4,801 research outputs found

    Reliable inference for complex models by discriminative composite likelihood estimation

    Full text link
    Composite likelihood estimation has an important role in the analysis of multivariate data for which the full likelihood function is intractable. An important issue in composite likelihood inference is the choice of the weights associated with lower-dimensional data sub-sets, since the presence of incompatible sub-models can deteriorate the accuracy of the resulting estimator. In this paper, we introduce a new approach for simultaneous parameter estimation by tilting, or re-weighting, each sub-likelihood component called discriminative composite likelihood estimation (D-McLE). The data-adaptive weights maximize the composite likelihood function, subject to moving a given distance from uniform weights; then, the resulting weights can be used to rank lower-dimensional likelihoods in terms of their influence in the composite likelihood function. Our analytical findings and numerical examples support the stability of the resulting estimator compared to estimators constructed using standard composition strategies based on uniform weights. The properties of the new method are illustrated through simulated data and real spatial data on multivariate precipitation extremes.Comment: 29 pages, 4 figure

    Empirical and Simulated Adjustments of Composite Likelihood Ratio Statistics

    Get PDF
    Composite likelihood inference has gained much popularity thanks to its computational manageability and its theoretical properties. Unfortunately, performing composite likelihood ratio tests is inconvenient because of their awkward asymptotic distribution. There are many proposals for adjusting composite likelihood ratio tests in order to recover an asymptotic chi square distribution, but they all depend on the sensitivity and variability matrices. The same is true for Wald-type and score-type counterparts. In realistic applications sensitivity and variability matrices usually need to be estimated, but there are no comparisons of the performance of composite likelihood based statistics in such an instance. A comparison of the accuracy of inference based on the statistics considering two methods typically employed for estimation of sensitivity and variability matrices, namely an empirical method that exploits independent observations, and Monte Carlo simulation, is performed. The results in two examples involving the pairwise likelihood show that a very large number of independent observations should be available in order to obtain accurate coverages using empirical estimation, while limited simulation from the full model provides accurate results regardless of the availability of independent observations.Comment: 15 page

    Approximate Bayesian Computation with composite score functions

    Full text link
    Both Approximate Bayesian Computation (ABC) and composite likelihood methods are useful for Bayesian and frequentist inference, respectively, when the likelihood function is intractable. We propose to use composite likelihood score functions as summary statistics in ABC in order to obtain accurate approximations to the posterior distribution. This is motivated by the use of the score function of the full likelihood, and extended to general unbiased estimating functions in complex models. Moreover, we show that if the composite score is suitably standardised, the resulting ABC procedure is invariant to reparameterisations and automatically adjusts the curvature of the composite likelihood, and of the corresponding posterior distribution. The method is illustrated through examples with simulated data, and an application to modelling of spatial extreme rainfall data is discussed.Comment: Statistics and Computing (final version

    Composite Likelihood Inference by Nonparametric Saddlepoint Tests

    Get PDF
    The class of composite likelihood functions provides a flexible and powerful toolkit to carry out approximate inference for complex statistical models when the full likelihood is either impossible to specify or unfeasible to compute. However, the strenght of the composite likelihood approach is dimmed when considering hypothesis testing about a multidimensional parameter because the finite sample behavior of likelihood ratio, Wald, and score-type test statistics is tied to the Godambe information matrix. Consequently inaccurate estimates of the Godambe information translate in inaccurate p-values. In this paper it is shown how accurate inference can be obtained by using a fully nonparametric saddlepoint test statistic derived from the composite score functions. The proposed statistic is asymptotically chi-square distributed up to a relative error of second order and does not depend on the Godambe information. The validity of the method is demonstrated through simulation studies

    Multiple Comparisons using Composite Likelihood in Clustered Data

    Full text link
    We study the problem of multiple hypothesis testing for multidimensional data when inter-correlations are present. The problem of multiple comparisons is common in many applications. When the data is multivariate and correlated, existing multiple comparisons procedures based on maximum likelihood estimation could be prohibitively computationally intensive. We propose to construct multiple comparisons procedures based on composite likelihood statistics. We focus on data arising in three ubiquitous cases: multivariate Gaussian, probit, and quadratic exponential models. To help practitioners assess the quality of our proposed methods, we assess their empirical performance via Monte Carlo simulations. It is shown that composite likelihood based procedures maintain good control of the familywise type I error rate in the presence of intra-cluster correlation, whereas ignoring the correlation leads to erratic performance. Using data arising from a diabetic nephropathy study, we show how our composite likelihood approach makes an otherwise intractable analysis possible
    • …
    corecore