

Yy v

Scopet
Comparing the cuput of the first filter
= v v VY snd checking the input vs the filter ou
119} Ancuttnis core s from the analysis ilter
fthe HP-D and LP-D first filter ank o
4
Documentation

Display Symhaol

High'High
Q Step 1 HighiLow
Parametarize >
LowiHigh
g Step 2 *
£ Generate Lowlaw

Figure 49- FIR Compiler And Filter Bank

The decomposition and synthesis filter banks were designed with the filter bank designs

from (38)(9)(33). The internal FIR filters and components are shown in Figure 50and Figure 51.

57

In1

DB4 High-Pass Filter Decompasition

fir_sompiler_v7_2

DB4 Low-Pass Filter Decomposition

n
t_sink_data(7:0)

D i

sst_sink_valid

fir_compiler 7.2

ast_source_ready
ast_sink_emor(1:0)

asi_source_data{15
ast_sink_ready]
ast_source_valid

ast_source_eror(1:0]

Constant3

{1 m

fir_campiler_v7_1

HP-D

resst_n asst_source_data(28

ast_sink_data(18:0)

ast_sink_resdy
sst_sink_valii_compiler 7.2

ast_source_resdy | SS_scurce valid

0

Constant?

ast_sink_emor(1.0) ast_source_emor(1.0)

Qut1

|mg3
25
2

fi_compiler v7_& o

Outd

reset_n ast_source_data(25:0

ast_sink_data(16:0)
ast_sink_valifir_compiler 7.2

ast_source_ready

pe{resst_n =st_source_datall g
L»ssx sink_dsta(7:0)
AR ! ast_sink_ready ling1
1 > o ast_sink_vslid fir_compiler 7.2 N pling = 4
- ! et source_ready ast_source_valid %
] | =5t _sink_emar(1:0) ast_source_ertor(1:0)
Constant5
Censtant] Outl1

) 4

sst_sink_smor{1:0) _sst_source_encr{1:0

=st_sin_ready
ast_source_valid

fir_compiler_v7_2
- - HP-D

resel_n ast_source_data(25:0)

ast_sink_data(18:0)
ast_sink_ready

sst_sink_valid_compiler 7.2

sst_source_valid

ast_source_resdy

ast_sink_error(1.0} ast_source_emror(1.0)

1l

fir_compiler v7_5 oo

resstn ast_source_data(26:0!

GConstant?

ast_sink_data{16:0)

ast_sink_velifir_compiler 7.2

ast_source_ready

sst_sink_smror(1:0) _sst_source_encr{1:0

sst_sink_ready

ast_source_valid

fir_compiler_v7_6

Figure 50- Decomposition FIR Filter Bank

HP-Recons
| pofreset_n =st_source_datal21:0]
C—oas}— b inc smmeso st rey
In2 | o) ast_sink_valid fir_compiler 7.2
Up Sampliny - - - 3
s p Sampling || oo ready ast_saurce_valid
w F' a3t sink_emor(1 =3t source_emor(1:0)
0
fir_compiler_v7_8
Constante1 LP-Recons
() Teseln & _source_datal31:0)
t_sink_data(25:

I8 Semplingd

sst_sini_ready

_sink_valid fir_compiler 7.2
ast_source_valid

Constante® 1

YYY V¢

{_source_ready

t sink_enr(

ast_source_enr(1

Constante1 10

fir_compiler v7_10 pppecons

In4

D Up Sempling2

& 1

reset_n
ast_sink_dsta(25:0)
ast_sink_valid
ast_source_resdy

ast_squrce_data(310]

sst_sink_ready
fir_compiler 7.2
ast_source_valid

t_sink_error(1

sst_source_error(1:0)

