
Experiences in Teaching Program Transformation for Software
Reengineering

Mohammad El-Ramly
mer14@le.ac.uk
Department of Computer Science,
University of Leicester, UK

Abstract
Little attention is given to teaching the theory and practice of software evolution and change in
software engineering curricula. Program transformation is no exception. This paper presents the
author’s experience in teaching program transformation as a unit in a postgraduate module on
software systems reengineering. It describes the teaching context of this unit and two different
offerings of it, one using Turing eXtender Language (TXL) and the other using Legacy
Computer Aided Reengineering Environment (Legacy-CARE or L-CARE) from ATX Software.
From this experience, it was found that selecting the suitable material (that balances theory and
practice) and the right tool(s) for the level of students and depth of coverage required is a non-
trivial task. It was also found that teaching using toy exercises and assignments does not convey
well the practical aspects of the subject. While, teaching with real, even small size, exercises
and assignments, is almost non-feasible. Finding the right balance is very important but not
easy. It was also found that students understanding and appreciation of the topic of program
transformation increases when they are presented with real industrial case studies.

Introduction
Software development is rarely a “green fields” activity. It is likely the case that programmers,
even if they are doing fresh software development, have to live with some legacy system(s)
from the past that they have to understand, admire, take care of and evolve. This would require
them to have knowledge and skills in the areas of program comprehension, evolution,
maintenance, reverse engineering and reengineering, suitable to their work context. These areas
have received a lot of attention from the research community, which resulted in an increasing
number of projects, conferences and workshops on these topics. Unfortunately, software
engineering curricula are significantly lagging behind in providing the necessary training on
these topics. Most of the time students are trained on developing small size programs from
scratch. They learn how to write new programs but they are not taught how to read and change
existing and large ones [1]. Software engineering textbooks cover the topic of software change
and evolution minimally, as a side topic (Compare, for example, the 6th and 7th editions of
Software Engineering by Ian Sommerville. Chapters 26, 27 and 28 in the 6th edition [9], which
are titled Legacy Systems, Software Change and Software Re-engineering, respectively, were
reduced to one chapter in the 7th edition, Chapter 21: Software Evolution [10]).

There is a need for more emphasize in software engineering educational programs on the issue
of software evolution and change. There is also an equal need for coherent packages of
educational materials of different levels of depth to serve different curriculum contexts.

In this paper, I share my experience in teaching one aspect of software reengineering, which is
the application of program transformation in reengineering, to M.Sc. of software engineering

Dagstuhl Seminar Proceedings 05161
Transformation Techniques in Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2006/423

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62911448?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

students. I explain the teaching context during which program transformation was taught. Then,
I present the objectives, structure and content of the program transformation unit used for
teaching and the different variants of this unit. Finally, I conclude by discussing the challenges
faced during this experience and the lessons learned. By sharing these experiences, I hope the
reader will find some guidance in developing and delivering educational material on the
application of program transformation in software reengineering.

Teaching Context
In 2003, the Department of Computer Science at University of Leicester started its 1-year new
taught M.Sc. of Software Engineering for the e-Economy program (renamed from 2005 as the
M.Sc. of Advanced Software Engineering). The program consisted of two semesters of modules
and 3-months summer project and thesis. In each semester the students have to take a mixture of
mandatory and optional courses. In 2003/2004, the mandatory modules were:

• System Reengineering,
• Generative Development,
• Web Technologies,
• Advanced System Design, and
• two small modules: Seminar and Planning. These two combined have half the weight of

one of the four above and serve the transferable skills of the M.Sc. program.

Additionally, students needed to choose two optional modules from a menu of software
engineering and computer science modules.

The program is distinguished in offering full modules both on software system reengineering
and generative development. The aim of the System Reengineering module is to educate
students and train them on the realities of software industry, in terms of having to deal with and
evolve legacy code-bases. It equips them with the knowledge and skills of how to deal with the
past and transform it to the future. The module covers the important aspects of software reverse
engineering and reengineering. The outline of the module covers the following topics.

• Introduction to Legacy Systems
• Introduction to Software Evolution, Maintenance and Reengineering
• Program Analysis
• Complexity and Maintainability Metrics
• Program Transformation
• Software Refactoring
• Web-enabling Legacy Systems
• Management Issues in Software Reengineering Projects

In 2004/2005, this module was assessed by a final exam (50%) and four pieces of coursework
(50%). The coursework included a class test and 3 assignments. The first is an essay assignment,
in which students write a group essay and give a presentation on a reengineering or reverse
engineering topic that is not covered in the curriculum. Some example topics are: de-
compilation, architecture recovery, reengineering of object-oriented systems and database
reverse engineering and reengineering. The other two assignments are practical mini (or micro)
projects on code transformation and refactoring.

