
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2015

Locating Potential Aspect Interference Using
Clustering Analysis
Brian Todd Bennett
Nova Southeastern University, bennettbtodd@gmail.com

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: http://nsuworks.nova.edu/gscis_etd

Part of the Programming Languages and Compilers Commons, and the Software Engineering
Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Brian Todd Bennett. 2015. Locating Potential Aspect Interference Using Clustering Analysis. Doctoral dissertation. Nova Southeastern
University. Retrieved from NSUWorks, Graduate School of Computer and Information Sciences. (50)
http://nsuworks.nova.edu/gscis_etd/50.

http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

 i

Locating Potential Aspect Interference Using Clustering Analysis

by

Brian Todd Bennett

A dissertation submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

in

Computer Information Systems

Graduate School of Computer and Information Sciences

Nova Southeastern University

2015

We hereby certify that this dissertation, submitted by Brian Bennett, conforms to acceptable

standards and is fully adequate in scope and quality to fulfill the dissertation requirements for

the degree of Doctor of Philosophy.

___ ________________

Francisco J. Mitropoulos, Ph.D. Date

Chairperson of Dissertation Committee

___ ________________

Sumitra Mukherjee, Ph.D. Date

Dissertation Committee Member

___ ________________

Renata Rand McFadden, Ph.D. Date

Dissertation Committee Member

Approved:

___ ________________

Eric S. Ackerman, Ph.D. Date

Dean, Graduate School of Computer and Information Sciences

Graduate School of Computer and Information Sciences

Nova Southeastern University

2015

 iii

An Abstract of a Dissertation Submitted to Nova Southeastern University

in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Locating Potential Aspect Interference Using Clustering Analysis

by

Brian Todd Bennett

May 2015

Software design continues to evolve from the structured programming paradigm of the

1970s and 1980s and the object-oriented programming (OOP) paradigm of the 1980s and

1990s. The functional decomposition design methodology used in these paradigms

reduced the prominence of non-functional requirements, which resulted in scattered and

tangled code to address non-functional elements. Aspect-oriented programming (AOP)

allowed the removal of crosscutting concerns scattered throughout class code into single

modules known as aspects. Aspectization resulted in increased modularity in class code,

but introduced new types of problems that did not exist in OOP. One such problem was

aspect interference, in which aspects meddled with the data flow or control flow of a

program. Research has developed various solutions for detecting and addressing aspect

interference using formal design and specification methods, and by programming

techniques that specify aspect precedence. Such explicit specifications required

practitioners to have a complete understanding of possible aspect interference in an AOP

system under development. However, as system size increased, understanding of possible

aspect interference could decrease. Therefore, practitioners needed a way to increase their

understanding of possible aspect interference within a program. This study used

clustering analysis to locate potential aspect interference within an aspect-oriented

program under development, using k-means partitional clustering. Vector space models,

using two newly defined metrics, interference potential (IP) and interference causality

potential (ICP), and an existing metric, coupling on advice execution (CAE), provided

input to the clustering algorithms. Resulting clusters were analyzed via an internal

strategy using the R-Squared, Dunn, Davies-Bouldin, and SD indexes. The process was

evaluated on both a smaller scale AOP system (AspectTetris), and a larger scale AOP

system (AJHotDraw). By seeding potential interference problems into these programs

and comparing results using visualizations, this study found that clustering analysis

provided a viable way for detecting interference problems in aspect-oriented software.

The ICP model was best at detecting interference problems, while the IP model produced

results that were more sporadic. The CAE clustering models were not effective in

pinpointing potential aspect interference problems. This was the first known study to use

clustering analysis techniques specifically for locating aspect interference.

 iv

Acknowledgements

Dedication

This work is dedicated in loving memory of my father,

Leonard Eugene Bennett,

who showed me how to write my first program at age five.

I love you, I miss you, and I wish you could see this.

The dissertation journey once seemed a long, winding road with its end remaining over a

distant hill. With each turn came new learning opportunities in research and statistical

techniques that have led to the end of this road. Looking back, I reflect on the many

people who helped this journey reach its conclusion.

I thank my advisor, Dr. Frank Mitropoulos, for introducing me to this area of research,

and for sending me in the right direction early in the process. I appreciate the prompt and

constructive comments and feedback received from my committee members, Drs.

Sumitra Mukherjee and Renata Rand McFadden. Your support has been greatly

appreciated.

I thank my professors and mentors at East Tennessee State University who instilled a

strong foundation for software engineering that has carried me through my professional

career to this point, and is sure to carry me throughout the rest of my life.

I thank my family members who were there for me throughout this process. I especially

thank my mother, Coleen Bennett, for her unwavering support, unconditional love, and

unmatched faith. Through her continual encouragement and her example, navigating this

and all of life’s journeys is much easier. I love you.

Finally, above all, I thank God through Jesus Christ, from whom all blessings flow. Grace

to stay the course, ability to complete the task, guidance, encouragement, family, life—all

things come from Him. To God be the glory! With God, all things are possible.

 v

Table of Contents

Abstract iii

Acknowledgements iv

List of Tables viii

List of Figures x

Chapter 1 Introduction 1

Background 1

Object-Oriented Programming (OOP) 1

Aspect-Oriented Programming (AOP) 3

Aspect Interference 4

Problem Statement 5

Dissertation Goal 6

Research Questions 7

Relevance and Significance 8

Barriers and Issues 10

Limitations 12

Definition of Terms 12

Summary 15

Chapter 2 Review of the Literature 16

Aspect Interference 16

Defining Aspect Interference 16

Detecting Interference at Design Time 19

Detecting Interference at Implementation Time 22

Detecting Interference at Execution Time 24

Analysis 27

Aspect-Oriented Metrics 28

The Emergence of AOP Coupling Metrics 28

Empirical Studies of AOP Metrics 31

Analysis 34

Clustering Analysis 35

Clustering in OOP 35

Clustering in AOP 38

Analysis 42

 vi

Visualization 44

Design Visualization Techniques in OOP 44

Clustering Visualization Techniques 46

AOP Visualization 47

Analysis 50

Summary 51

Chapter 3 Methodology 54

Overview 54

Model Definition 55

Object Models 55

Vector Space Models 56

Approach 58

Source Code Compilation 58

Bytecode Parsing 58

Vector Space Model Creation 61

Principal Component Analysis 61

Clustering Analysis 62

Validation and Empirical Analysis 64

Visualization 67

Assessment and Data Analysis 68

Resource Requirements 69

Summary 70

Chapter 4 Results 71

Vector Space Model Notation 71

Data Presentation 71

Application Characteristics 72

AspectTetris Results 73

AT with Model 𝑀𝐼𝑃 (Interference Potential) 73

AT with Model 𝑀𝐼𝐶𝑃 (Interference Causality Potential) 77

AT with Model 𝑀𝐶𝐴𝐸 (Coupling on Advice Execution) 81

AJHotDraw Results 86

AJHD with Model 𝑀𝐼𝑃 (Interference Potential) 86

AJHD with Model 𝑀𝐼𝐶𝑃 (Interference Causality Potential) 90

AJHD with Model 𝑀𝐶𝐴𝐸 (Coupling on Advice Execution) 94

 vii

Summary of Results 98

Overall Impressions 98

Evaluation of the IP and ICP Metrics 100

The Use of Clustering Analysis to Detect Aspect Interference Potential 101

Chapter 5 Conclusions, Implications, Recommendations, and Summary 103

Conclusions 103

Implications 104

Recommendations 105

Summary 108

References 114

 viii

List of Tables

Tables

1. Aspect Coupling Metric Development Introduced by Zhao (2004) 29

2. Aspect-Oriented Metrics Introduced by Ceccato and Tonella (2004) 30

3. Aspect Coupling Metrics Introduced by Kumar et al. (2009) 31

4. A Summary of Clustering Metrics Used in this Study. 67

5. Wilcoxon Rank Sum Test Results (Sample) 67

6. Dimensions and indicated K for Program 1 (Sample). 69

7. Summary Statistics after 100 Runs of K-means++ (Sample). 69

8. Values of K Tested for AspectTetris Model MIP 73

9. Suggested Numbers of Clusters for AspectTetris Model MIP 74

10. Summary Statistics for AT Model MIP after 100 Runs of K-means++ 76

11. Wilcoxon Rank Sum Test p-Values for AT IP Models 76

12. Values of K Tested for AspectTetris Model MICP 78

13. Suggested Numbers of Clusters for AspectTetris Model MICP 78

14. Summary Statistics for AT Model MICP after 100 Runs of K-means++ 80

15. Wilcoxson Rank Sum Test p-Values for AT ICP Models 80

16. Values of K Tested for AspectTetris for Model MCAE 82

17. Suggested Numbers of Clusters for Aspect Tetris Model MCAE 82

18. Summary Statistics for AT Model MCAE after 100 Runs of K-means++ 84

19. Wilcoxson Rank Sum Test p-Values for AT CAE Models 84

20. Values of K Tested for AJHotDraw for Model MIP 86

21. Suggested Numbers of Clusters for AJHotDraw Model MIP 86

 ix

22. Summary Statistics for AJHD Model MIP after 100 Runs of K-means++ 88

23. Wilcoxon Rank Sum Test p-Values for AJHD IP Models 88

24. Values of K Tested for AJHotDraw Model MICP 91

25. Suggested Numbers of Clusters for AJHotDraw Model MICP 91

26. Summary Statistics for AJHD Model MICP after 100 Runs of K-means++ 93

27. Wilcoxon Rank Sum Test p-Values for AJHD ICP Models 93

28. Values of K Tested for AJHotDraw Model MCAE 95

29. Suggested Numbers of Clusters for AJHotDraw Model MCAE 95

30. Summary Statistics for AJHD Model MCAE after 100 Runs of K-means++ 96

31. Wilcoxon Rank Sum Test p-Values for AJHD CAE Models 97

32. Summary of Statistics Showing Significant Improvements 99

 x

List of Figures

Figures

1. Object Identification Phase Algorithm. 59

2. Interaction Identification Phase Algorithm. 60

3. SD validity index values for the AT α MIP and the AT α MIP Π models. 74

4. SD validity index values for the AT β MIP and the AT β MIP Π models. 74

5. Visualizations of Best IP Clusterings for Program AT α. 77

6. Visualizations of Best IP Clusterings for Program AT β. 77

7. SD validity index values for the AT α MICP and the AT α MICP Π models. 79

8. SD validity index values for the AT β MICP and the AT β MICP Π models. 79

9. Visualizations of Best ICP Clusterings for Program AT α. 81

10. Visualizations of Best ICP Clusterings for Program AT β. 81

11. SD validity index values for the AT α MCAE model. 82

12. SD validity index values for the AT β MCAE model. 83

13. Visualizations of Best CAE Clustering for Program AT α. 85

14. Visualization of the Best CAE Clustering for Program AT β. 85

15. SD validity index values for the AJHD α MIP and AJHD α MIP Π models. 87

16. SD validity index values for the AJHD β MIP and AJHD β MIP Π models. 87

17. Visualizations for Program AJHD α IP Models. 89

18. Visualizations for Program AJHD β IP Models. 89

19. SD validity index values for the AJHD α MICP and AJHD α MICP Π models. 91

20. SD validity index values for the AJHD β MICP and AJHD β MICP Π models. 92

21. Visualizations for Program AJHD α for ICP Models. 94

 xi

22. Visualizations for Program AJHD β for ICP Models. 94

23. SD validity index values for the AJHD α MCAE and AJHD α MCAE Π models. 95

24. SD validity index values for the AJHD β MCAE and AJHD β MCAE Π models. 96

25. Visualizations for Program AJHD α for CAE Models. 97

26. Visualizations for Program AJHD β for CAE Models. 98

 1

Chapter 1

Introduction

Background

Object-Oriented Programming (OOP)

 Object-oriented programming (OOP) has become a mainstream paradigm in

software engineering that originated in the 1970s from structured programming. Dahl and

Hoare (1972) noted that structured concepts such as types, variables, and arrays involved

both data structures and procedures that operated upon them. From these observations,

Dahl and Hoare (1972) introduced the concept of a class—a structure that encapsulated

both variables and procedures—using the SIMULA 67 programming language. Creating

a structure that encapsulated both data and procedures gave a new way to model real-

world functionality within software systems. Because of the ability to modularize

programs in this manner, object-oriented languages like Smalltalk and C++ developed

throughout the 1970s and 1980s (Capretz, 2003).

 The modular nature of OOP also allowed program designers to view objects—

individual instances of a class—from an external viewpoint (Rentsch, 1982). The

principle of encapsulation noted that objects communicated through strictly defined

external interfaces that hid implementation details (Rentsch, 1982; Snyder, 1986). These

external interfaces protected the internal member data against modification, and allowed

rewriting a class with minimal impact to a program, as long as the external interface

 2

remained constant. However, OOP also supported the idea of inheritance, in which child

objects could use both member data and operations defined within a parent object.

Because inherited objects needed no external interface to their parent, inheritance

required programmers to consider objects from an internal viewpoint to define what

member data and methods child objects could utilize and manipulate. (Snyder, 1986)

The principles of encapsulation and inheritance had a major impact on software

development methodology. Early OOP design approaches simply retrofit familiar

structural methodologies by adding OOP design techniques to them (Capretz, 2003).

Capretz (2003) noted that the ideal OOP design methodology should focus on OOP

across all phases of development. Booch (1986) defined a new object-oriented design

methodology that addressed limitations in classical approaches and focused on objects

from both an internal and external viewpoint. By using this method, designers

concentrated on the functionality of the system from the class or object perspective

(Booch, 1986).

 Kiczales et al. (1997) noted that most methodologies like Booch (1986) used

functional decomposition—designing a system by breaking it into chunks of related

functionality. Functional decomposition, while comfortable from an encapsulation

standpoint, failed to address non-functional features of software. Because existing

language constructs failed to address non-functional features, programmers codified these

features inside other existing modules. Kiczales et al. (1997) referred to the mixing of one

software feature within an existing module tangling, causing potential difficulties with

maintenance. Tangling non-functional and functional features was an example of

crosscutting—a situation where two software properties coexisted, yet each came from a

 3

different functional composition (Kiczales et al., 1997). The authors described

crosscutting concerns as software features tangled within one or more existing modules

of a software system (Kiczales et al., 1997). Kiczales et al. (1997) observed the need to

detangle crosscutting concerns from class code, and developed a new paradigm called

aspect-oriented programming (AOP) that allowed programmers to view crosscutting

concerns as modules. (Kiczales et al., 1997)

Aspect-Oriented Programming (AOP)

 The goal of AOP was to increase the separation of crosscutting concerns within a

program. Kiczales et al. (1997) described two distinct entities in a software system:

components and aspects. A component was any software element that could exist as a

well-defined encapsulation, such as procedures and classes. An aspect was a

programming element that could not exist as a well-defined encapsulation in

programming languages of the time. To separate aspects tangled within components,

Kiczales et al. (1997) proposed a new programming concept that would place an aspect in

a single location and then incorporate it into component code where needed. The process

of incorporating aspect code into component code was termed aspect weaving (Kiczales

et al., 1997).

 The aspect weaver—a system designed to inject aspect code into component code

at either runtime or compile time—needed to know the specific locations for code

injection (Kiczales et al., 1997). As a result, aspect languages like AspectJ ("The

AspectJ™ Programming Guide," 2003) developed mechanisms called point cuts, which

described a set of join points—locations within the code that would contain aspect code

after weaving (Stoerzer & Graf, 2005). Advice also supported point cuts by specifying

 4

what aspect code to execute before, after, or around the join point ("The AspectJ™

Programming Guide," 2003; Stoerzer & Graf, 2005). Because of these mechanisms, AOP

increased modularity in component code because it removed crosscutting concerns, and

allowed component code to remain oblivious to the existence of aspect code within the

program (Hannemann & Kiczales, 2002).

 In an early assessment of AOP, Walker, Baniassad, and Murphy (1999) saw that

in some cases, developers could have difficulty understanding an AOP program. These

authors concluded that aspect-oriented languages needed a way to show the scope of an

aspect’s effect on component code, and also to encapsulate crosscutting concerns

appropriately (Walker et al., 1999). However, the process of aspect weaving could cause

semantic problems in the program that made the scope of an aspect’s effect difficult to

define and detect (Tian, Cooper, & Zhang, 2010). Aspect weaving problems could result

from an aspect that interfered in a program’s context, control flow, structure, or

construction (Tian, Cooper, & Zhang, 2010).

Aspect Interference

 Aspect interference (or interaction) was coined to describe an aspect weaving

problem in which an aspect caused unexpected changes to the flow of a class or method

(Douence, Fradet, & Südholt, 2002). Tian, Cooper, Zhang, and Yu (2009) noted that

aspects could cause a number of syntactic and semantic problems in the woven code.

Syntax problems involved issues in the programming, such as incorrect naming, and

issues with point cut definitions (Tian et al., 2009). Semantic conflicts involved

inconsistencies introduced by weaving, aspects that executed out of order, aspects with

circular dependencies, interference with a system’s functionality, behavioral and OO

 5

composition problems, and problems when superimposing structure (Tian et al., 2009).

An aspect was also able to introduce new code locations upon which other aspects would

operate, break the system structure, or interact with other aspects attempting to access a

common join point (Tian, Cooper, Zhang, & Liu, 2010).

Such semantic problems could occur in a software system even when the code is

syntactically correct (Tian et al., 2009). In addition, even when class code and aspect

code were verified during modular testing, integration could introduce unexpected

behaviors produced by aspects (Delamare & Kraft, 2012). Therefore, aspect interference

has remained a silent threat to programmers developing aspect-oriented software systems

by causing issues that are both difficult to find and difficult to correct.

Problem Statement

 Programmers faced the problem of having no way to conceptualize aspect

interference fully while developing an aspect-oriented software system. Research has

worked to both prevent and detect aspect interference at design time and execution time.

Existing design-time detection methods called for programmers to specify the

requirements or design using formal definitions that enforce non-interference (Chen, Ye,

& Ding, 2010; Disenfeld & Katz, 2012, 2013; Hannousse, Douence, & Ardourel, 2011).

Existing execution-time detection methods required programmers to define how aspects

and advices should interact explicitly within the code via precedence definitions (Lauret,

Fabre, & Waeselynck, 2011; Lauret, Waeselynck, & Fabre, 2012; Marot & Wuyts, 2009,

2010) or the implementation of monads and membranes (Figueroa, 2013; Figueroa,

Tabareau, & Tanter, 2013).

 Shaw (1989) noted that larger systems required additional levels of abstraction to

 6

simplify understanding, because large systems caused the programmer’s understanding of

the system to decrease. Thus, when developing a large aspect-oriented software system,

programmers could easily overlook formal design or precedence definitions necessary to

prevent aspect interference. Only one known study investigated aspect interference using

static analysis by using program slicing techniques on woven Java bytecode (D'Ursi,

Cavallaro, & Monga, 2007). These authors showed that static analysis had the potential to

highlight interference problems, but was unsuccessful using simplistic program slicing

techniques (D'Ursi et al., 2007). Thus, the state-of-the-art provided no solution allowing

programmers to locate potential aspect interference inside an aspect-oriented program

without first requiring additional constructs in the design or code. This study provided a

method that analyzed programs statically to allow programmers the opportunity to correct

areas of potential interference in a system before go-live and during maintenance.

Dissertation Goal

 The goal of this research was to give programmers a way to locate potential

aspect interference during the development process, without requiring special

programming or design techniques. This research investigated a clustering analysis

method for examining static AOP code to identify aspect interference candidates.

Clustering analysis emerged as a data mining technique that divided a set of predefined

objects into groups exhibiting similar characteristics (Şerban & Moldovan, 2006).

Clustering techniques have modeled software in a variety of ways, including simple

metric-based models and vector space models. Vector space models showed promise

when analyzing software because they provided more detail than clustering with simple

metrics. This study introduced vector state models and fed them into the clustering

 7

algorithm. One vector space model was based on a familiar metric—coupling on advice

execution (𝐶𝐴𝐸) (Ceccato & Tonella, 2004; Piveta et al., 2012), while the other described

two newly defined metrics designed to account for method-method, advice-method, and

advice-advice interactions. K-means clustering algorithm results revealed which vector

state model produced the best detection of interference problems. Analysis involved two

known aspect-oriented programs—AspectTetris and AJHotDraw—to determine both

feasibility and scalability. Seeding potential aspect interference into modified versions of

each application showed the technique’s ability to detect a potential threat. The research

also used a visualization technique to display the results of the clustering analyses

graphically for assessing the potential interference problems in the software.

Research Questions

 The main hypothesis of this research was that clustering analysis would provide a

way for programmers to locate potential aspect interference within an existing aspect

oriented software system. To support this hypothesis, the study investigated the following

research questions.

1. Existing OO metrics used in clustering analysis, such as fan-in value (𝐹𝐼𝑉) and

fan-out value (𝐹𝑂𝑉), were inadequate for describing aspect interference because

they denoted only method-method interactions. 𝐹𝐼𝑉 counted the number of

methods that called a method, while 𝐹𝑂𝑉 counted the number of methods that a

method called. Similarly, existing advice metrics such as coupling on advice

execution (𝐶𝐴𝐸) only accounted for module-aspect interaction (Piveta et al.,

2012). Could this study define new metrics that adequately described the potential

for interference, and account for method-method, advice-method, and advice-

 8

advice interactions?

2. Was clustering analysis able to detect potential aspect interference within an

aspect-oriented program? Could clustering locate both advices with the potential

to interfere, and the advices or methods that may be victims of interference?

3. Was clustering analysis designed to pinpoint aspect interference problems able to

scale from a smaller program to a larger program with similar results?

Relevance and Significance

 This study was relevant because it provided programmers who use AOP an

effective way to locate potential aspect interference problems in code. AOP, while not a

new paradigm, has continued to evolve as a field of research and as an accepted

programming practice. Programming language support for and education in AOP will

increase as research continues. In addition, aspect interference was previously seen as

difficult to describe, and even harder to prevent (Tian, Cooper, & Zhang, 2010; Tian,

Cooper, Zhang, et al., 2010). Processes that allowed programmers to better understand

potential problems with a system under development have been an important area of

research (Cassell, Anslow, Groves, & Andreae, 2011; De Borger, Lagaisse, & Joosen,

2009; Dietrich, Yakovlev, McCartin, Jenson, & Duchrow, 2008; Fabry, Kellens, &

Ducasse, 2011; Lanza & Marinescu, 2006; Wettel & Lanza, 2008; Yin, 2013; Yin,

Bockisch, & Aksit, 2012). Therefore, this new method for finding potential aspect

interference in an AOP system was highly relevant to AOP research.

This research was significant to the body of knowledge in four ways. First, this

study required no additions to a program’s code to detect potential aspect interference.

Previous studies have detected aspect interference at design time and execution time, but

 9

have required either formal definitions of aspects in the design (Chen et al., 2010;

Disenfeld & Katz, 2012, 2013; Hannousse et al., 2011), aspect and advice precedence

definitions in the code (Lauret et al., 2011; Lauret et al., 2012; Marot & Wuyts, 2009,

2010), or definitions of monads and membranes (Figueroa, 2013; Figueroa et al., 2013).

Only one study attempted to locate interference in woven Java bytecode by using

program slicing, but was unsuccessful (D'Ursi et al., 2007).

Second, this was the first known study to apply clustering analysis specifically to

aspect interference. Previous studies using clustering with AOP have performed aspect

mining to locate crosscutting concerns in object-oriented code (G. Czibula, Cojocar, &

Czibula, 2009; Moldovan & Şerban, 2006; Rand McFadden & Mitropoulos, 2012; Şerban

& Moldovan, 2006; Shepherd & Pollock, 2005; Tribbey & Mitropoulos, 2012). No

previous study used clustering analysis to examine aspect-oriented code for aspect

interference.

Third, this study enhanced the state-of-the-art by introducing and analyzing new

AOP metrics that gauged the potential for aspect interference. To understand both advice

and weaving interference fully, the metrics needed to describe method-method, advice-

method, and advice-advice interactions. Adding method-method interaction to advice-

method and method-method interactions helped determine the magnitude of interference

since methods with higher coupling could affect many parts of the system. Advice-

method interaction determined potential weaving interference, while advice-advice

interaction determined potential advice interference. Existing metrics accounted for only

one of these three types of interaction at a given time. For example, OO metrics 𝐹𝐼𝑉 and

𝐹𝑂𝑉 only counted method-method interactions, and 𝐶𝐴𝐸 only counted class-advice

 10

interactions. This study proposed two new metrics to describe method-method, advice-

method, and advice-advice interactions. The first, interference potential of an object (IP),

based on 𝐹𝑂𝑉, described an object’s potential to interfere with other objects by counting

the number of objects it invoked. The second, interference causality potential for an

object (ICP), based on 𝐹𝐼𝑉, showed the potential interference caused when other objects

to invoke the object. Note that an object would be either a method of a class or an advice

defined in an aspect.

Finally, to enhance understanding and aid in assessment, the results of the

clustering analysis appeared visually. While visualization was not the main goal of this

study, it helped increase understanding of design problems in software throughout the

literature. Previous studies in visualization have involved pinpointing OO design

problems (Lanza & Marinescu, 2006; Wettel & Lanza, 2008), refactoring OO design

problems (Cassell et al., 2011; Dietrich et al., 2008), and exploring AOP visualizations in

the context of a debugger (DeBorger, Lagaisse, & Joosen, 2009; Yin et al., 2012). Fabry,

Kellens, and Ducasse (2011) created an AOP visualization designed to help programmers

visualize join point interactions, but not interference. This study extended this idea to

clustering results.

