5,873 research outputs found

    Experiences in Teaching Program Transformation for Software Reengineering

    Get PDF

    Analysis of source code metrics from ns-2 and ns-3 network simulators

    Get PDF
    Ns-2 and its successor ns-3 are discrete-event simulators which are closely related to each other as they share common background, concepts and similar aims. Ns-3 is still under development, but it offers some interesting characteristics for developers while ns-2 still has a large user base. While other studies have compared different network simulators, focusing on performance measurements, in this paper we adopted a different approach by focusing on technical characteristics and using software metrics to obtain useful conclusions. We chose ns-2 and ns-3 for our case study because of the popularity of the former in research and the increasing use of the latter. This reflects the current situation where ns-3 has emerged as a viable alternative to ns-2 due to its features and design. The paper assesses the current state of both projects and their respective evolution supported by the measurements obtained from a broad set of software metrics. By considering other qualitative characteristics we obtained a summary of technical features of both simulators including, architectural design, software dependencies or documentation policies.Ministerio de Ciencia e Innovación TEC2009-10639-C04-0

    Kollaboratives Reengineering und Modularisieren von Softwaresystemen

    Get PDF
    Software systems evolve over their lifetime. Changing requirements make it inevitable for developers to modify and extend the underlying code base. Specific requirements emerge in the context of open source software where everybody can contribute and requirements can change over time. In particular, research software is often not structured with a maintainable and extensible architecture. Furthermore, often databases are employed for retrieving, storing, and processing application data. Insufficient knowledge of the actual structure and behavior of such software systems and related databases can entail further challenges. Thus, understanding these software systems embodies a crucial task, which needs to be addressed in an appropriate way to face inevitable challenges while performing software changes. Approaches based on alternative display and interaction concepts can support this task by offering a more immersive user experience. In this thesis, we introduce three complementary approaches to support the evolution and particularly understanding of software systems in different aspects. Our main contributions are (i) an approach named CORAL for enabling collaborative reengineering and modularization of software systems, (ii) a gesture-based, collaborative, and multi-user-featuring Virtual Reality approach named ExplorViz VR for the software city metaphor, and (iii) a database behavior live-visualization approach named RACCOON for database comprehension of software systems. An extensive case study shows that our CORAL approach is capable of supporting reengineering and modularization processes. Furthermore, several lab experiments demonstrate the high usability, and efficiency and effectiveness for solving comprehension tasks when using the visualization within our multi-user VR approach ExplorViz VR. All implementations are available as open-source software on www.explorviz.net. Additionally, we provide an extensive experimental package of our latest VR evaluation to facilitate the verifiability and reproducibility of our results

    Support for collaborative component-based software engineering

    Get PDF
    Collaborative system composition during design has been poorly supported by traditional CASE tools (which have usually concentrated on supporting individual projects) and almost exclusively focused on static composition. Little support for maintaining large distributed collections of heterogeneous software components across a number of projects has been developed. The CoDEEDS project addresses the collaborative determination, elaboration, and evolution of design spaces that describe both static and dynamic compositions of software components from sources such as component libraries, software service directories, and reuse repositories. The GENESIS project has focussed, in the development of OSCAR, on the creation and maintenance of large software artefact repositories. The most recent extensions are explicitly addressing the provision of cross-project global views of large software collections and historical views of individual artefacts within a collection. The long-term benefits of such support can only be realised if OSCAR and CoDEEDS are widely adopted and steps to facilitate this are described. This book continues to provide a forum, which a recent book, Software Evolution with UML and XML, started, where expert insights are presented on the subject. In that book, initial efforts were made to link together three current phenomena: software evolution, UML, and XML. In this book, focus will be on the practical side of linking them, that is, how UML and XML and their related methods/tools can assist software evolution in practice. Considering that nowadays software starts evolving before it is delivered, an apparent feature for software evolution is that it happens over all stages and over all aspects. Therefore, all possible techniques should be explored. This book explores techniques based on UML/XML and a combination of them with other techniques (i.e., over all techniques from theory to tools). Software evolution happens at all stages. Chapters in this book describe that software evolution issues present at stages of software architecturing, modeling/specifying, assessing, coding, validating, design recovering, program understanding, and reusing. Software evolution happens in all aspects. Chapters in this book illustrate that software evolution issues are involved in Web application, embedded system, software repository, component-based development, object model, development environment, software metrics, UML use case diagram, system model, Legacy system, safety critical system, user interface, software reuse, evolution management, and variability modeling. Software evolution needs to be facilitated with all possible techniques. Chapters in this book demonstrate techniques, such as formal methods, program transformation, empirical study, tool development, standardisation, visualisation, to control system changes to meet organisational and business objectives in a cost-effective way. On the journey of the grand challenge posed by software evolution, the journey that we have to make, the contributory authors of this book have already made further advances

    Embedding Spatial Software Visualization in the IDE: an Exploratory Study

    Full text link
    Software visualization can be of great use for understanding and exploring a software system in an intuitive manner. Spatial representation of software is a promising approach of increasing interest. However, little is known about how developers interact with spatial visualizations that are embedded in the IDE. In this paper, we present a pilot study that explores the use of Software Cartography for program comprehension of an unknown system. We investigated whether developers establish a spatial memory of the system, whether clustering by topic offers a sound base layout, and how developers interact with maps. We report our results in the form of observations, hypotheses, and implications. Key findings are a) that developers made good use of the map to inspect search results and call graphs, and b) that developers found the base layout surprising and often confusing. We conclude with concrete advice for the design of embedded software maps.Comment: To appear in proceedings of SOFTVIS 2010 conferenc

    Ocular-based automatic summarization of documents: is re-reading informative about the importance of a sentence?

    Get PDF
    Automatic document summarization (ADS) has been introduced as a viable solution for reducing the time and the effort needed to read the ever-increasing textual content that is disseminated. However, a successful universal ADS algorithm has not yet been developed. Also, despite progress in the field, many ADS techniques do not take into account the needs of different readers, providing a summary without internal consistency and the consequent need to re-read the original document. The present study was aimed at investigating the usefulness of using eye tracking for increasing the quality of ADS. The general idea was of that of finding ocular behavioural indicators that could be easily implemented in ADS algorithms. For instance, the time spent in re-reading a sentence might reflect the relative importance of that sentence, thus providing a hint for the selection of text contributing to the summary. We have tested this hypothesis by comparing metrics based on the analysis of eye movements of 30 readers with the highlights they made afterward. Results showed that the time spent reading a sentence was not significantly related to its subjective value, thus frustrating our attempt. Results also showed that the length of a sentence is an unavoidable confounding because longer sentences have both the highest probability of containing units of text judged as important, and receive more fixations and re-fixations

    Experience in teaching a software reengineering course

    Full text link
    Software engineering curricula emphasize developing new software systems. Little attention is given to how to change and modernize existing systems, i.e., the theory and practice of software maintenance and reengineering. This paper presents the author’s experience in teaching software reengineering in a masters-level course at University of Leicester, UK. It presents the course objectives, outline and the lessons learned. The main lessons are: first, there is a big shortage of educational materials for teaching software reengineering. Second, selecting the suitable materials (that balance theory and practice) and the right tool(s) for the level of students and depth of coverage required is a difficult task. Third, teaching reengineering using toy exercises and assignments does not convey the practical aspects of the subject. While, teaching with real, even small size, exercises and assignments, is almost infeasible. Getting the balance right requires careful consideration and experimentation. Finally, students understand and appreciate this topic much more if they have previous industrial experience and when they are presented with real industrial case studies
    corecore