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ABSTRACT!

The class of composite likelihood functions provides a flexible and powerful toolkit to
carry out approximate inference for complex statistical models when the full likelihood
is either impossible to specify or unfeasible to compute. However, the strenght of the
composite likelihood approach is dimmed when considering hypothesis testing about a
multidimensional parameter because the finite sample behavior of likelihood ratio, Wald,
and score-type test statistics is tied to the Godambe information matrix. Consequently
inaccurate estimates of the Godambe information translate in inaccurate p-values. In this
paper it is shown how accurate inference can be obtained by using a fully nonparametric
saddlepoint test statistic derived from the composite score functions. The proposed statis-
tic is asymptotically chi-square distributed up to a relative error of second order and does
not depend on the Godambe information. The validity of the method is demonstrated
through simulation studies.
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1. Introduction

The likelihood function plays a central role in statistical inference. However, with
statistical models becoming increasingly complex in many fields such as genetics and
finance, the full likelihood function is often not available in closed form or is too difficult
to specify. This can be due for instance to a complex dependence structure of the data.
Examples include e.g. the estimation of diffusion models in finance and models based
on max-stable processes for spatial multivariate extremes (Padoan et al. (2010), Thibaud
et al. (2013)). Even when the specification of the full likelihood is straightforward, its
evaluation can be computationally awkward. For instance, modeling a spatial process with
a Gaussian random field requires the determinant and the inverse of the process covariance
matrix, whose dimension grows as the number of observed sites increases (Stein et al.,
2004).

In these cases and in the frequentist setting, one can rely on indirect inference tech-
niques (see the surveys by Heggland and Frigessi (2004) and Jiang and Turnbull (2004)),
whereas in the Bayesian framework one can use sequential Monte Carlo methods for ap-
proximate Bayesian computations (see, for instance Del Moral et al. (2006), Beaumont
et al. (2009)).

An attractive alternative which has gained popularity in the past few years is the
approach based on composite likelihood functions originally proposed by Lindsay (1988).
The basic idea is to approximate the unknown full likelihood by a sum of likelihood compo-
nents obtained e.g. by combining either marginal or conditional densities. An important
special case is the pairwise likelihood constructed using pairs of components; see Cox and
Reid (2004). Although the resulting combined function is no longer a proper likelihood,
the derived inferential procedures are M-estimators and tests based on unbiased estimat-
ing functions. From a theoretical point of view this is an appealing property because
their asymptotic theory is readily available; cf. e.g. Heritier and Ronchetti (1994) in the
context of robust tests. Specifically, Wald and score test statistics for pairwise likelihoods
are asymptotically y? distributed, whereas the asymptotic distribution of the pairwise
log-likelihood ratio test statistic is a linear combination of independent y? random vari-
ables.

The use of composite likelihoods has been advocated by several authors both in the
frequentist setting (see the good review paper by Varin et al. (2011) in a special issue
devoted to this topic in Statistica Sinica) and also in the Bayesian framework (Pauli
et al., 2011; Ribatet et al., 2011). Successful use of this approach in fairly complex
models include applications in spatial processes (Heagerty and Lele (1998), Varin et al.
(2005)), generalized linear mixed models (Renard et al. (2004), Bellio and Varin (2005)),
longitudinal models (Fieuws and Verbeke, 2006), and genetics (Hudson (2011), McVean
et al. (2004)).

In spite of the availability of standard asymptotic theory for Wald, score, and likelihood
ratio tests based on pairwise likelihoods, their actual computation requires the evaluation
of the expectations of minus the derivative and of the square of the pairwise likelihood
score which, as opposite to the full likelihood score, are not equal. Their estimation in
this case is akward and the corresponding p-values and coverage probabilities based on
the asymptotic distribution become inaccurate when the sample size is moderate or when
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small tail probabilities are required; cf. Section 2 and 4. To improve the accuracy, the
test statistics could be adjusted as in the classical case by means of Barlett corrections
and related methods. However, these methods would provide only improvements in terms
of the absolute error of the approximation which would still be inaccurate in the tails.