Barriers and Issues

One barrier to completing this research was locating aspect-oriented programs

that tested both the feasibility and scalability of the proposed approach. Feasibility testing

required a smaller program into which potential interference could be seeded, while

scalability testing required a larger system. AOP testing research has used a variety of

programs for verifying their studies. Lauret, Waeselynck, and Fabre (2012) used a small

 11

program with three aspects that performed logging, encryption, and authentication.

Delamare and Kraft (2012) used a model-view-controller bank application implemented

in AspectJ. Other studies used small motivating examples rather than real-world systems

to illustrate AOP testing methodology (Jianjun, 2003; Pan & Song, 2012). The work of

Apel (2010), who studied 11 AspectJ programs for usage patterns, provided insight for

overcoming this barrier and selecting appropriate AOP programs—AspectTetris and

AJHotDraw.

 A second barrier to this research was determining whether the two proposed

metrics successfully described both objects that cause interference and objects impacted

by other objects. Interference potential of an object (𝐼𝑃) was based on FOV, while

interference causality potential for an object (𝐼𝐶𝑃) was based on FIV. The newly defined

𝐼𝑃 metric described interference tangling by showing how many objects the object

invoked, while the 𝐼𝐶𝑃 metric described interference scattering by showing how many

times other objects invoked the object. Because these were new metrics, their validity

was essential for completing this study.

 A third barrier was determining join point locations from the code. Correctly

determining the join point locations was crucial for correctly producing valid 𝐼𝑃 and 𝐼𝐶𝑃

metric values. Point cuts in AspectJ could map to zero or more join point locations in the

code. Determining join points in source code was difficult because point cuts used regular

expressions to describe join points. Because of this, examining Java bytecode produced

by weaving provided a standard way of seeing advice-advice, advice-method, and

method-method interaction. However, distinguishing between advices and methods in

bytecode was not straightforward. Using constructs within the Ruby programming

 12

language to separate program features helped overcome this barrier.

Limitations

 This study suffered from two limitations. First, the body of literature regarding

aspect interference focused mainly on including additional features in a design or code

base that prevented interference from occurring. Only one study showed support for

detecting aspect interference by using static code analysis, though the authors concluded

that the methodology used—simple program slicing—was not adequate for locating

interference (D'Ursi et al., 2007). Therefore, no other static analysis studies existed that

would allow for experimental comparison.

 The study was also limited by existing aspect-oriented metrics. None of the

metrics in the literature accounted for fine-grained interactions at the method-method,

method-advice, and advice-advice levels. Such metrics were required for the successful

implementation of this study. Thus, the two new metrics overcame this limitation by

providing a sum of counts representing all of these interaction levels. However, because

they were new, these metrics limited this work to comparisons with existing AOP

coupling metrics that had less granularity.

Definition of Terms

Advice A member of an aspect that defines the

code to inject before, after, or around a join

point.

Advice Interference Multiple advices that interact around a

common join point.

Aspect A programming element encapsulates code

originally scattered throughout a program

into a single location.

Aspect Interference Conflicts between aspects.

 13

Aspect Weaving The process of inserting aspect code at join

points at compile-time.

AspectJ An extension of the Java language that

allows aspect-oriented programming.

Aspect-Oriented Programming A programming paradigm that views

crosscutting concerns as code modules.

Class A structure encapsulating both variables

and procedures.

Clustering Analysis Determining relationships within a set of

data in a way that groups similar objects

together.

Code Scattering A crosscutting concern that exists in

various locations across a system.

Code Tangling The mixing of a crosscutting concerns with

other concerns in a system.

Crosscutting Concern A software feature that must coexist within

one or more modules of a software system.

Fan-In-Value An object-oriented metric for a method that

counts the number of methods invoking

that method.

Fan-Out-Value An object-oriented metric for a method that

counts the number of methods invoked by

that method.

Functional Decomposition Designing a system by breaking it into

pieces of related functionality.

Inheritance A tenet of object-oriented programming in

which child objects may use both member

data and operations defined within a parent

object.

Interference Causality Potential An aspect-oriented metric defined by this

study that counts the number of advices or

methods that invoke the given advice or

method.

 14

Interference Potential An aspect-oriented metric defined by this

study that counts the number of advices

and methods invoked by the given advice

or method.

Interference Scattering The property of an aspect-oriented program

that includes aspect interference spreading

across a system.

Interference Tangling The property of an aspect-oriented program

that includes multiple interferences that

exist on a given advice or method.

Join Point A location within source code that will

contain aspect code after weaving.

Join Point Shadow A location within source code that will

become a join point upon program

execution.

𝑘-means Partitional Clustering A clustering algorithm that partitions a data

set into 𝑘 clusters based on specific

characteristics of the data being analyzed.

Object-Oriented Programming A programming paradigm that uses classes

and objects within the design of a system.

Objects (OOP) An unique instance of a class.

(Clustering) A component that is fed into a

clustering model.

Point Cut A part of an aspect that describes the

location of join points within source code.

Precedence A programming technique within AspectJ

that allows the programmer to specify the

order of aspect code execution.

Vector Space Model A method of input to a clustering model

that includes more details that may be

hidden when using simple metrics.

Weaving Interference A type of aspect interference that originates

from the weaving of aspect code into class

code.

 15

Summary

 Since the advent of functional and object-oriented programming techniques,

design has focused primarily on system functionality instead of non-functional elements.

As a result, certain concerns needed to be distributed across and into modules of

programming systems. Aspect-oriented programming allowed practitioners the ability to

centralize these crosscutting concerns into aspects that advised a program of where and

under what circumstances to weave the concern into the code. However, because of the

control required by aspects, aspect code could interfere with the modules they interacted

with, causing unexpected changes to a program’s flow.

 Aspect interference has continued to be an area of interest to researchers. Many

researchers have attempted to prevent aspect interference by formally describing a

program’s design, or by adding detailed precedence rules to a program. While these

techniques could help, they required programmers to have a full understanding of

potential aspect interference that existed in a system under development. No research has

successfully used static programming analysis to locate aspect interference.

 Clustering analysis appeared in the literature as a static analysis technique for

finding potential ways to refactor object-oriented software. Others have used clustering

analysis to locate potential aspects within existing object-oriented code. Because of this,

this dissertation extended clustering techniques to aspect-oriented programming to find

potential aspect interference within existing programs.

 16

Chapter 2

Review of the Literature

Aspect Interference

 The literature showed several distinct research trends regarding aspect

interference: defining aspect interference, detecting interference at design time, detecting

interference at implementation time, and detecting interference at execution time.

Detection first required an unambiguous definition of aspect interference. Having a

concrete definition was considered extremely important when attempting to locate

instances of aspect interference during software design, development, and runtime.

Defining Aspect Interference

Douence, Fradet, and Südholt (2002) provided one of the earliest studies on

aspect interference, which they termed aspect interaction. The authors defined aspect

interaction as conflicts between non-orthogonal aspects (Douence et al., 2002, p. 173).

Although programmers were responsible for finding and correcting aspect interactions,

they previously had no support for accomplishing these important tasks. Douence et al.

(2002) therefore suggested a three-phase implementation model for developing AOP

systems: independent component development, conflict analysis using automated testing,

and conflict resolution to address interactions found in the previous phase. To

accommodate these phases, the authors provided a language-independent model that

included a formal language and definition set. This model included the definitions of two

 17

new concepts: strong independence (aspects remain independent when woven into any

program), and independence with respect to a program (aspects depend on join points

within a specific program). The authors used these formal definitions to provide analysis,

concluding that the resulting commands for conflict resolution would be useful in

practice. However, the authors only began an implementation of the framework in

AspectJ rather than fully developing a solution. (Douence et al., 2002)

 Tian, Cooper, Zhang, and Liu (2010) readdressed the understanding of aspect

interference, because they believed that the definition remained weak. They contended

that existing definitions missed an advice’s cumulative effect on a program and did not

account for advices interfering at common join points. Additionally, the authors stated

that the definition of advice interference overlapped with weaving interference. The

authors presented a semi-formal definition of aspect interference using three specific

terms—introduction interference, weaving interference, and advice interference.

Introduction interference occurred when one aspect added or deleted code locations

addressed by other aspects. Weaving interference occurred between aspects or between

an aspect and the base program, resulting in violations of the system structure. Advice

interference referred to advices that interacted around a shared location in class code. The

authors concluded that these definitions improved the understanding, reasoning, and

recognition of aspect interference. In addition, the authors more clearly separated the

definitions of advice and weaving interference. (Tian, Cooper, Zhang, et al., 2010)

 Tian, Cooper, and Zhang (2010) took a broader approach by defining a taxonomy

of seven types of aspect weaving problems (AWPs). These included fragile contextual

assumptions, fragile control flow assumptions, fragile structural assumptions, contextual

 18

interference, control flow interference, structural interference, and introduction

interference. Of the seven types, the study classified only contextual interference, control

flow interference, and structural interference as forms of aspect interference. Based on

these definitions, the authors developed a complex static framework that could describe a

system and detect the AWPs identified. They concluded that this taxonomy was a basis

for extension in future research, and would prove useful for practitioners if used in tools

such as FDAF (an AOP support and design analysis tool). (Tian, Cooper, & Zhang, 2010)

 Bernardi and Di Lucca (2010) created a metric model for aspect coupling which

defined three different types of aspect interactions. First, aspect coupling occurred when

an aspect alters the static structure of a module (CSS). This would include adding

constraints, adding members, forcing the implementation of an interface, or by altering

inheritance relationships. Second, aspect coupling occurred when an aspect alters the

control flow of a program (CCF), accomplished by adding, replacing, or conditionally

replacing code. Finally, aspect coupling occurred when an aspect alters the state of

another object (COS), whether changing state values or not, or simply observing them.

The authors applied their model to AJHotDraw as a feasibility case study, showing it

identified coupling and interaction without evaluating the models’ effectiveness. The case

study revealed a much higher CSS than either CCF or COS combined, but these results

may not be typical for all systems. (Bernardi & Di Lucca, 2010)

 The current study explored advice interference and weaving interference as

defined by Tian, Cooper, Zhang, et al. (2010). Advice interference occurred between two

competing aspect advices, while weaving interference occurred between the class code

and the advice. Introduction interference, while possible in any AOP system, would only

 19

occur if certain language-specific constructs exist in the source-code (e.g., the declare

operation in AspectJ). Introduction interference related closely to structural interference,

defined in the AWP taxonomy by Tian, Cooper, and Zhang (2010), and the CSS portion

of the metric model by Bernardi and Di Lucca (2010). Advice and weaving interference

fit into the AWP taxonomy’s contextual and control flow interference (Tian, Cooper, &

Zhang, 2010) and the metric model’s CCF (Bernardi & Di Lucca, 2010). Contextual

changes may have caused advice interference, while weaving interference may have

caused control flow changes. Certain AOP metrics mapped directly to Tian, Cooper, and

Zhang’s (2010) AWP taxonomy, such as the coupling on advice execution (𝐶𝐴𝐸) metric.

The 𝐶𝐴𝐸 metric measured the number of aspects advising a module (aspect and weaving

interference), aspects declaring constructions on a module, and aspects defining inter-

type declarations for a method (Ceccato & Tonella, 2004; Piveta et al., 2012). Given that

advice and weaving interference depended on interactions between aspects advices and

class methods, an analysis of a program’s woven bytecode was performed in this work to

reveal areas with a high potential for interference problems.

Detecting Interference at Design Time

The ultimate goal of properly defining aspect interference was its detection and

elimination. One approach to detecting aspect interference in the literature was

identifying the interference early in the software development life cycle. Chen, Ye, and

Ding (2010) used formal induction methods to analyze and detect aspect interference

problems at design-time. Basing their formal notation on the designs in Unifying Theories

of Programming (Hoare, 1998), the authors described how to detect both weaving and

advice interference. Using this approach, the authors showed formal definitions of the

 20

design allowed for reasoning that both detected and solved interference in AOP systems,

aside from behavior or model based techniques. Therefore, the authors concluded that

this method would easily integrate into the AOP design process by adding annotations to

design documents with function and advice definitions. (Chen et al., 2010)

Disenfeld and Katz (2012) extended formal aspect specifications by adding

assumptions and guarantees to each aspect definition. When designated properly, the

authors claimed that these additional specifications would allow proof of non-

interference. The authors used the concept of joint weaving, which caused the weaving of

all aspects at the same time without restrictions. For non-interference to hold, every pair

of aspects would need to meet two rules. First, when weaving an aspect A into a system,

the result of weaving needed to preserve the assumption of another aspect B. Second,

when weaving an aspect B into a system, the result of the weaving needed to preserve the

guarantee of the other aspect A. Using these definitions, the authors introduced and

proved the soundness of a formal verification technique that guaranteed non-interference.

The authors concluded that this approach would uncover aspect interference,

dependencies, and cooperation that could exist in a system under development and would

improve the quality of the system early in the process. (Disenfeld & Katz, 2012)

Disenfeld and Katz (2013) extended their previous work to include event and

aspect verification. Using the same assumption and guarantee definitions on aspects as

Disenfeld and Katz (2012), the authors noted that the verification of aspects alone was

not enough to ensure non-interference. Disenfeld and Katz (2013) extended the definition

of non-interference by including three conditions that must hold. First, verification of an

aspect A assumed that every other aspect satisfied the aspects internal assumptions.

 21

Second, an aspect A preserved both the assumption and guarantee of every other aspect.

Third, any aspect activated within aspect A satisfied the aspect’s internal assumptions.

The authors defined two verification algorithms designed to assist with these definitions.

The first automatically identified a weak assumption of an aspect with respect to events,

while the second helped to find abstractions that would aid in stating event specifications.

Both algorithms provided a means for verifying aspects, but also became part of an

iterative process called CEGAR—counterexample guided abstraction refinement. The

authors showed that this process was useful for finding aspect interference for both

aspects within aspects as well as across pairs of aspects. (Disenfeld & Katz, 2013)

Other studies have employed a formal language definition of a system’s static

structure to analyze and detect interference. Hannousse, Douence, and Ardourel (2011)

reviewed the definition and detection of aspect interference in component-based software

engineering. The authors used an architectural description language (ADL) to describe

the properties of both components and aspects in a component diagram. From this, the

authors presented rules that converted ADL statements to networks of automata, and

input these automata into a system called UPPAAL. UPPAAL provided a simulator that

would allow programmers to examine system behaviors in depth. The authors used a

motivating example that defined the component-based architecture of an airport wireless

access system. Using this example, the authors showed that system designers could detect

interference by analyzing the ADL description of a system with formal descriptions of

system properties that must hold. The research concluded that programmers could use

this technique to show that two aspects do not interfere if the base system was well

defined and the weaving was correct with regard to the base system. However, to correct

 22

a detected interference, the authors noted that developers would need to add some type of

composition operator between interacting aspects. (Hannousse et al., 2011)

Design-time interference detection techniques attempted to guarantee that

interference did not exist in the AOP system under development. Existing design-time

techniques required formal definition by a developer (Chen et al., 2010; Disenfeld &

Katz, 2012, 2013; Hannousse et al., 2011). Chen et al. (2010) and Disenfeld and Katz

(2012, 2013) required annotations of design documents with formal aspect definitions.

Hannousse et al. (2011) required the formal definition of the entire system, including the

properties it should possess. Although these techniques detected advice and weaving

interference early in the development, they added a layer of complexity that could

introduce other unintentional problems. Such techniques would only be as good as the

formal definitions specified by the designers. Therefore, designers and programmers

needed either a development tool that made defining these specifications an easy process,

or a technique that required no formal specifications to detect potential interference. This

dissertation introduced a detection technique that required no formal specifications

beyond the code itself. As stated by Hannousse et al. (2011), however, preventing the

interference would need additional programming constructs to ensure appropriate

behavior.

Detecting Interference at Implementation Time

 While design-time techniques provided ways of annotating design documents to

ensure non-interference, they did not account for decisions made by the programmer

during the implementation. Even the smallest programming decisions could introduce

interference into a system. Because of this, some research attempted to detect aspect

 23

interference during the implementation phase of development. D’Ursi, Cavallaro, and

Monga (2007) developed XCutter, a system that analyzed slices of woven bytecode.

Program slicing was an existing method that defined sets of instructions that influenced

some specified criteria. Object-oriented slicing techniques were not adequate for D’Ursi,

Cavallaro, and Monga (2007) because slicing did not account for aspect weaving.

Therefore, the authors suggested a four-step process for AOP slicing analysis. First, the

process compiled and wove Java and AspectJ source code into bytecode using an AspectJ

compiler. Next, the process applied preliminary analyses and existing slicing algorithms

to the bytecode. The process then obtained a slice using these analyses. Finally, the

bytecode in the slice mapped back to the original source code. The authors used the

XCutter tool to study aspect interference within a motivating example. They noted that

static analysis of the bytecode could pinpoint some of the problems associated with

woven code. However, the authors also noted that simple slicing was not sufficient for

finding potential interference because weaving always resulted in overlapping slices. In

addition, slicing showed problems involving scope precision in the code that would

require a slicer to track copies of each method to avoid false or repeated dependencies.

Therefore, the authors rejected slicing as a technique for locating aspect interference.

(D'Ursi et al., 2007)

 Providing both design and implementation-time interference detection would

offer a comprehensive solution. The implementation-time technique of D’Ursi et al.

(2007) showed that static bytecode analysis was a viable option for detecting

interference, but another analysis method was necessary because of the inadequacies

found by using program slicing. Therefore, the current research proposed an

 24

implementation-time technique that statically analyzed woven bytecode using clustering

analysis. Clustering analysis did not allow overlapping groups. In addition, using vector

state models in the clustering algorithm provided a more comprehensive view of the data

than simple slicing, and produced favorable results.

Detecting Interference at Execution Time

Following the development phase of an AOP system, interference could still

occur in the released product. Therefore, other researchers attempted to both detect and

prevent interference when the code executed. Marot and Wuyts (2009) studied the

problem of runtime interferences between advices. The authors noted that the existing

solution of adding aspect precedence annotations in the code required global awareness

of the precedence—breaking the separation of concerns by introducing dependencies that

should not exist. Marot and Wuyts (2009) introduced an annotation language called

compositional intentions to avoid using aspect precedence declarations and the problem

of global aspect awareness. The language explicitly described both advice behavior and

intention type. Advice behavior descriptions included a logically composed list of actions

that an advice could perform, while intention types described the ways in which advice

behavior should occur. If a violation of the compositional intention occurred at runtime,

the system would produce an exception with a detailed explanation of the interference.

The authors provided a small example that included no empirical results, but indicated

future work would involve an implementation of compositional intentions using dynamic

aspect scheduling. (Marot & Wuyts, 2009)

Marot and Wuyts (2010) extended their previous work (Marot & Wuyts, 2009) by

exploring the problem of invasive aspect composition caused by aspect precedence

 25

definitions using motivating examples. The authors showed that adding new aspects to an

AOP system could require both pointcut and advice modifications to manage possible

interactions, breaking the concept of aspect independence. As a result, the authors

investigated the possibility of using aspects that compose other aspects to allow both

foreign aspect modifications as well as precedence management. Marot and Wuyts

(2010) proposed OARTA, an extention of AspectJ that added advice naming, advice

patterns, foreign pointcut modification, user-defined instantiation policies, and altered

AspectJ’s declare precedence and adviceexecution constructs. The authors used

the new OARTA language to revisit the motivating example, showing the required code

alterations. (Marot & Wuyts, 2010)

Lauret, Fabre, and Waeselynck (2011) studied detection of both data- and control-

flow interference at execution time. They described data flow interferences that included

Change Before (CB) interference, when an aspect would access a base-code variable that

an interfering aspect updated, and Change After (CA) interference, occurring when an

aspect would access a base-code variable that competing aspects would later update.

Control-flow interferences included Invalidation Before (IB) interference, occurring

when a previous aspect has altered the join point so the competing aspect could not

execute, and Invalidation After (IA) interference, occurring when an aspect would alter a

join point that a competing aspect previously executed. The authors noted that any real-

time detection scheme would need to watch six observation points along the execution

path. However, they concluded that the most common language used for AOP—

AspectJ—only provided for observation at three of these points. Groovy, on the other

hand, provided for all six observation points. (Lauret et al., 2011)

 26

To overcome the observation point problem in AspectJ, Lauret, Waeselnyck, and

Fabre (2012) stated that the language must allow the definition of precedence at the

advice level. To accomplish this, the authors used AIRIA, a system characterized by

advices that compose other advices based on specific definitions of when and in what

order the advices could execute. AIRIA was similar to OARTA, the language extensions

developed by Marot and Wuyts (2010). AIRIA provided a layer atop AspectJ that

allowed the authors to see all six observation points defined by Lauret et al. (2011). Thus,

the system developed by Lauret et al. (2012) could use the defined advice precedence to

determine interference problems at execution time and prevent them through assertions.

The authors showed the feasibility of this solution with several examples, and concluded

that the technique could detect both data- and control-flow interference problems at

execution time. (Lauret et al., 2012)

 Taking a different approach to execution-time detection, Figueroa (2013) and

Figueroa, Tabareau, and Tanter (2013) described how to control aspect interference using

monads and membranes in the Haskell programming language. Monads would allow

programmers to chain structures together on a stack, while membranes would produce

join points that only registered aspects could access. Figueroa, et al. (2013) defined ways

to control aspect code interaction using control flow advice and non-interference advice

on the monadic stack. Using membranes, the authors enforced non-interference in both

control flow and data flow using the language’s type system rather than relying on

external analysis tools. The authors concluded that this system was a straightforward

method to specifying and enforcing allowed interactions between aspects, and between

aspects and system components. (Figueroa, 2013; Figueroa et al., 2013)

 27

 Execution-time techniques attempted to stop interference detected while the

program ran. Marot and Wuyts (2009, 2010) noted that aspect precedence definitions

challenged some of the fundamental intentions of aspect-oriented programming, and

produced a system that combatted these issues. Lauret et al. (2011) showed that AspectJ

was limited because it did not allow a run-time detection system to observe all of the

locations along the execution path required to ensure non-interference. To overcome this

problem, Lauret et al. (2012) provided a way to define precedence within the code at the

advice level and use assertions to ensure non-interference in an executing program.

Similarly, Figueroa (2013) and Figueroa et al. (2013) relied on Haskell’s type system

assertions to ensure non-interference. These techniques ensured that the program flow

was interrupted when an assertion failed due to detected interference. Unfortunately, each

of these techniques required very specific programming methodologies that would prove

difficult for practitioners that lacked a good understanding of the entire system. While

this dissertation did not require specific programming techniques for interference

detection, it defined a way to help programmers find areas within the code that required

interference prevention techniques.

Analysis

The goal of aspect interference detection has been to prevent bad effects within a

system. As the definition of aspect interference became more refined, detection

techniques opposed each other. Design-time techniques worked to ensure that an AOP

system had no interference problems. Even with an interference-free design,

programmers could introduce interference at implementation time. Implementation-time

techniques located aspect interference introduced during the programming phase.

 28

Execution-time techniques attempted to guarantee that a program ran without interference

problems. Unfortunately, ensuring that a program was free of interference often required

a program designer to use specific techniques that involved a full understanding of the

program under development. To gain such understanding of a system, programmers

needed assistance in finding potential advice and weaving interference in a program

during the implementation phase. Thus, this dissertation’s implementation-time

interference detection technique gave a new way for the programmer to identify locations

that required more specialized handling.

Aspect-Oriented Metrics

The Emergence of AOP Coupling Metrics

The use of metrics during software development allowed programmers to assess a

product before completing the implementation. While some aspect-oriented metrics grew

from object-oriented metrics, new aspect-oriented metrics emerged to describe the

characteristics of AOP systems. One of the most striking features of AOP was the

coupling it introduced between aspects and class code. Because this coupling could cause

interference, well-defined aspect coupling metrics became essential for locating

interference within a program. The evolution of AOP metrics showed a systematic

refinement of aspect coupling metrics over time, beginning with a study of coupling from

aspects to classes and later developing metrics that described other types of aspect

coupling.

Zhao (2004) provided one of the earliest studies of aspect-oriented coupling

metrics. To understand the types of metrics required, the author began by analyzing the

types of coupling that existed within an AOP system. Zhao (2004) formally described

 29

Table 1. Aspect Coupling Metric Development Introduced by Zhao (2004)

Dependency Sub-Dependency Metric Description

Attribute-Class Attribute-Class Attribute-Class The number of dependencies between attributes

of aspect a and some set of classes C.

Module-Class Advice-Class Advice-Class The number of dependencies between advices of

aspect a and some set of classes C.

 Intertype-Class Intertype-Class The number of dependencies between intertype

declarations of aspect a and some set of classes C.

 Method-Class Method-Class The number of dependencies between methods of

aspect a and some set of classes C.

 Pointcut-Class Pointcut-Class The number of dependencies between pointcuts

of aspect a and some set of classes C.

Module-Method Advice-Method Advice-Method The number of dependencies between advices of

aspect a and methods of the set of classes C.

 Intertype-Method Intertype-Method The number of dependencies between intertype

declarations of aspect a and methods in some set

of classes C.

 Method-Method Method-Method The number of dependencies between methods of

aspect a and methods in some set of classes C.

 Pointcut-Method Pointcut-Method The number of dependencies between pointcuts

of aspect a and methods in some set of classes C.