Lohabd

Constante1 00

In5.
Up Sempling

Constante1 0001

|

fit_compiler v7 8 | Lo

reset_n
ast_sink_dsta(25:0)

asl_soLrce_oalaia1 0]

sst_sink_ready
ast_sink_valid fir_compiler 7.2
ast_source_ready ast_source_valid
ast_sink_eor(1:0}

sst_source_error(1:0)

fir_campiler_v7_7

Qut1d

Persllel Adder Subtractort

[+

Out1s

HP-Recons

sst_source_data(13:0]

nk_data(31:0)
ast_sink_valid fir_compiler 7.2

ast_sink_ready

ast_source valid

-\pIng

Constante2

o

Constante12

L*v‘lr%

ast_source_ready
ast_sink_emor(1:0)

ast_source_emar(1:0)

fir_sampiler_v7_11

resei_n
ast_sink_dats(31:0)

sst_sink_valid fir_compiler 7.2
ast_source_valid

Ssl_source_detal13.0]

=st_sink_ready

sst_source_resdy

rellel Adder Subtractor2

{73
)

ast_sink_ermor(1 sst_source_eror(1:0)

fir_compiler_v7_12
LP-Recons

Figure 51 - Synthesis FIR Filter Bank

5

8

Qut14

The DSP Builder FIR Compiler allows the user to input the coefficient set (Wavelet
type), device family, scaling, the number of input channels and many more options. The FIR
compiler also shows the frequency response of the FIR filter and the number of logic cells

needed to build the filter.

1 @ Parameterize - FIR Compiler = | 5]

| [Coefiicients Specification - (Low Pass Synt [1]) Rate Specification I
New Coeficient St || EdtCoeficientSet | Remove Cosicient Set gingleRate ¥ |Faciorfz <]
Low Pass Synt[1] l [~ Add global clock enable pin

Input Specification

Mumber of Input Channels |1 hd

Flat Option |FixedIFloating Coefﬂcientsﬂ ™ Dark Background

Floating Coeff. Response Fixed-Coeff Response Input Mumber System
0dE Signed Binary ﬂ
20 Input Bit Width |8 b
-40 Qutput Specification

Full Resolution Bit ¥Width is 17

" Eased on Method |Actual Coefficients
-0 Qutput Mumher System

-100 Full Resalution ﬂ
Flequency 0.1 0.z 0.3 0.4 05

Freguency Response | Time Response & CoefﬁcientVaIues]

4 | Cosficients Scaling |Auta | sitwitn |2 -

f

Architecture Specification

Device Family Cyclone Il - [Farce Mon-Symmetric Structure Resource Utilization esti... Throughput (Fully Streaming)
Structure [Distributed Arithmstic - Fully Parallel Filter ~] e e == ;\i\;nifnft;ltodcitz;Srigtrjosfessed
Fipeline Level 1 & M’t"::M E - A new output data is
Data Storage Logic Cells ¥ | Multiplier Implermentation |Logic Cells M“:j:K E g:;;r;t;cdk period,
Coefficient Storage |Logic Cells | [T Coeflicients Reload [T Use Single Clock MLAR 0

Multipliers i

— =

Figure 52 - High-Pass Decomposition Filter Set Up => Step 1

The step 1 is to configure the number of input channels, the resolution, the input bit width
and the device family. Notice that the device family used for the filter bank in Figure 49 is the
Cyclone 11, which is the chip in the DE2 ALTERA FPGA.

The second step is to upload the coefficient set for the desired wavelet type. The

coefficients can be uploaded from any text format file. The coefficients for the high-pass FIR

59

filter shown in Figure 53 were first generated in MATLAB and then copied and pasted in
notepad. The notepad file was saved and subsequently uploaded into the FIR compiler. This

uploading function is very practical if dealing with a large number of coefficients.

| (R Parameterize - FIR Compiler = |[=] =]
Coeflicients Specification - (Low Pass Synt [1]) Rate Specification 0
Mew Coefficient Set Edit Coefficient Set Remove Coefficient Set Single Rate ﬂ Fact0r|2 J
Coefficients Generator Dialog @
1| Coeficients Frequency Response
Time Walue)
7 03304 — Floating Coeff Response
2 0.7148 0dE
3 -0.6309
4 -0.028 -20
] 0.187
6 0.0308 -40
T 0.0329
[} 0.0106 -0
-80
-100
ﬂ -120
Fraguency 0.1 0.2 0.3 0.4 0.5

