
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla
Analysis of source code metrics from ns-2 and ns-3 network
simulators

 Juan Luis Font, Pablo Iñigo, Manuel Domínguez, José Luis Sevillano ⇑, Claudio Amaya

 Department of Computer Technology and Architecture, University of Seville, Seville, Spain
Keywords:
Discrete-event simulation
ns-2
ns-3
Software metrics
⇑ Corresponding author. Address: ETS Ingenieriá I
E-mail addresses: juanlu@atc.us.es (J.L. Font), pa

camaya@atc.us.es (C. Amaya).
a b s t r a c t

Ns-2 and its successor ns-3 are discrete-event simulators which are closely related to each
other as they share common background, concepts and similar aims. Ns-3 is still under
development, but it offers some interesting characteristics for developers while ns-2 still
has a large user base. While other studies have compared different network simulators,
focusing on performance measurements, in this paper we adopted a different approach
by focusing on technical characteristics and using software metrics to obtain useful conclu-
sions. We chose ns-2 and ns-3 for our case study because of the popularity of the former in
research and the increasing use of the latter. This reflects the current situation where ns-3
has emerged as a viable alternative to ns-2 due to its features and design. The paper
assesses the current state of both projects and their respective evolution supported by
the measurements obtained from a broad set of software metrics. By considering other
qualitative characteristics we obtained a summary of technical features of both simulators
including, architectural design, software dependencies or documentation policies.
1. Introduction

Simulation is a key tool in networking research due to its inherent advantages over testing with real hardware [1].
Matters such as budget and cost of time make simulation attractive for research, while flexibility, scalability and virtually
no cost expansion are also valuable advantages over other testing methods [2]. Network simulators allow us to implement
and study different network entities in a simulated environment, providing a high degree of flexibility to test new protocols,
technologies, conceptual models and topologies.

Ns-3 [3] has been conceived as ns-2’s successor: its developers have tried to solve or mitigate many of ns-2’s well-known
drawbacks as well as apply new concepts, such as validation and software engineering techniques, to produce a more reli-
able simulation tool to support academic and industrial research [4].

Other technical papers have already compared ns-2 and ns-3 [5], along with other network simulators, evaluating their
core performance and scheduling capabilities but not focusing on any specific simulator features to make the comparison of
very different pieces of software as fair as possible. Instead this study has focused on two specific simulators, ns-2 and ns-3,
which are quite close in terms of structure, aims and user base. These facts allowed us to focus on technical aspects that are
not directly comparable in other simulation packages due to their quite different characteristics and nature. In other words,
adding other simulator packages to this study would introduce too different elements that are not susceptible to be com-
pared in the same terms than with ns-2 and ns-3. One good reference that has good review of other simulation packages
that the interested reader may want to look at is Obaidat and Papadimitriou [6].
nformática. Avda. Reina Mercedes s/n. 41012, Seville, Spain. Tel.: +34 954556142.
bloinigo@atc.us.es (P. Iñigo), mdominguez@atc.us.es (M. Domínguez), sevi@atc.us.es (J.L. Sevillano),

https://core.ac.uk/display/288003034?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.simpat.2011.01.009
mailto:juanlu@atc.us.es
mailto:pabloinigo@atc.us.es
mailto:mdominguez@atc.us.es
mailto:sevi@atc.us.es
mailto:camaya@atc.us.es
http://dx.doi.org/10.1016/j.simpat.2011.01.009
http://www.sciencedirect.com/science/journal/1569190X
http://www.elsevier.com/locate/simpat

This paper is an extension of a previous article [7], which made a technical comparison of topics such as software archi-
tecture, design and suitability of use for developers interested in network simulation. The former article, laid the ground-
work for this paper, which picks up from the technical comparison deployed in the previous work, extending the
analysis and interpretation of several software metrics extracted from both network simulators. It provides a more thorough
analysis of how they have evolved by analyzing their respective source code releases. Subjects such as source code hierar-
chy, generation of binaries, portability or structuring and documenting policies are also discussed in this paper, with the
latest source code metric analysis being the vehicle for supporting many of the conclusions extracted from each of the above
areas.

This work attempts to provide a comprehensive analysis to evaluate the suitability of the use of ns-3 as an alternative to
ns-2 by highlighting technical features and providing measurements that can be extrapolated as a proof of the maturity of
the project, while not encouraging the use of any of the two simulators which is a decision by the end user.

The comparison of both network simulators is divided into different sections which are focused on different topics related
to the properties of the architecture and source code of both projects. The present comparison starts in the following section,
Section 2 which deploys a study of the system integration properties of both software tools taking into account subjects such
as their respective distribution policies, source code releases, libraries, third-party software dependencies and the source
code building process. The following section, Section 3, focuses on project design and architectural issues, looking at ns-2
dual-language design, general source code organization of both projects, documentation and portability subjects. Section
4 gathers and summarizes the information derived from the study of several procedural and object oriented source code
metrics, making an interpretation of the figures obtained in order to elaborate a study of the evolution of both projects over
the course of their respective releases. The papers ends by bringing together the different conclusions followed by Acknowl-
edgments and then Bibliographical references.
2. System integration

The Ns simulators family has its roots in Unix-like environments, having been developed using typical Unix languages and
tools. Nowadays, GNU/Linux is one of the main development platforms for both ns-2 and ns-3 [8]. Although they have been
ported to other operating systems such as Windows/Cygwin [9], ⁄BSD or Mac OSX [10], it is easier to install, update and
maintain instances of both simulators by working under GNU/Linux environments.

2.1. Distribution

Both ns-2 and ns-3 were conceived to be distributed primarily in source code form. As users have access to source code,
they can modify and extend their features and optimize their binaries as required. Source code can be fetched from their
respective project repositories. Ns-2 relies on CVS [11], a classical revision control system, to manage its source code, while
ns-3 uses Mercurial[12], an emerging distributed revision control tool.

Ns-2 has several software dependencies, some of them can be obtained through the software repositories of main GNU/
Linux distributions, but others have to be fetched and installed manually due to their absence in mainstream software repos-
itories [13]. Depending on very specific, and sometimes, obsolete library versions represents an important drawback when
installing ns-2. This problem is mitigated by project maintainers through packaging the whole set of dependencies in one
single installation package, aka all-in-one. This package contains both ns-2 and libraries source code, configuration files
and the tools needed to compile the whole project. This installation alternative is preferable to fetching source code from
ns-2 CVS repository and trying to solve problems with library paths and compilation errors manually.

Like ns-2, ns-3 offers an all-in-one installation package [14] which only contains ns-3 source code ready to compile. Dur-
ing the compilation process, the ns-3 compilation scripts will inform about the missing software dependencies that can be
easily obtained from different sources.