In this paper we consider an alternative test for pairwise likelihood defined by (4). It is
a nonparametric test derived by building on the results by Robinson et al. (2003). It enjoys
the following desirable properties: i) the test statistic is asymptotically x? distributed;
ii) the y? approximation to the exact distribution has a relative error of order O(n™');
iii) the test is fully nonparametric; iv) the test can combine accuracy and robustness
by an appropriate choice of the pairwise likelihood score; v) the test does not require
the computation of elements of the asymptotic covariance matrix of M-estimators (so-
called sandwich formula or Godambe information); vi) the test statistic is parametrization
invariant.

These properties will be discussed in detail in Section 3 and make this test an attractive
alternative for inference with pairwise likelihoods.

The rest of the paper is organized as follows. In Section 2 we define the pairwise
likelihood and discuss the available test procedures. In Section 3 we introduce the new
test and discuss its properties. Section 4 present three examples that show the excellent
finite sample behavior of the new test. Finally, some conluding remarks and an outlook
are given in Section 5.

2. Pairwise Likelihood

Let vy = (y1,...,yn)", be a random sample of independent realizations of the g-
dimensional random vector Y having probability distribution F(-;6#) and density func-
tion f(-;60), # C RP. The full log-likelihood function and ratio are respectively ¢(0) =
log f(y;0) and w(#) = 2[¢(0) — £(6)], with § the maximum likelihood estimate. Consider a
set of measurable events {€. € Y, r = 1,...,m} on the sample space ), defined for pairs
of components (vi;,yix), j # k = 1,...,¢, and let f.(y;0) = f(y € &,;0) be the likeli-
hood contribution generated from f(y;6) by considering the event &,. Then the pairwise
log-likelihood is defined as

pl(0) = ) wirlog fr(yi ), (1)

i=1 r=1

where w;, are weights not depending on 0 nor y. In general these weights are chosen both
to improve the efficiency of the maximum pairwise likelihood estimator and to reduce the
computational effort (Lindsay et al., 2011). The pairwise score function associated to (1)

is
ZZ alogfr (i; 0 Zps (6:9,).

=1 r=1

Since it is a combination of genuine scores, ps(f) is an unbiased estimating function, that
is Ep [ps(0)] = 0, where the notation E is used to highlight that expectation is taken
with respect to the full model.
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The maximum pairwise likelihood estimator ép belongs to the class of M-estimators
and is implicitly defined through the equation

ps(0) = 0.

Under broad conditions (see, e.g., Molenberghs and Verbeke, 2005), the maximum
pairwise likelihood estimator is consistent and asymptotically normal, with covariance
matrix given by the so-called sandwich formula or expected Godambe information

V() =H(0)" J(0)H(9) ",

where J(0) = Ep [ps(0;Y)ps(6;Y)"], H(0) = —Eg [0ps(6;Y)/00"].

In the context of hypothesis testing, the pairwise likelihoods allow to perform the
analogous of the Wald, the score and the likelihood ratio tests. The pairwise likelihood
counterparts of the Wald and score test statistics are

A

pwy(0) = n(0, = 0)"V(0,) (6, = 0) and  puwy(6) = n"'ps(0)"J(0) 'ps(0),

respectively. Under the hypothesis Hy : 6 = 6y both pw,(6y) and pws(y) converge to
a chi-square distribution with p degrees of freedom. Instead, the pairwise log-likelihood
ratio

pu(®) =2 {pt(6,) — pt(0)}

converges in distribution to Y3"_; A;(0)Z7, where Ai(6),..., A, (0) are the eigenvalues of
H(0)~'J(0) and the Z}s independent random variables with a standard normal distri-
bution (see, e.g., Kent, 1982). Adjustments to pw(f) have been proposed to provide
a pairwise log-likelihood ratio with the usual asymptotic chi-square distribution. The
simplest adjustment is based on first moment matching

pw(0)

bwy (9) = Ky )

where £, = E [2?21 )\j(é)Zﬂ /p = >0_1 Aj(0)/p. A x; approximation is used for the

distribution of pw; (@) (see, e.g. Rotnitzky and Jewell, 1990). Alternatively, Chandler and
Bate (2007) propose the so-called vertical scaling to pw(6)

() = 2220 2)

where ke, = n(f, — 0)"H(6,)(6, — 0)/pw(6). Finally, Pace et al. (2011) propose a
parametrization invariant adjustment