MName |Low Pass Synt

" Floating Coefficient Set

Rate Specification

|Sing|e Rate J Factor |2 J Auto Generate
L
f Filter Type |L0w FPass J Window Type |Rectangu|ar J
Cosfiicients B SampleRate [1.0E7
Cutoff Freg. 1 |125EIEIEIEI.EI CutoffFreg. 2 |3T5EIEIEIEI.EI
Excess Bandwidth [0%

&+ Imported Coefiicient Set

File |CalserstantonioiDocumentsidb4-ho-coef td

Erowse |

Apply ‘ Cancel | Ok |

Figure 53 - High-Pass Decomposition Filter Set Up => Step 2

Once all the coefficient sets have been uploaded for the decomposition and synthesis
filter banks, the SIMULINK and DSP Builder blocks are simulated and the output displayed
using the “scope” blocks. Figure 54 shows the signal’s frequency components and Figure 55

shows the final output with the reconstructed and original images.

60

Figure 55 - Filter Bank Ouput. Top = Reconstructed; Bottom = Original

It can be seen from Figure 55 that the reconstructed image and the original signal match
in magnitude and shape. The phase shift difference between signals, however, is due to the time
delay originated by the filter banks. Unfortunately it does takes some time for the first set of
coefficients of the input signal to get processed by the decomposition filters and reconstructed by

the synthesis filter bank.

61

After the simulation has been performed successfully, VHDL files are generated for
every FIR filter in the filter bank. These VHDL files can be used to configure the DE2 ALTERA
FPGA and to create a Quartusll project to set up the hardware-in-the-loop between SIMULINK

and ALTERA. See Figure 56 and Figure 57.

Fie Bdt Vorw [ebg Deibiog Wiedew Help

D@ il WD P wlc AT ek D bulter apermantt impon = | | 81
Dhertcuts [biowita A (F] What's New
T R e [L e Comomas W =0
100 To gut stasted, select HARTLAR biniy o iamag P the bialp mame "
I
I
T =
S be_compier o7 1 bal Dussten B Black Sy 4WE BOROBS AT P =
No_compdur W) _1.omp OMP Fils KB BORONG T PM
o] to_complar 7 1 bl HTML Documant 0B G09009 17 P
be_compler 7 1gp O File 148 BOBLES 1T FM nilder
fe_compier_«7_1 e VEC Fie 18 BOMAE 17 P Q DSP B
fo_compler 7 _10d WHD File 1208 G008 917 Pu
f_cempdar v _1ho WHOFile 140 %8 BOROR AT P generates
f_complar 7 1. SBIDE Fils 268 SOAONE N PM
oo T Dman §45 007 17 Pt VHDL
Rt comper 7 10 RaS Guwsen B Block Sy dHED RRB N7 P code
fr_comnpder o7 _10c . CWP Fie I¥8 S0ACRS 1T PM
] br_compalar W7 108 MIML Doscament 6H0 BOROBS T PM |
b paamades oF M) ms (D Fida 1 VB ErRIRO T Cw TF
—re .o
|
0|
e]
& |

Figure 56 - DSP Builder VHDL Generation

DEFLo | S B
Preec gatr on
ity

[

§ Systom | Troceiang J, L inbs | Jeko |, Wamieg J,_Cibical waning _Jy Lvor | Sumesies |\ Vi |
== e =

Fou Hed, prews FI Ln20 Coldl [TFE=N [[UM

Figure 57 - Quartus Project Generated From DSP Builder VHDL File

62

5.6 Differences on the JPEG2000 and the MATLAB Simulation Algorithm

The JPEG2000 baseline simulation results obtained from MATLAB approximate the
results from a true JPEG2000 baseline standard very closely. The compression rates obtained
from the simulation only differ from a true JPEG2000 standard’s compression rates by a factor
of 2. One of the main differences between the simulation and the actual standard is that the
simulation only approximates the JPEG2000 bit-plane-oriented arithmetic encoding algorithm
instead of the complicated encoding technique used by a true JPEG2000 encoder. For the study
of watermarking images using the JPEG2000 platform, this small discrepancy is inconsequential

and the results approximation suffices the requirements for the analysis performed in this thesis.

