194 research outputs found

    Compact antenna arrays in mobile communications: A quantitative analysis of radiator coupling

    Get PDF
    To meet the ongoing demand for higher data rates and greater user mobility, modern mobile communications systems increasingly employ adaptive antenna arrays. By moving antenna elements closer together, to fit them inside a cellular phone for instance, mutual coupling effects impair their radiation capabilities. To describe these impairments more descriptively in contrast to current approaches, the present thesis extends the familiar notion of radiation efficiency from a single radiator to arbitrary antenna arrays by introducing an orthogonal set of radiating degrees of freedom. Detailed examples illustrate the effects of mutual coupling. Decoupling and matching networks are introduced to counteract mutual coupling. Thus, a design method applicable to a broad class of antenna arrays is described and verified by numerous examples, thereby ohmic losses and narrow bandwidths are identified as major weaknesses of decoupling and matching networks in general. For an investigation of the influence of mutual coupling on a mobile diversity receiver system, closed-form expressions for its diversity gain are derived and discussed. The analysis is complemented by a comprehensive receiver noise model. Practical diversity and noise measurements confirm the validity of the theoretical concepts developed. The present work aims to convey a more descriptive understanding of radiator coupling and to raise awareness of the fact that aspects of the entire system must be accounted for for an objective assessment of the potentials of mutually coupled antenna arrays

    Optimal Antenna Selection Designs for Coupled MIMO Systems

    Get PDF
    We consider the impact of antenna mutual coupling on receive antenna selection systems. Prior work on selection with mutual coupling has not considered the effects of the inactive (i.e., unselected) antenna terminations and spatial noise correlation. In this work, we show that the presence of inactive antennas can profoundly alter system performance when the antennas are strongly coupled. We also propose a new antenna selection technique that seeks to exploit coupling to improve performance. Simulations suggest that the new technique can significantly outperform traditional selection when coupling is present

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations

    Reconfigurable Receiver Front-Ends for Advanced Telecommunication Technologies

    Get PDF
    The exponential growth of converging technologies, including augmented reality, autonomous vehicles, machine-to-machine and machine-to-human interactions, biomedical and environmental sensory systems, and artificial intelligence, is driving the need for robust infrastructural systems capable of handling vast data volumes between end users and service providers. This demand has prompted a significant evolution in wireless communication, with 5G and subsequent generations requiring exponentially improved spectral and energy efficiency compared to their predecessors. Achieving this entails intricate strategies such as advanced digital modulations, broader channel bandwidths, complex spectrum sharing, and carrier aggregation scenarios. A particularly challenging aspect arises in the form of non-contiguous aggregation of up to six carrier components across the frequency range 1 (FR1). This necessitates receiver front-ends to effectively reject out-of-band (OOB) interferences while maintaining high-performance in-band (IB) operation. Reconfigurability becomes pivotal in such dynamic environments, where frequency resource allocation, signal strength, and interference levels continuously change. Software-defined radios (SDRs) and cognitive radios (CRs) emerge as solutions, with direct RF-sampling receivers offering a suitable architecture in which the frequency translation is entirely performed in digital domain to avoid analog mixing issues. Moreover, direct RF- sampling receivers facilitate spectrum observation, which is crucial to identify free zones, and detect interferences. Acoustic and distributed filters offer impressive dynamic range and sharp roll off characteristics, but their bulkiness and lack of electronic adjustment capabilities limit their practicality. Active filters, on the other hand, present opportunities for integration in advanced CMOS technology, addressing size constraints and providing versatile programmability. However, concerns about power consumption, noise generation, and linearity in active filters require careful consideration.This thesis primarily focuses on the design and implementation of a low-voltage, low-power RFFE tailored for direct sampling receivers in 5G FR1 applications. The RFFE consists of a balun low-noise amplifier (LNA), a Q-enhanced filter, and a programmable gain amplifier (PGA). The balun-LNA employs noise cancellation, current reuse, and gm boosting for wideband gain and input impedance matching. Leveraging FD-SOI technology allows for programmable gain and linearity via body biasing. The LNA's operational state ranges between high-performance and high-tolerance modes, which are apt for sensitivityand blocking tests, respectively. The Q-enhanced filter adopts noise-cancelling, current-reuse, and programmable Gm-cells to realize a fourth-order response using two resonators. The fourth-order filter response is achieved by subtracting the individual response of these resonators. Compared to cascaded and magnetically coupled fourth-order filters, this technique maintains the large dynamic range of second-order resonators. Fabricated in 22-nm FD-SOI technology, the RFFE achieves 1%-40% fractional bandwidth (FBW) adjustability from 1.7 GHz to 6.4 GHz, 4.6 dB noise figure (NF) and an OOB third-order intermodulation intercept point (IIP3) of 22 dBm. Furthermore, concerning the implementation uncertainties and potential variations of temperature and supply voltage, design margins have been considered and a hybrid calibration scheme is introduced. A combination of on-chip and off-chip calibration based on noise response is employed to effectively adjust the quality factors, Gm-cells, and resonance frequencies, ensuring desired bandpass response. To optimize and accelerate the calibration process, a reinforcement learning (RL) agent is used.Anticipating future trends, the concept of the Q-enhanced filter extends to a multiple-mode filter for 6G upper mid-band applications. Covering the frequency range from 8 to 20 GHz, this RFFE can be configured as a fourth-order dual-band filter, two bandpass filters (BPFs) with an OOB notch, or a BPF with an IB notch. In cognitive radios, the filter’s transmission zeros can be positioned with respect to the carrier frequencies of interfering signals to yield over 50 dB blocker rejection

    Integrated Circuit Techniques and Architectures for Beamforming Radio Transmitters

    Get PDF

    Evaluation of a Mutually Coupled Diversity Receiver

    Get PDF
    A quick, reliable, and simple evaluation of mutual coupling effects is essential for the optimization of antenna arrays for small mobile communications devices. In recent papers we have proposed novel figures of merit that quantify the impact on diversity reception in terms of scattering matrix of the array and have confirmed the validity of these formulas by practical diversity measurements. The present paper provides an extended analysis of the measurement data and contrasts the benefits of this method of array characterization with existing approaches
    corecore