Aspect-Inheritance Aspect-Inheritance Aspect-Inheritance The number of dependencies between aspect a

and all ancestors of aspect a.

attribute-class dependence, module-class dependence, module-method dependence, and

aspect-inheritance dependence. From these couplings, Zhao (2004) developed and

formally described ten measurements to assess each dependency. Table 1 details these

measurements. Zhao (2004) noted that the coupling studied was from aspects and their

components to classes and their components. This only described the fan-out from aspect

perspective and failed to acknowledge the fan-in from the class code perspective. The

study also failed to address aspect-aspect coupling. The author presented no empirical

analysis of the suggested metric framework. (Zhao, 2004)

Ceccato and Tonella (2004) provided another early set of coupling metrics for

aspect-oriented programming. This study updated several classic OO metrics for use in

AOP, including Weighted Operations in Module (WOM), Depth of the Inheritance Tree

(DIT), Number of Children (NOC), Response for a Module (RFM), and Lack of

Cohesion in Operations (LCO) (Chidamber & Kemerer, 1994). In addition, the authors

identified new metrics specific to AOP, including Coupling on Advice Execution (CAE),

 30

Coupling on Intercepted Modules (CIM), Coupling on Method Call (CMC), Coupling on

Field Access (CFA), and Crosscutting Degree of an Aspect (CDA). Table 2 defines each

of these metrics. CMC and CFA were extensions of the OOP Coupling Between Methods

(CBM) metric (Chidamber & Kemerer, 1994). CAE, CIM, CMC, CFA, RFM, and CDA

provided a picture of coupling at various granularities. The authors noted that CIM, CMC

and CAE correspond to pointcut-class, pointcut-method, and method-method

dependencies described by Zhao (2004), but CDA did not map to any of Zhao’s (2004)

dependency measures. (Ceccato & Tonella, 2004)

Table 2. Aspect-Oriented Metrics Introduced by Ceccato and Tonella (2004)

Weighted Operations in Module (WOM)

The number of advices or methods in a given aspect or class.

Depth of the Inheritance Tree (DIT) The length of the longest path from a given aspect or class to the root.

Number of Children (NOC) The number of immediate sub-classes or sub-aspects of a given aspect

or class.

Response for a Module (RFM) The number of methods or advices potentially executed in response to

a given class or aspect.

Lack of Cohesion in Operations (LCO) Pairs of advices or methods that work on different class fields minus

pairs of advices or methods that work on common fields.

Coupling on Advice Execution (CAE) The number of aspects that contain advices triggered by the advices or

methods of a given class or aspect.

Coupling on Intercepted Modules (CIM) The number of classes, aspects, or interfaces named in pointcuts that

belong to a given aspect.

Coupling on Method Call (CMC) The number of classes, aspects, or interfaces declaring methods

potentially called by a class or aspect.

Coupling on Field Access (CFA) The number of classes, aspects, or interfaces with fields that are

accessed by a given class or aspect.

Crosscutting Degree of an Aspect (CDA) The number of classes or aspects affected by the pointcuts and by the

introductions in a given aspect.

Ceccato and Tonella (2004) developed a metrics tool that analyzed an AOP

program through a process of reverse-engineering intertype declarations, method calls

and field accesses, and pointcuts. The authors suggested what high or low readings for

each metric indicated, but did not show empirical results. Instead, the authors simply

applied their metric tool to Java and AspectJ implementations of the Observer design

pattern and showed the resulting metric values. (Ceccato & Tonella, 2004)

 Kumar, Kumar, and Grover (2009) extended the work of Ceccato and Tonnella

 31

(2004), Zhao (2004), and others by introducing a new coupling metrics framework for

AOP. Their research specified 17 types of connections that exist in an AOP system

between attributes, operations, or components. From these 17 connection types, the

authors developed six new metrics, described in Table 3: Coupling on Attribute Type

(CoAT), Coupling on Parameter Type (CoPT), Coupling on Attribute Reference (CoAR),

Coupling on Object Invocation (CoOI), Coupling on Inheritance (CoI), and Coupling on

High-Level Association (CoHA). The authors acknowledged that these metrics were

simply a framework, and lacked empirical evaluation. No other studies appear to either

verify or utilize these metrics. (Kumar et al., 2009)

Table 3. Aspect Coupling Metrics Introduced by Kumar et al. (2009)

Coupling on Attribute Type

(CoAT)

The total number of attributes of a component that interact with another

component.

Coupling on Parameter Type

(CoPT)

The total number of operations from one component coupled to another

through parameter types, local variables, and return types.

Coupling on Attribute Reference

(CoAR)

The number of operations from one component that references an attribute

of another component either statically, by inheritance, or dynamically.

Coupling on Object Invocation

(CoOI)

The number of operations from one component that invokes an operation of

another component explicitly or implicitly.

Coupling on Inheritance (CoI) The number of ancestors of a given component.

Coupling on High-Level

Association (CoHA)

The number of high-level relationships between components (e.g., “uses”

or “consists”).

Empirical Studies of AOP Metrics

 Burrows et al. (2010) noted the lack of empirical analysis of AOP metrics in the

literature for determining potential faults in a system. The authors analyzed the AOP

metrics discussed by Ceccato and Tonella (2004), while adding a new metric called Base-

Aspect Coupling (BAC) to account for coupling between the base and aspect code.

Burrows et al. (2010) conducted experimental evaluation on iBATIS, an object-relational

mapping tool, using four releases with known faults. For analysis, the authors applied

Spearman’s Rank correlation coefficients using the number of known faults and the fault

density. The authors identified three groupings: Group A (quantification metrics), which

 32

included CDA and BAC, Group B (fine-grained metrics), which included CMC, CFA,

CBM, and WOM, and Group C (coupling granularity and CAE), which included LCO,

RFM, CAE, DIT, and NOC. Results showed that Group A was the most significant for

detecting faults, with fault-count coefficients of 0.30562110 (𝑝 = 0.00000017) for CDA

and 0.26968580 (𝑝 = 0.04646000) for BAC and fault density coefficients of

0.26918280 (𝑝 = 0.04689000) for CDA and 0.26854670 (𝑝 = 0.04743000) for BAC.

Group B also showed significant results in CMC, CFA, and CBM, though the finer-

grained CMC and CFA metrics showed stronger fault-detection capabilities than the

more coarsely grained CBM metric. Group C metrics did not show significant results.

When comparing CAE and BAC, the authors noted that both metrics associate base

classes with aspect code, but CAE did not show significant results due to the metrics’

differing dimensions. These results suggested that classic AOP metrics might require

adjustments to make them more effective for finding potential faults in a system.

(Burrows et al., 2010)

Piveta et al. (2012) studied AOP metrics LOCC, WOM, DIT, NOC, CDA, and

CAE more rigorously than previous research. They first created formal definitions of

each metric, and then applied them to ten different AOP projects. The authors defined six

properties for evaluating each metric: non-coarseness, non-uniqueness, having important

design details, monotonicity, non-equivalence of interaction, and interaction increases

complexity. Non-coarseness described a metric’s ability to have different values for

different modules. Non-uniqueness was the property that the metric could be the same for

two different modules. Having different design details meant that a metric could have

different values for different designs. Monotonicity was the property that the value of the

 33

metric for composed objects was never less than the value for their individual

components. Non-equivalence of interaction meant that the composition of two modules

A and B could result in a different metric value than the composition of modules A and

C. Interaction increases complexity meant that the metric value could increase when

composing two modules. (Piveta et al., 2012)

Piveta et al. (2012) showed that LOCC and WOM met all six properties. DIT and

NOC failed to satisfy the interaction increases complexity property, and only satisfied the

monotonicity property under certain conditions. CDA and CAE satisfied all except the

interaction increases complexity property. The authors stated that high values for LOCC

indicated high complexity in the module, while low values indicated potentially

unnecessary modules. High values of WOM pinpointed unnecessary class couplings and

potential for aspect refactoring, while low values of WOM indicated the need to combine

or remove smaller classes or aspects. High DIT showed the possibility of removing

unnecessary levels of inheritance, while low DIT values were normal, except when a

complex class could benefit from inheritance. High NOC values showed that a class or

aspect was highly reused within an inheritance structure, while low NOC was normal.

High CDA values showed that an aspect was widely utilized within the class code, while

low CDA could indicate that the aspect in not needed. High CAE values could indicate

the possibility of aspect interaction, while low CAE values were common. Correlation

analysis indicated that a strong correlation existed between LOCC and WOM (𝑟2 =

0.76) and a smaller correlation between LOCC and CDA (𝑟2 = 0.26) and WOM and

CDA (𝑟2 = 0.16). This indicated that an aspect’s size related to its crosscutting

performance. The authors concluded that each of these metrics was useful for finding

 34

specific issues, and the correlations indicated provided meaningful information about a

program. (Piveta et al., 2012)

Analysis

 AOP metrics grew largely from the fact that coupling was inherent to the aspect-

oriented paradigm. Although Zhao (2004) provided the earliest introduction of aspect

coupling measurements, metrics introduced by Ceccato and Tonnella (2004), including

the adapted OO metrics of Chidamber and Kemerer (1994), have been studied and used

throughout the literature (Burrows et al., 2010; Kumar et al., 2009; Piveta et al., 2012).

The empirical results of Burrows et al. (2010) showed a clear advantage for

quantification metrics, but also noted an advantage for fine-grained metrics CMC, CFA,

and CBM. These results indicated a stronger result for CMC and CFA, which were finer-

grained versions of CBM. Studies involving clustering analysis (mentioned in the next

section) have used fine-grained metrics to analyze method interactivity. Because the goal

of this study was to find potential advice and weaving interference, it required a fine-

grained metric to describe coupling at the advice and method granularity. The most

granular aspect coupling metrics described in the literature addressed coupling between

advices or methods as related to aspects or classes. Although Zhao (2004) described

method-method dependencies, the dependencies were enumerated from an aspect’s

method to a class’s method. This study required metrics that enumerated the relationships

among aspects and classes at the advice-method, advice-advice, and method-method

granularities. Therefore, this study introduced two new coupling metrics to account for

each of these couplings: interference potential (𝐼𝑃) and interference coupling potential

(𝐼𝐶𝑃). Supporting the results of Burrows et al. (2010), these new fine-grained metrics

 35

provided satisfactory outcomes when used in clustering analysis.

Clustering Analysis

Based on existing aspect interference research, programmers needed to either

design a system based on specific formal definitions, or manually locate potential aspect

interference and refactor the system to eliminate the interference. However, manually

locating potential aspect interference required programmers to understand how all aspects

interacted with each other and with the base program during the development process—a

task that became increasingly complex as system size increased. Some research attempted

to increase understanding of a system to locate areas of a program that were candidates

for refactoring. One method used in software development for finding refactoring

potential was clustering analysis, which looked for specific trends within source code.

Clustering in OOP

I. G. Czibula and Şerban (2006) used k-means clustering to help identify ways to

refactor existing OO code. The clustering process began by analyzing the code to

determine relevant components and their existing relationships. Next, the process re-

grouped components using a k-means clustering algorithm named kRED (k-means for

Refactorings Determination). This algorithm set the initial number of clusters to the

number of classes in the system. Then, it chose the classes themselves as the initial

centroids. Next, the algorithm repeatedly calculated distances so that each object was a

member of the closest cluster, and stopped when two iterations remained unchanged or

when the number of steps exceeded the maximum iterations. The algorithm produced an

improved system structure. Finally, the authors compared the newly created system

structure to the original structure to determine refactorings. The authors implemented the

 36

detection of move method, move attribute, and inline class refactorings, but noted that the

algorithm could accommodate other types of refactoring as well. I. G. Czibula and Şerban

(2006) used JHotDraw for experimental evaluation, and defined two new metrics:

accuracy of a refactoring technique (𝐴𝐶𝐶) and precision of a refactoring technique

(𝑃𝑅𝐸𝐶). When applied to JHotDraw, the clustering method showed an 𝐴𝐶𝐶 value of

0.9829 and a 𝑃𝑅𝐸𝐶 value of 0.9956. The algorithm found six misplaced methods within

the source code. When compared to a previous method, this algorithm obtained a higher

precision, but the authors could not determine an accuracy comparison. (I. G. Czibula &

Şerban, 2006)

Hussain and Rahman (2013) used a hierarchical agglomerative clustering

technique to support software restructuring. The authors’ approach first analyzed a

function to determine an entity-attribute matrix. Entities in the model were functional

lines of code, while attributes came from elements that an entity used. Next, the

algorithm calculated the similarity or dissimilarity between entities, and then performed

clustering using a new hierarchical technique named (k,w)-Core Clustering ((k,w)-CC).

The authors defined (k,w)-CC by relying on graph theory to translate the similarity matrix

into graphical clusters. The algorithm first decomposed the system into (k,w)-cores,

where w is the edge weight. Next, (k,w)-CC selected cores based on the new metric called

relatedness, and finally generated the clustering tree. Experimental evaluation compared

the restructuring of systems using the SLINK, CLINK, WPGMA, A-KNN, and (k,w)-CC

algorithms. Results showed that (k,w)-CC produced smaller numbers of cut-points and

bad clusters than the other methods by discarding both redundant and inferior-quality

results. This indicated that (k,w)-CC produced larger clusters by looking at structural

 37

properties other than cluster/entity similarity. (Hussain & Rahman, 2013)

Other authors have used clustering analysis to verify software design principles.

Yu and Ramaswamy (2007) noted the hierarchical nature of software systems and applied

hierarchical clustering techniques to determine the level of modularity, hierarchy, and

interaction locality in an OO design. The authors defined interaction frequency as the

degree of interactivity between two system components. They represented this idea in an

𝑛 × 𝑛 interaction matrix in which the intersection of two components listed the

interaction frequency between them. The clustering algorithm began by adding each

component in the design to its own cluster and then merging pairs of clusters with the

highest interaction frequency. Finally, the algorithm found the interaction frequency

between the new cluster and the old clusters. The authors used KWIC (Key Word In

Context) as an experimental case study. Results were limited with this case study because

the only interaction frequency used was parameter coupling. The authors recognized that

this limited the production of the interaction matrix, and ignored interactions that were

more complex. (Yu & Ramaswamy, 2007)

 Yu and Ramaswamy (2009) extended their work by adding the adapted concepts

of spatial and temporal distance using hierarchical clusters of software components.

Spatial distance represented the distance between two components in the hierarchical

cluster, while temporal distance represented component relationships based on revision

histories. The authors mapped spatial distance and temporal distance into two 𝑛 × 𝑛

matrices and used the Mantel test (Mantel, 1967) to correlate the two. Yu and

Ramaswamy (2009) evaluated their method using six open-source Apache projects: Ant,

DB, HTTP, Lenya, Tomcat, and XML. Following the analysis, the authors concluded that

 38

the spatial distance metric was proportional to complexity, while the temporal distance

metric related to the logical dependencies between code components. The authors used

the correlation between these metrics to represent the software’s overall quality, but

acknowledged that the approach ignored several factors—including the modularity type

and the architecture. In addition, the authors noted that the p-values computed by the

Mantel tests seemed an inconclusive means of determining dependency locality, but

stated that Lenya (𝑝 = 0.2) likely had the poorest dependency locality of the six systems

evaluated. (Yu & Ramaswamy, 2009)

 Source code analysis was highly relevant to this dissertation. Finding areas that

exhibited aspect interference was quite similar to locating refactoring potential.

Determining refactoring potential (I. G. Czibula & Şerban, 2006; Hussain & Rahman,

2013) in an AOP program required analysis of component interaction within the source

code, similar to software verification techniques in the literature (Yu & Ramaswamy,

2007, 2009). Adapting clustering techniques to AOP has provided a way to pinpoint

potential advice and weaving interference within an AOP program.

Clustering in AOP

No known studies have used clustering to locate potential aspect interference in

existing code. However, clustering research in AOP has focused on finding crosscutting

concerns within existing class code—a technique called aspect mining. Shepherd and

Pollock (2005) provided one of the earliest studies in aspect mining. The proof-of-

concept study used hierarchical agglomerative clustering to locate potential crosscutting

concerns. The clustering model defined one cluster per method, and recursively grouped

clusters until their distance was less than a predefined threshold. To determine the

 39

distance between two methods, Shepherd and Pollock (2005) used a simple function

based on the lengths of method names. This clustering also presented a basic hierarchical

visualization of each cluster, as the authors stored clusters as trees. The authors validated

their approach using JHotDraw as a case study. Through this study, the authors observed

and explained three distinct categories of crosscutting concerns: those whose interfaces

were consistently implemented, those whose interfaces were inconsistently implemented,

and those with no explicit interface. Shepherd and Pollock (2005) contended that this

method would allow programmers to determine clusters with crosscutting concerns

versus simple code duplication. Their stated advantages suggested that the approach was

extensible because the distance function was easily changeable, was powerful but

required no extra computation, and was a first step toward combining mining and

viewing research. (Shepherd & Pollock, 2005)

Moldovan and Şerban (2006) were the first to use vector-space models in aspect

mining, allowing a more detailed model than a simple metric could provide. The authors

used two vector space models: ℳ1 used vectors for each method defined by {𝐹𝐼𝑉, 𝐶𝐶},

where 𝐹𝐼𝑉 was the fan-in-value and 𝐶𝐶 was the calling classes, and ℳ2 used vectors

defined by {𝐹𝐼𝑉, 𝐵1, 𝐵2, … , 𝐵𝑙−1}, where 𝐹𝐼𝑉 was the fan-in-value and the value of

𝐵𝑘 (1 ≤ 𝑘 ≤ 𝑙 − 1) was 1 if the method was called from the corresponding class, or 0

otherwise. The authors used Euclidean distance between vectors to determine distance,

and the reciprocal of the Euclidean distance to determine similarity. The authors

accomplished clustering through adaptations of the k-means and hierarchical

agglomerative clustering algorithms. Evaluating the approach, the authors applied the

algorithms to Theatre, the Laffra implementation of the Dijkstra algorithm, and

 40

JHotDraw. The hierarchical agglomerative clustering algorithm and the k-means

clustering algorithm both showed similar clustering results in the experimentation. The

cases studied revealed that the first two clusters contained nearly the same methods

regardless of the clustering algorithm, and that these methods implemented crosscutting

concerns. (Moldovan & Şerban, 2006)

To extend these results, Şerban and Moldovan (2006) presented a novel k-means

clustering algorithm for aspect mining named kAM. This algorithm used a heuristic

method to determine the number of clusters and the initial centroids. To calculate

centroids, the algorithm chose the most distant method as the first centroid. Next, it

repeatedly found the minimum distance (dmin) from each remaining method and the

initial centroid. The next centroid chosen had the maximum dmin value. After finding the

initial k centroids, the algorithm behaved like the classical k-means algorithm. This study

used the same two vector models as Moldovan and Şerban (2006). The authors proposed

four metrics to evaluate the results: intra-cluster distance in a partition, inter-cluster

distance in a partition, precision of a clustering based aspect mining technique, and

percentage of analyzed methods for a partition. Experimental evaluation applied kAM to

the Laffra implementation of the Dijkstra algorithm and to JHotDraw. Results were

mixed because the clustering algorithm favored both vector space models in different

experiments. This led the authors to conclude that improvements in vector space models

would be required. (Şerban & Moldovan, 2006)

 Tribbey and Mitropoulos (2012) noted that vector spaces often used aggregated

values such as 𝐹𝐼𝑉 as components. To improve such vector space models, the authors

introduced a matrix-based vector model (𝑀𝐹𝐼𝑉) organized into an 𝑛 × 𝑛 bitmap 𝑃, where

 41

𝑛 was the number of modules. If module 𝑚𝑖 called module 𝑚𝑗, the value at location 𝑝𝑖𝑗

in matrix 𝑃 became 1, or remained 0 otherwise. When summed, each matrix row was

equivalent to the 𝐹𝐼𝑉, yet the matrix preserved all relationships. For comparison, the

authors created two other vector space models based on fan-out-value (𝑀𝐹𝑂𝑉) and a

composite model based on the first two (𝑀𝐶𝑂𝑀). Based on the studies of Moldovan and

Şerban (2006) and Şerban and Moldovan (2006), the authors chose the k-means

algorithm to perform partitioning. The SD index determined the value for K that fed into

the algorithm. Using JHotDraw, the authors applied partitioning, and reduced the number

of dimensions using Principle Component Analysis. While the new model proved viable,

the results showed mixed results across the three vector space models. The authors

concluded that issues existed with the determination of crosscutting concerns and the

measurements used. Tribbey and Mitropoulos (2012) noted that future work in evaluating

mining algorithms and test data was necessary. (Tribbey & Mitropoulos, 2012)

 G. Czibula et al. (2009) introduced a partitional clustering algorithm for

identifying crosscutting concerns called PACO. The PACO process began by analyzing

the source code to identify all classes, methods, and the relationships between them. Each

method initially became its own cluster. Next, the algorithm chose the most distant

method as the first medoid (centroid). The algorithm then recursively found the next

medoids by finding the points that maximize the minimum distance to the methods. This

method was similar to the heuristic method mentioned by Şerban and Moldovan (2006).

PACO continued to refine the clusters based on the original heuristic. It recalculated each

cluster and then recalculated the medoid of each cluster repeatedly until the medoid

remained unchanged. The authors evaluated the process using JHotDraw, which showed

 42

an improved dispersion of crosscutting concerns (DISP) when compared to kAM (Şerban

& Moldovan, 2006). Therefore, the authors concluded that PACO provided better

clustering of crosscutting concerns than kAM. (G. Czibula et al., 2009)

 Rand McFadden and Mitropoulos (2012) were the first to apply model-based

clustering techniques to aspect mining instead of heuristic methods. The authors defined

six vector-space models: M1 (fanIn_numCallers), M2 (fanIn_hasMethod), M3

(sigTokens), M4 (fanIn_sigTokens), M5 (fanIn_numCallers_sigTokens), and M6

(fanIn_numCallers_hasMethod_sigTokens). M4 combined 𝐹𝐼𝑉 with M3, M5 combined

M1 and M3, and M6 combined M1, M2, and M3. Six clustering algorithms provided

results: partitioning methods k-means (KMH), k-means with random initial centroids

(KMR), and hierarchical agglomerative clustering (AGN), and model-based methods

MCL, hierarchical agglomerative clustering (HC), and presence-absence clustering

(PRAC). Evaluating the algorithms and vector space models on JHotDraw, results

showed that the best overall result was HC, using M5. These experiments showed that

model-based methods had improvement with respect to scattering concerns across

multiple clusters, and with respect to partitioning. Further, the authors found that a

combination of previously defined vectors and newly defined vectors performed best

across all methods. (Rand McFadden & Mitropoulos, 2012)

Analysis

Aspect mining research attempted to find ways to refactor code by determining

where aspects existed within object-oriented source code. Similarly, the current research

attempted to locate ways to refactor code by determining where potential aspect

interference existed within aspect-oriented code. Since Shepherd and Pollock (2005),

 43

mining research grew from simple metrics-based analysis to vector space analysis. Vector

spaces introduced by Moldovan and Şerban (2006) have become the basis for other

aspect mining studies. While findings in vector space models continued to be mixed

(Şerban & Moldovan, 2006; Tribbey & Mitropoulos, 2012), they provided a more

detailed clustering model than traditional metrics. For partitioning, most research has

used variations of the k-means or hierarchical agglomerative clustering algorithms.

Determining initial clusters heuristically (Şerban & Moldovan, 2006) or improving

clusters heuristically (G. Czibula et al., 2009; Tribbey & Mitropoulos, 2012) have shown

positive results. According to Rand McFadden and Mitropoulos (2012), model-based

algorithms using hybrid vector spaces can result in further improvements.

These advances have proven that clustering is a viable means for determining

potential for refactoring in an existing piece of software. However, the metrics used in

these studies do not directly map to aspect interference. Most studies used a method’s

𝐹𝐼𝑉 as a component of the clustering model. 𝐹𝐼𝑉 counted the number of methods that

call the method. Tribbey and Mitropoulos (2012) noted that 𝐹𝐼𝑉 would indicate code

scattering, but not code tangling. Code scattering referred to a crosscutting concern that

spread across a system, while code tangling referred to one crosscutting concern mixing

with other concerns (Şerban & Moldovan, 2006). Tribbey and Mitropoulos (2012) also

used 𝐹𝑂𝑉 in a vector space model in their clustering assessment to ensure coverage of

code tangling. Applying these ideas to aspect interference research, interference

scattering would describe interference that spread across an AOP system, while

interference tangling would refer to multiple interferences from a given object. In the

case of aspect interference, the clustering models needed to account for both interference

 44

scattering and interference tangling to ensure a full understanding of potential

interference. Existing AOP metrics such as coupling on advice execution, and

crosscutting degree of an aspect illustrated coupling at the aspect level (Ceccato &

Tonella, 2004; Piveta et al., 2012). To describe potential advice and weaving interference

in terms of interference scattering and interference tangling, finer-grained metrics were

required. Therefore, extension of previous techniques to use the new IP and ICP metrics

to account for method-method, advice-advice, and advice-method interaction was

imperative to the current study.

Visualization

While clustering provided a good analysis tool when applied to existing code,

programmers also needed to understand the results of the clustering before addressing

interference in the code. One method that allowed programmers to understand these

potential interactions better was visualization. Though the literature has shown the

importance of visualization for design analysis in OOP, no studies have applied

visualization techniques to aspect interference. They have, however, applied visualization

in the context of clustering, and have considered combining the two an important next-

step in research (Shepherd & Pollock, 2005).