2.2. Specific software dependencies

GNU toolchain is the first requirement for building ns-2 or ns-3. Currently there are no reported issues related to
recent gcc versions. Apart from the toolchain, ns-2 and ns-3 have several library dependencies. The main ones required
for ns-2 are:

� Tcl/Tk: Tcl scripting language and Tk, a Tcl extension that provides graphical user interface library. The current Tcl stable
version is 8.5.8 (2009-11-16) [15], although ns-2 developers state that the simulator has only been tested against 8.4.14.
� OTcl: a Tcl object-oriented extension [16], it is used as ns-2 scripting language for writing simulations. The last release

dates from 2007-03-10 and for the last 5 years their developers have only released minor versions (1.8–1.13). It is not
found as a standard software package in most GNU/Linux software repositories due to its limited diffusion and use.
� TclCL: is Tcl/C++ interface that allows the creation of OTcl wrappers for C++ code. The development of TclCL is closely

related to OTcl. Like OTcl, TclCL is not a widespread tool and is rarely found in software repositories of the main GNU/
Linux distributions.

Ns-2 can be found as a regular software package in some GNU/Linux distributions, such as Debian, which includes ns-2 in
its testing and unstable branches [17]. The maintenance of this piece of software in the repositories depends on particular
maintainers of the respective projects that package and distribute ns-2.

Ns-3 also requires external libraries, but they are quite standard pieces of software and are usually available as part of the
main GNU/Linux distributions. Only development libraries such as libxml and python are mandatory. The remaining depen-
dencies will be installed optionally to enable certain specific features. Software such as valgrind, sqlite or GNU Scientific
Library are examples of these optional dependencies. They are all easy to find in the repositories of mainstream distributions
such as Debian, Ubuntu or Fedora [8]. Packaging tools make software installation much neater and easier by automatically
resolving dependencies and configuring library paths. In addition, there are no major issues related to using brand new li-
brary versions, which are soon tested against current ns-3 code. Ns-3 can also be found as a standard software package ready
to install in some distro repositories such as Debian, which includes ns-3 as a package in its testing and unstable branches
[18].

In conclusion, ns-3 has a better system integration with its host operating systems, especially GNU/Linux. There is low
coupling between ns-3 itself and its required libraries and tools, so users have a higher grade of flexibility for solving soft-
ware dependencies independently of their specific host operating system. This advantage is almost mandatory for a software
and is still under active development that is distributed throughout the world. In contrast, Ns-2 shows signs of aging and its
development seems to be stuck, the project itself cannot use too many resources on testing and updating external software
dependencies so ns-2 ultimately relies on mostly obsolete versions which is a major drawback for installation and mainte-
nance processes.
2.3. Building the source code

Ns-2 uses a classic Unix configuration and building process based on the make building tool. To add new modules to ns-2
or change current configuration, users themselves must edit the project’s main Makefile [19], and any change on its config-
uration means rebuilding the whole source code. Although a certain amount of time is saved by using scripting languages for
writing simulations, any change related to ns-2 core and its C++ source code needs a whole project compilation. The core and
modules building process generates a monolithic executable called ns which contains the simulator functionalities as well as
all the current models distributed with ns-2. Simulations are just OTcl scripts, but they need ns binary to run. Scripts are
passed as parameters to ns, which acts as a script interpreter. The building process takes an average compilation time of
1 m 43 s on a computer equipped with an AMD Quad Core 2’6 GHz processor, 4 GB of RAM, using Debian 5.0.3 for amd64
architecture and gcc 4.3.4.

Ns-3 supports Python scripting, although writing simulations in this language are not mandatory and Python support and
its wrappers can be optionally enabled. Ns-3 also relies on Python for configuring and compiling its own source code [20].
Instead of using make tool as ns-2 does, ns-3 has adopted waf as a build automation tool [21], which has Python as its single
external dependency. Like Python language itself, waf is portable. It only allows compilation of modified source code files,
ignoring the untouched ones. Rebuilding a relatively simple class takes only between 1 and 2 s when using the same AMD
Quad Core, 4 GB RAM based machine running Debian and gcc 4.3.4. After compiling the whole project, the user gets a mono-
lithic shared library called libns3.so and a single executable for each simulation written in C++ language. These binaries
have to be dynamically linked with libns3.so at runtime. Therefore, the ns-3 binary core is more a shared library than a
traditional executable such as ns-2. Libns3.so contains the simulation routines as well as all the ns-3 standard modules.
3. Project design and source code properties

The general architecture, code structuration and other developer-related topics are discussed in this section. These issues
are approached qualitatively, with quantitative metrics being left for the next section.
3.1. Dual-language architecture

The widespread use of Tcl and its language extensions in ns-2 responds to a past context in which compiled languages
such as C++ were relatively high time-consuming for the hardware of the time, so ns-2 developers chose a dual-language
architecture. They used C++ for core elements and models, which were supposed to be more stable and static pieces of soft-
ware, compiled once and run many times. They also chose a scripting language such as Tcl and its object-oriented extension,
OTcl, for writing simulations that would run over ns-2. Using non-compiled language allowed users to write and run sim-
ulations without suffering from long compilation times.

The dual-language design defines the way ns-2 users and developers write code. Simulation routines and models are
implemented in C++, a compiled language, in order to benefit from optimization and speed up. Simulations themselves
are only OTcl scripts that invoke the functionalities coded in C++ thanks to software wrappers [16]. Despite reducing com-
pilation times, the dual-language nature adds extra complexity to ns-2 use and development. It can be difficult for new
developers to identify which parts have to be coded in C++ and which ones in OTcl language when coding a new model.

Today’s hardware is powerful enough to deal with compiled languages like C++, consuming negligible compilation times
in most cases, so the advantages derived from using a scripting languages such as OTcl are steadily decreasing [22].

Ns-3 has simplified its design choosing C++ as the sole development language for its models’, simulations can also be
coded in C++. Ns-3 has not totally abandoned the use of scripting languages for coding simulations, but it has changed
the way they are used in the project [23]. Compilation times are no longer an issue, so the advantages from using scripting
languages stem from other technical reasons such as portability, productivity or easier syntax. Ns-3 users have the option of
choosing Python as the language for writing simulations thanks to Python bindings. Shifting from OTcl to Python provides a
scripting language with a larger user base, more active development and friendlier syntax.
3.2. Architecture and code organization

Ns-2 defines a very basic architecture, only distinguishing the core of the simulator and network models. This fact has
become a drawback as ns-2 has evolved and new modules and features have been added. Nowadays some modules show
a high degree of coupling and dependencies are difficult to follow [24].

Ns-2 differentiates between the network topology and the agents that run over it and generate or consume data traffic
[25,2]. The topology is formed by generic nodes and the links between them. Furthermore, these links can have special ob-
jects associated that define link behavior [26], channel characteristics and other parameters. Agents are the network appli-
cations themselves that run over the nodes and transmit or receive data information through the network. Model developers
are responsible for ensuring that the agent layer will be able to exchange data packets with the network topology layer, so
they have to design their own data packets if necessary and register them as new types so that ns-2 can handle them. Packet
registration means users have to change some ns-2 core source code files and rebuild the whole simulator [27], which is
quite an invasive process.