63

CHAPTER 6
CONCLUSIONS

6.1 Analog and Digital Technology

Analog technology has been around for a long time. The use of analog technology is
necessary since we live in an analog world. However, the transmission and storage of analog
technology is more complicated and in many cases less efficient than digital technology. Digital
technology, on the other hand, provides fast means to be transmitted and stored. Digital
technology continues to grow and it is more widely used than ever before. It has occupied nearly
all areas of every day for most people. Kitchens, cars, appliances and even furniture have now
digital technology embedded inside. However, with the advent of new technology that can
reproduce digital documents or images with unprecedented accuracy, it poses a risk to the

intellectual rights of many artists and also on personal security.

6.2 Reasons for Including Watermarks
6.2.1 Intellectual Rights

One way to protect intellectual rights of digital works is by embedding watermarks in
them. The watermarks can be visible or invisible depending on the application and the final
objective of the intellectual work. In some cases, the watermark is visible to discourage people

from copying the work illegally.

6.2.2 National Security

Watermarks could also be used to protect the identity of people and even improve

homeland security. By embedding watermarks with the names, social security, and other

64

pertinent information, immigration officials can track those who enter and leave this nation more

efficiently.

6.3 Need for Compression

Digital data has many advantages over analog data. However, even as data becomes
digitalized, it does require some compression in order to be stored or transmitted efficiently.
Memory space and bandwidth are two of the most common reasons for compressing digital data.
Prices for memory space and devices have gone down and the use of limited bandwidth to
transmit data continues to increase. As result more efficient compression algorithms are needed.
The JPEG2000 standard is the next image compression standard. The JPEG2000 provides more

advantages than the former JPEG.

6.4 JPEG2000 Functional Diagram and Basic Principles
JPEG2000 is a wavelet-based image compression standard created by the Joint
Photographic Experts Group (JPEG) in the beginnings of the year 2000. Figure 58 shows the

basic steps necessary to process an image using the JPEG2000 standard.

Input Color Wavalet Quantizer
s C essad
Imag= Transform Transform Encodar ﬂ?ﬁ:;s
Decomp. Inv. Color Inv. Wawvelst Denormalizer
Imag= Transform Transform Dacodar

Figure 58- JPEG2000 Compression/Decompression Basic Blocks

The overall goal of creating this JPEG2000 standard is to eventually replace its

predecessor the discrete cosine based JPEG standard. JPEG2000 seeks to improve compression

65

performance over JPEG and add extra features not found in JPEG. Some of these features are
random code stream access (ROI) and multiple image resolution representation. JPEG needs to
reduce the resolution in a picture before compressing the number of bits in a picture below a
certain level. JPEG2000, on the other hand, can deal with any resolution since the image is
already decomposed in many resolutions during the compression process.

A better understanding of the watermarking technology being used today has been
obtained as well as practical knowledge on how digital image processing works. An analysis on
the results from the DSP Builder software and the DE2 FPGA JPEG2000 watermarking
hardware prototyping (along with the proper documentation on the work being done in
MATLAB and VHDL files) has been provided to the committee of this department for revision

and consideration.

6.5 Areas for Further Investigation

The present JPEG2000 watermarking algorithm only implements baseline compression
and a basic watermarking scheme. Further optimization is needed on the performance of the
JPEG2000 by implementing a better arithmetic encoder. The remaining blocks such as the
quantization and encoding blocks need to be implemented in hardware and integrated with the

color transform and wavelet blocks.

6.5.1 Wavelet Transforms On Images
The wavelet filter banks were tested using sinusoidal signals. Further research is
necessary to transform images using the filter banks described in this thesis. The MATLAB code

used to structure an image for the color transformation HIL block may be used as a guide to

66

stream image values to the filter banks in SIMULINK and perform the desired DSP Builder logic

using the appropriate blocks.