Design Visualization Techniques in OOP

Like clustering, the goal of some visualization techniques was to improve the

design of an existing piece of software by illustrating design problems. Lanza and

Martinescu (2006) noted that developers should use metrics in conjunction with

visualization techniques to assist in understanding complex designs. The authors defined

a polymetric view, which displayed a set of metrics visually by utilizing a node’s size,

 45

color, position, and the edge’s color and width. Using this polymetric view, the authors

advocated the idea of design harmony. Design harmony specified that each system

artifact should exhibit identity harmony (harmony with itself), collaboration harmony

(harmony with its collaborators), and classification harmony (harmony with its ancestors

and descendants). The authors noted that instances of disharmony would be detectable in

system visualizations called class blueprints. Class blueprints represented the static class

structure and focused on method calls, attribute access, and inheritance. Using specific

detection strategies, the authors concluded that class blueprints highlighted disharmonies

in a design, but became visually complex for large systems. (Lanza & Marinescu, 2006)

 To overcome some of the complexity in existing visualization techniques, Wettel

and Lanza (2008) extended the idea of polymetric views by describing a visualization

metaphor called a code city that looked much like a three-dimensional city map. Each

code city contained districts that represented packages, and buildings that represented

classes. The sizes of each component came from specific metrics for that component,

with the largest buildings representing the most impactful classes. The authors used

detection strategies to color-code the classes in the code city based on their level of

disharmony. Experimental evaluation applied the process to four Java programs: JDK,

ArgoUML, Jmol, and iText. Results showed that, despite exhibiting an organized

structure, JDK suffered from design disharmony, as many classes performed more than

they should. iText showed disharmony scattered throughout due to its lack of

organization. ArgoUML exhibited a variety of disharmonies, having classes with few

attributes and many methods, and classes with little functionality. The authors concluded

that this visualization technique produced false first impressions that one could eliminate

 46

if using more detailed metrics. However, Wettel and Lanza (2008) contended that using

more detailed metrics would reduce the human mind’s ability to grasp the visualization.

(Wettel & Lanza, 2008)

Clustering Visualization Techniques

Other authors have combined clustering and visualization techniques to show

ways to refactor code. Dietrich, et al. (2008) used Java dependency graphs and located

clusters within the graph based on these dependencies. To do this, the authors used the

Girvan-Newman algorithm, which repeatedly removed edges with the highest

betweenness from the dependency graph until reaching an acceptable clustering. The

authors created a visual dependency graph using the Prefuse visualization toolkit and

drew colored boxes around modules to represent clusters. They determined modularity in

the visual graph by measuring the average number of packages per cluster and the

average number of clusters per package. This allowed the developer to note potential

changes that could increase the code’s modularity. The authors tested the tool’s

scalability using several programs, including Xerces, Xalan, Commons-collections, the

MySQL ConnectorJ JDBC driver, and a large piece of software supplied by New

Zealand’s Kiwiplan Company. Results showed that the tool was highly scalable to large

projects when using a dual-core system with 2 GB of RAM. (Dietrich et al., 2008)

 In a similar study, Cassell, Anslow, Groves, and Andreae (2011) developed ExtC

Visualizer, a Java program that displayed relationships between classes in the form of

dependency graphs. The tool allowed users to select either agglomerative clustering

(which merged small clusters into larger ones) or divisive clustering (which split large

clusters into smaller ones) to analyze the best results for identifying refactoring

 47

opportunities. The authors examined approximately 100 classes from several different

programs: Heritrix, Jena, JHotDraw, Weka, and their own ExtC product. Their

observations led to three basic conclusions. First, clustering algorithms needed to

consider domain knowledge to help refactor large classes, because the tool required

programmers to view the clustering and make decisions about how to refactor the code.

Second, the observations led to insights into how clustering algorithms behaved. The

authors suggested that divisive clustering techniques were favored over agglomerative

techniques, claiming that divisive clustering would be easier for programmers to

understand because refactoring generally splits classes apart one by one. In addition,

divisive clustering would require fewer processing steps than agglomerative clustering.

Finally, the observations led the authors to suggest possible improvements to the

visualizations. Extending ExtC to a scope lower than the class-level would require

visualizations to display interclass relationships. (Cassell et al., 2011)

AOP Visualization

The work in AOP visualization has often surrounded the development of aspect

debuggers. DeBorger, Lagaisse, and Joosen (2009) noted that AOP development tools

lacked the ability to show point cuts and advices, and “concrete aspect-based

abstractions” (p. 174). Additionally, DeBorger et al. (2009) stated that traceability from

advice execution to the source code of such systems was difficult. Therefore, the authors

developed a runtime visualization that had six main requirements: to allow inspection of

applied advices, executing advices, past advices, the causal point cut, aspect instances,

and the program’s structure. To meet these requirements, the authors created a system

established on the mirror-based reflective architecture for debugging systems. This

 48

architecture provided a way to track a programs structure as well as the causality between

aspects and the structure. The authors’ AJDI system extended the Java Debugging

Interface by adding mirrors for Aspect, Advice, Binding, AdviceApplication, JoinPoin,

HookFrame (designed to trace join points and advices on the stack), and PastAdvice. The

authors defined the Aspect Debugger (ADB), which implemented the extended

architecture. To validate AJDI, the authors applied the ADB to both AspectJ ABC and

JBoss AOP. The authors illustrated the capabilities of the AJDI system by introducing six

bugs into the IconViewer application. The authors concluded that AJDI met all

requirements, and left further validation and integration into Eclipse to future research.

(DeBorger et al., 2009)

Fabry, Kellens, and Ducasse (2011) noted the difficulty of knowing both at which

join points an aspect executed, and the order in which aspect code executed. The authors

acknowledged the need for developer tools that clearly show the impact of aspects on the

existing class code. Because of this, Fabry et al. (2011) developed AspectMaps—a

visualization that illustrated join point shadows within a program. Join point shadows

were locations in the code that became join points when the program executed. The

visualization showed join point shadows from a coarser level to a more fine-grained level

by allowing the user to zoom from a package-level display into a method- or advice-level

display. Using AspectJ program spacewar as a motivating example, the authors

conducted a small user study to determine the utility of the AspectMaps tool. While

results showed a higher code comprehension over AspectJ Development Tools, the user

study included a very small group of non-typical developers who performed non-standard

tasks. (Fabry et al., 2011)

 49

Yin, Bockisch, and Aksit (2012) noted that most bugs reported in AOP came from

implicit invocation, making them difficult to detect and trace because code elements

could be lost after compilation. Therefore, the authors proposed a fine-grained debugger

for AspectJ to support a wider range of tasks than previous debuggers. The research

defined ten tasks that an AOP debugger should perform: setting AO breakpoints, locating

AO constructs, evaluating pointcut sub-expressions, flattening pointcut references,

evaluating pattern sub-expressions, inspecting runtime values, inspecting AO-conforming

stack traces, inspecting program compositions, inspecting precedence dependencies, and

excluding and adding AO definitions (Yin et al., 2012, p. 62, Table 2). The authors

defined the Advanced-Dispatching Debug Interface (ADDI) that used an intermediate

representation of the program in XML, and added mirroring to JDI similar to De Borger

et al. (2009). The user interface, integrated into Eclipse, allowed programmers a visual

view of the system from the join point perspective. The authors concluded that the ADDI

system performed all ten tasks, fully implementing six of them for the first time. (Yin et

al., 2012)

Yin (2013) proposed a system that focused on visualizing advice interaction at

join point shadows. Yin’s (2013) approach required several components. First, the

proposed system required an omniscient debugger to provide important information about

specific join points in a program at runtime. To accomplish this, the author planned to use

NOIRIn, “an execution environment that models advanced-dispatching (AD) as first class

objects” (Yin, 2013, p. 29). Second, the visualization tool needed a query language for

searching execution histories. To accomplish this, Yin (2013) suggested a graphical

approach to reduce the complexity of textual queries and to eliminate the need to learn

 50

new query languages. Third, the proposed tool needed an algorithm that would sift the

execution history for which data to display graphically. Despite these plans, Yin (2013)

left the implementation and experimentation to future research, concluding that this

would be the first AOP visualization system to focus on changes at join points.

Analysis

Visual representations of a program have been important tools for a developer

because they increased understanding of potential design problems. Giving a polymetric

view of a design showed areas of a program that exhibited bad design practices (Lanza &

Marinescu, 2006; Wettel & Lanza, 2008). Unfortunately, such polymetric views of a

program only allowed for a small number of metrics before the visualization became too

complex (e.g., three dimensions versus four dimensions). Therefore, other authors

suggested clustering techniques to provide better inputs to complex visualizations. Using

dependency graphs based on clustering results, research suggested that programmers

could gauge a program’s modularity and the need to refactor code (Cassell et al., 2011;

Dietrich et al., 2008). This progression also illustrated that developing a better

understanding of a system required detailed information, and mirrored the progression of

clustering techniques from using simple metrics to more complex vector space models.

Determining the need to refactor AOP code to eliminate aspect interference was

the core of the current study. Unfortunately, no studies applied clustering visualization to

AOP code specifically for aspect interference. The study of Fabry et al. (2011) applied

the idea of zooming in and out of an AOP visualization to show connections between

different levels but did not discuss aspect interference. Yin (2013) seemed to confirm the

idea of visualizing join point shadows, but did not offer an implemented solution. Other

 51

studies in AOP visualization focused on providing debugging tools that ensured both

visibility and traceability of execution paths (DeBorger et al., 2009; Yin et al., 2012).

While such debugging tools were important to developers, they missed the opportunity to

show potential refactorings. For example, one portion of the study by Yin et al. (2012)

gave a way to visualize aspect precedence defined within the code (which could prevent

aspect interference). Such a visualization was one-sided because it only showed the result

of precedence definitions rather than pinpointing potential aspect interference. Thus, the

current work extended the work of Fabry et al. (2011) and Yin (2013) into the area of

aspect interference by providing a way to visualize potential areas of aspect interference

within an AOP program.

Summary

 Aspect-oriented research documented the existence of unwanted aspect

interactions early in the paradigm (Douence et al., 2002). Researchers have since

developed increasingly descriptive definitions of aspect interference. The more robust

definitions of advice, weaving, and introduction interference (Tian, Cooper, Zhang, et al.,

2010) gave a better foundation for recognizing instances of aspect interference within a

program. Both the detection and prevention of aspect interference has become an

important thread of research.

Detection of aspect interference occurred at three different points along a

project’s lifecycle. First, authors proposed the development of interference-free

applications by creating interference-free designs. Design-time strategies required formal

descriptions of the system that became more complex as system sizes increased, making

them less effective for smaller-scale programming projects. Second, authors proposed the

 52

detection of aspect interference during the implementation phase. The use of static code

analysis provided an implementation-time technique, but few studies existed in that area.

The use of program slicing as a static code analysis method was found to be a poor

choice for locating interference (D'Ursi et al., 2007), and no other static code analysis

interference detection studies existed. Finally, other researchers have studied the

prevention of aspect interference problems at execution time. These techniques required

programmers to state precedence rules explicitly that, when not followed, would cause

exceptions within the code. Both design time and execution time techniques required a

vast understanding of the program under development. Often, because of team

development environments, developers only understood portions of a program without

seeing the larger picture. Therefore, continuing the study of aspect interference via static

code analysis was an essential next step in the evolution of the literature.

Clustering analysis (a static analysis technique) has proven effective for locating

potential refactoring opportunities in object-oriented code. Other research used clustering

to locate potential aspects in an existing OO system. Extending clustering analysis to

existing AOP systems allowed the identification of aspect interference by reviewing the

code statically. Unfortunately, existing AOP metrics in the literature failed to describe all

possible interactions required to produce a proper clustering. Therefore, the introduction

of new fine-grained AOP coupling metrics was required to perform clustering analysis.

Because of these things, clustering analysis and finer-grained metrics provided

worthwhile extensions to the aspect interference body of knowledge.

Visualizations have increased programmer understanding of both object-oriented

and aspect-oriented programs. Some work in AOP visualization has involved the

 53

development of debugger add-ons that assist the programmer in finding coding errors.

While some components of these tools have included aspect interaction, none has focused

exclusively on aspect interference. Therefore, using visualizations specifically for aspect

interference was a meaningful addition to the body of research.

 54

Chapter 3

Methodology

Overview

 This study followed an experimental methodology, employing a novel approach

for determining the potential impact of aspect interference within a program by using

clustering analysis. Clustering results were validated using existing AOP systems to

determine both the feasibility of the approach and scalability. The outcome of the

clustering analysis provided an input for a clustering visualization to show potential

aspect interference within the code.

The approach involved the following basic steps. A more-detailed explanation of

each step, and the constructs used, follows this initial listing.

1. Source Code Compilation: The first step in the analysis converted the source

code of an AspectJ system into woven Java bytecode by using the ajc

compiler. This required the systems to be free from compilation errors.

2. Bytecode Analysis: This analysis reviewed the Java bytecode resulting from

compilation and weaving to locate aspects, advices, classes, and methods in

the system and store them in a recognizable format. This phase also

determined interactions that existed in the bytecode among the advices and

methods and among classes and aspects.

3. Vector Space Model Creation: Based on the list of aspects, advices, classes,

 55

and methods, and the interactions among them, this step derived vector space

models to serve as inputs to the clustering analysis.

4. Clustering Analysis and Evaluation: The process employed the k-means++

partitional clustering algorithm using the vector space models from the

previous step. The selected value for K came from selecting the K with the

lowest SD index value from a range of plausible K values. Cluster evaluation

compared clustering results using the RS, D, DB, and SD indexes to

determine validity and noted insights into potential interference.

5. Visualization: The resulting clusters became the input for a zoomable

visualization technique designed to highlight the areas of the program most

likely to exhibit interference.

6. Assessment: Applying this technique to two existing aspect-oriented software

systems allowed for assessment of this approach in terms of both feasibility

and scalability.

Model Definition

Object Models

Consider an existing aspect-oriented software system 𝑆. Because aspect

interference could occur in abstractions below the aspect and class levels (Lauret et al.,

2011; Tian, Cooper, Zhang, et al., 2010), the analysis considered all class methods and

aspect advices to be entities in the primary object model. Class methods were defined as

𝐶𝑀 = {𝑚1, 𝑚2, … , 𝑚𝑝}, where 𝑚𝑖 is the i-th of 𝑝 methods and 𝐶𝑀 ⊂ 𝑆 (Şerban &

Moldovan, 2006). Aspect advices were also required objects in this analysis, and were

defined by 𝐴𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑞} where 𝑎𝑗 is the 𝑗-th of 𝑞 aspect advices and 𝐴𝐴 ⊂ 𝑆. The

 56

system contained 𝑟 aspects, defined by 𝐴 = {𝐴1, 𝐴2, … , 𝐴𝑟}, and 𝑡 classes, defined by

𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑡}. The primary object model for clustering was defined as 𝑂 = 𝐶𝑀 ∪

𝐴𝐴, containing 𝑛 elements, where 𝑛 = 𝑝 + 𝑞. The secondary object model was defined as

𝑂′ = 𝐶 ∪ 𝐴, containing 𝑛′ elements, where 𝑛′ = 𝑡 + 𝑟.

Vector Space Models

 A vector space model is a detailed way to find similarities between objects in a

clustering model (Moldovan & Şerban, 2006; Şerban & Moldovan, 2006; Tribbey &

Mitropoulos, 2012). Existing aspect coupling metrics, such as 𝐶𝐴𝐸 and 𝐶𝐷𝐴 (Ceccato &

Tonella, 2004), focused on the aspect-class coupling rather than advice-method coupling

(Piveta et al., 2012). Previous vector space models used in aspect mining relied upon the

object-oriented fan-in-value (𝐹𝐼𝑉) and fan-out-value (𝐹𝑂𝑉) metrics for each object in the

clustering model (Moldovan & Şerban, 2006; Şerban & Moldovan, 2006; Tribbey &

Mitropoulos, 2012). While 𝐹𝐼𝑉 and 𝐹𝑂𝑉 provided method-method granularity, they did

not account for advice-method and advice-advice interactions. Therefore, metrics 𝐼𝑃 and

𝐼𝐶𝑃 were developed to address metric-metric, advice-metric, and advice-advice

interactions and to account for both interaction tangling and interaction scattering.

Tribbey and Mitropoulos (2012) extended one-dimensional vector space models

by defining a pattern matrix. This dissertation extended this idea by defining two pattern

matrices, the first using 𝐼𝑃 rather than 𝐹𝑂𝑉, and the second based on 𝐶𝐴𝐸.

Given the object model 𝑂 = {𝑜1, 𝑜2, … , 𝑜𝑛}, consider the 𝑛 × 𝑛 pattern matrix

𝑃𝐼𝑃 = [

𝑏11 𝑏12 ⋯
𝑏21 𝑏22 ⋯

⋮
𝑏𝑛1

⋮
𝑏𝑛2

⋱
⋯

𝑏1𝑛

𝑏2𝑛

⋮
𝑏𝑛𝑛

]

where each 𝑏𝑥𝑦 = 1, 1 ≤ 𝑥 ≤ 𝑛, 1 ≤ 𝑦 ≤ 𝑛 if and only if 𝑜𝑥 invoked object 𝑜𝑦, or 0

 57

otherwise. Therefore, the sum of elements in a row 𝑟 was equivalent to the 𝐼𝑃 for object

𝑜𝑟, and the sum of the elements in a column 𝑐 was equivalent to the 𝐼𝐶𝑃 for each object

𝑜𝑐. Each row (or column) in 𝑃𝐼𝑃 was considered an n-dimensional vector that was used as

input into the clustering algorithm. For systems with high numbers of methods and

advices, reducing the number of dimensions via principle component analysis (PCA)

(Tribbey & Mitropoulos, 2012) was investigated.

To show how the newly defined metrics related to an existing coarsely grained

metric, this research defined a second pattern matrix based on coupling on advice

execution. The 𝐶𝐴𝐸 metric counted the number of aspects that affect a module by advice,

declaration constructions, and inter-type declarations (Piveta et al., 2012). Each aspect

was counted only once. The pattern matrix for 𝐶𝐴𝐸 was an 𝑛′ × 𝑟 matrix, defined as

𝑃𝐶𝐴𝐸 = [

𝑏11 𝑏12 ⋯
𝑏21 𝑏22 ⋯

⋮
𝑏𝑛′1

⋮
𝑏𝑝2

⋱
⋯

𝑏1𝑟

𝑏2𝑟

⋮
𝑏𝑛′𝑟

],

where each 𝑏𝑥𝑦 = 1, 1 ≤ 𝑥 ≤ 𝑛′, 1 ≤ 𝑦 ≤ 𝑟 if an only if an aspect or class 𝑂𝑥
′ (𝑂𝑥

′ ∈ 𝐶 ∪

𝐴) interacted with aspect 𝐴𝑦 (𝐴𝑦 ∈ 𝐴). Each row 𝑥 in 𝑃𝐶𝐴𝐸 represented the 𝐶𝐴𝐸 value

for aspect or class 𝑂𝑥
′ .

This research defined three vector space models—two based on pattern matrix 𝑃𝐼𝑃

and one based on pattern matrix 𝑃𝐶𝐴𝐸. These vector space models were:

 Interference Potential (𝑰𝑷) Vector Model: 𝑀𝐼𝑃 = 𝑃𝐼𝑃.

 Interference Causality Potential (𝑰𝑪𝑷) Vector Model: 𝑀𝐼𝐶𝑃 = (𝑃𝐼𝑃)𝑇.

 Coupling on Advice Execution (𝑪𝑨𝑬) Vector Model: 𝑀𝐶𝐴𝐸 = 𝑃𝐶𝐴𝐸.

 58

Approach

Source Code Compilation

 The first step involved compiling the source code of system 𝑆 into standard Java

bytecode. Variations within the source code itself, such as whitespace, commenting, and

syntax (depending upon the Java version), could hinder the analysis process. However,

once compiled into Java bytecode, code variations became nonexistent. The AspectJ

compiler normalized aspects and advices into standard Java bytecode in a two stages

(Hilsdale & Hugunin, 2004). Hilsdale and Hugunin (2004) noted that the first stage took

Java and AspectJ source code and converted it directly to Java bytecode, adding

annotations for non-standard Java elements like point cuts or advices. The second stage

produced woven class files by inserting calls to the previously compiled advice code in

the appropriate locations. The result was static bytecode that, when executed, behaved in

accordance with the program’s static source code. Therefore, the compiled and woven

bytecode could reveal the precise method-method, advice-method, and advice-advice

interactions required to complete the clustering analysis.

Bytecode Parsing

Pattern matrices 𝑃𝐼𝑃 and 𝑃𝐶𝐴𝐸 were created directly from bytecode in two phases:

the object identification phase and the interaction identification phase. Although locating

methods and advices was straightforward, matrix creation involved tracking method-

method, method-advice, and advice-advice coupling. Examining the compiled bytecode

for method invocations provided a means of locating all items required to create the

pattern matrices. Maintaining lists of interactions among advices and methods allowed

for simple mappings to pattern matrices 𝑃𝐼𝑃 and 𝑃𝐶𝐴𝐸.

 59

The object identification phase examined the bytecode to locate all classes,

methods, advices, and aspects to create the identified vector space models. The object

identification phase examined bytecode produced by the AspectJ compiler to gather the

list of objects within the program under analysis. Implementation of this phase used the

Ruby programming language because of its flexibility in string manipulation and the

reduced overhead when compared to the Java language. The javaclass-rb Ruby gem

(Kofler, 2011) provided a basis for static bytecode analysis. Because javaclass-rb did not

track method invocations, the analysis phase required additional programming.

Figure 1 shows the basic steps involved in the object identification phase. The

object identification phase accepted a directory path as its input. This directory and its

subdirectories contained bytecode resulting from a successful compilation from source

code. The algorithm walked the directory tree to the leaves and examined each class file

by first converting the bytecode into an object-oriented representation. Next, the process

located each class, aspect, method, and advice name within the object-oriented

representation of the bytecode and stored each object into its corresponding list. Note that

each method and advice was associated with its containing class or aspect. These lists

Prerequisites: All .java and .aj source files in directory d are compiled into .class files.

Input: File path to directory d

Output: In-memory listing of all classes, class methods, aspects, and advices

1: for each subdirectory s in directory d,

2: for each class file c in subdirectory s,

3: Decompile class file c into human readable form hrf using Ruby.

4: Store decompilation hrf in object list OL.

5: for each object o in object list OL,

6: if o is a class, then store in list C,

7: for each method m in object o, store m in list CM.

8: else if o is an aspect, then store in list A.

9: for each advice name a in object o, store a in list AA.

Figure 1. Object Identification Phase Algorithm.

 60

resided in memory, and allowed for interaction determination in the code.

 After identifying objects contained in system 𝑆, the code analysis determined

interactions among the identified objects to create pattern matrices used for vector space

models. Hilsdale and Hugunin (2004) noted that every pointcut defined in the source

code mapped to a corresponding static join point shadow in bytecode. The object

interaction phase parsed each method in the bytecode for all invoke statements:

invokedynamic, invokeinterface, invokespecial, invokestatic, and invokevirtual.

Bytecode invocations accounted for method calls and executions, constructor calls and

executions, advice executions, and initialization procedures (Hilsdale & Hugunin, 2004,

p. 28). Bytecode used other constructs for getting and setting field values, throwing and

handling exceptions, and synchronization (Hilsdale & Hugunin, 2004, p. 28), which were

beyond the scope of this study.

Figure 2 shows an overview of the interaction identification phase algorithm, and

may be considered an extension of the algorithm in Figure 1. The algorithm reviewed the

method and advice bodies, and enumerated a list of all invocations. Each object

Prerequisites: All .java and .aj source files in directory 𝑑 are compiled into .class files.

Input: Lists OL, C, A, CM, and AA from the object identification phase.

Output: File 𝑖, listing array 𝑚, and file 𝑖′, listing array 𝑚′.

1: declare array 𝑚 of size |𝐴𝐴 ∪ 𝐶𝑀|.
2: declare array 𝑚′ of size |𝐶 ∪ 𝐴|.
3: for each class method and advice 𝑜 in system 𝑆 from lists CM and AA,

4: declare array 𝑜𝑎, a bitmap of size |𝐴𝐴 ∪ 𝐶𝑀|
5: when 𝑜 invokes object 𝑜′, where 𝑜′ ∈ 𝐴𝐴 ∪ 𝐶𝑀, then

6: Set 𝑜𝑎𝑜′𝑖 = 1, where 𝑜′𝑖 is the index corresponding to object 𝑜′.
7: Add 𝑜𝑎 to 𝑚.

8: for each class and aspect 𝑜′ in system 𝑆 from lists C and A,

9: declare array 𝑜𝑎′, a bitmap of size |𝐴|
10: when 𝑜′ invokes object 𝑜𝑎, where 𝑜𝑎 ∈ 𝐴𝐴 and 𝐴𝐴 is an advice of aspect 𝐴𝑥, then

11: Set 𝑜𝑎𝐴𝑥𝑖
′ = 1, where 𝐴𝑥𝑖 is the index corresponding to Aspect 𝐴𝑥.

12: Add 𝑜𝑎′ to 𝑚′.
13: Output list 𝑚 to file 𝑖 and 𝑚′ to file 𝑖′.

Figure 2. Interaction Identification Phase Algorithm.

 61

interaction was recorded into a one-dimensional bitmap 𝑜𝑎, of size |𝐴𝐴 ∪ 𝐶𝑀| for each

object 𝑜𝑥. Placing a 1 at location 𝑜𝑎𝑦 indicated the invocation of object 𝑜𝑦 by object 𝑜𝑥.