Apart from the differentiation between topology and agents, ns-2 programmers have a high degree of freedom to define
and code their models, so, depending on the desired abstraction level, they can write from very simple and abstract models
to relatively complex and accurate ones. Thus, simulation results must be analyzed carefully, depending on the level of
abstraction applied, some simulation results can diverge considerably from real-world ones [4].

The ns-2 relaxed hierarchical organization is reflected in its source code structuring. Early releases did not make any dis-
tinction at all between modules, and all the source code files were placed at the same level on a common folder. From the
release of 2.26 onwards, maintainers have attempted to keep a proper source code structure [28].

On the other hand, ns-3 emphasizes source code hierarchical structuring by defining several basic network entities pres-
ent in every single simulation. Specific models are a refinement of these generic entities [29].

� Node: represents the basic computing device. It gathers the network functionality and interacts with other nodes through
the communication channel. Nodes require net devices to be able to use the physical channel.
� Application: sets up on top of the nodes, playing the role of packet consumer or packet generator.
� Channel: provides the medium for interconnecting nodes and allowing data traffic.
� Net Device: abstracts the network hardware that makes communication possible through the channel.
� Topology Helper: auxiliary class that makes the generation of complex topologies easier by automating the network ele-

ments’ creation, configuration and interconnection.

Ns-3 gathers all source code files of both simulator core and models in the src folder, separating them from the remain-
ing auxiliary tools, building scripts, documentation and examples [30]. The src folder is also subdivided, to cater for the
above classification of abstract entities. Thus, all the models related to network devices can be found in src/devices. This
hierarchical organization makes it easy for developers to navigate through the simulator code. Following the above scheme,
ns-3 programmers are encouraged to define several entities in their abstract model to fit their code in the global simulator
structure, ensuring a common model skeleton that makes the overall code more flexible and adaptable, and easier to refine
and reuse in the future.

Since the src folder has been conceived just for containing the standard ns-3 modules, which are maintained, supported
and documented by the ns-3 project itself, new third-party modules should be created and built into the ns-3_home/
scratch. The waf tool scans the scratch folder and generates an executable for each defined simulation.
3.3. Simulation portability

Ns-2 simulations are initially portable since they are simple OTcl scripts. There is no problem in launching an ns-2 sim-
ulation in a different ns-2 instance, regardless of the target architecture of the ns binary that will run the script. This is true
provided that ns-2 scripts only use ns-2 standard features included in the official source code release. If the script uses cus-
tom models developed by third-parties that are not official parts of the ns-2 project, it will need a custom ns executable,
generated from the standard ns-2 source code plus the new model code [31]. Thus, the ns-2 design attaches a simulation
that uses custom models for the specific ns-2 instance containing them, losing any kind of advantage concerning portability
due to the need for a custom ns interpreter.

Ns-3 design overcomes the above drawback by providing a common libns3.so library that must be the same for all the
ns-3 instances belonging to the same release. If developers use the scratch folder to place new models and simulations,
they will obtain standard binaries that need libns3.so shared library in order to use ns-3 standard features, and they will
include the custom models as part of their own binary code. These executables are only constrained by their target processor
architecture (i386, amd64, ppc, etc.).

3.4. Source code documentation

Ns-2 does not establish any criterion related to documentation. The project maintains a web page with its main documen-
tation dispersed in several sections, mixing legacy documents, tutorials and third-party manuals. This model may suffer from
problems such as obsolescence and lack of maintenance.

Documenting ns-2 can be viewed as a double and non-automated task. There is no official policy concerning ns-2 source
code documentation, so developers apply their own criteria in this matter. Thus, the use of tools, which can extract informa-
tion from the comments of the source and generate proper documentation in other formats, does not ensure the generation
of a comprehensive and complete source code documentation. The impossibility of generating developer-oriented documen-
tation automatically means that official documentation has to be written manually. This leads to a situation where the doc-
umentation contained in the comments and the official documentation are independent text that require manual
maintenance and synchronization.

Ns-3 integrates documentation in source code files by using Doxygen [32], an open-source multi-language documenta-
tion generator, which parses and extracts ns-3 documentation directly from source code. It allows defining some format as-
pects of the documentation such as defining parameters, return values, and links to others pieces of documentation. In
addition, documentation can be generated in several different formats such as pdf, HTML, latex or XML. Thus, generating
ns-3 documentation is as simple as compiling its source code, and at the same time it removes the need to maintain two
different documentation sources. This way, commenting code and writing official documentation are a single task and users
can get this information in the form that best suits their needs [33].

Stats show ns-2 has a higher ratio of lines of code per comment line [7]. Documentation policies have provided a more
exhaustive and up-to-date documentation of the ns-3 project, which is better documented both qualitatively and
quantitatively.
4. Quantitative analysis of source code

C++ source code files from several ns-2 and ns-3 previous and current releases have been analyzed to extract basic soft-
ware metrics (ns-2: from 2.0 to 2.34, 13+ years, ns-3: from 3.0 to 3.8, 3+ years) [28,34]. Ns-3 is shorter lived than ns-2, but it
has benefited from ns-2 ideas and experience, so it cannot be considered as having been developed from scratch. On the
other hand, ns-2 has gone through different stages during its long existence and it can now be considered to be nearing
the end of its life cycle, with bug fixing and maintenance releases being its main priorities.

As mentioned earlier this paper extends the work of a previous related article [7], going deeper into source code study
through calculation and interpretation of software metrics. The brief analysis of metrics shown in the previous paper has
been revised, updated and recalculated to provide a more detailed and accurate statistical analysis and more in-depth
interpretations.

4.1. Source code and metrics analysis tool

Both network simulators use C++ as programming language for developing their core components and models [2], but
they also rely on other scripting languages to develop auxiliary code to make integration, maintenance or simulation devel-
opment easier. One example of this is ns-2’s use of Tcl/OTcl; and Python is used as an optional simulation development lan-
guage in the context of ns-3.

This comparative study has focused on the analysis and review of the respective core of each network simulator. These
elements are subject to architectural decisions and they deal with many of the simulation work load during execution time.
As stated above, the core elements are written in C++ in both projects, so the auxiliary code developed using scripting pro-
gramming languages have not been taken into account for the metric analysis.

A set of well-know and widespread used software metrics have been chosen to perform the measurements on the source
code of both projects, since the purpose of the use of these metrics is providing a quantitative analysis of the evolution and
current technical state of both tools. Newer and more novel software metrics have not been taken into account since more
conventional ones have already provided the results needed to support the present work.

Since this study focuses solely on C++ code, the software metric tool cccc [35] (C and C++ Code Counter) has been chosen
to perform the source code analysis. Its features, availability and condition as free software under the GPL as well as its spe-
cialization in C and C++ languages make it a suitable tool for the purposes of this paper.