6.5.2 Different Watermarking Algorithms.

The watermarking algorithm used for the JPEG2000 standard falls into the “additive”
category. This type of watermarking algorithm is not very robust to external attacks and it can be
easily removed by hackers or anybody interested in forging, or tempering with an image. Further

research should be done in order to implement a more robust watermarking algorithm.

6.5.3 Hardware Integration.

The hardware-in-the loop (HIL) configuration was used to implement the RGB-to-YChCr
color transformation in hardware. A complete VHDL code to implement the JPEG2000
watermarking encoder is desired. Additional VHDL code needs to be written or generated to
implement the encoding and quantization remaining sections of the JPEG2000 standard. It is also
desired to integrate the existing VHDL code in order to create a single and complete JPEG2000

watermarking encoder algorithm.

67

APPENDIX A

ALTERA DSP AND JPEG2000 COMPRESSION/DECOMPRESSION MATLAB CODE

68

The following two MATLAB codes were obtained from the Gonzalez-Woods-Eddins’ Digital

Image Processing Using MATLAB textbook.

-im2jpeg2k.m

The function im2jpeg2k compresses an image using an approximation to the baseline JPEG2000

standard.

function y = im2jpeg2k(x, n, q)

% Where:

% X is the image to analyze

% N is the N-scale JPEG2000 wavelet transform = #Levels = 3.N+1

% Q is the quantization parameter

% Copyright 2002-2004 R. C. Gonzalez, R. E. Woods, & S. L. Eddins

% Digital Image Processing Using MATLAB, Prentice-Hall, 2004.

-jpeg2k2im.m

The function jpeg2k2im performs the decompression of an image that was compressed

using the im2jpeg2k function. “Y” is the encoding structure outputted by the im2jpeg2k function

function x = jpeg2k2im(y)

% Copyright 2002-2004 R. C. Gonzalez, R. E. Woods, & S. L. Eddins

69

% Digital Image Processing Using MATLAB, Prentice-Hall, 2004.

-Compare.m

The compare function was obtained from the Gonzalez-Woods-Eddins’ Digital Image

Processing Using MATLAB textbook . This algorithm was used to evaluate the actual results

with the expected results. The “compare.m” file outputs the root-square-mean-error of two

images, a histogram and an error image of the difference between two images.

function rmse = compare(fl, f2, scale)

% Copyright 2002-2004 R. C. Gonzalez, R. E. Woods, & S. L. Eddins

% Digital Image Processing Using MATLAB, Prentice-Hall, 2004.

DSP Builder Input/Output MATLAB Code For SIMULINK

-ed_in2_script.m

70

This code was used to separate an RGB image into its red, green and blue components. Each
component was then converted to “double” floating point for computational purposes. Finally,
every value forming each component was configured into a structure that was input into the color

transformation blocks.

-ed_out_2script.m

This code was used to integrate the Y, Cb and Cr image components and to compare the

hardware and MATLAB results. This code also provides the watermark and Y,Cb and Cr

components for the SIMULINK JPEG2000 encoding and decoding. The final result is a

JPEG2000 watermarked RGB image.

71

APPENDIX B

FPGA BRAND AND MODEL USED FOR THE HARDWARE PROTOTYPING OF THE

RGB-TO-YCBCR COLOR TRANSFORMATION ALGORITHM

72

The ALTERA DE2 Board with the Cyclone Il 2C35 microprocessor FPGA in a 672-pin
package will be used for the hardware prototyping of the RGB-to-YCbCr color transformation
algorithm. A few of the reasons for using the ALTERA DEZ2 board is its versatility, availability
and affordability compared to similar FPGA brands such as Xilinx. Figure 59 shows a picture of
the ALTERA DE2 board that was used to implement the hardware-in-the-loop configuration for

the RGB-to-YCDbCr color transformation.