Array 𝑜𝑎 was stored at location 𝑚𝑥 and the process continued for all objects. One-

dimensional array 𝑜𝑎′ of size |𝐴| was defined as a bitmap of class-aspect interactions for

each class or aspect 𝑜𝑥
′ . Placing a 1 at location 𝑜𝑎𝑦

′ indicated an interaction between class

or aspect 𝑜𝑥
′ and aspect 𝐴𝑦. Array 𝑜𝑎′ was stored at location 𝑚𝑥

′ and the process

continued for all objects. At the end of the procedure, two-dimensional

array 𝑚 represented pattern matrix 𝑃𝐼𝑃 by denoting object invocations, where location

𝑚𝑥𝑦 contained 1 if 𝑜𝑥 invoked 𝑜𝑦 and 0 otherwise. Two-dimensional array 𝑚′

represented pattern matrix 𝑃𝐶𝐴𝐸, where location 𝑚𝑥𝑦
′ contained 1 if class or aspect 𝑜𝑥

′ was

affected by aspect 𝐴𝑦 or 0 otherwise. The process saved both matrices to files for use by

the clustering algorithm.

Vector Space Model Creation

 Vector space models 𝑀𝐼𝑃, 𝑀𝐼𝐶𝑃, and 𝑀𝐶𝐴𝐸 were defined from two-dimensional

arrays 𝑚 and 𝑚′ in the previous step. Model 𝑀𝐼𝑃 was a direct mapping of array 𝑚 while

model 𝑀𝐼𝐶𝑃 was a direct mapping of the transposition of array 𝑚. Models 𝑀𝐼𝑃 and 𝑀𝐼𝐶𝑃

contained 𝑛 data points with 𝑛 dimensions. Model 𝑀𝐶𝐴𝐸 was a direct mapping of array

𝑚′, and contained 𝑛′ data points with 𝑟 dimensions.

Principal Component Analysis

 Because of the potential for a large number of dimensions in both 𝑀𝐼𝑃 and 𝑀𝐼𝐶𝑃,

this research used principal component analysis (PCA) in an attempt to reduce the

number of dimensions. PCA computed eigenvalues for the covariance of each pattern

matrix. These eigenvalues also represented the estimated variances of the converted

 62

variables. The sum of all eigenvalues constituted the overall variation within the matrix.

Many components contributed to less than 1% of the total variation, so the process

retained only components contributing a variance greater than 1%. Clustering analysis

was then applied to the PCA-reduced matrices.

Clustering Analysis

 The k-means algorithm, a partitional clustering method, was employed to locate

potential aspect interference. When using k-means, determining the initial number of

clusters 𝐾 to pass into the algorithm was of concern. Şerban and Moldovan (2006)

selected initial centers by maximizing the minimum distances between the centroid and

the clustering objects until reaching a minimum threshold. Tribbey and Mitropoulos

(2012) used the k-means++ algorithm (Arthur & Vassilvitskii, 2007) to seed initial

centers, and the 𝑆𝐷 index (Maria Halkidi, Batistakis, & Vazirgiannis, 2002; M. Halkidi,

Vazirgiannis, & Batistakis, 2000) (which incorporated cluster density and variance) to

determine an optimal number of clusters.

 This study used the 𝑆𝐷 index and the k-means++ seeding approach to determine

the number of clusters 𝐾 that was fed into the k-means++ algorithm. The clustering steps,

adapted from Tribbey and Mitropoulos (2012), included the following.

1. To determine the minimum (𝐾𝑚𝑖𝑛) and maximum (𝐾𝑚𝑎𝑥) values for 𝐾, let 𝐾𝜇 be

the number of unique values for the coupling metric (IP, ICP, or CAE) that exist

in the vector space model. Set 𝐾𝑚𝑖𝑛 and 𝐾𝑚𝑎𝑥 as follows:

a. 𝐾𝑚𝑖𝑛 = max (2, (𝐾𝜇 − 20))

b. 𝐾𝑚𝑎𝑥 = (𝐾𝜇 + 10)

Note that the k-means++ algorithm required 2 ≤ 𝐾𝑚𝑖𝑛 ≤ 𝐾𝑚𝑎𝑥 ≤ 𝑁, where 𝑁

 63

was the number of vectors in the vector space model.

2. For each value of 𝐾 between 𝐾𝑚𝑖𝑛 and 𝐾𝑚𝑎𝑥, execute the k-means++ algorithm

five times and record the minimum 𝑆𝐷 index value. The value of 𝐾 that produced

the lowest 𝑆𝐷 index between 𝐾𝑚𝑖𝑛 and 𝐾𝑚𝑎𝑥 became the chosen 𝐾, denoted 𝐾∗.

3. Perform the k-means++ algorithm 100 times using 𝐾∗. Record clustering metrics

(described in the next section) and clusterings for each individual run.

4. Compute the mean, median, and standard deviation of the values collected for

each clustering metric. Use Wilcoxson rank sum testing to compare resulting

clustering metrics.

The SD index, proposed by Halkidi, Vazirgiannis, and Batistakis (2000),

measured the average scattering for a cluster as well as the total separation between

clusters. Average scattering for a clustering was defined as

𝑆𝑐𝑎𝑡(𝑛𝑐) =
1

𝑛𝑐
∑

‖σ(𝑣𝑖)‖

‖σ(X)‖

𝑛𝑐

𝑖=1

where σ(𝑣𝑖) was the variance within cluster 𝑖 and σ(X) was the total variance in the

clustering. Total separation between clusters was defined as

𝐷𝑖𝑠(𝑛𝑐) =
𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛
∑ (∑‖𝑣𝑘 − 𝑣𝑧‖

𝑛𝑐

𝑧=1

)

−1𝑛𝑐

𝑘=1

where 𝐷𝑚𝑎𝑥 was the maximum distance between clusters, 𝐷𝑚𝑎𝑥 = max(‖𝑣𝑖 −

𝑣𝑗‖) ∀𝑖, 𝑗 ∈ {1,2,3, … , 𝑛𝑐}, and 𝐷𝑚𝑖𝑛 was the minimum distance between clusters,

𝐷𝑚𝑖𝑛 = min(‖𝑣𝑖 − 𝑣𝑗‖) ∀𝑖, 𝑗 ∈ {1,2,3, … , 𝑛𝑐}. The SD index was defined as

𝑆𝐷(𝑛𝑐) = 𝛼 × 𝑆𝑐𝑎𝑡(𝑛𝑐) + 𝐷𝑖𝑠(𝑛𝑐)

where 𝛼 = 𝐷𝑖𝑠(max(𝑛𝑐)). (Maria Halkidi et al., 2002; M. Halkidi et al., 2000)

 64

 The k-means++ algorithm, introduced by Arthur and Vassilvitskii (2007),

combined a probability-based seeding technique to determine initial centroids for the k-

means algorithm. While k-means chose 𝐾 random centroids and adjusted them repeatedly

until they remain unchanged, k-means++ chose one random centroid and each

subsequent centroid using a probability formula known as 𝐷2 weighting (Arthur &

Vassilvitskii, 2007). This technique allowed the k-means algorithm to stop sooner (on

average) than with randomly seeded centroids, resulting in increased speed and accuracy.

The R Project for Statistical Computing ("The R Project for Statistical

Computing," 2013) included function SDIndex in library BCA, which plotted the value

of the 𝑆𝐷 index for different values of 𝐾 over a common data set. R package flexclust

included function kcca, which could perform k-means clustering with k-means++

seeding. The value of 𝐾∗ for each vector space model came from executing the kcca

clustering function repeatedly between 𝐾𝑚𝑖𝑛 and 𝐾𝑚𝑎𝑥 and finding the lowest value for

SD using the SDIndex functionality.

The kcca function (using the k-means algorithm with k-means++ seeding) was run

100 times for each vector space model, passing 𝐾∗ as the number of centers. For each

run, the program collected clusters and the various clustering metrics for use in validation

and analysis.

Validation and Empirical Analysis

Halkidi, Batistakis, and Vazirgiannis (2001) conducted surveys of cluster

validation techniques, noting most assessments investigated both compactness within a

cluster, and the separation between clusters. The best clustering results revealed compact

clusters with high separation. To assess clustering validity, Tribbey and Mitropoulos

 65

(2012) used the R-squared (𝑅𝑆) index. The 𝑅𝑆 index is the ratio of the sum of square

errors between clusters to the total sum of square errors (Maria Halkidi et al., 2001). The

𝑅𝑆 index was formally defined as

𝑅𝑆 =
𝑆𝑆𝑏

𝑆𝑆𝑡
=

𝑆𝑆𝑡 − 𝑆𝑆𝑤

𝑆𝑆𝑡

where 𝑆𝑆𝑏 was the sum of square errors between clusters, and 𝑆𝑆𝑡 was the total sum of

square errors. 𝑆𝑆𝑡 was defined as follows.

𝑆𝑆𝑡 = 𝑆𝑆𝑏 + 𝑆𝑆𝑤 = ∑ [∑(𝑋𝑖 − �̅�)2

𝑛𝑐

𝑖=1

]

𝑣

𝑗=1

𝑆𝑆𝑤 = ∑ [∑(𝑋𝑘 − �̂�𝑘)
2

𝑛𝑖𝑗

𝑘=1

]
𝑖=1…𝑐
𝑗=1…𝑣

Clusterings with higher 𝑅𝑆 index values were more uniform because they

indicated a larger distance between groups (Maria Halkidi et al., 2001). Clusterings with

lower 𝑅𝑆 values would indicate less compactness and may indicate higher interference

potential across the system, while higher 𝑅𝑆 values would indicate more compactness

and more localized interference potential among objects within clusters.

This study also assessed the validity of the clustering results by using two classic

measurements—Dunn’s Index (𝐷) and Davies-Bouldin’s Index (𝐷𝐵) (Maria Halkidi et

al., 2001). Dunn’s Index computed a value based on the ratio of cluster dissimilarity to

the maximum cluster diameter, and was defined as

𝐷𝑛𝑐
= min

𝑖=1…𝑛𝑐

(min
𝑗=𝑖+1,…,𝑛𝑐

(𝑑(𝑐𝑖, 𝑐𝑗)

max
𝑘=1,…,𝑛𝑐

diam(𝑐𝑘)
)

Large values for 𝐷 indicated compact clusters with high separation. Davies-Bouldin’s

 66

Index computed a value based on the average similarities between each cluster and its

most-similar cluster, and was defined as

𝐷𝐵𝑛𝑐
=

1

𝑛𝑐
∑ max

𝑖=1,…,𝑛𝑐;𝑖≠𝑗
(

(𝑠𝑖 + 𝑠𝑗)

𝑑𝑖𝑗
)

𝑛𝑐

𝑖=1

where 𝑠𝑖 and 𝑠𝑗 are the dispersion of clusters 𝑖 and 𝑗, and 𝑑𝑖𝑗 is the dissimilarity between

clusters 𝑖 and 𝑗. The best clustering results would have low values for 𝐷𝐵, indicating the

average cluster was compact with high distances between groups. (Maria Halkidi et al.,

2001)

Together, 𝑅𝑆, 𝐷, 𝐷𝐵, and the previously described 𝑆𝐷 index provided a solid

empirical evaluation designed to determine which clustering vector model produced the

best results and what the results indicated about overall aspect interference within the

system 𝑆. Low values for 𝑅𝑆 and 𝐷 showed similar clusters with potential interference

spread across multiple clusters, while high 𝑅𝑆 and 𝐷 values indicated interference

potential localized within clusters. Low values for 𝐷𝐵 and 𝑆𝐷 showed more localized

interference potential, while higher values for 𝐷𝐵 and 𝑆𝐷 indicated scattered interference

potential across the system. Table 4 gives further implications of each metric used to

interpret clustering results.

Given these metrics used, one-tailed Wilcoxson rank sum testing provided a way

to compare two sets of metrics based on expected outcomes. Given two sets of statistics,

A and B, the one-tailed Wilcoxson rank sum test ranks all values and determines the

probability that the ranking occurred by chance. Thus, low p-values indicated a low

probability for a random result and suggested that the shift in rank is statistically

significant. The hypotheses tested for this study were:

 67

 The PCA-reduced model produced a better clustering than the non-reduced

model.

 The modified program model produced a better clustering than the unmodified

program model.

Table 4. A Summary of Clustering Metrics Used in this Study.

Metric Description Range Best Value Implications

𝑹𝑺 Cluster dissimilarity based on

sum of squares

0-1 High High values indicate interference localized

within a small number of clusters.

𝑫 Cluster distances compared to

cluster diameters
≥ 0 High High values indicate small clusters that are

well-separated. More uniform clusters would

indicate that interference is spread across the

system.

𝑫𝑩 Average similarity between

each cluster and it’s next

most similar cluster

≥ 0 Low Lower values show that clusters are less

similar, indicating that interference would be

localized to a small number of clusters.

𝑺𝑫 Sum of average cluster

scattering and total cluster

separation.

≥ 0 Low Average cluster scattering is the ratio of the

cluster variance to the total variance.

Therefore, low values for SD would indicate

more uniform clusters with localized

interference problems. As SD increases,

interference problems increase across clusters.

Table 5 displays a sample of how rank sum test results appear. Note that each

column contains the p-value result of the one-tailed test. Both RS and D expect set B to

contain higher values, while DB and SD expect set B to contain lower values, as

indicated in the top row. Results less than 0.01 were significant enough to accept the

alternative hypothesis tested. While p-values cannot be zero, many of the results shown

appear as zero because they were so small.

Table 5. Wilcoxon Rank Sum Test Results (Sample)

 A < B A > B

 RS D DB SD

AT 𝛼 𝑀𝐼𝑃, AT 𝛼 𝑀𝐼𝑃Π

AT 𝛽 𝑀𝐼𝑃, AT 𝛽 𝑀𝐼𝑃Π

AT 𝛼 𝑀𝐼𝑃, AT 𝛽 𝑀𝐼𝑃

AT 𝛼 𝑀𝐼𝑃 Π, AT 𝛽 𝑀𝐼𝑃 Π

Visualization

 Clusterings that represented the best choice (as defined by the highest RS metric)

 68

fed into the visualization component so programmers could observe the clusters in a

graphical way. The purpose of this visualization was to assist in the assessment of the

results, and to increase understanding of the results. The visualization utilized the D3.js

JavaScript Library (M Bostock, 2012). This library contained visualization models that

allow programmers to zoom into clusters to reveal more detail. This extended the idea of

Fabry et al. (2011), who validated a zooming visualization technique based on mapping

applications.

Assessment and Data Analysis

 The results of the study included an assessment of both the approach’s feasibility

and its scalability. To determine feasibility, the study required a smaller-scale AspectJ

program. The study also required a larger AspectJ program to ensure scalability. Several

open-source AOP systems existed that were potentially suitable for this study. Apel

(2010) provided an analysis of eleven AspectJ programs: AspectTetris, OAS, Prevayler,

AODP, FACET, ActiveAspect, HealthWatcher, AJHotDraw, Hypercast, AJHSQLDB,

and Abacus. Of these, only five were not AOP refactorings of existing OOP systems:

AspectTetris, OAS, FACET, ActiveAspect, and HealthWatcher. Each of these programs

had an approximate 80% class code to 20% aspect code ratio, except HealthWatcher.

Despite being a refactored project, AJHotDraw included over 22,000 lines of code, and

has had wide use throughout the AOP literature. Therefore, AJHotDraw was chosen for

large-scale testing. A smaller code base allowed easier feasibility testing, so this study

used AspectTetris to assess feasibility. (Apel, 2010)

 To assist with the analysis, both programs were cloned, and a new aspect was

added to each clone. The new aspect contained one before advice that resulted in an

 69

interaction between many methods and the advice, leading to a high ICP value. Each

aspect also contained an after advice that made a method call with the hope of ensuring a

high IP value.

An example presentation of dimensions and indicated values of K appears in

Table 6. The k-means++ algorithm was run 100 times to produce the results for the

indicated K. Each vector space model produced specific 𝑅𝑆, 𝐷, 𝐷𝐵, and 𝑆𝐷 values,

which were used for comparison and validation. The resulting mean, median, and

standard deviation are presented for each clustering metric, as shown in Table 7.

Table 6. Dimensions and indicated K for Program 1 (Sample).

Model Dim K*

𝑴𝑰𝑷

𝑴𝑰𝑪𝑷

𝑴𝑪𝑨𝑬

Table 7. Summary Statistics after 100 Runs of K-means++ (Sample).
Measure Model Mean Median Std. Dev.

𝑹𝑺 𝑀𝐼𝑃
 𝑀𝐼𝐶𝑃
 𝑀𝐶𝐴𝐸

𝑫 𝑀𝐼𝑃
 𝑀𝐼𝐶𝑃
 𝑀𝐶𝐴𝐸

𝑫𝑩 𝑀𝐼𝑃
 𝑀𝐼𝐶𝑃
 𝑀𝐶𝐴𝐸

𝑺𝑫 𝑀𝐼𝑃
 𝑀𝐼𝐶𝑃

 𝑀𝐶𝐴𝐸

Resource Requirements

 With a few exceptions such as Figueroa (2013) and Figueroa, Tabareau, and

Tanter (2013), studies involving AOP used the AspectJ language to conduct experiments

(Lauret et al., 2011). Therefore, this study utilized AspectJ (v. 1.8.x) as the platform for

experimental purposes, though the general findings are applicable to other AOP

languages. The AspectJ compiler utilized Java SE 6 on Mac OS X for source code

compilation into bytecode. The Ruby programming language (v. 2.0.x), and portions of

 70

the javaclass-rb gem (Kofler, 2011) were used for bytecode analysis. The R Project for

Statistical Computing (2013) provided clustering and clustering metric resources. The

D3.js JavaScript library (M Bostock, 2012) provided the means for visualization.

Therefore, no special resources other than a standard computer system with Java and

AspectJ compilers and a JavaScript-enabled web browser were necessary for completing

this work.

Summary

 The overall approach for this study required AOP source code compilation into

Java bytecode using the AspectJ compiler. Using static bytecode analysis, the program

created the described vector space models that fed into the k-means++ clustering

algorithm. To determine an optimal value for K, clustering was run 5 times for each

potential value of K and the 𝐾 having the lowest SD index value was retained. Clustering

validity metrics assessed the clustering model with the best performance, and illustrated

how well clustering detected the introduction of aspect interference in a program.

Visualizations of clusterings with the best fit based on the RS metric assisted in showing

the potential problem areas within the programs.

 71

Chapter 4

Results

 This chapter presents the results of this study. Following a description of the

notation used in the results, general observations are made about each benchmark

application. Then, results for each application are presented and discussed. Finally, a

summary of the results concludes this chapter.

Vector Space Model Notation

 Three vector space models described the data for both AspectTetris (AT) and

AJHotDraw (AJHD). Because each program included an unmodified (𝛼) and a modified

(𝛽) version, vector space models in the results used the following notation.

 𝛼 𝑀𝐼𝑃 - The interference potential matrix for the unmodified program.

 𝛼 𝑀𝐼𝐶𝑃 - The interference causality potential matrix for the unmodified program.

 𝛼 𝑀𝐶𝐴𝐸 - The coupling on advice execution matrix for the unmodified program.

 𝛽 𝑀𝐼𝑃 - The interference potential matrix for the modified program.

 𝛽 𝑀𝐼𝐶𝑃 - The interference causality potential matrix for the modified program.

 𝛽 𝑀𝐶𝐴𝐸 - The coupling on advice execution matrix for the modified program.

Adding Π to the notations denoted matrices reduced by PCA.

Data Presentation

 When possible, data were presented in tabular format. However, in a few cases,

visual representation was necessary. Plots appearing in this chapter used dotted lines to

 72

connect data points representing SD index values. These dotted lines appear only to assist

in visualizing the results, and imply no other relationships between these data points.

Visualizations of resulting clusters used the D3 JavaScript library (M Bostock, 2012).

Zoomable Circle Packing, an open-source example created by Mike Bostock (2013),

produced a zoomable hierarchical visualization that read json code. Json code was

rendered in the R statistical software ("The R Project for Statistical Computing," 2013)

and fed into a local version of the visualization program. While these visualizations were

interactive via the web browser, the images presented here show the fully zoomed-out

versions. Because of this non-interactive medium, some visualizations may appear

difficult to read, but are discussed in the text.

Application Characteristics

 Two applications were used to complete this study. The first was AspectTetris

(AT) (Evertsson, 2003), an AspectJ implementation of the game Tetris. Following

compilation, the bytecode of the unmodified AT application contained 158 objects among

8 aspects and 16 classes. To assess the research questions posed, a new aspect,

SeedAspect, was added to the AT code that contained one generic point cut for every

method call, and two advices. A before advice simply output a string to the console for

the point cut, while an after advice called a method within the SeedAspect code for the

given point cut. The before advice was designed to have an increased ICP value, while

the method call from the after advice was expected to raise the advice’s IP value.

Following compilation, the modified version of AT contained 166 objects among 9

aspects and 16 classes.

 The second application was AJHotDraw v.0.4 (AJHD) ("AJHotDraw," 2007), an

 73

AspectJ program based on JHotDraw for drawing images. Following compilation, the

bytecode of the unmodified version of AJHD contained 3,953 objects among 31 aspects

and 396 classes. The same aspect—SeedAspect (described above)—was added to the

AJHD code. After compilation, the modified version of the program contained 4,037

objects among 32 aspects and 407 classes. Note that the increase in the number of classes

was due to aspect weaving at compile time. The AspectJ compiler broke classes into

subsets as needed to accommodate advice code.

AspectTetris Results

AT with Model 𝑀𝐼𝑃 (Interference Potential)

 Interference Potential (IP) counted the number of advices and methods the given

advice or method invoked. Following compilation, program AT 𝛼 consisted of 158

methods and advices, resulting in the 158×158 model AT 𝛼 𝑀𝐼𝑃. Program AT 𝛼 had 10

unique values for the IP metric. Compilation of program AT 𝛽 produced 166 methods

and advices, resulting in the 166×166 model AT 𝛽 𝑀𝐼𝑃. Program AT 𝛽 included 13

unique values for the IP metric. Based on these values, Table 8 shows the range of K

values tested during the SD analysis to determine 𝐾∗.

Table 8. Values of K Tested for AspectTetris Model 𝑀𝐼𝑃

Model 𝑲𝝁 𝑲𝒎𝒊𝒏 𝑲𝒎𝒂𝒙

AT 𝜶 𝑴𝑰𝑷 10 2 20

AT 𝜷 𝑴𝑰𝑷 13 2 23

PCA of the unmodified and modified versions of the AspectTetris program

reduced dimensions for 𝑀𝐼𝑃 in both cases. Table 9 shows the dimension reduction

achieved and the values found for 𝐾∗. Figure 3 plots the SD validity index values for the

unmodified version of the program, while Figure 4 displays the SD validity index values

for the modified version of the program. SD analysis indicated a value of 𝐾∗ = 4 for

 74

Table 9. Suggested Numbers of Clusters for AspectTetris Model 𝑀𝐼𝑃

Model Dim 𝑲∗

AT 𝜶 𝑴𝑰𝑷 158 4

AT 𝜶 𝑴𝑰𝑷𝚷 19 5

AT 𝜷 𝑴𝑰𝑷 166 5

AT 𝜷 𝑴𝑰𝑷𝚷 20 7

Figure 3. SD validity index values for the AT α MIP and the AT α MIP Π models.

Figure 4. SD validity index values for the AT β MIP and the AT β MIP Π models.

 75

model 𝐴𝑇 𝛼 𝑀𝐼𝑃, 𝐾∗ = 5 for model 𝐴𝑇 𝛼 𝑀𝐼𝑃Π, 𝐾∗ = 5 for model 𝐴𝑇 𝛽 𝑀𝐼𝑃, and 𝐾∗ =

7 for model 𝐴𝑇 𝛽 𝑀𝐼𝑃 Π.

Using the suggested K values, summary statistics were collected for each IP-

based model and are recorded in Table 10. Resulting p-values from the one-tailed

Wilcoxon rank sum tests appear in Table 11. Except for Dunn’s index, metric mean

scores indicated that program AT 𝛽 produced more favorable clusterings than program

AT 𝛼, and suggested that PCA-reduced model AT 𝛽 𝑀𝐼𝑃Π had the best overall clustering.

This was confirmed by significant p-values for the RS and SD metrics. Regarding cluster

similarity, the RS metric showed that clusters in model AT 𝛽 𝑀𝐼𝑃 were more dissimilar

than model AT 𝛼 𝑀𝐼𝑃, which agreed with the DB and SD metrics. This indicated that the

modifications to program AT 𝛽 had the intended effect of introducing potential

interference, and that clustering successfully detected the interference. Metric D indicated

a negligible improvement for model AT 𝛽 𝑀𝐼𝑃 over AT 𝛼 𝑀𝐼𝑃 in mean scores, and

showed no significant shift. Because of the Dunn index’s sensitivity to outliers (Maria

Halkidi et al., 2002), Dunn index results for models AT 𝛼 𝑀𝐼𝑃Π and AT 𝛽 𝑀𝐼𝑃Π were

thought to provide more accurate representations since PCA reduction diminishes noise

within the data. However, comparison of the PCA-reduced models showed no significant

improvement for the Dunn index for program AT 𝛼 over program AT 𝛽. This agreed

with Maria Halkidi et al (2002), who suggested that Dunn’s index was sensitive to the

chosen value of K because of its dependence on cluster diameter.

Clusterings with the highest RS values were chosen for visualization. Figure 5

shows the best clusterings for program AT 𝛼. Note that in all cases, method

 76

Table 10. Summary Statistics for AT Model 𝑀𝐼𝑃 after 100 Runs of K-means++

Measure Model Mean Median Std. Dev.