Ns-3 incorporates third party C code, related with Linux kernel headers [36], which was susceptible of
including high rates of noise in the source code analysis. These source code files have not been considered as part of

ns-3 project itself, so they have been left out of the analysis process to obtain a more representative analysis and
comparison.

The data mining process has been automated using Unix shell scripting programs, which have allowed us to perform
source code analysis of each release and parse and summarize all the results in a simpler set of plain text files.

4.2. Source code releases and reference dates

All the major source code releases of both network simulators have been obtained from their respective repositories. In
the case of ns-2, having been under development for so long, and changes in repository, infrastructure and organization,
there is a gap in the list of ns-2 releases studied in this paper. This gap spans the time from the first major releases, ca.
1997, to the next sample, the ns-2.1ba release, dated in 2000 [37,38]. Despite this minor drawback, we have focused on
the latest ns-2 samples, rather than the early releases. We took this decision to make it possible to analyze comparable net-
work simulator versions in terms of maturity and functionality.

4.3. Roadmap and releases

Several ns-3 and ns-2 releases have been analyzed to evaluate their respective evolution by extracting some basic soft-
ware metrics. The list of analysed releases can be found in Tables 1 and 2. Both current and previous releases have been
fetched from their respective official source code repositories and archives [39,40].

Ns-2 started as a variant of the REAL network simulator in 1989. Today, its changelogs [37] reflect bug fixes and general
code maintenance, without an official roadmap. Releases 2.31, 2.32 and 2.33 were not available on the ns-2 archive [38].

The Ns-3 project started in 2006 and initially was initially planned to take 4 years. It is still currently under active devel-
opment, having several full-time hired maintainers [41]. Since it depends on contributed modules, it is difficult to define an
exact project roadmap [42].

4.4. Procedural metrics

Although the overall results cannot be compared directly due to the different amount of features that ns-2 and ns-3
implement, it is worth analyzing and comparing averages to obtain a more realistic and fair code comparison. The following
procedural software metrics have been extracted:
Table 1
Ns-2 versions by release date [37].

Version Release date

1 ns-2.0 May, 1997
2 ns-2.1b1 May, 2000
3 ns-2.1b7 October, 2000
4 ns-2.1b8 June, 2001
5 ns-2.1b9a July, 2002
6 ns-2.26 February, 2003
7 ns-2.27 January, 2004
8 ns-2.28 February, 2005
9 ns-2.29 October, 2005

10 ns-2.30 September, 2006
11 ns-2.31 March, 2007
12 ns-2.32 September, 2007
13 ns-2.33 April, 2008
14 ns-2.34 June, 2009

Table 2
Ns-3 versions by release date [43].

Version Release date

1 ns-3.0.1 March, 2007
2 ns-3.0.13 June, 2008
3 ns-3.1 July, 2008
4 ns-3.2.1 September, 2008
5 ns-3.3 December, 2008
6 ns-3.4 April, 2009
7 ns-3.5.1 September, 2009
8 ns-3.6 October, 2009
9 ns-3.7.1 March, 2010

10 ns-3.8 May, 2010

� NOM: Number of modules. Number of non-trivial modules identified by the analyzer.
� LOC: Lines of code. Number of non-blank, non-comment lines of source code.
� COM: Lines of comments. Number of lines of comment identified by the analyzer
� MVG: McCabe’s cyclomatic complexity. A measure of the decision complexity of the functions which make up the pro-

gram. The strict definition of this measure is that it is the number of linearly independent routes through a directed acy-
clic graph which maps the flow of control of a subprogram.
� L_C: Lines of code per line of comment. Indicates density of comments with respect to textual size of program
� M_C: Cyclomatic complexity per line of comment: Indicates density of comments with respect to logical complexity of a

program.

4.4.1. Number of modules: NOM
According to cccc documentation, a module corresponds to classes and C/C++ modules with member functions [44].

Regarding ns-2 and ns-3, both of their cores are written in C++ following the Object Oriented Paradigm (OOP) so each module
identified by cccc during the parse process corresponds to a C++ class.

A moderate value for this metric may indicate scope for code reuse, however high values may be an indication of inap-
propriately high levels of design abstraction [44]. Due to the nature of the reality modeled in both network simulators, there
is a correspondence between most modules and real world entities: channel, network interfaces, stacks, frame types, etc.
[29]. Therefore excessively high levels of abstraction are not a major issue and they might only be observed in specific
and isolated cases (for example, ns-3 uses auxiliary classes to implement different software patterns such as factory, single-
ton and so on), mostly associated with architectural and modular design, so their use is justified [45].

In contrast, this metric is closely related to the amount of features and growing complexity of each simulator project
[46,37]. These features can be divided into two categories: network simulator internals (scheduler, system integration,
software patterns) and network models for different networking technologies (support for different technologies such as
Ethernet, Wifi, mobility models, propagation models and so on) [47]. There is a logical increase in the number of modules
associated with the increase of features in each network simulator.

The graph covering the evolution of both simulators between releases shows important increment in the number of mod-
ules for ns-2 between the initial and final releases of the ns-2.1bX series (see Fig. 1.a). This can be explained by the addition
of a substantial number of models during the development of the ns-2.1bX series. Starting with a bare-core, official support
for several models was added during this period. On the other hand, ns-3 shows a steady evolution during the mid releases,
boosting the size and complexity of the project in recent releases (see Fig. 1.b).

At present,the size of both projects in terms of complexity and size is comparable. A brief look at the list of features of
both simulators reveals that ns-3 already covers and implements many of the fields where ns-2 has been used up until
now. Ns-3 still lacks models for specific niches that are well supported by ns-2. In contrast, ns-3 has overcome ns-2 in some
architectural aspects as well as utilities and auxiliary methods that allow different levels of log output, modularization, auto-
mation of the building process and so on. It is worth highlighting the widespread use of software patterns, which increases
their software complexity in terms of auxiliary classes.

Judging by the stagnation that can be observed in ns-2 development, as well as the ascending evolution of its successor, it
seems fair to assume that ns-3 will surpass ns-2 in terms of size, defined as the number of modules that make up both core
and network element models. This overcome will happen as soon as ns-3 offers a similar set of models to ns-2, plus the
Fig. 1.a. Total number of modules over time.

Fig. 1.b. Total number of modules vs. release.
centralized architecture that defines the relationship between core, current and future new models which means a larger
number of modules than ns-2 in order to implement the core functionalities.

4.4.2. Lines of code: LOC
LOC is defined as the number of non-blank, non-comment lines of source code [44]. Figs. 2.a and 2.b show a similar size of

both projects in terms of total lines of code, as well as a very similar evolution and increment between their respective
releases.

The ns-2.1bX series represented a great boost in terms of complexity and size of the project as can be observed in both
graphs. The ns-2 curve is less pronounced than the ns-3 one. The latter has recently overcome ns-2 default distribution in
terms of raw size.