I
!Trqrrﬁ"l-"f-f-ﬂ‘-{r—r‘ammﬁrn TEX

B -l -l --l--ol-d--l-l bl i e e e

Figure 59- ALTERA DE2 Board

Microprocessor, Devices, Clock Speed And Other Characteristics
FPGA
e Cyclone Il EP2C35F672C6 with 16Mb EPCS16 serial configuration device
I/O Devices
e Built-in USB Blaster for FPGA configuration
e 10/100 Ethernet

o RS232

73

e Video Out (VGA 10-bit DAC)
e Video In (NTSC/PAL/Multi-format)
e USB 2.0 (type A and type B)
e PS/2 mouse or keyboard port
e Line in/out, microphone in (24-bit Audio CODEC)
e Expansion headers (76 signal pins)
e Infrared port
Clock
e 27 and 50 MHz crystals for FPGA clock input
e External SMA clock input
Memory
e 8MB SDRAM, 512K SRAM, 1MB Flash
e SD memory card slot
Displays
e 16 x 2 LCD display
e Eight 7-seg displays
Switches and LEDs
e 18 toggle switches
e 18red LEDs

e 9green LEDs

74

REFERENCES

. Cai, Wei. FPGA Prototyping of a Watermarking Algorithm For MPEG4. [Thesis] Denton,
TX : University of North Texas, May 2007. FPGA Prototyping of a Watermarking
Algorithm For MPEG4. 174245407

. Heiner Hanggi, Theodor H. Winkler. Challenges of Security Sector Governance. [Document]
NJ : Transaction Publishers, DCAF, 2003. ISBN 3-8258-7158-4.

. Andy Jones, Gerald L. Kovacich, Perry G. Luzwick. Global Information Warfare. FL :
Auerbach , 2002. ISBN 0-8493-1114-4.

. Cole, E. Steganography, Hiding In Plain Sight. IN : WILEY, 2003. 10: 0471444499,

. Lu, Chun-Shien. Steganography and Digital Watermarking Techniques For Protection of
Intellectual Property. USA : Idea Group Inc, 2005. 1-59140-192-5.

. Tinku Acharya, Ping-Sing Tsai. JPEG2000 Standard for Image Compression, concepts,
algorithms and VLSI architectures. NY : WILEY, 2005. 0-471-48422-9.

. Group, Joint Photographic Experts. JJEG Compression Standard. JPEG. [Online] 1992.
[Cited: 05 01, 2008.] www.jpeg.org.

. Russ, C. John. The Image Processing Handbook, 4th Edition. USA : CRC Press, 2002. 0-
8493-1142.

. Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins. Digital Image Processing Using
MATLAB. CA : Pearson Education, 2007. 9780130085191.

10. A Method for the Reconstruction of Minimum Redudancy Codes. Huffman, D. Cambridge,
MA : Proceedings of The IRE, 1952. Proc. of the IRE. pp. 1098-1101. IRE-1098.

11. Digital Watermarking In The Wavelet Transform. Meerwald, Peter. 5, Salzburg : IEEE,
January 2001, Vol. 48, pp. 875-882. 0278-0046.

12. M. Awranjeb, Kankanhalli. Lossless Watermarking Considering The Human Visual System.
[Lectures Note in Computer Science] Seoul : National University of Singapore, 2003.
0302-9743 .

13. Novel Architecture for the JPEG2000 block coder. Darren Freeman, Greg Knowles. 897,
Adelaide, Australia : Jorunal of Electronic Imaging, 2004, Vol. XIIl, pp. 117-130. 897-
906.

14. Antonin Descampe, Francois Devaux, Gael Rauvroy, Benoit Macq, Jean Dider. An efficient
FPGA Implementation of a Flexible JPEG2000 Decoder for Digital Cinema. [Document]
Louvain, Belgium : Universite Catholique de Louvain, Universit e catholique de
Louvain, 2003.

75

15. On the Digital Watermarking in JPEG2000. Suhail, Obaidat. na, NJ : IEEE, 2001, Vol. 2, pp.
871-874 . 0-7803-7057-0.

16. MathWorks. Mathworks. MATLAB. [Online] MATLAB, 2008. [Cited: 7 12, 2008.]
www.matlab.com.

17. A Simple and Efficient Watermarking Technique Based on JPEG2000 Codec. Tong-Shou
Chen, Jeanne Chen, Jian-Guo Chen. na, Taiwan : IEEE Fifth International Symposium on
Multimedia Software Engineering, 2004, Vol. 1. 0-7695-2031-6/03.