2

Teaching Program Transformation
In this section we focus on the program transformation unit of this module by describing its
objective, structure and content. This unit is 2 to 2.5 weeks long, i.e., 10 to 12.5 hours long. It
assumes that the student needs 1.5 hours of self-study/homework for every hour of instruction or
lab. The objective of teaching program transformation is to introduce the students to this
important reengineering tool and get them to understand and try out what can be accomplished
with it in the context of reengineering. In particular, this unit focuses on source-to-source code
transformation. Two variants of this unit were offered, one in 2003/2004 and one in 2004/2005.
They are described in the following.

Teaching Code Transformation Using TXL
In 2003/2004, TXL [2,3] was chosen to teach code transformation. TXL, Turing eXtender
Language, is a programming language and rapid prototyping system specifically designed to
support rule-based source-to-source transformation [2]. TXL is well supported and its Web page
[3] is very useful, well maintained and frequently updated. After consultation with Jim Cordy
and Filippo Ricca, I understood the suitable size and depth of the unit to suit its context. They
also shared with me some of their well-prepared materials. The TXL unit consisted of 6 hours of
lectures and tutorials on basic TXL, 3 hours of labs, a class test and an assignment.

This unit gave students a flavor of what program transformation (particularly source-to-source)
is about and what it can accomplish. Students invested a lot of time and effort in learning TXL.
By the end of the unit, students could write small TXL programs. For example, they could write
a grammar for a language that only has variable declarations, assignments, 'if', 'case', 'while',
'goto' statements and labels. Then, they could write a TXL clone detector or a TXL program-
restructuring (‘goto’ elimination) tool for programs in this language.

While no statistical data was collected, it was noted from an evaluation questionnaire at the end
of the module and from discussions with the students that mature students with work experience
appreciated and enjoyed the unit more than those who did not have previous work experience.
These students had deeper understanding of what this technology could be used for and the
potential applications of it.

Teaching Code Transformation Using L-CARE
In 2004/2005, code transformation was taught via a condensed 12-hours industrial tutorial, in
one week. The tutorial was funded by Leg2NET project [4] and was part of the Transfer of
Knowledge (TOK) component of this project. In this offering, an industry expert from ATX
Software taught the tutorial on campus using ATX’s Legacy Computer Aided Reengineering
Environment (Legacy-CARE or L-CARE) [11]. L-CARE is a commercial environment for
legacy software reverse engineering and reengineering that can perform:

• Program analysis: Control and data flow graphs, program dependence graphs, slicing
and code queries. All graphs are XML-based and can be queried with an extension of
XPath.

• Rule-based mass program transformations.
• Documentation and visualisation
• Metrics

3

The program transformation unit, i.e., the industrial tutorial covered:
• Introduction to Reengineering and L-CARE Environment
• L-CARE Code Pattern Detection and Code Query Demo and Exercises
• L-CARE Code Transformation Demo and Exercises
• Industrial Case Studies on Applications of Code Pattern Detection and Code

Transformation in L-CARE
• Slicing and Code Views in L-CARE
• Survey of Existing Reengineering Tools

The tutorial consisted of lectures, demos and lab sessions. Two big industrial case studies were
demoed. The first was on using code pattern detection for code certification. In this case study,
structural rules were written to query code graphs for non-compliance with an organization’s
code style manual. The application was used to enforce compliance with the manual before code
goes to testing. In the second case study, rule-based code transformation was done to transform
a huge Cobol system from persistent file storage to database storage. These case studies were
very appreciated by the students and made them really appreciate the technology. This was clear
from an evaluation questionnaire that was done at the end of the tutorial. Assessment was done
by an assignment that included pattern detection and code transformation tasks.

Challenges, Questions and Lessons
In the course of teaching the program transformation unit two times, some challenges and
questions were faced and some valuable lessons were learned. I elaborate on them combined in
the following since through these challenges, lessons were learnt. They are not meant to be in a
particular order.

Theory vs. practice. The first questions to ask before teaching program transformation in the
context of software reengineering or in a different context is what are the learning objectives
and timeframe of this unit and how does the unit fit in the rest of the module or course?
Depending on the answer, one can decide whether a theory-oriented unit or a practice-oriented
unit should be offered and how much subject should be covered. In my case, the focus was on
practical and applied aspects and the relevant underpinning theory. To my knowledge, there is
no textbook and very little ready-to-use educational material on the topic. Hence, considerable
effort needs to be spent on deciding the appropriate material. However, if it is decided to teach
applied program transformation and some tool(s) are selected, then it is natural to choose the
literature related to the tool for preparing the unit material.

Which tool(s) to use? There are many research and commercial program transformation tools
that support a wide range of transformation tasks. The two mentioned here, TXL and L-CARE,
are just members of a bigger family. The problem of choosing a suitable tool is that hardly any
of the available tools was designed for/used in teaching program transformation in a classroom,
to my knowledge. Hence, often neither educational materials nor previous experiences in
teaching using these tools exist. This means that for a newly used tool, materials (lectures, labs,
assignments, projects, etc.) need to be prepared from scratch for the context it will be used in.
But what is more difficult, at least in my experience, is judging how the learning curve of the
students would be like with a given tool and what type and size of examples, exercises, and
projects to give them.