A second interpretation of the values obtained for the LOC metric can be made in conjunction with the above NOM metric.
The result from dividing the total lines of code of each project into their number of modules gives an approximation of the
average size of each class, which can be taken into account as one of the indicatives of complexity [50].

Calculations show the LOC/NOM relation remaining quite stable in both projects throughout their releases, with ns-3 hav-
ing slightly bigger modules on average, although this does not necessarily mean more complex ones (see Figs. 3.a and 3.b).

4.4.3. McCabe’s cyclomatic complexity: MVG
McCabe’s cyclomatic complexity (MVG) gives a measure of the decision complexity of the functions which make up the

program [44,48]. The strict definition of this measure is the number of linearly independent routes through a directed acyclic
graph which maps the flow of control of a subprogram.
Fig. 2.a. Total number of lines of code over time.

Fig. 2.b. Total number of lines of code vs. release.

Fig. 3.a. Relation of lines of code per module over time.

Fig. 3.b. Relation of lines of code per module vs. release.

MVG can be regarded as an indicator for Cohesion [49] in the source code, considering that a code with higher complexity
has a lower degree of cohesion [50,51]. The possible correlation between the higher complexity and lower cohesion is based
on the assumption that a module with more decision points probably implements more than one single and well-defined
function.

The complexity measured by the MVG also correlates with errors contained in the source code. A number of studies have
found a strong correlation between complexity and defects [52], while others have not found that correlation [53].

The figures obtained for both network simulators differ considerably in terms of cyclomatic complexity, Figs. 4.a and 4.b.
While ns-3 shows a very stable and almost constant degree of complexity in spite of its constantly growing size, ns-2 reveals
a clear increment in MVG values in different stages of its development, also having periods of stagnation.

One of the reasons that may explain these figures are the architectural policies adopted by ns-3 [29], that have allowed a
sustainable and well scaled development while ns-2 has had to face different development challenges throughout its devel-
opment cycle up to a point where it is difficult to accomplish new goals using its original architecture [22].

The reading that can be drawn from MVG and LOC metrics in conjunction is that the bigger ns-3 modules are not neces-
sarily more complex than ns-2’s, so the raw extra size does not translate into higher degrees of linearly independent routes
through the source code.

4.4.4. Lines of comments: COM
The COM metric corresponds to the number of lines of comment identified by the analyzer [44]. The figures correspond to

the whole number of lines of comment per project.
Fig. 4.a. McCabe’s cyclomatic complexity over time.

Fig. 4.b. McCabe’s cyclomatic complexity vs. release.

1340 J.L. Font et al. / Simulation Modelling Practice and Theory 19 (2011) 1330–1346
As stated in the previous comparison, ns-3 overcomes ns-2 in terms of code documentation thanks to its policy concern-
ing documentation for developers. Thus, ns-3 programmers are encouraged to document each part of their source code using
the Doxygen syntax to automatically generate development documentation [54]. In contrast, ns-2 does not reinforce any
specific policy related to documentation, so different approaches can be found in its source code, from modules documented
to others that lack that kind of in-line documentation and requires third party sources to describe the behavior and technical
details of the code.

This statement is clearly observed in the figures Figs. 5.a and 5.b. While both network simulators have been leveled for
their respective early versions, recent ns-3 releases clearly overcome the latest ns-2 releases in total number of lines of
documentation.

Comparing the increments of lines of code and comments in ns-3 suggests that the steady growth of the project is accom-
panied by a more detailed documentation of its elements. The lines of code per line of comments (L_C) metric reinforces this
hypothesis (Figs. 6.a and 6.b). Ns-2 shows a relatively constant value for this relation between lines of code and lines of com-
ment while ns-3 shows a smooth downward curve.
4.4.5. Cyclomatic complexity per line of comment: M_C
The M_C metric indicates density of comments with respect to logical complexity of the program [44]. In previous sec-

tions ns-3 has show better figures for both number of lines of comment and cyclomatic complexity. Thus, the M_C metric
derived from the two previous metrics, Figs. 7.a and 7.b, reflects the same behavior, with ns-3 being the one with better
Fig. 5.a. Total number of lines of comments over time.

Fig. 5.b. Total number of lines of comments vs. release.

Fig. 6.a. Relation of lines of comments per line of code over time.

Fig. 6.b. Relation of lines of comments per line of code vs. release.
results, with lower figures for this metric being a good indicator which could provide the basis for a solid documentation
linked to cyclomatic complexity.

4.5. Object Oriented Design Metrics

The procedural metrics analyzed in the above section measured characteristics from each single release, such as number
of lines of code and number of modules. In this case, the basic element taken into account during the analysis was the soft-
ware release.

In contrast, the Object Oriented Design Metrics [55] measure each single object that integrates the software release. Thus,
for each simulator release there is a large set of objects, whose items vary from one release to another, depending on archi-
tectural redesigns, addition of new features or complementation of the existing ones.

While the procedural metrics were intended to give a brief description of both projects’ size and evolution, the
Object Oriented ones aim to show the current architectural status of both network simulators. Thus it is worth focusing
on the most recent releases of each network simulator to gather key information about design, encapsulation and source
code reusability.

Instead of showing the evolution over time of each Object Oriented Design metric for a large and changeable set of ob-
jects, we thought it more worthwhile to analyze the last release of each network simulator (ns-3.8 and ns-2.24 respectively)
and perform a more detailed analysis of the considered Object Oriented Design metrics, attaching statistical descriptors such
as mean, deviation, minimum, maximum, mode or median (Tables 3 and 4).

Fig. 7.a. Relation between lines of comment and cyclomatic complexity over time.

Fig. 7.b. Relation between lines of comment and cyclomatic complexity vs. release.

Table 3
Ns-2.34 Object Oriented Design stats.

WMC1 WMCv DIT NOC CBO

Mean 6.76 6.07 1.74 0.68 5.56
Deviation 17.58 12.34 1.65 4.45 13.90
Min 0 0 0 0 0
Max 465 300 7 97 255
Mode 2 2 0 0 4
Median 3 3 2 0 4

Table 4
Ns-3.8 Object Oriented Design stats.

WMC1 WMCv DIT NOC CBO

Mean 10.61 5.43 1.57 0.53 7.39
Deviation 19.82 7.91 1.72 3.52 18.38
Min 0 0 0 0 0
Max 467 82 5 77 276
Mode 0 0 0 0 1
Median 7 3 1 0 4

� WMC: Weighted methods per class. The sum of a weighting function over the functions of the module. Two different
weighting functions are applied: WMC1 uses the nominal weight of 1 for each function, and hence measures the number
of functions; WMCv uses a weighting function which is 1 for functions accessible to other modules, 0 for private
functions.
� DIT: Depth of inheritance tree. The length of the longest path of inheritance ending at the current module. The deeper the

inheritance tree for a module, the harder it may be to predict its behavior. On the other hand, increasing depth gives the
potential of greater reuse by the current module of behavior defined for ancestor classes.
� NOC: Number of children. The number of modules which inherit directly from the current module. Moderate values of

this measure indicate scope for reuse, however high values may indicate an inappropriate abstraction in the design.
� CBO: Coupling between objects. The number of other modules which are coupled to the current module either as a client

or a supplier. Excessive coupling indicates weakness of module encapsulation and may inhibit reuse.