18. A Comparative Study of Digital Watermarking in JPEG and JPEG2000 Enviroments.
Shuhail Obait, Ipsodoun. na, s.l. : Science Direct, 2003, Information Sciences, Vol. 151,
pp. 93-105. 10.1016/S0020-0255(02)00291-8 .

19. FPGA Based Implementation of An Invisible-Robust Image Watermarking Encoder.
Mohanty, S.P. 1, Heidelberg : Springer Berlin, January 2005, Vol. 3356, pp. 344-353.
0302-9743.

20. Michael Tsvetkov, Vyacheslav Gulyaev. Color Converter: Overview . [Document] NY :
Open Cores, 2007. na.

21. Document Processing for Automatic Color Document Form Dropout. Andreas E. Savakis,
Chris R. Brown. NY : Deparment of Computer Engineering, Rochester Institute of
Technology, 2005.

22. VHDL Based Design of an FDWT Processor. Aziz, Matteo Michel. Australia : IEEE, 2003,
Vol. IV, pp. 1609- 1613 . 0-7803-7651-x/03.

23. Wavelet Domain Adaptive Visible Watermarking. Yongjian Hu, Sam Kwong. 20, Hong
Kong, China : IEEE, 2001, IEEE Electronic Letters, VVol. 37, pp. 1219-1220. 7070534.

24. An Image Fusion Based Visible Watermarking Algorithm. Yongjian Hu, Sam Kwomg. na,
Guangzhou, China : IEEE, 2003, IEEE Press, Vol. 3, pp. 794-797. 0-7803-7761-3.

25. A Contrast Sensitive Watermarking Scheme. Biao-Bing Huang, Shao-Xian Tang. 2, LA,
CAL : IEEE MultiMedia, 2006, IEEE Press, Vol. XIIlI, pp. 60-66. 1070-986X.

26. A Simulink-Based Hybrid Coding Tool for Rapid Prototyping Of FPGA's In Signal
Processing Systems. Reyneri, L.M. 5-6, Torino, Italy : Science Direct, 2004, Vol. 28, pp.
273-289. 0141-9331.

27. Discrete Wavelet Transform FPGA Design using MatLab/Simulink. Uwe Meyer-Baesea, A.
Verab, A. Meyer-Baesea, M. Pattichisb, R. Perrya. na, Orlando, FL : SPIE, 2006, Vol.
6247.10.1117/12.663457 .

28. ALTERA. DSP Builder User Guide. USA : ALTERA, 2008. Vol. 7.2.

76

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

ALTERA CORP. Video and Image Processing Suite - User Guide. San Jose , CA : ALTERA
, 2007. Vol. 7.2.

Reusable Silicon IP Cores for Discrete Wavelet Transform Applications. Shahid Masud, John
V. McCanny. 6, Pakistan : IEEE, 2004, Vol. 51, pp. 1114- 1124. 1057-7122/04.

Wavelet Processing Implementation in Digital Hardware. P.M. Szecowka, M Kowalski, K.
Krysztoforski, A.R Wolczowski. na, Poland : Department of Microelectronics &
Computer Science, Technical University of Lodz, 2007, Vol. 14, pp. 651-654. 83-
922632-9-4.

Xuyun Chen, Ting Zhou, Wei Li, hao Min. A VLSI Architecture for Discrete Wavelet
Transform. [Document] Shanghai, China : IEEE, IEEEXplore, 1996. 0-7803-3258/96.

VLSI Implementation Of Discrete Wavelet Transform (DWT). Abdullah Al Muhit, Md.
Shabiul Islam and Masuri Othman. Palmerston North, New Zealand : 2nd International
Conference on Autonomous Robots and Agents, 2004.

Mallat, Stephane. A Wavelet Tour of Signal Processing, 2nd Edition. Oxford, UK : Academic
Press, 2003. 0-12-466606-X .

Segmentation by Color Sspace Transformation Prior to Lifting And Integer Wavelet
Transformation. Gilberto Zamora, Shuyu Yang, Mark Wilson, and Sunanda Mitra.
Lubbock, Texas : IEEE, 2000. pp. 136-140. 0-7695-0595-3.