Rinv

where K, = n'ps(0)"H(0) ps(0)/pw(6). Test statistics (2) and (3) are first order
equivalent to pw,,(#) and pw(0) respectively and are asymptotically Xf) distributed. Even
with these adjustments, the y? approximation for the distribution of these test statistics

7
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may be inaccurate in moderate sample sizes or when small tail probabilities are required.
The accuracy of the approximation mostly depends on the Godambe information ma-
trix, as can be seen from the definition of the test statistics. To better understand this
statement it is important to distinguish two relevant settings in the pairwise likelihood
framework. In the first one, pairwise likelihoods replace the full likelihood function for
computational convenience. Therefore, either analytic expressions or (parametric) boot-
strap estimates for J(f) and H(f) can be worked out under the assumed F'(;6). In
the second one, pairwise likelihoods are used as an approximation to £(f) and in this case
only empirical counterparts of such matrices can be computed. In the case of independent
observations the estimates

R 1 n - ~ 1 - a 397 %
JO) = 15 sl st )" and () = 3 o)

=1 i=

are consistent for J(0) and H(#), respectively. However, depending on the application
area, J () may not be appropriate and a consistent estimate should be obtained by using
resampling methods (see Varin et al., 2011, and references therein).

The second setting is the most likely to occur in real applications and it is the most
critical. Indeed, the estimation of J() and H(#) introduces additional variability and
deteriorates the accuracy of the y? approximation in finite samples. In the next section
we present an alternative test which avoids these problems.

3. Saddlepoint Test

Consider for simplicity of notation the case of a simple hypothesis. The new test
statistic is

Py (0) ——2nlog{2w@ ) exp{A(6,)"ps(6,:9)} }. (4)

where

w;(0) = exp{B(0) " ps(0; i)}/ Z exp{B(60)"ps(0;y;)},

£(0) is the root of the equation
> wi(O)ps(0;y:) = 0, (5)
i=1

and \(6,) satisfies the equation

Zps i 1) exp{A(0,)"ps(0p; i) } = 0.

The following theorem states the large sample properties of p-values obtained from
test statistic (4). The proof is provided in the Appendix.

8
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Theorem. Suppose that conditions (A.1), (A.2), and (A.3) in the Appendiz hold.
Then under the null hypothesis Hy : 6 = 0y

Py, [pwsy(6o) > prp(QO)Obs] = (1 - Qp(pWSP(QO)ObS))(l + Op(n_l))

where pwg,(0y)°* is the observed value of the statistic and Q,(+) is the distribution function
of a chi-square random variable with p degrees of freedom.

The test statistic (4) can be rewritten as pws,(6) = —2nK,(A(6,),0,), where K, (-;-)
is the cumulant generating function of ps(-;Y’) under the discrete distribution defined
by {w;}, with w; = w;(#). The latter is the discrete distribution which is closest to the
empirical one {%} with respect to the backward Kullback- Leibler divergence

die({wi), {%}) =Y wilog [f‘/}—n} = wilogw; +logn
=1 =1

and which makes ps(f) unbiased (see equation (5)). Notice that the use of the forward
Kullback-Leibler divergence

n

dKL({%}, {w;}) = Z%log [1/—”} = —% Zlogwi —logn

)
i=1 v

would lead to the classical empirical log-likelihood ratio test statistic (Owen , 2001) which
is also asymptotically X;Q, distributed, but which does not enjoy the second-order relative
error property of the present test.

Let us now discuss in more details the properties of this test which are summarized in
the Introduction.