4.5.1. Weighted methods per class: WMC
Among the different weighting functions available to calculate the Weighted Methods per Class metric (WMC) [44], the

cccc tool uses WMC1, which assigns weight 1 for each function, measuring the number of functions. WMCv only counts func-
tions which are accessible to other modules, assigning value 0 to private functions.

High values for the WMC metrics mean a high number of methods per class, which can be translated into excessive func-
tionality and complexity per module. A module with a high value for WMC may be susceptible of being split into two or more
new modules in order to increase the cohesion of their features.

Ns-3 has a higher value for WMC1, which counts both private and public methods of each class. Regarding WMCv, which
only takes into account public methods, both ns-2 and ns-3 have similar values. Thus, the average complexity of the public
interfaces of the classes of both simulators are similar. The main difference arises in the field of the private methods, where
ns-3 shows a higher degree of complexity.

4.5.2. Depth of inheritance tree: DIT
The Depth of Inheritance Tree (DIT) [44] shows similar figures for both latest releases, with ns-2’s classes having a slightly

deeper inheritance tree and minor deviation. The graphs below, Figs. 8 and 9, show the general class hierarchy and architec-
ture of both network simulators, you can see that the ns-3 tree is not as deep by design as ns-2’s. Thus, the results for DIT
metric can be attributed to architectural and design decisions rather than reuse issues. In both cases, the depth of their
respective Inheritance Trees is not enough to seriously affect the understanding of the general architecture.

4.5.3. Number of children: NOC
As for the Number Of Children of each module (NOC), both simulators have many classes with few or no child classes,

although several classes do have a high number of children revealed by the values of the deviation and maximum of both
simulators [44,56]. Again ns-3 shows more content values in terms of number of children.

Observing the Graphical Class Hierarchy [57] included in the official ns-3 documentation and generated for each stable
release, the modules with numerous children can be detected easily.

In ns-3 there are two different kinds of modules with high ratios of children. On the one hand, there are entities defined to
articulate and create a solid architecture, thereby facilitating the code’s reuse, integration and modularity. Classes such as
ns3::empty, ns3::AttributeValue, ns3::CallbackImplBase or ns3::RamdomVariable are examples of this first type.
On the other hand, some entities are closely related to network elements, these can be either real entities or abstractions that
may include several network entities. ns3::Chunk, ns3::Header, ns3::Channel, ns3::Ipv4RoutingProtocol or
ns3::NetDevice are representatives of this second group.
Fig. 8. Simplified class hierarchy tree for ns-2.

Fig. 9. Simplified class hierarchy tree for ns-3.
On the other hand, a similar Class Hierarchy graphic for ns-2 can be observed in [58]. As stated above, ns-2 presents a
deeper inheritance tree, which can be clearly observed in the graphical representation. The strong influence of the dual-
language architecture OTcl/C++ is also visible in the class hierarchy graph, with TclOject and TclClass classes being
the parent class of a huge number of modules. Thanks to the class hierarchy graphical representation, you can see that multi-
ple inheritance is used in its design, with all the complexity issues derived from this fact. An example that illustrates the
above statement is the Node class, which inherits from RNode, nodehead_and ParentNode. In contrast, the ns-3 graph
shows that this technique is not used.
4.5.4. Coupling Between Objects: CBO
Concentrating solely on bare results, ns-3 shows a higher Coupling Between Objects (CBO) value [44,59] that could be inter-

preted as a sign of excessive coupling between its modules, which would be against ns-3 emphasis on code correction. A more
detailed analysis of results shows that the standard deviation for CBO is significantly higher for ns-2 (see bold values in Tables 3
and 4). Ns-3 has certain C++ modules that are the most referenced by others. These highly referenced modules correspond to
the main ns-3 abstract entities that articulate its architecture. Most elements and models inherit from them, which increases
the overall CBO value, so ns-3’s own design is responsible for increasing COB value but this does not mean an implicit weakness
in module encapsulation nor does it affect code reuse at all; on the contrary, its design encourages coding generic methods and
algorithms as much as possible, making widespread use of templates, software patterns and C++ idioms.

A second reading of the CBO results for ns-3 is possible. After sorting all their modules on the basis of the value of the CBO
metric, the modules at the top of the list are shown in Table 5

Many of the modules shown in the top 15 ns-3 elements sorted by CBO values are from classes related to data types such
as Ptr (memory pointer), uint32 (32-bit unsigned integer), bool, string or vector, as well as auxiliary objects used com-
monly in Object Oriented Design such as Iterator or Object. However, these types of common modules, with the exception
of bool, are not present among the ns-2 modules with higher CBO values as shown in Table 6.

The higher values of these modules for the CBO metric can be explained by the different techniques used to ensure code
portability (uint32, uint16) and make memory managing easier (Ptr and smart pointers). If these generic modules are
ignored and a second analysis is performed, the results are in Table 7.
Table 5
Ns-3.8 modules sorted by CBO value, top 15 elements.

Module WMC1 WMCv DIT NOC CBO

Ptr 11 0 0 0 276
uint32_t 0 0 0 0 270
uint8_t 0 0 0 0 169
ostream 0 0 0 1 148
uint16_t 0 0 0 0 136
Iterator 46 36 0 0 133
bool 0 0 0 0 132
string 0 0 0 0 112
Time 0 0 0 0 108
Object 4 1 2 77 78
Ipv4Address 28 9 0 0 76
Mac48Address 20 15 0 0 76
Header 6 3 2 54 60
vector 0 0 0 1 58

Table 6
Ns-2.34 modules sorted by CBO value, top 15 elements.

Module WMC1 WMCv DIT NOC CBO

Packet 2 1 1 0 255
Event 1 1 0 6 211
Handler 2 2 0 47 178
TimerHandler 10 8 1 97 99
Agent 42 41 3 49 69
TclObject 0 0 0 40 63
NsObject 12 12 1 9 55
nsaddr_t 0 0 0 0 53
Mac802_15_4 88 51 4 0 49
Node 32 28 2 3 40
RandomVariable 5 5 1 25 39
bool 0 0 0 0 36
SctpAgent 80 80 4 5 32
TcpAgent 64 64 4 12 31
Mac802_11 89 15 4 0 30

Table 7
Ns-3.8 Object Oriented Design stats, ignoring common modules with high values for CBO metric.