𝑹𝑺 AT 𝛼 𝑀𝐼𝑃 0.2586 0.2609 0.0241
 AT 𝛼 𝑀𝐼𝑃Π 0.4414 0.4512 0.0171

 AT 𝛽 𝑀𝐼𝑃 0.5590 0.5553 0.0180

 AT 𝛽 𝑀𝐼𝑃Π 0.7440 0.7467 0.0080

𝑫 AT 𝛼 𝑀𝐼𝑃 0.3658 0.3430 0.1712
 AT 𝛼 𝑀𝐼𝑃Π 0.3207 0.2412 0.1448

 AT 𝛽 𝑀𝐼𝑃 0.3212 0.3015 0.1123

 AT 𝛽 𝑀𝐼𝑃Π 0.2780 0.2649 0.0601

𝑫𝑩 AT 𝛼 𝑀𝐼𝑃 1.5550 1.4320 0.5039
 AT 𝛼 𝑀𝐼𝑃Π 1.0310 1.0180 0.1366

 AT 𝛽 𝑀𝐼𝑃 1.1980 1.1690 0.2177

 AT 𝛽 𝑀𝐼𝑃Π 0.9871 1.0090 0.1280

𝑺𝑫 AT 𝛼 𝑀𝐼𝑃 5.0244 5.0538 1.6244
 AT 𝛼 𝑀𝐼𝑃Π 3.7879 3.9227 0.5001

 AT 𝛽 𝑀𝐼𝑃 2.4745 2.4236 0.6723

 AT 𝛽 𝑀𝐼𝑃Π 2.1400 2.1488 0.3774

Table 11. Wilcoxon Rank Sum Test p-Values for AT IP Models

 A < B A > B

 RS D DB SD

AT 𝛼 𝑀𝐼𝑃, AT 𝛼 𝑀𝐼𝑃Π 0.0000 0.6791 0.0000 0.0000

AT 𝛽 𝑀𝐼𝑃, AT 𝛽 𝑀𝐼𝑃Π 0.0000 0.9404 0.0000 0.0024

AT 𝛼 𝑀𝐼𝑃, AT 𝛽 𝑀𝐼𝑃 0.0000 0.9523 0.0002 0.0000

AT 𝛼 𝑀𝐼𝑃 Π, AT 𝛽 𝑀𝐼𝑃 Π 0.0000 0.0109 0.0071 0.0000

Gui/TetrisGUI.<init> was the sole member of the highest-ranked cluster, with an IP value

of 17. The second-ranked cluster contained AspectTetris.incomingEvent, a method with

an IP value of 15. Methods AspectTetris.newBlock and AspectTetris.startTetris (both

with IP values of 9) appeared in the third-ranked cluster. Thus, the initialization of the

GUI and the AspectTetris classes included the highest interference potential within the

unmodified program.

 Figure 6 shows suggested best clusterings for program AT 𝛽 based on the IP

metric. Note that the large cluster depicted in Figure 5 appears to be split into two

clusters in Figure 6. The fourth-ranked cluster of model AT 𝛽 𝑀𝐼𝑃, and the fifth-ranked

cluster for model AT 𝛽 𝑀𝐼𝑃 Π had a mean IP of around 4, and included the seeded aspect

advices from SeedAspect. This indicated that modifications to AspectTetris increased IP

values overall, and this overall increase was detected by clustering.

 77

Model AT 𝛼 𝑀𝐼𝑃

Model AT 𝛼 𝑀𝐼𝑃Π

Figure 5. Visualizations of Best IP Clusterings for Program AT 𝛼.

Model AT 𝛽 𝑀𝐼𝑃

Model AT 𝛽 𝑀𝐼𝑃Π

Figure 6. Visualizations of Best IP Clusterings for Program AT 𝛽.

AT with Model 𝑀𝐼𝐶𝑃 (Interference Causality Potential)

 Interference Causality Potential (ICP) counted the number of advices or methods

that called the given advice or method. Because the ICP pattern matrix was the

transposition of the IP pattern matrix, AT 𝛼 𝑀𝐼𝐶𝑃 was 158×158, while AT 𝛽 𝑀𝐼𝐶𝑃 was

 78

166×166. Program AT 𝛼 contained 8 unique values for ICP, while program AT 𝛽

contained 9 unique values for ICP. Table 12 shows the range of K-values tested for 𝐾 in

the SD index analysis.

Table 12. Values of K Tested for AspectTetris Model 𝑀𝐼𝐶𝑃

Model 𝑲𝝁 𝑲𝒎𝒊𝒏 𝑲𝒎𝒂𝒙

AT 𝜶 𝑴𝑰𝑪𝑷 8 2 18

AT 𝜷 𝑴𝑰𝑪𝑷 9 2 19

 Table 13 shows that PCA analysis reduced the dimensions of both the modified

and unmodified program models, and summarizes the value of K for each model.

Interestingly, each model indicated that a very small number of clusters were sufficient to

model the data for vector space model 𝑀𝐼𝐶𝑃. Figure 7 plots SD validity index values for

AT 𝛼, while Figure 8 plots SD validity index values for AT 𝛽.

Table 13. Suggested Numbers of Clusters for AspectTetris Model 𝑀𝐼𝐶𝑃

Model Dim 𝑲∗

AT 𝜶 𝑴𝑰𝑪𝑷 158 3

AT 𝜶 𝑴𝑰𝑪𝑷𝚷 19 3

AT 𝜷 𝑴𝑰𝑪𝑷 166 3

AT 𝜷 𝑴𝑰𝑪𝑷𝚷 20 2

Table 14 shows summary statistics for models based on interference causality

potential, and Table 15 shows p-values for Wilcoxon rank sum tests. All metrics revealed

significant improvements for program AT 𝛽 over AT 𝛼 for the unreduced and reduced

models. D indicated a slight improvement for AT 𝛽 𝑀𝐼𝐶𝑃 over AT 𝛼 𝑀𝐼𝐶𝑃, likely because

the number of clusters tested was the same in both cases. For the reduced models, D was

in favor of AT 𝛼 𝑀𝐼𝐶𝑃Π over AT 𝛽 𝑀𝐼𝐶𝑃Π, which may indicate the latter had clusters of

smaller diameters due to different values for K, though the p-value for this comparison

was within the significant range. RS and DB agreed that program AT 𝛽 had more

dissimilar clusters than program AT 𝛼. SD results also showed more compact and

 79

separated clusters in program AT 𝛽. This indicated strong support for clustering based on

ICP, and indicated its validity as a method for locating the causes of potential

interference within a system.

Figure 7. SD validity index values for the AT α MICP and the AT α MICP Π models.

Figure 8. SD validity index values for the AT β MICP and the AT β MICP Π models.

 80

Table 14. Summary Statistics for AT Model 𝑀𝐼𝐶𝑃 after 100 Runs of K-means++

Measure Model Mean Median Std. Dev.

𝑹𝑺 AT 𝛼 𝑀𝐼𝐶𝑃 0.1429 0.1438 0.2459
 AT 𝛼 𝑀𝐼𝐶𝑃Π 0.1771 0.1703 0.0289

 AT 𝛽 𝑀𝐼𝐶𝑃 0.5228 0.5228 0.0109

 AT 𝛽 𝑀𝐼𝐶𝑃Π 0.5670 0.5670 0.0000

𝑫 AT 𝛼 𝑀𝐼𝐶𝑃 0.3166 0.2887 0.0699
 AT 𝛼 𝑀𝐼𝐶𝑃Π 0.3076 0.2875 0.0394

 AT 𝛽 𝑀𝐼𝐶𝑃 0.3392 0.2887 0.0978

 AT 𝛽 𝑀𝐼𝐶𝑃Π 1.7387 1.7387 0.0000

𝑫𝑩 AT 𝛼 𝑀𝐼𝐶𝑃 1.8277 1.7871 0.4518
 AT 𝛼 𝑀𝐼𝐶𝑃Π 1.3924 1.4508 0.3037

 AT 𝛽 𝑀𝐼𝐶𝑃 1.4478 1.3485 0.3157

 AT 𝛽 𝑀𝐼𝐶𝑃Π 0.1175 0.1175 0.0000

𝑺𝑫 AT 𝛼 𝑀𝐼𝐶𝑃 3.7157 3.7951 0.7810
 AT 𝛼 𝑀𝐼𝐶𝑃Π 3.8371 3.0348 1.3126

 AT 𝛽 𝑀𝐼𝐶𝑃 3.1407 2.8705 0.5994

 AT 𝛽 𝑀𝐼𝐶𝑃Π 2.1401 2.1488 0.3774

Table 15. Wilcoxson Rank Sum Test p-Values for AT ICP Models

 A < B A > B

 RS D DB SD

AT 𝛼 𝑀𝐼𝐶𝑃, AT 𝛼 𝑀𝐼𝐶𝑃Π 0.0000 0.3322 0.0000 0.2187

AT 𝛽 𝑀𝐼𝐶𝑃, AT 𝛽 𝑀𝐼𝐶𝑃Π 0.0000 0.0000 0.0000 0.0000

AT 𝛼 𝑀𝐼𝐶𝑃, AT 𝛽 𝑀𝐼𝐶𝑃 0.0000 0.3548 0.0000 0.0000

AT 𝛼 𝑀𝐼𝐶𝑃 Π, AT 𝛽 𝑀𝐼𝐶𝑃 Π 0.0000 0.0000 0.0000 0.0000

 Figure 9 shows the best ICP clusterings for the unmodified version of the program

based on the clustering with the highest RS value. Both the reduced and unreduced

models produced the same result. These results suggested that the unmodified version of

the program included only a few methods with high ICP. The method with the highest

ICP was generated by the AspectJ code as an implementation of the Singleton pattern.

Aspects/Highscore/Levels.aspectOf had an ICP value of 6, indicating the

Aspects/Highscore/Levels aspect had the highest potential to cause interference

problems.

Figure 10 shows the best ICP clusterings for the modified version of AspectTetris based

on the highest RS value. The highest-ranked cluster contained three bytecode methods in

both AT 𝛽 ICP models, each with an ICP value of 50. All three bytecode methods came

 81

from Aspects/SeedAspect, the aspect added to increase the chance of potential

interference. Therefore, the ICP clustering model correctly detected and identified the

introduction of aspects with high ICP.

Model AT 𝛼 𝑀𝐼𝐶𝑃

Model AT 𝛼 𝑀𝐼𝐶𝑃 Π

Figure 9. Visualizations of Best ICP Clusterings for Program AT 𝛼.

Model AT 𝛽 𝑀𝐼𝐶𝑃

Model AT 𝛽𝑀𝐼𝐶𝑃𝛱

Figure 10. Visualizations of Best ICP Clusterings for Program AT 𝛽.

AT with Model 𝑀𝐶𝐴𝐸 (Coupling on Advice Execution)

 Coupling on Advice Execution (CAE) counted the number of aspects that contain

 82

advices triggered by the advices or methods of a given aspect or class (Ceccato &

Tonella, 2004). CAE was more coarsely grained than either IP or ICP, but was tested to

see whether it was effective for showing potential interference problems at the class or

aspect level. Vector space model 𝑀𝐶𝐴𝐸 was 24×8 for the unmodified version of the

AspectTetris program and 25×9 for the modified version. Table 16 shows that there were

4 unique values for CAE in program AT 𝛼 and 5 unique values for AT 𝛽. Because these

matrices were so small, 𝐾𝑚𝑎𝑥 was set as the maximum possible number for 𝐾 allowed by

the clustering procedure, which was the number of unique vectors in the matrix.

Table 16. Values of K Tested for AspectTetris for Model 𝑀𝐶𝐴𝐸

Model 𝑲𝝁 𝑲𝒎𝒊𝒏 𝑲𝒎𝒂𝒙

AT 𝜶 𝑴𝑪𝑨𝑬 4 2 11

AT 𝜷 𝑴𝑪𝑨𝑬 5 2 12

 Table 17. Suggested Numbers of Clusters for Aspect Tetris Model 𝑀𝐶𝐴𝐸

Model Dim 𝑲∗

AT 𝜶 𝑴𝑪𝑨𝑬 8 3

AT 𝜶 𝑴𝑪𝑨𝑬𝚷 - -

AT 𝜷 𝑴𝑪𝑨𝑬 9 3

AT 𝜷 𝑴𝑪𝑨𝑬𝚷 - -

Figure 11. SD validity index values for the AT α MCAE model.

 83

Figure 12. SD validity index values for the AT β MCAE model.

PCA did not reduce the dimensions of either model. Table 17 details the

dimensions and the values for 𝐾 found by SD index analysis. Figure 11 shows the SD

index values found for program AT 𝛼, while Figure 12 shows SD index values for AT 𝛽.

Table 18 shows summary statistics for models based on coupling on advice

execution, and Table 19 shows p-values for Wilcoxon rank sum testing. When comparing

models AT 𝛼 𝑀𝐶𝐴𝐸 and AT 𝛽 𝑀𝐶𝐴𝐸, all metrics showed slightly better clusterings for

program AT 𝛼. However, rank sum testing showed no significant improvement for the

seeded program. Therefore, CAE does not likely provide good clustering results for

locating advice and weaving interference. The granularity of the CAE metric was at the

class-aspect or aspect-aspect level rather than the advice-advice, advice-method, and

method-method level. Therefore, the coarse granularity hid the details required to show

potential interference problems.

 84

Table 18. Summary Statistics for AT Model 𝑀𝐶𝐴𝐸 after 100 Runs of K-means++

Measure Model Mean Median Std. Dev.

𝑹𝑺 AT 𝛼 𝑀𝐶𝐴𝐸 0.4864 0.4947 0.0266
 AT 𝛽 𝑀𝐶𝐴𝐸 0.4446 0.4437 0.0198

𝑫 AT 𝛼 𝑀𝐶𝐴𝐸 0.5541 0.5774 0.0356
 AT 𝛽 𝑀𝐶𝐴𝐸 0.5371 0.5000 0.0388

𝑫𝑩 AT 𝛼 𝑀𝐶𝐴𝐸 1.1510 0.9707 0.2791
 AT 𝛽 𝑀𝐶𝐴𝐸 1.1679 1.0508 0.2326

𝑺𝑫 AT 𝛼 𝑀𝐶𝐴𝐸 2.9012 2.6136 0.5392
 AT 𝛽 𝑀𝐶𝐴𝐸 2.8078 2.6813 0.4060

Table 19. Wilcoxson Rank Sum Test p-Values for AT CAE Models

 A < B A > B

 RS D DB SD

AT 𝛼 𝑀𝐶𝐴𝐸, AT 𝛽 𝑀𝐶𝐴𝐸 1.0000 0.9992 0.9995 0.3371

 Figure 13 displays the visualizations of the best CAE clustering for program AT

𝛼. The maximum value for CAE was equal to the number of aspects in the system. An

aspect may affect a module many times, but it counts only once toward the CAE total.

This masks the impact of potential interference within a system. For program AT 𝛼 (with

8 aspects), the highest-ranked cluster had classes AspectTetris (CAE=5) and

Gui/TetrisGUI (CAE=5), and aspect Aspects/Highscore/Counter (CAE=2).

Figure 14 shows the best CAE clustering for program AT 𝛽. This clustering

produced an increased mean for each cluster, but the SeedAspect (CAE=1) appeared in

the cluster with the lowest mean. This suggested that introducing an aspect with high ICP

had little effect on CAE modeling, and agreed with the summary statistics suggesting that

the CAE model includes only nominal improvements for the modified program.

 85

Model AT 𝛼 𝑀𝐶𝐴𝐸

Figure 13. Visualizations of Best CAE Clustering for Program AT 𝛼.

Model AT 𝛽 𝑀𝐶𝐴𝐸

Figure 14. Visualization of the Best CAE Clustering for Program AT 𝛽.

 86

AJHotDraw Results

AJHD with Model 𝑀𝐼𝑃 (Interference Potential)

 Following compilation, program AJHD 𝛼 consisted of 3,953 methods and

advices, resulting in 3,953 × 3,953 pattern matrix AJHD 𝛼 𝑀𝐼𝑃. Program AJHD 𝛼

contained 22 unique values for the IP metric. Compilation of the AJHD 𝛽 program

resulted in 4,037 objects, and the 4,037 × 4,037 AJHD 𝛽 𝑀𝐼𝑃 pattern matrix. Program

AJHD 𝛽 contained 25 unique values for the IP metric. Table 20 displays the range of K

values tested for each program during SD analysis to determine 𝐾∗.

Table 20. Values of K Tested for AJHotDraw for Model 𝑀𝐼𝑃

Model 𝑲𝝁 𝑲𝒎𝒊𝒏 𝑲𝒎𝒂𝒙

AJHD 𝜶 𝑴𝑰𝑷 22 2 32

AJHD 𝜷 𝑴𝑰𝑷 25 5 35

 PCA of both versions of the AJHD program dramatically reduced dimensions in

both cases. Pattern matrix AJHD 𝛼 𝑀𝐼𝑃 Π was of size 3,953 × 11, while pattern matrix

AJHD 𝛽 𝑀𝐼𝑃Π was of size 4,037 × 12. Table 21 displays the dimension and chosen value

of K for each vector space model. Figure 15 and Figure 16 show the results of SD

analysis, indicating a value of 𝐾∗ = 3 for model AJHD 𝛼 𝑀𝐼𝑃, 𝐾∗ = 29 for model

AJHD 𝛼 𝑀𝐼𝑃Π, 𝐾∗ = 9 for model AJHD 𝛽 𝑀𝐼𝑃, and 𝐾∗ = 5 for model AJHD 𝛽 𝑀𝐼𝑃 Π.

The high value for 𝐾∗ for model AJHD 𝛼 𝑀𝐼𝑃Π seemed to be an outlier that could

indicate a poor choice of K.

Table 21. Suggested Numbers of Clusters for AJHotDraw Model 𝑀𝐼𝑃

Model Dim 𝑲∗

AJHD 𝜶 𝑴𝑰𝑷 3953 3

AJHD 𝜶 𝑴𝑰𝑷𝚷 11 29

AJHD 𝜷 𝑴𝑰𝑷 4037 9

AJHD 𝜷 𝑴𝑰𝑷𝚷 12 5

 87

Figure 15. SD validity index values for the AJHD α MIP and AJHD α MIP Π models.

Figure 16. SD validity index values for the AJHD β MIP and AJHD β MIP Π models.

 Using the suggested values for K, clustering was completed 100 times and

summary statistics were collected. Table 22 displays the mean, median, and standard

deviations for each metric and each model. Table 23 displays p-values resulting from

Wilcoxon rank sum testing, showing that the DB metric produced no significant results.

 88

Table 22. Summary Statistics for AJHD Model 𝑀𝐼𝑃 after 100 Runs of K-means++

Measure Model Mean Median Std. Dev.

𝑹𝑺 AJHD 𝛼 𝑀𝐼𝑃 0.0453 0.0459 0.0088
 AJHD 𝛼 𝑀𝐼𝑃Π 0.9157 0.9204 0.0173

 AJHD 𝛽 𝑀𝐼𝑃 0.4045 0.4046 0.0055

 AJHD 𝛽 𝑀𝐼𝑃Π 0.8579 0.8592 0.0122

𝑫 AJHD 𝛼 𝑀𝐼𝑃 0.1499 0.1443 0.0387
 AJHD 𝛼 𝑀𝐼𝑃Π 0.0277 0.0273 0.0172

 AJHD 𝛽 𝑀𝐼𝑃 0.1555 0.1543 0.0066

 AJHD 𝛽 𝑀𝐼𝑃Π 0.0850 0.0970 0.0340

𝑫𝑩 AJHD 𝛼 𝑀𝐼𝑃 2.5259 2.4413 0.6527
 AJHD 𝛼 𝑀𝐼𝑃Π 0.6987 0.7042 0.0516

 AJHD 𝛽 𝑀𝐼𝑃 2.5416 2.5124 0.3127

 AJHD 𝛽 𝑀𝐼𝑃Π 0.9446 0.8747 0.2050

𝑺𝑫 AJHD 𝛼 𝑀𝐼𝑃 8.1638 8.2006 1.3024
 AJHD 𝛼 𝑀𝐼𝑃Π 8.5444 8.2301 2.3890

 AJHD 𝛽 𝑀𝐼𝑃 3.9688 3.6904 1.1887

 AJHD 𝛽 𝑀𝐼𝑃Π 1.8476 1.8021 0.2459

Table 23. Wilcoxon Rank Sum Test p-Values for AJHD IP Models

 A < B A > B

 RS D DB SD

AJHD 𝛼 𝑀𝐼𝑃, AJHD 𝛼 𝑀𝐼𝑃Π 0.0000 0.0000 1.0000 0.8794

AJHD 𝛽 𝑀𝐼𝑃, AJHD 𝛽 𝑀𝐼𝑃Π 0.0000 0.0000 1.0000 0.0000

AJHD 𝛼 𝑀𝐼𝑃, AJHD 𝛽 𝑀𝐼𝑃 0.0000 0.0000 0.9444 0.0000

AJHD 𝛼 𝑀𝐼𝑃 Π, AJHD 𝛽 𝑀𝐼𝑃 Π 1.0000 0.5005 0.5005 0.0000

Metric mean scores seemed to indicate improved clusterings in both PCA reduced

models, except by the SD metric. The RS and D metrics produced significant results for

the AJHD 𝛼 𝑀𝐼𝑃Π and AJHD 𝛽 𝑀𝐼𝑃Π models over the unreduced models, while the SD

index showed a significant result for only the AJHD 𝛽 𝑀𝐼𝑃Π model. Model AJHD 𝛽 𝑀𝐼𝑃

showed a significant result over AJHD 𝛼 𝑀𝐼𝑃 in the RS, D, and SD metrics. Only the SD

metric showed a significant result for AJHD 𝛽 𝑀𝐼𝑃Π over AJHD 𝛼 𝑀𝐼𝑃Π.

Mean RS values indicated that AJHD 𝛽 𝑀𝐼𝑃Π contained the most dissimilar

clustering, while DB indicated that AJHD 𝛼 𝑀𝐼𝑃Π was the most dissimilar. Note that the

mean RS value for AJHD 𝛼 𝑀𝐼𝑃 was very low, indicating similar clusterings, and

possibly suggesting that the chosen value for K was too low. The mean values for Dunn’s

index were lower than those in the AT IP results. This again shows that Dunn’s index

was quite susceptible to the diameter of the clusters, since the larger AJHD program

 89

would contain larger-diameter clusters than the smaller AT program.

Model AJHD 𝛼 𝑀𝐼𝑃

Model AJHD 𝛼 𝑀𝐼𝑃𝛱

Figure 17. Visualizations for Program AJHD 𝛼 IP Models.

Model AJHD 𝛽 𝑀𝐼𝑃

Model AJHD 𝛽 𝑀𝐼𝑃𝛱

Figure 18. Visualizations for Program AJHD 𝛽 IP Models.

 Visualizations of the best clustering (based on the RS value) appear in Figure 17

and Figure 18. Notice that the unmodified versions of AJHD produced a cluster with

many objects, with a mean IP value of 1.233 in the unreduced model, and a mean IP

 90

value of 0.977 in the reduced model. The seeded versions of the program showed that the

large cluster from the unmodified version of the program split into multiple clusters in the

modified version. This suggested that the seeded advices raised the IP value of many of

the methods slightly, and this fact was detected by the clustering. The lowest-ranked

cluster in both AJHD 𝛽 clusterings contained a mean IP of 0.319, while the next cluster

had mean IP values of around 5. The same phenomenon occurred in the IP models of the

AT program, which demonstrates that the IP clustering method is scalable to large

programs with similar behavior.

 When looking more closely at the resulting clusters, an anomaly was noted.

Unlike the AT program, the method with the highest IP value did not appear in the

highest-ranked cluster in all cases. The

org/jhotdraw/samples/javadraw/JavaDrawApp.createTools method had the highest IP

value (IP=30 in the unmodified version and IP=33 in the modified version). Interestingly,

this method appeared in the highest ranked cluster only in the AJHD 𝛽 𝑀𝐼𝑃 model. It

appeared in the lowest ranked clusters for both the AJHD 𝛼 𝑀𝐼𝑃 and AJHD 𝛽 𝑀𝐼𝑃Π

models, and a moderately ranked cluster for the AJHD 𝛼 𝑀𝐼𝑃Π model. This indicated that

the clustering was less effective in pinpointing the method with the highest IP in the

larger scale AJHD program than the smaller AT program. This may be further evidence

that the chosen value of K was too low for some of the clusterings.

AJHD with Model 𝑀𝐼𝐶𝑃 (Interference Causality Potential)

 Because 𝑀𝐼𝐶𝑃 came directly from the transposition of 𝑀𝐼𝑃, pattern matrices were

of the same sizes: 3,953 × 3,953 for AJHD 𝛼, and 4,037 × 4,037 for AJHD 𝛽. Program

AJHD 𝛼 produced 33 unique values for the ICP metric, while AJHD 𝛽 produced 37

 91

unique values. Table 24 details the values of K used to determine 𝐾∗.

Table 24. Values of K Tested for AJHotDraw Model 𝑀𝐼𝐶𝑃

Model 𝑲𝝁 𝑲𝒎𝒊𝒏 𝑲𝒎𝒂𝒙

AJHD 𝜶 𝑴𝑰𝑪𝑷 33 2 43

AJHD 𝜶 𝑴𝑰𝑪𝑷 𝚷 33 13 43

AJHD 𝜷 𝑴𝑰𝑪𝑷 37 17 47

 PCA reduced the dimension of both models. AJHD 𝛼 𝑀𝐼𝐶𝑃Π included only 11

dimensions, while model AJHD 𝛽 𝑀𝐼𝐶𝑃Π included only 12 dimensions. Table 25 shows

the dimensionality reduction, and the chosen values for K in each model. Note that model

AJHD 𝛼 𝑀𝐼𝐶𝑃 suggested a small number of clusters, while other models indicated a value

for 𝐾∗ between 28 and 30. This again seemed to suggest a problem with the chosen value

for K. Figure 19 shows the SD analysis for AJHD 𝛼, while Figure 20 shows SD analysis

plots for AJHD 𝛽.