The new test statistic is asymptotically x? distributed, therefore it is, up to first-order,
equivalent to the standard tests but it differs for the following relevant features. Firstly,
pws,(0) is asymptotically pivotal and the result does not depend on suitable scaling factors,
contrasted to the approximate pivots proposed by Rotnitzky and Jewell (1990), Chandler
and Bate (2007), and Pace et al. (2011). Secondly, as pws,(#) stems from a small sample
asymptotics framework, it introduces an unexplored stream in the pairwise likelihood
setting concerning the accuracy of tests statistics. In particular, the exact distribution
of our test proposal is x? up to a relative error of magnitude O(n=!). This provides an
excellent accuracy uniformly in the tails for the approximation obtained by using the
asymptotic distribution. Thirdly, the asymptotic approximation can not be enhanced by
bootstrap calibration as the actual distribution of pws,(#) and its bootstrap counterpart
pw},(0) are also distant by a relative error of order O(n™'). In contrast, resorting to a
computationally expensive resampling procedure is the only viable path either to estimate
the quantiles of pw(#) without computing the elements of the Godambe information (see,
e.g. Aerts and Claeskens, 2001) or to obtain refined estimates of J(#) and H(#) (see Varin
et al., 2011, Section 5.1). Fourtly, the test is fully nonparametric and depends only on
the function ps(#;y). Therefore, it does not require the specification of the full model
F(-;0) which is clearly a key issue in this setup (see Section 2). Furthermore, as it solely
depends on ps(6#;y), by choosing the latter bounded with respect to y we can combine
accuracy in small samples and resistance with respect to potential outliers; see (L6 and

9
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Ronchetti, 2012) in the GMM framework and the second example in Section 4 below.
Finally, pws,(6) enjoys the desirable property of invariance under reparametrization as
well as pw(6), pws(0), and pw;,,(0). However, the latter lose exact invariance once the
empirical estimates J(6,) and H(6,) are used.

4. Numerical Examples

This section aims at showing some numerical evidence about the behaviour of the
nonparametric saddlepoint test statistic in the pairwise likelihood framework. Three
examples will be illustrated, each of them enlightening a different feature of the test.

In the first example, the new test is compared to the pairwise likelihood ones presented
in Section 2, and their finite sample accuracy to the x? approximations is analized in the
context of a multivariate normal model.

In the second and third example, we consider a first-order autoregressive and a geo-
statistical model, respectively. The purpose of these examples is twofold. In first place we
want to point out that the use of bounded estimating functions to compute pws,(6) is rec-
ommended not only to provide versions of pwy,(#) whose accuracy remains stable under
contaminations of the model. Indeed, we will provide empirical evidence that supports, in
this setup, the following results outlined in the Appendix: a) pws,(6) converges to the x>
distribution and the approximation has a relative error of second order; b) a second order
agreement also holds between the asymptotic distribution of pws,(¢) and its bootstrap
distribution pwy,(¢). In second place, these models provide a challenging setting in which
n = 1 < ¢ and consequently a suitable definition of the pairwise likelihood function is
needed.

In the first two examples the full log-likelihood function ¢(#) is available and this
allows us to set the log-likelihood ratio test w(f) as a benchmark. In the third example
this is not possible because the evaluation of the likelihood function is computationally
prohibitive.

The statistical environment R (R Core Team, 2012) was used to carry out all the
computations in this paper.

a. Multivariate Normal Model

Let Y be a normally distributed random vector, with expectation (p,...,u)" € R?
and covariance matrix Y having diagonal elements o2 and off-diagonal ones o2p, p €
(—=1/(g —1),1). The pairwise log-likelihood for the parameter 6 = (u, 02, p) is

pl(0) = _—TLQ(qZ_ D log o + 1Og(12— < )} - 202(11_ %) Z(yz — ) T O)(yi — ),

with yi. = >y, Uj5(0) = (¢ = 1), Tjw(0) = —p, j £k =1,...,q.

We run simulations by generating 100000 samples of size n = 10 from Y € R*", with
pu=0, 0% =1, and p ranging from moderate to strong correlation values.

For each sample we computed the nonparametric saddlepoint statistic as well as those
discussed in Section 2. As for this example, J(#) and H(0) are available (see, Pace et al.,
2011), this allows us to compare also the finite sample behavior among pairwise likelihood

10
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test statistics computed by using the exact matrices and their empirical counterparts
J(#) and H(0). In the following, the superscript e will refer to statistics evaluated using
J(0)and H(6).

Table 1 reports empirical coverage probabilities for three dimensional confidence re-
gions for 0. As expected, the best results are obtained when the elements of the ex-
pected Godambe information are used and, in particular, when one considers pw¢(#) and
pws,,(0). However, it should be stressed that, in most real applications, only the ob-
served Godambe information is available. In this case, pairwise likelihood statistics have
empirical coverages far from the nominal levels. Instead, the bootstrap distribution of
the nonparametric saddlepoint test statistic pw;‘p(ﬁ) is approximated quite well by the
X3 and the approximation is close to the one provided by the gold standard w(f). From
simulation studies (not reported here) it is shown that confidence sets based on pairwise
likelihood statistics achieve the nominal levels either by increasing the sample size or by
using resampling-based estimates of J(6) and H ().