WMC1 WMCv DIT NOC CBO

Mean 10,68 5,46 1,59 0,43 5,70
Deviation 19,96 7,88 1,72 2,46 6,97
Min 0 0 0 0 0
Max 467 82 5 54 76
Mode 0 0 0 0 1
Median 7 3 1 0 4
Thus, after ignoring some generic modules not related to networking entities or architectural elements, the results ob-
tained for CBO metric for both simulators are similar, with CBO value of 5,70 for ns-3.8 (unlike the original value), while
ns-2.34 has a CBO value of 5,56. The profuse use of such generic modules that implement different generic data types such
as string or uint32 partially explains the initial results for the CBO metric returned by the analysis tool. This fact plus an
architecture where several key entities related to highly referenced abstract networking elements justify the initial CBO val-
ues that might be misunderstood as a signal of high levels of coupling between ns-3 modules.
5. Conclusion

A qualitative comparison between ns-2 and ns-3 organization, design and documentation highlights some ns-3 features
that overcome certain drawbacks and weak points of ns-2. This fact plus the growing set of networking features and tech-
nologies already implemented for ns-3 make it a networking simulation tool suitable for use in many scenarios and contexts
hitherto dominated by ns-2.

The quantitative comparison between ns-2 and ns-3 network simulators by statistical analysis of their derivated software
metrics reveals several points related with their size, complexity and design.

Ns-2 is portrayed as the mature project that has already fulfilled its aims and has entered into a stagnation phase defined
by minor maintenance and bug-fixing releases. In contrast, and judging by its features and metrics concerning size and num-
ber of modules, ns-3 is reaching a degree of maturity that makes it suitable for replacing ns-2 in many scenarios and
applications.

Due to its design, ns-2 provides a high degree of freedom for coding new models, so the quality of new third-party models
depends on their own developers, who are responsible for most of the quality aspects of their code and corresponding doc-
umentation. Ns-3 tries to avoid some of ns-2’s limitations: for example, it has dropped ns-2’s dual-language design, and it
emphasizes both code and model structuring as well as encouraging software engineering practices to improve code and
documentation maintenance.

The graphs show the different evolution of both developments, with the rapid progress of ns-3 evident and partly ex-
plained by its own nature as ns-2’s substitute, recycling many of its concepts and ideas, as well as improving several of
ns-2’s weak points, using a new architectural approach characterized by modularity, source code reuse and software pattern
application.

From the point of view of Object Oriented Design, the applied metrics show numerically comparable results, which may
lead to a first impression suggesting that there are no important improvements in ns-3 with regard to ns-2. The raw results

are explained taking into account the design characteristics that are responsible for such results, so the numerical results
must be accompanied by some extra knowledge about each simulator in order to interpret the results correctly.

Acknowledgment

This work was partially supported by contract Vulcano: TEC2009-10639-C04-02.

References

[1] M.A. Rahman, A. Pakštas, F.Z. Wang, Network modelling and simulation tools, Simulation Modelling Practice and Theory 17 (6) (2009) 1011–1031.
[2] M.S. Obaidat, N.A. Boudriga, Fundamentals of Performance Evaluation of Computer and Telecommunication Systems, John Wiley & Sons, Inc., 2010.
[3] Educational Use of Ns-2. <http://www.isi.edu/nsnam/ns/edu/index.html>.
[4] Ns-3 Overview. <http://www.nsnam.org/docs/ns-3-overview.pdf> (October 2009).
[5] E. Weingärtner, H. Lehn, K. Wehrle, A performance comparison of recent network simulators, IEEE International Conference on Communications, 2009.

ICC ’09, pp. 1–5, 2009.
[6] M.S. Obaidat, G. Papadimitriou, Applied System Simulation: Methodologies and Applications, Springer, 2003.
[7] J.L. Font, P. Iñigo, M. Domínguez, J.L. Sevillano, C. Amaya, Architecture, design and source code comparison of ns-2 and ns-3 network simulators, in:

13th Communications & Networking Simulation Symposium, CNS-10, Orlando, FL, pp. 29–36, 2010 (Best Paper Award).
[8] Ns-3 Supported OS. <http://www.nsnam.org/getting_started.html>.
[9] Ns-3 Tutorials: Development Environment. <http://www.nsnam.org/docs/tutorial/tutorial_9.html>.

[10] Ns-3 Wiki: Installing ns-3 on Mac OSX. <http://www.nsnam.org/wiki/index.php/HOWTO_get_ns-3_running_on_Mac_OS_X_(10.5.2_Intel)>.
[11] CVS Project. <http://www.cvshome.org/>.
[12] Mercurial Project. <http://mercurial.selenic.com/>.
[13] The Network Simulator: Building Ns. <http://www.isi.edu/nsnam/ns/ns-build.html>.
[14] Ns-3 Tutorials: Getting Started. <http://www.nsnam.org/docs/release/tutorial.html#Getting-Started>.
[15] Tcl Developer Site. <http://www.tcl.tk>.
[16] OTcl Site. <http://otcl-tclcl.sourceforge.net/otcl/>.
[17] Ns-2 Debian Package. <http://packages.debian.org/sid/ns2>.
[18] Ns-3 Debian Package. <http://packages.debian.org/sid/ns3>.
[19] J. Chung, M. Claypool. NS by Example: Extending NS. <http://nile.wpi.edu/NS/>.
[20] Ns-3 User FAQ: WAF (build process). <http://www.nsnam.org/wiki/index.php/User_FAQ#WAF_.28build_process.29>.
[21] Waf Project. <http://code.google.com/p/waf/>.
[22] M. Lacage, Experimentation with ns-3, Trilogy Summer School. <http://www.nsnam.org/tutorials/trilogy-summer-school.pdf> (27.08.09).
[23] Ns-3 User FAQ: Python Bindings. <http://www.nsnam.org/wiki/index.php/User_FAQ#Python_bindings>.
[24] M. Lacage, T. Henderson. Yet another network simulator, in: WNS2 ’06: Proceeding from the 2006 Workshop on ns-2: the IP Network Simulator, 2006.
[25] The ns Manual: 5.1 Node Basics. <http://www.isi.edu/nsnam/ns/doc/node40.html>.
[26] The ns Manual: 6.1 Simple Links. <http://www.isi.edu/nsnam/ns/doc/node57.html>.
[27] The ns Manual: 12.1 A Protocol-Specific Packet Header. <http://www.isi.edu/nsnam/ns/doc/node128.html>.
[28] Ns-2 Release Archive. <http://www.isi.edu/nsnam/dist/>.
[29] Ns-3 Manual: 4.1 Object Model. <http://www.nsnam.org/docs/release/manual.html#Object-model>.
[30] Ns-3 Tutorial: 4.1 Key Abstractions. <http://www.nsnam.org/docs/release/tutorial/tutorial_17.html#Key-Abstractions>.
[31] Marc Greis’s Tutorial, VINT Group, VII.3. Necessary Changes. <http://www.isi.edu/nsnam/ns/tutorial/nsnew.html#third>.
[32] Doxygen Source Code Documentation Generator Tool. <http://www.stack.nl/dimitri/doxygen/>.
[33] Ns-3 Doxygen Documentation. <http://www.nsnam.org/doxygen-release/index.html> (October 2009).
[34] Ns-3 Release Archive. <http://www.nsnam.org/releases/>.
[35] CCCC: C and C++ Code Counter. <http://cccc.sourceforge.net/>.
[36] Network Simulator Cradle. <http://www.wand.net.nz/stj2/nsc/>.
[37] Ns-2.34 Changelog. <http://www.isi.edu/nsnam/ns/CHANGES.html>.
[38] Ns-2 Older Releases. <http://www.isi.edu/nsnam/dist/>.
[39] Ns-2 Download Site. <http://www.isi.edu/nsnam/ns/ns-build.html>.
[40] Ns-3 Download Site. <http://www.nsnam.org/download.html>.
[41] Ns-3 Project Maintainers. <http://www.nsnam.org/maintainers.html>.
[42] Ns-3 Current Development. <http://www.nsnam.org/wiki/index.php/Current_Development>.
[43] Ns-3 Official Blog. <http://nsnam.blogspot.com>.
[44] T. Littlefair, An Investigation into the role of Software Metrics in Software Quality Improvement. PhD research project, Edith Cowan University,

