1,900 research outputs found

    Compositionality for Quantitative Specifications

    Full text link
    We provide a framework for compositional and iterative design and verification of systems with quantitative information, such as rewards, time or energy. It is based on disjunctive modal transition systems where we allow actions to bear various types of quantitative information. Throughout the design process the actions can be further refined and the information made more precise. We show how to compute the results of standard operations on the systems, including the quotient (residual), which has not been previously considered for quantitative non-deterministic systems. Our quantitative framework has close connections to the modal nu-calculus and is compositional with respect to general notions of distances between systems and the standard operations

    Compositionality for Quantitative Specifications

    Get PDF
    We provide a framework for compositional and iterative design and verification of systems with quantitative information, such as rewards, time or energy. It is based on disjunctive modal transition systems where we allow actions to bear various types of quantitative information. Throughout the design process the actions can be further refined and the information made more precise. We show how to compute the results of standard operations on the systems, including the quotient (residual), which has not been previously considered for quantitative non-deterministic systems. Our quantitative framework has close connections to the modal nu-calculus and is compositional with respect to general notions of distances between systems and the standard operations

    Learning Task Specifications from Demonstrations

    Full text link
    Real world applications often naturally decompose into several sub-tasks. In many settings (e.g., robotics) demonstrations provide a natural way to specify the sub-tasks. However, most methods for learning from demonstrations either do not provide guarantees that the artifacts learned for the sub-tasks can be safely recombined or limit the types of composition available. Motivated by this deficit, we consider the problem of inferring Boolean non-Markovian rewards (also known as logical trace properties or specifications) from demonstrations provided by an agent operating in an uncertain, stochastic environment. Crucially, specifications admit well-defined composition rules that are typically easy to interpret. In this paper, we formulate the specification inference task as a maximum a posteriori (MAP) probability inference problem, apply the principle of maximum entropy to derive an analytic demonstration likelihood model and give an efficient approach to search for the most likely specification in a large candidate pool of specifications. In our experiments, we demonstrate how learning specifications can help avoid common problems that often arise due to ad-hoc reward composition.Comment: NIPS 201

    Structural Refinement for the Modal nu-Calculus

    Get PDF
    We introduce a new notion of structural refinement, a sound abstraction of logical implication, for the modal nu-calculus. Using new translations between the modal nu-calculus and disjunctive modal transition systems, we show that these two specification formalisms are structurally equivalent. Using our translations, we also transfer the structural operations of composition and quotient from disjunctive modal transition systems to the modal nu-calculus. This shows that the modal nu-calculus supports composition and decomposition of specifications.Comment: Accepted at ICTAC 201

    Compositional bisimulation metric reasoning with Probabilistic Process Calculi

    Full text link
    We study which standard operators of probabilistic process calculi allow for compositional reasoning with respect to bisimulation metric semantics. We argue that uniform continuity (generalizing the earlier proposed property of non-expansiveness) captures the essential nature of compositional reasoning and allows now also to reason compositionally about recursive processes. We characterize the distance between probabilistic processes composed by standard process algebra operators. Combining these results, we demonstrate how compositional reasoning about systems specified by continuous process algebra operators allows for metric assume-guarantee like performance validation

    A temporal logic approach to modular design of synthetic biological circuits

    Full text link
    We present a new approach for the design of a synthetic biological circuit whose behaviour is specified in terms of signal temporal logic (STL) formulae. We first show how to characterise with STL formulae the input/output behaviour of biological modules miming the classical logical gates (AND, NOT, OR). Hence, we provide the regions of the parameter space for which these specifications are satisfied. Given a STL specification of the target circuit to be designed and the networks of its constituent components, we propose a methodology to constrain the behaviour of each module, then identifying the subset of the parameter space in which those constraints are satisfied, providing also a measure of the robustness for the target circuit design. This approach, which leverages recent results on the quantitative semantics of Signal Temporal Logic, is illustrated by synthesising a biological implementation of an half-adder

    Hidden-Markov Program Algebra with iteration

    Full text link
    We use Hidden Markov Models to motivate a quantitative compositional semantics for noninterference-based security with iteration, including a refinement- or "implements" relation that compares two programs with respect to their information leakage; and we propose a program algebra for source-level reasoning about such programs, in particular as a means of establishing that an "implementation" program leaks no more than its "specification" program. This joins two themes: we extend our earlier work, having iteration but only qualitative, by making it quantitative; and we extend our earlier quantitative work by including iteration. We advocate stepwise refinement and source-level program algebra, both as conceptual reasoning tools and as targets for automated assistance. A selection of algebraic laws is given to support this view in the case of quantitative noninterference; and it is demonstrated on a simple iterated password-guessing attack
    • …
    corecore