In order to investigate the reliability of the proposed test and the ones based on
pairwise likelihood statistics, it is useful to analyze the shape of the associated confidence
sets and to compare them with the one provided by the full log-likelihood ratio. In Fig. 1
we display confidence sets for (2, p) with nominal level 1 — «a = 0.95, based on statistics
of Table 1, from a simulated sample with n = 10, ¢ = 30, 4 = 0, 0> = 1, and p = 0.9. For
this analysis, the location parameter p is considered as known. Although all confidence
sets cover the true parameter value, the ones provided by pwi (), pw,(0), and pw(6)
depart remarkably from that of w(6). In particular, pw;(f) generates a confidence set
that is quite inflated and almost includes the one of w(#), whereas Wald-type confidence
sets are narrow and elliptically shaped. On the other hand, confidence sets provided by
pwsp(0), pws(8), and pw;n,,(0) resemble the gold standard. It is also worth to note how
the shape of confidence sets derived from pairwise likelihood statistics is affected by the

use of J(0), H(#) and J(0), H(6).

b. Robust First Order Autoregression

We consider a stationary process {Y]}J modeled as a first order autoregressive model

A
Yi=¢o+ Y1 +e, (6)

¢ € R, ¢1 € (—1,1) and ¢; independent and normally distributed with mean 0 and
variance 2. Under these assumptions any trajectory of length ¢ can be thought of as a
normal random vector with expectation (¢o/(1 — ¢1),...,¢0/(1 —¢1))" € R? and covari-
ance matrix ¥ having generic element X, = 2¢‘1j7k|/(1 —oN), k=1,...,q

Instead of considering bivariate marginal distributions for pairs of contiguous observa-
tions (Pace et al., 2011), the pairwise log-likelihood function for 6 = (¢y, ¢1, 0?) is derived
here by means of univariate conditional distributions Y;|Y;_1 = y;—1 ~ N(¢o+¢1y;-1,02),

and is: q
—1 1
(4 5 ) log o? — 202 (yr — do — d1yr—1)° . (7)

r=2

pl(0) = —

The resulting pairwise score function leads to the ordinary least squares estimate of 6
that can be easily robustified by using a Mallows-type estimate for ¢ and ¢; and Huber’s

11
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TABLE 1. Multivariate normal model: empirical coverage probabilities of three dimen-
sional confidence regions for § = (u, 02, p). The superscript e refers to statistics computed
by using the elements of the expected Godambe information.

p=02 p=0.5 p=20.9
11—« 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99
w(#) 0.8802 0.9375 0.9858 | 0.8795 0.9367 0.9858 | 0.8800 0.9365 0.9859

pwg,(0) | 0.8644 0.9282 0.9820 | 0.8722 0.9300 0.9833 | 0.8650 0.9254 0.9809

pwy (M) | 0.5215 0.5855 0.6842 | 0.3273 0.3733 0.4567 | 0.1280 0.1466 0.1815

pws(6) 0.7733 0.8826 1.0000 | 0.7727 0.8826 1.0000 | 0.7747 0.8826 1.0000

0) 0.7847 0.8442 0.9194 | 0.7505 0.8179 0.9058 | 0.7540 0.7823 0.8197

pwep(0) | 0.5570  0.6250 0.7286 | 0.4201 0.4829 0.5906 | 0.1689 0.1991 0.2581

PWiny(0) | 0.7955 0.8950 0.9786 | 0.7980 0.8791 0.9516 | 0.9122 0.9462 0.9758
)

pws (0 0.7618 0.8155 0.8840 | 0.7286 0.7853 0.8601 | 0.5758 0.6194 0.6865
pws(6) 0.9051 0.9443 0.9805 | 0.9038 0.9435 0.9807 | 0.9040 0.9433 0.9807
pws(0) 0.8133 0.8673 0.9336 | 0.8136 0.8692 0.9361 | 0.8407 0.8983 0.9613