4

Additionally, depending on the module content, other tools may also be used. Hence, it is better
to use multi-purpose tools and use as few tools as possible. In 2003/2004, I taught students
using a number of tools for various tasks in System Reengineering module. They used
Imagix4D [5] for reverse engineering, visualization and metrics, CodeSurfer [6] for slicing,
TXL [3] for code transformation and IntelliJ [7] for refactoring. Every time I introduced a new
tool to use for the next 2 or 3 weeks, students reaction was: “Oh, no! Enough new tools, please
please.” It became overwhelming by the end of the module. I learned that picking a good or
even the top tool for every unit is not always the best option. In 2004/2005, I tired introduce as
few tools as possible by selecting multiple purpose tools. For code transformation, L-CARE was
selected not only because of our collaboration with ATX Software, but also because it supports
reverse engineering, visualization, slicing, metrics and program transformation. The only other
tool that was used with L-CARE was a refactoring tool (students had the choice of using Eclipse
[8] or IntelliJ [7]).

Exercises and projects: too small, too big. Without enough experience in teaching this topic, it
is very hard to decide what size of programs students can handle in coursework. This applies not
only to code transformation, but to refactoring, reverse engineering, etc. as well. In 2003/2004, I
had to abandon a mini project for reverse engineering a small size open source software because
it was way too much for the students than what I thought when I designed it. For program
transformation, students had to do a small assignment using TXL. While this was enough work
for the students and suitable for their assessment, it was just a toy example with no resemblance
to reality. Again in 2004/2004, we had only small homework on program transformation using
L-CARE on toy exercises. One good advice to judge the effort needed for an assignment or a
project is to do it yourself in full, and then multiply the time spent by a suitable factor between
1.1 and 3, depending on how you see your speed compared to the students in solving the given
problem.

Students Appreciation. One of the objectives of this module is to get students to understand and
appreciate the complexity of changing legacy systems. Unfortunately in 2003/2004, students
with no work experiences did not get this message well enough, especially when most of the
examples, labs and assignments they had were toy examples. Students with industrial experience
had deeper understanding and appreciation of the reality of software change. This was one of the
reasons behind trying L-CARE in 2004/2005. In this offering, we had an industry expert on site
and we had all examples and demos driven from industrial program transformation applications.
Lab exercises and assignments also had a flavor of real applications. This helped achieving the
unit objective.

Acknowledgment
The author acknowledges the financial support of Leg2NET project (From Legacy Systems to
Services in the Net), which is a joint project between the Software Specification and Design
Group at University of Leicester and ATX Software, funded by the European Commission
under Marie Curie Industry-Academia Strategic Partnership Scheme (ToK-IAP), contract #3169
and led by professor José Luiz Fiadeiro. This support made it possible to host the industrial
tutorial on program transformation offered for University of Leicester M.Sc. of Software
Engineering for the e-Economy students in 2004/2005. The author acknowledges the effort of
ATX Software in preparing and delivering the L-CARE tutorial and the hard work and
dedication of Georgios Koutsoukos in preparing and teaching the tutorial. The author

5

acknowledges the advice and materials provided by Jim Cordy and Filippo Ricca in order to
deliver a program transformation unit using TXL during the academic year 2003/2004.

Reference

[1] A. van Deursen, J. Favre, R. Koschke and J. Rilling, Experiences in Teaching Software
Evolution and Program Comprehension. International Workshop on Program
Comprehension (IWPC’03), p. 283, 2003.

[2] J. Cordy, T. Dean, A. Malton and K. Schneider, Source Transformation in Software
Engineering using the TXL Transformation System. Special Issue on Source Code Analysis
and Manipulation, Journal of Information and Software Technology 44(13), pp. 827-837,
October 2002.

[3] TXL Web Page, http://www.txl.ca

[4] From Legacy Systems to Services in the Net, A Marie- Curie TOK-IAP Project
(Leg2NET), http://www.cs.le.ac.uk/SoftSD/Leg2Net/

[5] Imagix4D, http://www.imagix.com/products/imagix4d.html

[6] CodeSurfer, http://www.grammatech.com/products/codesurfer/

[7] IntelliJ, http://www.jetbrains.com/idea/

[8] Eclipse, http://www.eclipse.org/

[9] I. Sommerville, Software Engineering, 6th Edition. Addison-Wesley, 2000.

[10] I. Sommerville, Software Engineering, 7th Edition. Addison-Wesley, 2004.

[11] Legacy-CARE, http://www.atxsoftware.com/?sec=products&it=48

6