Table 25. Suggested Numbers of Clusters for AJHotDraw Model 𝑀𝐼𝐶𝑃

Model Dim 𝑲∗

AJHD 𝜶 𝑴𝑰𝑪𝑷 3953 3

AJHD 𝜶 𝑴𝑰𝑪𝑷𝚷 11 28

AJHD 𝜷 𝑴𝑰𝑪𝑷 4037 30

AJHD 𝜷 𝑴𝑰𝑪𝑷𝚷 12 24

Figure 19. SD validity index values for the AJHD α MICP and AJHD α MICP Π models.

 92

Figure 20. SD validity index values for the AJHD β MICP and AJHD β MICP Π models.

 Table 26 shows summary statistics following 100 runs of AJHD program

clustering. Table 27 includes Wilcoxon rank sum test p-values for comparisons. The

mean RS score for AJHD 𝛼 𝑀𝐼𝐶𝑃 was significantly lower than RS scores for the other

three models, suggesting that the clusters are very similar, likely because of the low

number of clusters. The Dunn index indicated a different result, suggesting AJHD 𝛼 𝑀𝐼𝐶𝑃

produced the best cluster configuration. This again implied that Dunn’s index could

produce different values depending upon the number and the diameter of clusters. Both

the DB and SD metrics indicated that AJHD 𝛼 𝑀𝐼𝐶𝑃Π produced the best clustering.

Rank sum testing showed significant shifts in RS, DB, and SD from the AJHD

𝛼 𝑀𝐼𝐶𝑃 model to its PCA-reduced version. RS and DB showed significant results when

comparing AJHD 𝛽 𝑀𝐼𝐶𝑃 to its PCA-reduced version. Note that only RS produced a

significant result from the non-reduced AJHD 𝛼 model to the AJHD 𝛽 model, while RS

and D showed significant shifts from the reduced AJHD 𝛼 model to the AJHD 𝛽 model.

These mixed results seemed to further suggest a problem with the chosen value of K.

 93

Table 26. Summary Statistics for AJHD Model 𝑀𝐼𝐶𝑃 after 100 Runs of K-means++

Measure Model Mean Median Std. Dev.

𝑹𝑺 AJHD 𝛼 𝑀𝐼𝐶𝑃 0.0487 0.0519 0.0080
 AJHD 𝛼 𝑀𝐼𝐶𝑃Π 0.9433 0.9442 0.0039

 AJHD 𝛽 𝑀𝐼𝐶𝑃 0.6092 0.6090 0.0018

 AJHD 𝛽 𝑀𝐼𝐶𝑃Π 0.9886 0.9888 0.0009

𝑫 AJHD 𝛼 𝑀𝐼𝐶𝑃 0.2801 0.2148 0.1733
 AJHD 𝛼 𝑀𝐼𝐶𝑃Π 0.0071 0.0063 0.0045

 AJHD 𝛽 𝑀𝐼𝐶𝑃 0.1395 0.1367 0.0099

 AJHD 𝛽 𝑀𝐼𝐶𝑃Π 0.0098 0.0090 0.0066

𝑫𝑩 AJHD 𝛼 𝑀𝐼𝐶𝑃 1.8461 1.8156 0.8192
 AJHD 𝛼 𝑀𝐼𝐶𝑃Π 0.5770 0.5738 0.0610

 AJHD 𝛽 𝑀𝐼𝐶𝑃 2.2853 2.2822 0.2501

 AJHD 𝛽 𝑀𝐼𝐶𝑃Π 0.6264 0.6171 0.0789

𝑺𝑫 AJHD 𝛼 𝑀𝐼𝐶𝑃 20.8518 16.9494 6.7815
 AJHD 𝛼 𝑀𝐼𝐶𝑃Π 16.8257 16.9193 4.4700

 AJHD 𝛽 𝑀𝐼𝐶𝑃 29.3368 28.8259 4.0288

 AJHD 𝛽 𝑀𝐼𝐶𝑃Π 31.1787 26.9978 13.1705

Table 27. Wilcoxon Rank Sum Test p-Values for AJHD ICP Models

 A < B A > B

 RS D DB SD

AJHD 𝛼 𝑀𝐼𝐶𝑃, AJHD 𝛼 𝑀𝐼𝐶𝑃Π 0.0000 1.0000 0.0000 0.0001

AJHD 𝛽 𝑀𝐼𝐶𝑃, AJHD 𝛽 𝑀𝐼𝐶𝑃Π 0.0000 1.0000 0.0000 0.1139

AJHD 𝛼 𝑀𝐼𝐶𝑃, AJHD 𝛽 𝑀𝐼𝐶𝑃 0.0000 1.0000 1.0000 1.0000

AJHD 𝛼 𝑀𝐼𝐶𝑃 Π, AJHD 𝛽 𝑀𝐼𝐶𝑃 Π 0.0000 0.0002 1.0000 1.0000

 Figure 21 shows the clusterings that produced the highest RS value for AJHD 𝛼.

The highest-ranked cluster in both the reduced and unreduced models contained the

method with the highest ICP: org/jhotdraw/framework/FigureEnumeration.hasNextFigure

(ICP=107).

Figure 22 shows clusterings that produced the highest RS values for AJHD 𝛽.

Note the dramatic increase in the size of the highest-ranked cluster. In both cases, this

cluster contained the three bytecode methods that resulted from

org/jhotdraw/SeedAspect: the before and after advice, and the aspectOf method, each

with an ICP value of 1,990. This shows that, like the small-scale AspectTetris program,

the clustering algorithm with the ICP metric was able to detect and identify the methods

with the potential to cause interference problems within a program.

 94

Model AJHD 𝛼 𝑀𝐼𝐶𝑃

Model AJHD 𝛼 𝑀𝐼𝐶𝑃𝛱

Figure 21. Visualizations for Program AJHD 𝛼 for ICP Models.

Model AJHD 𝛽 𝑀𝐼𝐶𝑃

Model AJHD 𝛽 𝑀𝐼𝐶𝑃𝛱

Figure 22. Visualizations for Program AJHD 𝛽 for ICP Models.

AJHD with Model 𝑀𝐶𝐴𝐸 (Coupling on Advice Execution)

 AJHD 𝛼 included 396 classes and 31 aspects, resulting in a pattern matrix of size

427 × 31. AJHD 𝛽 included 407 classes and 32 aspects, resulting in a pattern matrix of

 95

size 439 × 32. There were 5 unique values for CAE in program AJHD 𝛼, and 6 unique

values in program AJHD 𝛽. Table 28 details the values of K tested using SD analysis to

determine the value of 𝐾∗ during the clustering phase.

Table 28. Values of K Tested for AJHotDraw Model 𝑀𝐶𝐴𝐸

Model 𝑲𝝁 𝑲𝒎𝒊𝒏 𝑲𝒎𝒂𝒙

AJHD 𝜶 𝑴𝑪𝑨𝑬 5 2 15

AJHD 𝜷 𝑴𝑪𝑨𝑬 6 2 16

 PCA reduced the dimensions of the pattern matrices to 427 × 6 for AJHD

𝛼 𝑀𝐶𝐴𝐸Π and 439 × 7 for AJHD 𝛽 𝑀𝐶𝐴𝐸Π. Table 29 shows the suggested values of K

determined by SD analysis, ranging between 2 and 10. Figure 23 and Figure 24 plot the

SD results for each of the models tested.

Table 29. Suggested Numbers of Clusters for AJHotDraw Model 𝑀𝐶𝐴𝐸

Model Dim 𝑲∗

AJHD 𝜶 𝑴𝑪𝑨𝑬 31 8

AJHD 𝜶 𝑴𝑪𝑨𝑬𝚷 6 10

AJHD 𝜷 𝑴𝑪𝑨𝑬 32 2

AJHD 𝜷 𝑴𝑪𝑨𝑬𝚷 7 6

Figure 23. SD validity index values for the AJHD α MCAE and AJHD α MCAE Π models.

 96

Figure 24. SD validity index values for the AJHD β MCAE and AJHD β MCAE Π models.

 Table 30 displays summary statistics following 100 runs of the clustering

algorithm. The RS index and DB index both indicated an advantage for AJHD

𝛼 𝑀𝐶𝐴𝐸Π—suggesting that it had the most dissimilar clusters. Metric D gave only a slight

advantage to model AJHD 𝛼 𝑀𝐶𝐴𝐸, while SD gave a slight advantage to AJHD 𝛽 𝑀𝐶𝐴𝐸Π.

These results seemed to indicate an unremarkable effect on the CAE metric when adding

the seeded potential for interference.

Table 30. Summary Statistics for AJHD Model 𝑀𝐶𝐴𝐸 after 100 Runs of K-means++

Measure Model Mean Median Std. Dev.

𝑹𝑺 AJHD 𝛼 𝑀𝐶𝐴𝐸 0.5705 0.5727 0.0196
 AJHD 𝛼 𝑀𝐶𝐴𝐸Π 0.9322 0.9291 0.0173

 AJHD 𝛽 𝑀𝐶𝐴𝐸 0.2439 0.2074 0.0598

 AJHD 𝛽 𝑀𝐶𝐴𝐸Π 0.7884 0.8287 0.1273

𝑫 AJHD 𝛼 𝑀𝐶𝐴𝐸 0.5428 0.5000 0.0553
 AJHD 𝛼 𝑀𝐶𝐴𝐸Π 0.4523 0.4709 0.0693

 AJHD 𝛽 𝑀𝐶𝐴𝐸 0.4202 0.4472 0.0339

 AJHD 𝛽 𝑀𝐶𝐴𝐸Π 0.3097 0.2862 0.0756

𝑫𝑩 AJHD 𝛼 𝑀𝐶𝐴𝐸 1.2920 1.2503 0.1767
 AJHD 𝛼 𝑀𝐶𝐴𝐸Π 0.4578 0.4409 0.0524

 AJHD 𝛽 𝑀𝐶𝐴𝐸 1.1253 1.1747 0.1416

 AJHD 𝛽 𝑀𝐶𝐴𝐸Π 0.6289 0.5854 0.1067

𝑺𝑫 AJHD 𝛼 𝑀𝐶𝐴𝐸 4.5087 4.4479 0.7666
 AJHD 𝛼 𝑀𝐶𝐴𝐸Π 3.1828 2.8854 0.6783

 AJHD 𝛽 𝑀𝐶𝐴𝐸 2.7939 2.9368 0.2776

 AJHD 𝛽 𝑀𝐶𝐴𝐸Π 2.2500 2.1674 0.3120

 97

 Table 31 displays p-values for Wilcoxon rank sum testing. The RS index showed

significant results between the unreduced and reduced models, but no significant results

between the unmodified and the modified versions of the program. Dunn’s index

produced no significant results. The DB metric showed significant results on all except

the unmodified reduced matrix to the modified reduced matrix. The SD index showed

significant improvements to all four clustering hypotheses.

Table 31. Wilcoxon Rank Sum Test p-Values for AJHD CAE Models

 A < B A > B

 RS D DB SD

AJHD 𝛼 𝑀𝐶𝐴𝐸, AJHD 𝛼 𝑀𝐶𝐴𝐸Π 0.0000 1.0000 0.0000 0.0000

AJHD 𝛽 𝑀𝐶𝐴𝐸, AJHD 𝛽 𝑀𝐶𝐴𝐸Π 0.0000 1.0000 0.0000 0.0000

AJHD 𝛼 𝑀𝐶𝐴𝐸, AJHD 𝛽 𝑀𝐶𝐴𝐸 1.0000 1.0000 0.0000 0.0000

AJHD 𝛼 𝑀𝐶𝐴𝐸 Π, AJHD 𝛽 𝑀𝐶𝐴𝐸 Π 1.0000 1.0000 1.0000 0.0000

Model AJHD 𝛼 𝑀𝐶𝐴𝐸

Model AJHD 𝛼 𝑀𝐶𝐴𝐸𝛱

Figure 25. Visualizations for Program AJHD 𝛼 for CAE Models.

 When comparing CAE clusterings visually, no remarkable changes were noted

between AJHD 𝛼 (Figure 25) and AJHD 𝛽 (Figure 26). The highest-ranked clusters in all

cases contained the objects with the highest CAE:

org/jhotdraw/standard/AbstractCommand (CAE=5 in AJHD 𝛼 and CAE=6 in AJHD 𝛽).

 98

This was more difficult to discern in the visualization produced by AJHD 𝛽 𝑀𝐶𝐴𝐸,

because the cluster with the largest number of objects had the highest rank. This

suggested that a larger number of clusters would have produced a more remarkable result.

In addition, the AbstractCommand class contained approximately 125 bytecode methods.

Because the metric hid the details of the interaction, it was unable to pinpoint the advice

or method with the highest potential for interference.

Model AJHD 𝛽 𝑀𝐶𝐴𝐸

Model AJHD 𝛽 𝑀𝐶𝐴𝐸𝛱

Figure 26. Visualizations for Program AJHD 𝛽 for CAE Models.

Summary of Results

 This section discusses overall results of this work, and addresses each of the

research questions posed. Evidence from the data collected and presented in this chapter

provides the foundation for this section. Table 32 summarizes statistical improvements

shown throughout this chapter, and is used here to discuss the overall results.

Overall Impressions

 The results presented in this chapter produced three interesting observations. First,

determining the value of K by using the SD index produced variable results, especially in

 99

the large program. For example, both Table 21 and Table 25 noted both high and low

values for K in the same vector space. This could indicate that the range of K values

tested needed to be adjusted to determine if a better value for K existed. Multiple runs of

the SD index analysis could produce different values for K. SD index values could vary

because the k-means algorithm assigns objects to a given cluster center by attempting to

locate the lowest within cluster sum of squares. The algorithm repeatedly reassigns

objects to other clusters until no lower clustering can be found. Thus, the nature of the k-

means assignment step could produce different clusterings and different values for the SD

index. Therefore, because of the range of values tested and the variability of the SD

index, the values of K found in this study may not be the best overall values for K.

Table 32. Summary of Statistics Showing Significant Improvements

 RS D DB SD

AT 𝛼 𝑀𝐼𝑃, AT 𝛼 𝑀𝐼𝑃Π X X X

AT 𝛽 𝑀𝐼𝑃, AT 𝛽 𝑀𝐼𝑃Π X X X

AT 𝛼 𝑀𝐼𝑃, AT 𝛽 𝑀𝐼𝑃 X X X

AT 𝛼 𝑀𝐼𝑃 Π, AT 𝛽 𝑀𝐼𝑃 Π X X X

AT 𝛼 𝑀𝐼𝐶𝑃, AT 𝛼 𝑀𝐼𝐶𝑃Π X X

AT 𝛽 𝑀𝐼𝐶𝑃, AT 𝛽 𝑀𝐼𝐶𝑃Π X X X X

AT 𝛼 𝑀𝐼𝐶𝑃, AT 𝛽 𝑀𝐼𝐶𝑃 X X X

AT 𝛼 𝑀𝐼𝐶𝑃 Π, AT 𝛽 𝑀𝐼𝐶𝑃 Π X X X X

AT 𝛼 𝑀𝐶𝐴𝐸, AT 𝛽 𝑀𝐶𝐴𝐸

AJHD 𝛼 𝑀𝐼𝑃, AJHD 𝛼 𝑀𝐼𝑃Π X X

AJHD 𝛽 𝑀𝐼𝑃, AJHD 𝛽 𝑀𝐼𝑃Π X X X

AJHD 𝛼 𝑀𝐼𝑃, AJHD 𝛽 𝑀𝐼𝑃 X X X

AJHD 𝛼 𝑀𝐼𝑃 Π, AJHD 𝛽 𝑀𝐼𝑃 Π X

AJHD 𝛼 𝑀𝐼𝐶𝑃, AJHD 𝛼 𝑀𝐼𝐶𝑃Π X X X

AJHD 𝛽 𝑀𝐼𝐶𝑃, AJHD 𝛽 𝑀𝐼𝐶𝑃Π X X

AJHD 𝛼 𝑀𝐼𝐶𝑃, AJHD 𝛽 𝑀𝐼𝐶𝑃 X

AJHD 𝛼 𝑀𝐼𝐶𝑃 Π, AJHD 𝛽 𝑀𝐼𝐶𝑃 Π X X

AJHD 𝛼 𝑀𝐶𝐴𝐸, AJHD 𝛼 𝑀𝐶𝐴𝐸Π X X X

AJHD 𝛽 𝑀𝐶𝐴𝐸, AJHD 𝛽 𝑀𝐶𝐴𝐸Π X X X

AJHD 𝛼 𝑀𝐶𝐴𝐸, AJHD 𝛽 𝑀𝐶𝐴𝐸 X X

AJHD 𝛼 𝑀𝐶𝐴𝐸 Π, AJHD 𝛽 𝑀𝐶𝐴𝐸 Π X

 Second, the use of Dunn’s index as a metric for comparing clusters seems

inadequate—especially when the values of K differed among the clusterings compared.

Table 32 shows that Dunn’s index produced significant results in approximately 29% of

the cases tested (6 of 21), while the other metrics showed significant results at a much

 100

higher rate (approximately 81% for RS, 71% for SD, and 62% for DB). Because Dunn’s

index relied heavily on cluster diameter, the value of K played an important part in the

metric. Thus, in analyses where K differs among clusterings being compared, Dunn’s

index is not a good choice to show validity among the groups of clusterings.

 Third, PCA reduction was successful in 28 of the 40 cases tested (~70%) (Table

32). The CAE metric produced the highest rate of significant results for PCA reduction (6

of 8 or 75%). However, the CAE vector space model for AspectTetris resulted in no

dimensionality reductions, which skews the result. Both the IP and ICP models showed

significant results in 11 of 16 (~69%) of the cases tested. Therefore, the use of PCA

reduction may help to increase the efficiency of this type of static analysis.

Evaluation of the IP and ICP Metrics

 The first research question asked whether new fine-grained metrics could

adequately describe the potential for aspect interference. The two new metrics defined in

this study were the interference potential of an object (IP), and the interference causality

potential for an object (ICP). IP counted the number of methods or advices called by the

given method. ICP counted the number of methods or advices that interacted with the

given method. Because no other fine-grained aspect coupling metrics existed, the study

compared results to the CAE (coupling on advice execution) metric, which described the

number of aspects that affected a given class or aspect.

 Evidence presented in this study indicated that IP and ICP were adequate for

describing method-method, advice-method, and advice-advice interactions. Across both

programs tested, each metric produced significant results a total of 42 of 64 times (65%)

(Table 32). When considering improvements from the unmodified version of the program

 101

to the modified version, each metric produced significant results 10 of 16 times (63%)

(Table 32). The similar results may reflect the two metrics’ complementary nature. When

viewing the resulting clusters, introducing SeedAspect to each program produced more

meaningful clusterings with the ICP metric. While IP clusterings seemed to divide the

largest cluster in the unmodified programs into smaller clusters in the modified programs,

the ICP clusterings showed dramatic increases in the highest-ranked clusters. This

highlights the difficulty of ensuring a high IP without manually creating a method that

invokes many other methods. Thus, while results showed that both ICP and IP changed in

a program with an increased possibility for aspect interference, ICP showed a more

dramatic effect.

 CAE clusterings showed improvements in 45% (9 of 20) of the cases tested, but

only 3 of 12 (25%) of cases from the unmodified version to the modified version of the

programs (Table 32). This agreed with the assessment that a coarsely grained metric such

as CAE was inadequate for locating potential interference, and strengthened the case for

the IP and ICP metrics.

The Use of Clustering Analysis to Detect Aspect Interference Potential

 The second research question asked whether clustering analysis was a viable tool

for detecting potential aspect interference within an aspect-oriented program. The clusters

resulting from both the IP and ICP metrics show improved dissimilarity between the

unmodified and the modified versions of the program 20 of 32 times (63%) (Table 32).

This suggested that the modified versions of the program containing increased

interference potential successfully affected the clusterings. Viewing clusters visually

showed marked changes in both the IP and ICP clusterings for each application,

 102

indicating that the potential for aspect interference was detectable by clustering analysis.

The follow-up to this question asked whether clustering could locate both the potential to

cause interference and the methods or advices that may be the victims of interference

problems. Analysis of the clusters showed that the object with the highest ICP value

always appeared in the highest-ranked cluster. However, the object with the highest IP

values did not necessarily appear in the highest-ranked cluster. While evidence indicated

that clustering detected both items with the potential to interfere (IP) and the potential to

be interfered with (ICP), clustering revealed objects with high ICP more directly.

However, recall that the IP metric was more difficult to test because it would require

many method calls from a single method. Therefore, further testing of the IP metric will

be required to ensure that clustering was viable for methods or advices with the highest

interference potential.

The third research question dealt with the study’s scalability, asking whether

clustering analysis scaled to a larger-scale program. The summary in Table 32 shows

statistically significant results in 25 of 36 cases (69%) for the AT program. AJHD, the

larger program, showed significant results in 26 of 48 cases (54%). When excluding CAE

results, program AT produced 25 of 32 (78%) significant outcomes, while program

AJHD produced only 17 of 32 (53%) significant outcomes. This suggests that the larger

program had lower-quality clusterings than the smaller program. Recall that the value for

K may have been poor in some cases due to the variability in the SD index. This

phenomenon was most clearly evident in the AJHD program, which produced outlier

values for K in both the ICP and IP models. AJHD model clustering metrics may have

trended down in cases where K was not optimal, resulting in fewer significant results.

 103

Chapter 5

Conclusions, Implications, Recommendations, and Summary

Conclusions

 This dissertation sought to collect fine-grained coupling metrics from the woven

bytecode of an AspectJ program and use them to pinpoint areas where aspect interference

problems may occur. Data collected using two new fine-grained aspect coupling

metrics—interference potential and interference causality potential—as well as a classic

coarse-grained aspect coupling metric—coupling on advice execution—provided the

framework for vector space models that fed into the k-means++ clustering algorithm.

Collecting statistics and analyzing resulting clusters led to the following conclusions.

 First, the clustering methodology used in this work needs improvement. The

results indicated that the optimal value for K might not have been located in all cases.

Therefore, using another method to locate a better value for K is recommended. One

possibility, noted in the results, was that the range of K values used in SD analysis was

not broad enough. This study based this range on the number of unique values for the

metric described by the vector space model. Other methods for finding a range of K

values to test may improve the clustering results. In addition, the results showed the

irregular nature of the SD index for determining K. Because of the fluctuations in the SD

index, using a different technique may also improve results.

 Second, the use of a fine-grained metric over a coarsely grained metric was

essential for pinpointing potential advice and weaving interference. Results showed that

 104

both the IP and ICP metric models produced higher rates of significant results than CAE

metric models. This was because coupling at the class/aspect level excluded essential

details required for determining precisely where an interference problem could manifest

or originate. Using finer-grained metrics like IP and ICP allowed a much more accurate

picture of where interference problems might exist. Though this study suggested a more

meaningful result in ICP clusterings, IP clusterings clearly changed as a result of

increased interference potential. This lent to the credibility of both IP and ICP as aspect

coupling metrics.

 The study of the IP metric was limited by the difficulty of creating a method with

high IP. To effectively raise the IP of a single method, one must alter the code of the

method to call many methods. Given the size of the programs used in this work, altering

methods in this manner was not performed. This limitation also presents a weakness in

the results of the IP clustering. Future research should perform a more thorough

examination of IP clustering models and ensure that a high IP method exists in the

studied system.

Implications

 This was the first known study to attempt to locate aspect interference via code

analysis since D’Ursi, Cavallaro, and Monga (2007). D’Ursi, Cavallaro, and Monga

(2007) used simple program slicing as a method for locating interference problems in

code, but found it ineffective. Still, these authors maintained that other static code

analysis techniques had value. The current study confirms the implication that locating

potential interference problems with static code analysis is possible (D'Ursi et al., 2007).

 This study showed that static bytecode analysis using clustering could pinpoint

 105

methods or advices with high ICP. The clustering analysis also detected changes in IP

clusterings when methods having high ICP were introduced into the code. IP clusterings

were less conclusive than ICP clusterings because of the limitations of introducing a

method with a high IP. Despite this limitation, this work provided a solid foundation for

future research using clustering analysis to locate potential interference problems.

This study also showed that fine-grained metrics like IP and ICP produced more

meaningful results that older, coarsely grained aspect coupling metrics. The IP and ICP

metrics represented the potential for both weaving interference (an advice’s effect on

class code) and advice interference (an advice’s effect on other advices). The CAE metric

showed very small changes in clusterings, especially in the smaller program. This

indicated that coarse-grained metrics hid the details of coupling required to show advice

and weaving interference. Therefore, fine-grained metrics were essential for completing

this work because detecting potential interference problems at the advice and method

levels was otherwise impossible.

Finally, this was the first known study to introduce a zoomable visualization

technique for presenting clusters related to code. Previous studies such as Dietrich et al.

(2008) and Cassell et al. (2011) used dependency graphs to display clustering results. A

zoomable format shifted the viewer’s focus to individual clusters that involved high

interference potential, and opened the door to future studies that use this technique.

Recommendations

 Previous sections detailed future research gleaned from the results of this study.

While these opportunities are important, they involve a narrow scope. Other research

opportunities with a broader scope also exist.

 106

 Because this study analyzed compiled AspectJ programs rather than source code,

several interesting features were noted. The AspectJ compiler, to accommodate the

different types of advice, sometimes split a single class into multiple bytecode classes.