) | 0.7885 0.8459 0.9126 | 0.7858 0.8463 0.9190 | 0.6296 0.6836 0.7610
6) | 0.9080 0.9528 0.9883 | 0.8940 0.9477 0.9889 | 0.8699 0.9276 0.9802

Proposal 2 for ¢2. This is obtained by solving the system of estimating equations

Zwam) =0

D Calr)u(y;1) =0 (8)

=2

> () — (g = D) =0,

where r; = (y; — ¢o — $1y;—1) /o, Y (r) = min {k, max(—k,r)}, k > 0 and B(k) is a factor
to ensure consistency at the model; see Huber (1981), Huber and Ronchetti (2009).

In order to consider both contaminated and non-contaminated series, we included an
additive outlier term in (6), that becomes:

Y}' == (Z50 —+ ¢1Y3‘71 + Gj -+ Uj, (9)

where u; ~ (1 —&)dp 4+ EN(ptu, 02), € € [0,1] and &y is a point mass distribution located
at zero.

We performed the simulation study by drawing 100000 series of length ¢ = 50 from
model (9). We set the true parameter value to have components ¢y = 0, 0* = 1, and
¢ = {0.2,0.5,0.9} and we generated contaminated series by letting & = 0.05, p, =
do/(1—¢1) and 02 = 2502. £ = 0 corresponds to the case of non-contaminated series. For
each replication we computed the nonparametric saddlepoint test statistic as well as its
bootstrap version using the estimating equations in (8). They are denoted by pw,(6;~)

12
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Fi1G. 1. Multivariate normal model: confidence regions for (¢, p) with nominal level
1 —a = 0.95, with known g = 0 from a simulated sample with n = 10 and ¢ = 30. In
each plot confidence regions in gray solid line is obtained from w(f). Confidence regions
in dashed and dotted lines derive from pairwise likelihood statistics computed by using
J(6,) and H(6,) and J(6,) and H(6,), respectively. In particular: (a) pw?,(0); (b) pwy,(0),
pwy, (0); (¢) pws(0), pwg(0); (d) pwi(6), pwi(0); () pwa(8), pwg,(0); (£) pwiny(0), pwi,,(6)

and pw},(0;7) respectively, with v = (a,b,c). The choice 7, = (1.3,1.3,1.3) gives a
bounded estimating function and leads to a robust estimator with high efficiency at the
normal model. The choice 75 = (00, 00,00) defines the classical unbounded estimating
function and leads to a non-robust estimator.

It is worth noticing that in order to preserve the dependence structure of the series
and to be consistent with the specification of (6), pairs of data points (y;_1,y;) must be
resampled instead of single observations y; for the evaluation of pw},(6;7).

In Table 2 we report empirical coverage probabilities of confidence regions for . When
¢ = 0, the comparison between pws,(6; v1) and pws,(6; 72) shows that the use of a bounded
estimating function speeds up the convergence to the y? distribution. Moreover, empirical
coverages of pwg,(6;71) and pw} (6;v1) are very close and their accuracy is comparable
to the one of the full log-likelihood ratio w(f). When contamination occurs, the coverage
levels of nonparametric saddlepoint test statistics, computed with a bounded estimating

13
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function, remain quite stable, while those of the log-likelihood ratio and pws,(8;~2) drop
away, as one would expect.

In Fig. 2 we display Q-Q plots for some statistics in Table 2 when 6 = (0,0.5,1). The
x? approximation for pws,(0;7y1) is quite accurate, even when considering contaminated
series, up to X%;o.gg ~ 11.

TABLE 2. First order autoregressive model: empirical coverage probabilities of three
dimensional confidence regions for 6 = (¢, ¢1,0%) by considering non-contaminated (£ =
0) and contaminated series (£ = 0.05).

