5 research outputs found

    Un interpréteur extensible pour le prototypage des langages d'aspects

    Get PDF
    The value of using different (possibly domain-specific) aspect languages to deal with a variety of crosscutting concerns in the development of complex software systems is well recognized. One should be able to use several of these languages together in a single program. However, on the one hand, developing a new Domain-Specific Aspect Language (DSAL) in order to capture all common programming patterns of the domain takes a lot of time, and on the other hand, the designer of a new language should manage the interactions with the other languages when they are used together. In this thesis, we introduce support for rapid prototyping and composing aspect languages based on interpreters. We start from a base interpreter of a subset of Java and we analyze and present a solution for its modular extension to support AOP based on a common semantics aspect base defined once and for all. The extension, called the aspect interpreter, implements a common aspect mechanism and leaves holes to be defined when developing concrete languages. The power of this approach is that the aspect languages are directly implemented from their operational semantics. This is illustrated by implementing a lightweight version of AspectJ. To apply the same approach and the same architecture to full Java without changing its interpreter (JVM), we reuse AspectJ to perform a first step of static weaving, which we complement by a second step of dynamic weaving, implemented through a thin interpretation layer. This can be seen as an interesting example of reconciling interpreters and compilers. We validate our approach by describing prototypes for AspectJ, EAOP, COOL and a couple of other DSALs and demonstrating the openness of our AspectJ implementation with two extensions, one dealing with dynamic scheduling of aspects and another with alternative pointcut semantics. Different aspect languages implemented with our framework can be easily composed. Moreover, we provide support for customizing this composition.L'intérêt de l'utilisation de différents langages d'aspects pour faire face à une variété de préoccupations transverses dans le développement de systèmes logiciels complexes est reconnu. Il faudrait être capable d'utiliser plusieurs de ces langages dans un seul logiciel donné. Cependant, d'une part la phase de développement d'un nouveau langage dédié capturant tous les patrons de programmation du domaine prend beaucoup de temps et, d'autre part, le concepteur doit gérer les interactions avec les autres langages quand ils sont utilisés simultanément. Dans cette thèse, nous introduisons un support pour le prototypage rapide et la composition des langages d'aspects, basé sur des interpréteurs. Nous partons d'un interpréteur d'un sous-ensemble de Java en étudiant et en définissant son extension modulaire afin de supporter la programmation par aspects en se basant sur une sémantique d'aspects partagée. Dans l'interpréteur d'aspects, nous avons implémenté des mécanismes communs aux langages d'aspects en laissant des trous à définir pour implémenter des langages d'aspects concrets. La puissance de cette approche est de permettre d'implémenter directement les langages à partir de leur sémantique. L'approche est validée par l'implémentation d'une version légère d'AspectJ. Pour appliquer la même approche et la même architecture à Java sans modifier son interpréteur (JVM), nous réutilisons AspectJ pour effectuer une première étape de tissage statique, qui est complétée par une deuxième étape de tissage dynamique, implémentée par une mince couche d'interprétation. C'est un exemple montrant l'intérêt qu'il peut y avoir à concilier interprétation et compilation. Des prototypes pour AspectJ, EAOP, COOL et des langages dédiés simples, valident notre approche. Nous montrons le caractère ouvert de notre implémentation d'AspectJ en décrivant deux extensions: la première permet l'ordonnancement dynamique des aspects, la deuxième propose des sémantiques alternatives pour les points de coupe. Les langages d'aspects implémentés avec notre approche peuvent être facilement composés. En outre, cette composition peut être personnalisée

    Locating Potential Aspect Interference Using Clustering Analysis

    Get PDF
    Software design continues to evolve from the structured programming paradigm of the 1970s and 1980s and the object-oriented programming (OOP) paradigm of the 1980s and 1990s. The functional decomposition design methodology used in these paradigms reduced the prominence of non-functional requirements, which resulted in scattered and tangled code to address non-functional elements. Aspect-oriented programming (AOP) allowed the removal of crosscutting concerns scattered throughout class code into single modules known as aspects. Aspectization resulted in increased modularity in class code, but introduced new types of problems that did not exist in OOP. One such problem was aspect interference, in which aspects meddled with the data flow or control flow of a program. Research has developed various solutions for detecting and addressing aspect interference using formal design and specification methods, and by programming techniques that specify aspect precedence. Such explicit specifications required practitioners to have a complete understanding of possible aspect interference in an AOP system under development. However, as system size increased, understanding of possible aspect interference could decrease. Therefore, practitioners needed a way to increase their understanding of possible aspect interference within a program. This study used clustering analysis to locate potential aspect interference within an aspect-oriented program under development, using k-means partitional clustering. Vector space models, using two newly defined metrics, interference potential (IP) and interference causality potential (ICP), and an existing metric, coupling on advice execution (CAE), provided input to the clustering algorithms. Resulting clusters were analyzed via an internal strategy using the R-Squared, Dunn, Davies-Bouldin, and SD indexes. The process was evaluated on both a smaller scale AOP system (AspectTetris), and a larger scale AOP system (AJHotDraw). By seeding potential interference problems into these programs and comparing results using visualizations, this study found that clustering analysis provided a viable way for detecting interference problems in aspect-oriented software. The ICP model was best at detecting interference problems, while the IP model produced results that were more sporadic. The CAE clustering models were not effective in pinpointing potential aspect interference problems. This was the first known study to use clustering analysis techniques specifically for locating aspect interference

    Abstract delta modeling : software product lines and beyond

    Get PDF
    To prevent a large software system from collapsing under its own complexity, its code needs to be well-structured. Ideally we want all code related to a certain feature to be grouped together __called feature modularization__ and code belonging to different features not to mix __ called separation of concerns. But many concerns are known as 'cross-cutting concerns'. By their very nature their implementation needs to be spread around the code base. The software engineering discipline that has the most to gain from those properties is Software Product Line Engineering. It is concerned with the development and maintenance of multiple software systems at the same time, each possessing a different (but often overlapping) set of features. This gives rise to an additional need: The code for a given feature must not only be separated and modular; it also needs to be composable and able to deal gracefully with the presence or absence of other features. This thesis presents Abstract Delta Modeling, a formal framework developed to achieve these goals in software. The thesis is a product of the European HATS project. It formalizes the techniques of delta modeling, the main approach to variability used by HATSAlgorithms and the Foundations of Software technolog

    Composing aspects with aspects

    No full text
    Aspect-oriented programming languages modularize crosscutting concerns by separating the concerns from a base program in aspects. What they do not modularize well is the code needed to manage interactions between the aspects themselves. Therefore aspects cannot always be composed with other aspects without requiring invasive modifications. This paper proposes a join point model that makes it possible to express aspect composition itself as an aspect, liberating the composed aspects from composition-specific code. We have implemented this new join point model in our Oarta language, an extension of AspectJ, and we show how to use it to write aspects that manage aspect interactions.status: publishe
    corecore