Australia, 1999.
[45] Ns-3 Software Architecture, Ns-3 Project. <www.nsnam.org/docs/design.pdf>.
[46] Ns-3 Wiki: Ns-3 Current Development. <http://www.nsnam.org/wiki/index.php/Current_Development>.
[47] G.A. Wainer, Discrete-Event Modeling and Simulation, Taylor & Francis Group, LLC, 2009.
[48] T.J. McCabe, A complexity measure, IEEE Transactions on Software Engineering SE-2 (4) (1976) 308–320.
[49] S. Counsell, E. Mendes, S. Swift, Comprehension of object-oriented software cohesion: the empirical quagmire, in: 10th International Workshop on

Program Comprehension, 2002, pp. 33–42.
[50] T.J. McCabe, A.H. Watson, Software complexity, Crosstalk 7 (12) (1994) 5–9.
[51] C. Stein, G. Cox, L. Etzkorn, Exploring the relationship between cohesion and complexity, Journal of Computer Science 1 (2) (2005) 137–144.
[52] T.M. Khoshgoftaar, J.C. Munson, Predicting software development errors using software complexity metrics, IEEE Journal on Selected Areas in

Communications 8 (2) (1990) 253–261.
[53] B. R Basili, B.T. Perricone, Software errors and complexity: an empirical investigation, Communications of the ACM 27 (1) (1984) 42–52.
[54] Ns-3 Coding Style. <http://www.nsnam.org/codingstyle.html>.
[55] R.S. Pressman, Software Engineering, a Practitioner’s Approach, 5th ed., McGraw-Hill, 2000.
[56] S.R. Chidamber, C.F. Kemerer, A metrics suite for object oriented design, IEEE Transactions on Software Engineering 20 (6) (1994) 476–493.
[57] Ns-3 Graphical Class Hierarchy. <http://www.nsnam.org/doxygen-release/inherits.html>.
[58] Ns-2 Graphical Class Hierarchy. <http://www.auto-nomos.de/ns2doku/inherits.html>.
[59] R. Harrison, S. Counsell, R. Nithi, Coupling metrics for object-oriented design, in: Software Metrics Symposium, 1998. Metrics 1998. Proceedings. Fifth

International, 1998, pp. 150–157.

http://www.isi.edu/nsnam/ns/edu/index.html
http://www.nsnam.org/docs/ns-3-overview.pdf
http://www.nsnam.org/getting_started.html
http://www.nsnam.org/docs/tutorial/tutorial_9.html
http://www.nsnam.org/wiki/index.php/HOWTO_get_ns-3_running_on_Mac_OS_X_(10.5.2_Intel)
http://www.cvshome.org/
http://mercurial.selenic.com/
http://www.isi.edu/nsnam/ns/ns-build.html
http://www.nsnam.org/docs/release/tutorial.html#Getting-Started
http://www.tcl.tk
http://otcl-tclcl.sourceforge.net/otcl/
http://packages.debian.org/sid/ns2
http://packages.debian.org/sid/ns3
http://nile.wpi.edu/NS/
http://www.nsnam.org/wiki/index.php/User_FAQ#WAF_.28build_process.29
http://code.google.com/p/waf/
http://www.nsnam.org/tutorials/trilogy-summer-school.pdf
http://www.nsnam.org/wiki/index.php/User_FAQ#Python_bindings
http://www.isi.edu/nsnam/ns/doc/node40.html
http://www.isi.edu/nsnam/ns/doc/node57.html
http://www.isi.edu/nsnam/ns/doc/node128.html
http://www.isi.edu/nsnam/dist/
http://www.nsnam.org/docs/release/manual.html#Object-model
http://www.nsnam.org/docs/release/tutorial/tutorial_17.html#Key-Abstractions
http://www.isi.edu/nsnam/ns/tutorial/nsnew.html#third
http://www.stack.nl/dimitri/doxygen/
http://www.nsnam.org/doxygen-release/index.html
http://www.nsnam.org/releases/
http://cccc.sourceforge.net/
http://www.wand.net.nz/stj2/nsc/
http://www.isi.edu/nsnam/ns/CHANGES.html
http://www.isi.edu/nsnam/dist/
http://www.isi.edu/nsnam/ns/ns-build.html
http://www.nsnam.org/download.html
http://www.nsnam.org/maintainers.html
http://www.nsnam.org/wiki/index.php/Current_Development
http://nsnam.blogspot.com
http://www.nsnam.org/docs/design.pdf
http://www.nsnam.org/wiki/index.php/Current_Development
http://www.nsnam.org/codingstyle.html
http://www.nsnam.org/doxygen-release/inherits.html
http://www.auto-nomos.de/ns2doku/inherits.html

	Analysis of source code metrics from ns-2 and ns-3 network simulators
	Introduction
	System integration
	Distribution
	Specific software dependencies
	Building the source code

	Project design and source code properties
	Dual-language architecture
	Architecture and code organization
	Simulation portability
	Source code documentation

	Quantitative analysis of source code
	Source code and metrics analysis tool
	Source code releases and reference dates
	Roadmap and releases
	Procedural metrics
	Number of modules: NOM
	Lines of code: LOC
	McCabe’s cyclomatic complexity: MVG
	Lines of comments: COM
	Cyclomatic complexity per line of comment: M_C

	Object Oriented Design Metrics
	Weighted methods per class: WMC
	Depth of inheritance tree: DIT
	Number of children: NOC
	Coupling Between Objects: CBO

	Conclusion
	Acknowledgment
	References