¢ =02 ¢1 =10.5 »1 =09
l—-a 0.90 0.95 0.99 ‘ 0.90 0.95 0.99 ‘ 0.90 0.95 0.99
§=0
w(0) 0.8915 0.9432 0.9876 | 0.8879 0.9403 0.9873 | 0.8478 0.9165 0.9792

pwi,(0571) | 0.8914  0.9447  0.9892 | 0.8911 0.9447 0.9892 | 0.8911 0.9436 0.9881
pwsp(6:;71) | 0.9007 0.9512 0.9885 | 0.9007 0.9512 0.9885 | 0.8946 0.9503 0.9898
pwsp(6;72) | 0.8232  0.8822 0.9534 | 0.8232 0.8822 0.9534 | 0.7764 0.8548 0.9376

¢ =0.05

w(#) 0.3441 0.3901 0.4641 | 0.2942 0.3365 0.4034 | 0.2315 0.2702 0.3236
pwi,(0571) | 0.8818 0.9411 0.9877 | 0.8918 0.9456 0.9873 | 0.8902 0.9422 0.9869
pwep(6;71) | 0.8921  0.9517 0.9917 | 0.8976 0.9508 0.9907 | 0.8728 0.9410 0.9915
pwsp(6;72) | 0.4612  0.5413  0.6599 | 0.3591 0.4328 0.5608 | 0.2659 0.3215 0.4251

c. Geostatiscal model

Let {Y(s),s = (s1,...,5¢)}, be a stationary Gaussian random field with zero mean
and exponential covariogram

cov [Y(s), Y (s); 0] = o exp (=3[[hul|/6) = 0% pjx(9)

where, hj, = (s; — sk), j,k = 1,...,q, 0 = (62,¢), || - || is the Euclidean norm. The
process is supposed to be observed on a regular lattice and we assume that the sites s’s
are coordinates in N2, In the following the discussion is developed in an increasing domain
rather than an infill framework (see, e.g., Zhang and Zimmerman , 2005) but this choice
does not affect the validity of our results.

The pairwise log-likelihood function for 6 is obtained by specifying univariate condi-
tional distributions Y;|Yy = yr. ~ N(p;r(¢)yk, 0?) and is given by

pi(0) = ~5 33 {lowo® + 2 35 = ptohn) i), (10

14



DEAMS Research Paper 3/2013

£E=0 £=0.05
] 7 . I
15 / . 15
7 i
ke ' ke s
£10 | £10 -
> >
o o
=] =]
[<5] [<5]
= =
[<B] [<B]
251 251
o o
0 ‘,, | | | 0 ,"’ | | |
0 5 10 15 0 5 10 15
theoretical quantiles theoretical quantiles

Fi1G. 2. First order autoregressive model: QQ-Q plots for some statistics against theoretical
quantiles of the x3. In black pwg,(6;71), in dark grey pws,(6;72), and in light grey w(f)

where y; = y(s;). The weights w(h;) are defined to form a disjoint partition of the
sampling region in block of observations. Loosely speaking, the weights are chosen to
form N = [¢/(1 + [)]? squared blocks B,, u = 1,..., N, each containing (1 + [)? sites,
where [ is the side length of the square. Inside each block only (1 + )2 — 1 pairs are
considered to compute pl(f). Therefore, (10) becomes the sum of N pseudo-independent
blocks each of them summarizing (1+1)? —1 likelihood contributions. In Fig. 3 we display
how the blocks and the pairs are defined in a 6 x 6 sampling region by considering squares
with sides of length 1 and 2.

It is worth to point out that the sampling region could be partitioned by constructing
overlapping blocks each of them centred on a specific observation, e.g. B; = {(y;, yx) : ||hjxl|
<d,d>0,5#k=1,...,q, and by considering different schemes to form the pairs in-
side each block. For our purposes the rationale behind the splitting rule is to obtain
blocks which are as uncorrelated as possible, this condition being crucial to compute both
pwsp(6) and a window subsampling estimate for J(9).

Also in this example, pws,(#) is computed by using a set of bounded estimating func-
tions. From (10) it is easily seen that the resulting score function for a single pair is

lo2(0) = ﬁ(w = pin(®)yr)* "
£4(0) = 50— o)

which can be bounded by using the same arguments as in Example b. In particular, we
substitute (11) by the third and the second estimating functions in (8), respectively.
Simulations have been run by generating 10000 spatially correlated data from three
different scenarios, corresponding to increasing levels of spatial correlation, by setting
0> =1and ¢ = {5,7,9}. The sampling region {1,...,q} x {1,..., ¢} have been increased

15
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FiG. 3. Partition of a 6 x 6 sampling region in block of observations. Dashed lines connect
observations belonging to a specific block, whereas the arrows indicate which pairs are
considered to compute the pairwise likelihood function

accordingly to increasing values of ¢ as well as the side length of the squares defining
the blocks. In particular, ¢ = {35,42,54} and | = {5,7,9}, which means setting [ to the
effective range, i.e. the distance beyond which the correlation between pairs is less or
equal to 0.05. As a guideline we suggest to set [ greater or equal to the effective range,
and in practical applications this can be obtained by using an empirical estimate of the
correlogram.