Only one study tracked the way AspectJ weaves code at compile-time (Hilsdale &

Hugunin, 2004). Because of this, several prospects for future research exist. First,

modernizing the work of Hilsdale and Hugunin (2004) to discover new join point

shadows in Java bytecode is worthwhile. This would be useful because the IP and ICP

metrics presented in the current study came directly from bytecode. A better

understanding of the compilation and weaving process would allow a mapping between

the IP and ICP bytecode metrics and the original source code. Using IP and ICP as source

code metrics would likely make more sense to programmers, and would allow for more

meaningful visualizations that clear out additional objects added by AspectJ compilation.

Second, no known studies have determined whether the conversion of source code to

bytecode by the AspectJ compiler increases the chances of aspect interference. Some of

the decisions made during compilation and weaving may unintentionally increase the

potential for aspect interference. Thus, studying the effects of the compiler itself on

aspect interference is worthy of future study.

 Another broad area for future research involves the use of clustering analysis to

locate potential interference problems. While previous sections noted the need to improve

upon the clustering techniques presented in this study, other opportunities exist. This

dissertation showed that vector space modeling provided additional detail resulting in

improvements in clusterings. Determining whether vector space models provided the best

clusterings remains unseen. Thus, comparative studies with simple metric-based

 107

clustering using k-means, hierarchical, or model-based clustering techniques using the IP

and ICP metrics is worth investigation.

 One should also note that the IP and ICP metrics were simple counts of

interactions among methods and advices. Using simple counts in any study increases the

difficulty of making comparisons because they depend so heavily on the program size.

Therefore, future research may suggest modification of these metrics to make them easier

to compare across programs. For example, by converting the metrics to a ratio of the

current metric value to the maximum metric value in a system, one could then compare

percentages between programs.

 This study was limited to detecting advice and weaving interference as defined by

Tian, Cooper, Zhang, and Liu (2010), and did not account for introduction interference.

Advice interference involves problems resulting from advices that interact at a common

join point, while weaving interference may result in violations of the expected system

structure and flow. Introduction interference occurs when an aspect adds or deletes

features from the program. The introduced metrics were unable to detect introduction

interference. Thus, new metrics and techniques that account for introduction interference

is another useful area of exploration.

 Finally, this research introduced a zoomable visualization technique for

illustrating clusters that was not studied thoroughly. While it would seem an effective

way for programmers to analyze potential aspect interference, empirical study is

necessary. Performing a human-computer interaction analysis of the clustering

visualizations presented in this dissertation will help understand how programmers

interact with and understand the clustering results, and provide insight into possible

 108

improvements.

Summary

 This dissertation discussed the history of object-oriented design, noting that the

focus on functional decomposition design methodologies resulted in non-functional

elements to be scattered throughout class code. Aspect-oriented programming (AOP)

introduced a way to extract these scattered elements, known as crosscutting concerns,

into a single encapsulation that wove concerns back into the class code where needed.

The encapsulation, called an aspect, included point cuts that defined weaving locations

generically and advice that was inserted before, after, or around a weaving location. Since

point cuts are generic, they could cause semantic problems that were not readily apparent

to programmers. At runtime, woven code may exhibit unexpected changes in the intended

flow of the program. These unexpected changes were termed aspect interference.

 This study sought to address the problem that computer practitioners had no way

to fully conceptualize aspect interference that may exist in a program under development.

Most interference research wanted to shield a program from the problems created when

aspect interference occurs. Design-time techniques attempted to prevent interference

problems before implementation began by formally defining a program to be

interference-free. Other techniques required specific definitions within the code that

prevented interference at execution time. All of these techniques required programmers to

understand locations within the system that were most vulnerable to interference. Thus,

the goal of this study was to give programmers a better understanding of potential

interference by static code analysis.

 109

 A review of the literature showed that the definition of aspect interference has

changed over time from a broad definition of interactions between aspects, to one that

includes more details. Defining advice interference, weaving interference, and

introduction interference gave a stronger foundation for studying interference problems.

Introduction interference was left to future research because it involved an aspect that

added or removed elements from a program and was beyond the scope of this study. Both

advice and weaving interference dealt with interacting elements at the advice-advice,

advice-method, and method-method granularities.

 Such fine-grained interactions required fine-grained metrics. A review of existing

aspect coupling metrics found that few metrics existed with such a small granularity. A

study by Zhao (2004) mentioned advice-method and method-method interactions as

separate metrics. However, this did not allow for the level of detail required in this work.

Therefore, two new metrics—the interference potential of an object (IP) and the

interference causality potential for an object (ICP)—provided a way to count all items

(methods and advices) that call or were called by a method or advice.

 Research in program refactoring showed that clustering analysis techniques had

promise. In the OOP world, clustering was used to determine possible refactoring

opportunities. In AOP research, clustering was used to locate potential crosscutting

concerns in class code, allowing programmers to pull them into aspects. No existing

studies used clustering analysis to locate areas of an existing AOP program where aspect

interference problems might occur.

 Creating a clustering technique for interference analysis required several steps.

First, because the study was interested in potential interference after weaving, compiling

 110

the program to bytecode was necessary. Following conversion, a Ruby parser reviewed

the bytecode to identify objects (classes, aspects, methods, and advices) and the

interactions among them. The parsing results were fashioned into pattern matrices: one

denoting the IP/ICP of each object, and another denoting the coupling on advice

execution (CAE). PCA reduction removed excess noise in the data, and reduced the

number of dimensions in most cases. To determine the value of K for use in the k-

means++ clustering algorithm, the study reviewed SD index results across several

potential values of K. K was chosen where the SD index was minimized. The k-means++

algorithm was run 100 times for each model with the chosen K, and statistics and

clusterings were retained. The R-Squared (RS), Dunn, Davies-Bouldin, and SD indexes

were collected for each run, and the mean, median and standard deviations were recorded

for each index. Comparisons among runs involved using one-tailed Wilcoxon rank sum

testing to determine significant results. Wilcoxon tests determined whether the reduced

models produced better results than the non-reduced models and whether the seeded

program produced better clustering results than the original program.

 To understand the clustering results, the clustering from each model with the

highest RS value was selected for visualization. In the literature, clustering visualizations

used simple dependency graphs as in the work of Dietrich et al. (2008) and Cassell et al.

(2011). Some AOP visualization studies showed interactions among aspects and

joinpoints, including Yin, Bockisch, and Aksit (2012) and Yin (2013), but none had

combined clustering visualization and interaction visualization. Fabry et al. (2011)

produced a zoomable interface that allowed closer inspection program elements. The idea

of a zoomable visualization was combined with the clustering results of this study to

 111

show the impact of a cluster based on potential interference.

 Results were divided into two groups—one for a smaller program, AspectTetris

(AT), and another for a larger program, AJHotDraw (AJHD). Each program was tested in

its original form (𝛼), and in an altered form (𝛽) designed to increase the potential for

interference. In addition, models reduced by principal component analysis were denoted

with Π. Metrics were collected for the following 22 models:

 AT 𝛼 𝑀𝐼𝑃, AT 𝛼 𝑀𝐼𝐶𝑃, AT 𝛼 𝑀𝐶𝐴𝐸

 AT 𝛽 𝑀𝐼𝑃, AT 𝛽 𝑀𝐼𝐶𝑃, AT 𝛽 𝑀𝐶𝐴𝐸

 AT 𝛼 𝑀𝐼𝑃 Π, AT 𝛼 𝑀𝐼𝐶𝑃Π

 AT 𝛽 𝑀𝐼𝑃Π, AT 𝛽 𝑀𝐼𝐶𝑃Π

 AJHD 𝛼 𝑀𝐼𝑃, AJHD 𝛼 𝑀𝐼𝐶𝑃, AJHD 𝛼 𝑀𝐶𝐴𝐸

 AJHD 𝛽 𝑀𝐼𝑃, AJHD 𝛽 𝑀𝐼𝐶𝑃, AJHD 𝛽 𝑀𝐶𝐴𝐸

 AJHD 𝛼 𝑀𝐼𝑃 Π, AJHD 𝛼 𝑀𝐼𝐶𝑃Π, AJHD 𝛼 𝑀𝐶𝐴𝐸Π

 AJHD 𝛽 𝑀𝐼𝑃Π, AJHD 𝛽 𝑀𝐼𝐶𝑃Π, AJHD 𝛽 𝑀𝐶𝐴𝐸Π

Results showed that both the IP and ICP metrics produced more clustering

improvements than the CAE metric, highlighting the fact that CAE hid too much detail to

effectively describe interference problems. The IP and ICP clusterings generally showed

improvements when comparing the 𝛽 program with the 𝛼 program. This shows that

clustering successfully recognized the increased dissimilarity among clusters that resulted

from introduced interference potential. Wilcoxon rank sum tests showed that PCA-

reduced models generally produced better clustering results than the full versions. In

addition, Wilcoxon rank sum test results showed that Dunn’s index was a poor

measurement tool when comparing clusterings in which the value of K fluctuates.

 112

Looking at the clusters visually, ICP clusters produced dramatic results compared

to IP clusters (even though IP clusters showed changes). This emphasized the difficulty

of altering the program such that a method called many individual methods to raise the

single method’s IP. Results also indicated that the clustering for the AJHD program

needed improvement—probably stemming from a poorly selected value for K.

These results helped to answer the research questions posed by this study. First, it

was noted that IP and ICP were fine-grained metrics that describe interference potential

and interference causality potential. However, the IP metric may require further study to

show its true potential. Second, clustering analysis using these metrics proved to be a

successful way to detect increased potential for interference problems, by generally

showing positive clustering changes when introducing the seeded aspect. Third, the

process proved to be somewhat scalable from a smaller program to a larger program, but

clusterings were of lower quality in the larger program. The larger-scale program showed

positive results, but to a lesser extent than the smaller program. Clustering metrics and

inspection of clusters seemed to suggest that the optimal value for K was not found in all

cases for the large program, resulting in similar clusters.

Finally, this work has opened several opportunities for future research. Numerous

areas for improving the current study emerged from the study results. Other broader

recommendations included improving generic metrics for interference problems, studying

the effects of compilation on interference problems, viewing the IP and ICP metrics from

a source-code standpoint rather than the bytecode versions presented here, creating new

IP- and ICP-based metrics as ratios of the current metric value to the maximum metric in

the system, and performing HCI studies on the visualization techniques used.

 113

The software engineering discipline has many facets. This study has highlighted

the need for meaningful metrics, ways of increasing the understanding of a program’s

structure through program analysis, and the ability to visualize the inner-workings of a

system. Each of the avenues presented within this work have implications for future

study. Together, these areas show the vibrant nature and countless possibilities that exist

in software engineering research.

 114

References

AJHotDraw. (2007). Retrieved February 25, 2015, 2015, from

http://sourceforge.net/projects/ajhotdraw/files/ajhotdraw/AJHotDraw v.0.4/

Apel, S. (2010). How AspectJ is used: An analysis of eleven AspectJ programs. The

Journal of Object Technology, 9(1), 117-142. doi: 10.5381/jot.2010.9.1.a2

Arthur, D., & Vassilvitskii, S. (2007). k-means++: The advantages of careful seeding.

Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete

algorithms, 1027-1035.

The AspectJ™ Programming Guide. (2003). Retrieved September 9, 2013, from

http://eclipse.org/aspectj/doc/released/progguide/index.html

Bernardi, M. L., & Di Lucca, G. A. (2010). A metric model for aspects' coupling.

Proceedings of the 2010 ICSE Workshop on Emerging Trends in Software

Metrics, 59-66. doi: 10.1145/1809223.1809232

Booch, G. (1986). Object-oriented development. IEEE Transactions on Software

Engineering, SE-12(2), 211-221. doi: 10.1109/tse.1986.6312937

Bostock, M. (2012). D3.js - Data-Driven Documents. Retrieved October 17, 2013, from

http://d3js.org/

Bostock, M. (2013). Zoomable Circle Packing. Retrieved March 27, 2015, from

http://bl.ocks.org/mbostock/7607535

Burrows, R., Ferrari, F. C., Garcia, A., & Taïani, F. (2010). An empirical evaluation of

coupling metrics on aspect-oriented programs. Proceedings of the 2010 ICSE

Workshop on Emerging Trends in Software Metrics, 53-58. doi:

10.1145/1809223.1809231

Capretz, L. F. (2003). A brief history of the object-oriented approach. ACM SIGSOFT

Software Engineering Notes, 28(2), 6. doi: 10.1145/638750.638778

Cassell, K., Anslow, C., Groves, L., & Andreae, P. (2011). Visualizing the refactoring of

classes via clustering. Proceedings of the Thirty-Fourth Australasian Computer

Science Conference - Volume 113, 63-72.

Ceccato, M., & Tonella, P. (2004). Measuring the effects of software aspectization.

Proceedings of the 1st Workshop on Aspect Reverse Engineering.

Chen, X., Ye, N., & Ding, W. (2010). A formal approach to analyzing interference

problems in aspect-oriented designs. In S. Qin (Ed.), Unifying Theories of

Programming (Vol. 6445, pp. 157-171): Springer Berlin Heidelberg.

http://sourceforge.net/projects/ajhotdraw/files/ajhotdraw/AJHotDraw%20v.0.4/
http://eclipse.org/aspectj/doc/released/progguide/index.html
http://d3js.org/
http://bl.ocks.org/mbostock/7607535

 115

Chidamber, S. R., & Kemerer, C. F. (1994). A metrics suite for object oriented design.

IEEE Transactions on Software Engineering, 20(6), 476-493. doi:

10.1109/32.295895

Czibula, G., Cojocar, G. S., & Czibula, I. G. (2009). A partitional clustering algorithm for

crosscutting concerns identification. Proceedings of the 8th WSEAS International

Conference on Software engineering, parallel and distributed systems, 111-116.

Czibula, I. G., & Şerban, G. (2006). Improving systems design using a clustering

approach. IJCSNS International Journal of Computer Science and Network

Security, 6(12), 40-49.

D'Ursi, A. C., Cavallaro, L., & Monga, M. (2007). On bytecode slicing and aspectJ

interferences. Proceedings of the 6th workshop on Foundations of aspect-oriented

languages, 35-43. doi: 10.1145/1233833.1233839

Dahl, O.-J., & Hoare, C. A. R. (1972). Hierarchical program structures. In O. J. Dahl, E.

W. Dijkstra, & C. A. R. Hoare (Eds.), Structured programming (pp. 175-220):

Academic Press Ltd.

De Borger, W., Lagaisse, B., & Joosen, W. (2009). A generic and reflective debugging

architecture to support runtime visibility and traceability of aspects. Proceedings

of the 8th ACM international conference on Aspect-oriented software

development, 173-184. doi: 10.1145/1509239.1509263

Delamare, R., & Kraft, N. A. (2012). A genetic algorithm for computing class integration

test orders for aspect-oriented systems. Paper presented at the 2012 IEEE Fifth

International Conference on Software Testing, Verification and Validation

(ICST).

Dietrich, J., Yakovlev, V., McCartin, C., Jenson, G., & Duchrow, M. (2008). Cluster

analysis of Java dependency graphs. Proceedings of the 4th ACM symposium on

Software visualization, 91-94. doi: 10.1145/1409720.1409735

Disenfeld, C., & Katz, S. (2012). A closer look at aspect interference and cooperation.

Proceedings of the 11th annual international conference on Aspect-oriented

Software Development, 107-118. doi: 10.1145/2162049.2162063

Disenfeld, C., & Katz, S. (2013). Specification and verification of event detectors and

responses. Proceedings of the 12th annual international conference on Aspect-

oriented software development, 121-132. doi: 10.1145/2451436.2451452

Douence, R., Fradet, P., & Südholt, M. (2002). A framework for the detection and

resolution of aspect interactions. In D. Batory, C. Consel, & W. Taha (Eds.),

Generative programming and component engineering (Vol. 2487, pp. 173-188):

Springer Berlin Heidelberg.

 116

Evertsson, G. (2003, January 20, 2003). Tetris in AspectJ. Retrieved February 26, 2015,

2015, from http://www.guzzzt.com/files/coding/aspecttetris.pdf

Fabry, J., Kellens, A., & Ducasse, S. (2011, 22-24 June 2011). AspectMaps: A Scalable

Visualization of Join Point Shadows. Paper presented at the Program

Comprehension (ICPC), 2011 IEEE 19th International Conference on.

Figueroa, I. (2013). Towards control of aspect interference using membranes and

monads. Proceedings of the 12th Annual International Conference Companion on

Aspect-Oriented Software Development, 27-28. doi: 10.1145/2457392.2457404

Figueroa, I., Tabareau, N., & Tanter, É. (2013). Taming aspects with monads and

membranes. Proceedings of the 12th Workshop on Foundations of Aspect-

Oriented Languages, 1-6. doi: 10.1145/2451598.2451600

Halkidi, M., Batistakis, Y., & Vazirgiannis, M. (2001). On clustering validation

techniques. Journal of Intelligent Information Systems, 17(2-3), 107-145. doi:

10.1023/A:1012801612483

Halkidi, M., Batistakis, Y., & Vazirgiannis, M. (2002). Clustering validity checking

methods: part II. SIGMOD Rec., 31(3), 19-27. doi: 10.1145/601858.601862

Halkidi, M., Vazirgiannis, M., & Batistakis, Y. (2000). Quality Scheme Assessment in

the Clustering Process. In D. Zighed, J. Komorowski, & J. Żytkow (Eds.),

Principles of Data Mining and Knowledge Discovery (Vol. 1910, pp. 265-276):

Springer Berlin Heidelberg.

Hannemann, J., & Kiczales, G. (2002). Design pattern implementation in Java and

AspectJ. ACM SIGPLAN Notices, 37(11), 161-173. doi: 10.1145/583854.582436

Hannousse, A., Douence, R., & Ardourel, G. (2011). Static analysis of aspect interaction

and composition in component models. ACM SIGPLAN Notices, 47(3), 43-52.

doi: 10.1145/2189751.2047871

Hilsdale, E., & Hugunin, J. (2004). Advice weaving in AspectJ. Proceedings of the 3rd

international conference on Aspect-oriented software development, 26-35. doi:

10.1145/976270.976276

Hoare, C. A. R., He, J. (1998). Unifying Theories of Programming. Englewood Cliffs:

Prentice-Hall.

Hussain, A., & Rahman, M. S. (2013). A new hierarchical clustering technique for

restructuring software at the function level. Proceedings of the 6th India Software

Engineering Conference, 45-54. doi: 10.1145/2442754.2442761

Jianjun, Z. (2003). Data-flow-based unit testing of aspect-oriented programs.

Proceedings of the 27th Annual International Computer Software and

Applications Conference, 2003, 188-197. doi: 10.1109/cmpsac.2003.1245340

http://www.guzzzt.com/files/coding/aspecttetris.pdf

 117

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., &

Irwin, J. (1997). Aspect-oriented programming. In M. Akşit & S. Matsuoka

(Eds.), ECOOP'97 — Object-Oriented Programming (Vol. 1241, pp. 220-242):

Springer Berlin Heidelberg.

Kofler, P. (2011). javaclass-rb. Retrieved October 17, 2014, from

https://code.google.com/p/javaclass-rb/

Kumar, A., Kumar, R., & Grover, P. S. (2009). Generalized coupling measure for aspect-

oriented systems. ACM SIGSOFT Software Engineering Notes, 34(3), 1-6. doi:

10.1145/1527202.1527209

Lanza, M., & Marinescu, R. (2006). Object-Oriented Metrics in Practice: Springer Berlin

Heidelberg.

Lauret, J., Fabre, J.-C., & Waeselynck, H. (2011). Detecting interferences in aspect

oriented programs. Proceedings of the 13th European Workshop on Dependable

Computing, 93-98. doi: 10.1145/1978582.1978602

Lauret, J., Waeselynck, H., & Fabre, J.-C. (2012). Detection of Interferences in Aspect-

Oriented Programs Using Executable Assertions. Proceedings of the 2012 IEEE

23rd International Symposium on Software Reliability Engineering Workshops

(ISSREW), 165-170. doi: 10.1109/issrew.2012.34

Mantel, N. (1967). The detection of disease clustering and a generalized regression

approach. Cancer Research, 27(2), 209-220.

Marot, A., & Wuyts, R. (2009). Detecting unanticipated aspect interferences at runtime

with compositional intentions. Proceedings of the Workshop on AOP and Meta-

Data for Software Evolution, 1-5. doi: 10.1145/1562860.1562863

Marot, A., & Wuyts, R. (2010). Composing aspects with aspects. Proceedings of the 9th

International Conference on Aspect-Oriented Software Development, 157-168.

doi: 10.1145/1739230.1739249

Moldovan, G. S., & Şerban, G. (2006). Aspect mining using a vector-space model based

clustering approach. Proceedings of Linking Aspect Technology and Evolution

(LATE) Workshop, 36-40.

Pan, N., & Song, E. (2012). An aspect-oriented testability framework. Proceedings of the

2012 ACM Research in Applied Computation Symposium, 356-363. doi:

10.1145/2401603.2401682

Piveta, E. K., Moreira, A., Pimenta, M. S., Araújo, J., Guerreiro, P., & Price, R. T.

(2012). An empirical study of aspect-oriented metrics. Science of Computer

Programming, 78(1), 117-144. doi: 10.1016/j.scico.2012.02.003

https://code.google.com/p/javaclass-rb/

 118

R Core Team. (2013). R: A language and environment for statistical computing. from

http://www.r-project.org/

Rand McFadden, R., & Mitropoulos, F. J. (2012). Aspect mining using model-based

clustering. Proceedings of IEEE Southeastcon, 2012, 1-8. doi:

10.1109/SECon.2012.6196984

Rentsch, T. (1982). Object oriented programming. ACM SIGPLAN Notices, 17(9), 51-57.

doi: 10.1145/947955.947961

Şerban, G., & Moldovan, G. S. (2006). A new k-means based clustering algorithm in

aspect mining. Proceedings of the Eighth International Symposium on Symbolic

and Numeric Algorithms for Scientific Computing, 2006. SYNASC '06., 69-74.

doi: 10.1109/synasc.2006.5

Shaw, M. (1989). Larger scale systems require higher-level abstractions. ACM SIGSOFT

Software Engineering Notes, 14(3), 143-146. doi: 10.1145/75200.75222

Shepherd, D., & Pollock, L. (2005). Interfaces, aspects, and views: The discoveries of a

clustering aspect miner and viewer. Linking Aspect Technology and Evolution

(LATE) Workshop, 1-6.

Snyder, A. (1986). Encapsulation and inheritance in object-oriented programming

languages. ACM SIGPLAN Notices, 21(11), 38-45. doi: 10.1145/960112.28702

Stoerzer, M., & Graf, J. (2005). Using pointcut delta analysis to support evolution of

aspect-oriented software. Proceedings of the 21st IEEE International Conference

on Software Maintenance, 2005. ICSM'05., 653-656. doi: 10.1109/icsm.2005.99

Tian, K., Cooper, K., & Zhang, K. (2010). A framework based approach for unified

detection of Aspect Weaving Problems. Proceedings of the 2010 IEEE

International Conference on Information Reuse and Integration (IRI), 132-140.

doi: 10.1109/iri.2010.5558950

Tian, K., Cooper, K., Zhang, K., & Liu, S. (2010). Towards a new understanding of

advice interference. Proceedings of the 2010 Fourth International Conference on

Secure Software Integration and Reliability Improvement (SSIRI), 180-189. doi:

10.1109/ssiri.2010.18

Tian, K., Cooper, K., Zhang, K., & Yu, H. (2009). A classification of aspect composition

problems. Proceedings of the Third International Conference on Secure Software

Integration and Reliability Improvement, 2009. SSIRI 2009., 101-109. doi:

10.1109/ssiri.2009.33

Tribbey, W., & Mitropoulos, F. (2012). Construction and analysis of vector space models

for use in aspect mining. Proceedings of the 50th Annual Southeast Regional

Conference, 220-225. doi: 10.1145/2184512.2184564

http://www.r-project.org/

 119

Walker, R. J., Baniassad, E. L. A., & Murphy, G. C. (1999). An initial assessment of

aspect-oriented programming. Proceedings of the 21st International Conference

on Software Engineering, 120-130. doi: 10.1145/302405.302458

Wettel, R., & Lanza, M. (2008). Visually localizing design problems with disharmony

maps. Proceedings of the 4th ACM symposium on Software visualization, 155-

164. doi: 10.1145/1409720.1409745

Yin, H. (2013). A graphical tool for observing state and behavioral changes at join points.

Proceedings of the 12th Annual International Conference Companion on Aspect-

Oriented Software Development, 29-30. doi: 10.1145/2457392.2457405

Yin, H., Bockisch, C., & Aksit, M. (2012). A fine-grained debugger for aspect-oriented

programming. Proceedings of the 11th annual international conference on

Aspect-oriented Software Development, 59-70. doi: 10.1145/2162049.2162057

Yu, L., & Ramaswamy, S. (2007). Verifying design modularity, hierarchy, and

interaction locality using data clustering techniques. Proceedings of the 45th

annual southeast regional conference, 419-424. doi: 10.1145/1233341.1233417

Yu, L., & Ramaswamy, S. (2009). An empirical approach to evaluating dependency

locality in hierarchically structured software systems. Journal of Systems and

Software, 82(3), 463-472. doi: 10.1016/j.jss.2008.07.020

Zhao, J. (2004). Measuring coupling in aspect-oriented systems. Paper presented at the

10th International Software Metrics Symposium (METRICS), Chicago, Illinois,

USA.

	Nova Southeastern University
	NSUWorks
	2015

	Locating Potential Aspect Interference Using Clustering Analysis
	Brian Todd Bennett
	Share Feedback About This Item
	NSUWorks Citation

	tmp.1432844269.pdf.GAaja