Design and Implementation of a Wavelet Based System. Mokhtar Nibouche, Omar Nibouche,
Ahmed Bouridane. 1, England : IEEE, 2003, Vol. 2, pp. 463- 466 . 0-7803-8163-7/03.

VHDL Implementation of Wavelet Packet Transforms Using SIMULINK Tools. Mukul
Shirvaikar, Tariq Bushnag. 1, San Jose, CA : Electronic Imaging, 2008, Vol. 6811, pp.
50-62. 0277-786x/08.

Meyer-Baese, Uwe. Digital Signal Processing With Field Programmable Gate Arrays.
Tallahassee, FL : Springer, 2004. 3-540-21119-5.

77

	ACKNOWLEDGMENTS
	LIST OF FIGURES
	CHAPTER 1 INTRODUCTION
	1.1 Border Security and Intellectual Property Protection

	CHAPTER 2 THE NEED FOR COMPRESSION
	2.1 Reasons for Compression Data
	2.2 Data Compression and CODEC
	2.3 Different Media & Data Compression Model
	2.4 Image Compression Framework
	2.5 Redundancy Types
	2.5.1 Coding Redundancy
	2.5.2 Interpixel Redundancy

	CHAPTER 3 THE JPEG2000 COMPRESSION STANDARD
	3.1 How It Works
	3.1.2 Analyzing JPEG2000 Compression Ratios

	3.2 Why JPEG2000 Over Regular JPEG

	CHAPTER 4 STEGANOGRAPHY IN GENERAL
	4.1 Definition
	4.2 How It Works
	4.3 Applications
	4.4 Types of Steganography
	4.4.1 File Type
	4.4.2 Methods of Hiding Data
	4.4.2.1 Substitution
	4.4.2.2 Injection
	4.4.2.3 Generation

	4.5 Digital Watermarking

	CHAPTER 5 HARDWARE IMPLEMENTATION OF JPEG2000 WATERMARKING ENCODER
	5.1 MATLAB & SIMULINK Architecture For The JPEG2000 Watermarking Encoder
	5.2 Hardware Implementation
	5.2.1 Reasons for Using FPGAs

	5.3 RGB-to-YCbCr Color Transform FPGA Implementation
	5.3.1 Color Transformation
	5.3.2 Hardware-In The-Loop (HIL) Using The ALTERA DSP Builder And SIMULINK

	5.3.3 DSP Builder VHDL Generation For SIMULINK Color Transformation Structure
	5.3.4 Hardware-In the-Loop (HIL) Set Up Process
	5.4 MATLAB, SIMULINK And DSP Builder JPEG2000 Watermarking Process Flow
	5.4.1 Color Transformation
	5.4.2 Wavelet Domain Watermarking

	5.5 The ALTERA DSP Builder and Wavelet Transforms
	5.5.1 Wavelets
	5.5.2 Reasons for Using the Discrete Wavelet Transform
	5.5.3 -Digital Images and Discrete Wavelet Transforms
	5.5.4 Discrete Wavelet Transform Hardware Implementation

	5.6 Differences on the JPEG2000 and the MATLAB Simulation Algorithm

	CHAPTER 6 CONCLUSIONS
	6.1 Analog and Digital Technology
	6.2 Reasons for Including Watermarks
	6.2.1 Intellectual Rights
	6.2.2 National Security

	6.3 Need for Compression
	6.4 JPEG2000 Functional Diagram and Basic Principles
	6.5 Areas for Further Investigation
	6.5.1 Wavelet Transforms On Images
	6.5.2 Different Watermarking Algorithms.
	6.5.3 Hardware Integration.

	APPENDIX A ALTERA DSP AND JPEG2000 COMPRESSION/DECOMPRESSION MATLAB CODE
	APPENDIX B FPGA BRAND AND MODEL USED FOR THE HARDWARE PROTOTYPING OF THE RGB-TO-YCBCR COLOR TRANSFORMATION ALGORITHM
	REFERENCES