For each replication we computed the statistics presented in Section 2 as well as pwg, ()
by using the bounded counterparts of (11) with ~; = (1.3,1.3,1.3). The full log-likelihood
ratio has not been considered in our simulations as its computation is prohibitive for the
chosen values of q.

In Fig. 4(a, b, ¢) we plot the actual sizes against the nominal sizes of tests for the three
settings considered. Overall, the actual distribution of pws,(#;~1) is closer to the x3 than
the ones of the other statistics. In panel (d) of Fig. 4 we display the relative error for the
tail area probabilities defined as (P [pwy,(6;7) > x3.1_o] — @) /e, for v € (0.01,0.1). The
plot confirms that the approximation is quite accurate uniformly regardless the strength
of the spatial dependence.

5. Concluding Remarks

We introduced in the pairwise likelihood framework a second-order accurate test statis-
tic derived by using saddlepoint techniques. The new test is appealing as it circumvent
the specification of the joint density and only requires the availability of the pairwise
score function. Moreover, it exhibits several desirable properties which are not shared
by the available tests. In particular, it does nor require the availability of the Godambe
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F1G. 4. Geostatistical model: in panel (a), (b), (c) actual size is plotted against nominal
size for the following test statistics: (—)pws,(0;7), (- -) pww(0), (---) pws(0), (---) pw1(6),
(= =) pwep(0), (-=-) pwiny(0). In panel (d) approximation of the relative error for tail area
probabilities provided by pwg,(6; )

information matrix of the full model, which is the case for other standard tests. This
opens up the actual possibility to perform small sample asymptotics’s inference in rather

complex, yet little explored, frameworks.
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Appendix

Conditions
(A.1): H(0) is continuous in 6 and |H(6y)| # 0;

(A.2): The components in ps(6;y) as well as their first four derivatives with respect to
0 exists and are bounded and continuous;

(A.3): The cumulant generating function of ps(6;Y") exists and the distribution func-
tion of the random vector U = (ps(6;Y), S(0), Q(F)) admits an Edgeworth expan-
sion, where S(#) is formed by the elements of ps(0; Y )ps(0;Y )™ and Ops(0;Y") /00",
whereas ()(#) has components 05(6)/00".

Condition (A.1) essentially ensures that there exists a compact subset of R?, 6, being
an interior point of it, in which 6, is the unique solution to E[ps(f)] = 0. Concerning
condition (A.3), the reader may refer to Field et al. (2008) for a detailed account of this
technical condition.

Proof of Theorem. Let y* be a bootstrap version of y obtained by sampling accord-
ing to the set of probabilities {w;(6y)}, é; be the solution to Y w;(6y)ps(6;y;) = 0, and
finally denote by P,[-] the probability under the discrete distribution defined by {w;(6y)}.
The proof proceeds along the lines of that of Theorem 1 in Ma and Ronchetti (2011) and
is splitted into two steps: first the size of the error of the bootstrap p-value P, [pw},(6y) >
pwsy(0)°] is established, then it is linked to the p-value P[pws,(6y) > pws,(6o)°].

From Robinson et al. (2003) we have

Py [pw:p(HO) > prpr)Obs] =[1- Qp(pMSp(QO)ObS)](l + O(n_l))7

and from this relation it is easily seen that bootstraping the proposed statistic according
to {w;(0y)} leads to a p-value which error size is relative and of second-order. Then, from
the results in Field et al. (2008) about second-order bootstrap tests, we obtain

Pry[pwp(f0) = pwip(60)™] = Pulpwl,(60) = pwsy(60)™ (L +O(n™))
= [1=Qp(pwsp(B0)™))(1+ O(n™1)),

and this proves the theorem.
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