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Abstract

To meet the ongoing demand for higher data rates and greater user mobility,
modern mobile communications systems increasingly employ adaptive an-
tenna arrays. By moving antenna elements closer together, to fit them inside
a cellular phone for instance, mutual coupling effects impair their radiation
capabilities. To describe these impairments more descriptively in contrast to
current approaches, the present thesis extends the familiar notion of radiation
efficiency from a single radiator to arbitrary antenna arrays by introducing an
orthogonal set of radiating degrees of freedom. Detailed examples illustrate
the effects of mutual coupling. Decoupling and matching networks are intro-
duced to counteract mutual coupling. Thus, a design method applicable to a
broad class of antenna arrays is described and verified by numerous examples,
thereby ohmic losses and narrow bandwidths are identified as major weak-
nesses of decoupling and matching networks in general. For an investigation
of the influence of mutual coupling on a mobile diversity receiver system,
closed-form expressions for its diversity gain are derived and discussed. The
analysis is complemented by a comprehensive receiver noise model. Practi-
cal diversity and noise measurements confirm the validity of the theoretical
concepts developed. The present work aims to convey a more descriptive un-
derstanding of radiator coupling and to raise awareness of the fact that aspects
of the entire system must be accounted for for an objective assessment of the
potentials of mutually coupled antenna arrays.

Kurzdarstellung

Um der anhaltenden Nachfrage nach hoheren Ubertragungsraten und groBe-
rer Mobilitdt zu begegnen, setzen moderne Mobilfunksysteme zunehmend
adaptive Gruppenantennen ein. Riickt man Strahlerelemente zur Unterbrin-
gung in kleinen tragbaren Endgeriten (z.B. Handys) jedoch eng zusam-
men, so beeintrichtigen Verkopplungseffekte deren Abstrahleigenschaften.
Um diese Beeintrichtigungen im Vergleich zu den tiblichen Betrachtungs-
weisen anschaulicher zu beschreiben, erweitert die vorliegende Arbeit den
bekannten Effizienzbegriff einer Einzelantenne auf beliebige Antennengrup-
pen durch die Einfiithrung orthogonaler Strahlungsfreiheitsgrade. Die Auswir-
kungen von Strahlerverkopplung werden anhand von Beispielen aufgezeigt.
Anpass- und Entkoppelnetzwerke konnen der Strahlerverkopplung entgegen-
wirken. Fiir eine breite Klasse von Antennengruppen wird eine systematische
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Entwurfsvorschrift vorgestellt und durch zahlreiche Beispiele bestitigt, dabei
stellen sich Ohm’sche Netzwerkverluste und schmale Bandbreiten als allge-
meine Hauptschwichen derartiger Netzwerke heraus. Zur Untersuchung des
Einflusses der Strahlerverkopplung auf die Ubertragungsqualitiit eines Diver-
sitdtsempfingersystems werden geschlossene Ausdriicke fiir seinen Diversi-
tiatsgewinn hergeleitet und diskutiert. Diese Analyse wird anschlieend durch
ein umfassendes Rauschmodell erweitert. Diversitéts- und Rauschmessungen
bestitigen die theoretischen Betrachtungen. Die vorliegende Arbeit mochte
ein anschaulicheres Verstdndnis von Strahlerverkopplung vermitteln und Be-
wusstsein dafiir schaffen, dass eine Betrachtung des Gesamtsystems essentiell
fiir eine objektive Beurteilung der Leistungsfihigkeit kompakter Gruppenan-
tennen ist.
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Theses of the dissertation

Modern mobile communications systems enhance their capabilities by ex-
ploiting the spatial degrees of freedom inherent in antenna arrays. Compact
antenna arrays, for application in mobile phones for instance, exhibit undesi-
rable mutual coupling of their radiators.

The radiation process of an n-port antenna array can always be described as
the superposition of n orthogonal modes of radiation. Mutual coupling can
be interpreted as impedance mismatch of these degrees of freedom.

Each degree of freedom can uniquely be assigned a radiation efficiency. This
extends the classical notion of efficiency to arbitrary multi-port antennas.
Mutual coupling inevitably causes a reduction of these efficiencies.

For lossless arrays these efficiencies can readily be established from the array
scattering matrix. An analysis that accounts for ohmic array losses necessi-
tates the far-field patterns.

Decoupling and matching networks are able to improve the matching effi-
ciencies. Such networks generally exhibit a narrow bandwidth and conside-
rable ohmic losses. Their design thus calls for suitable quality metrics.

By exploiting certain array symmetries, decoupling networks can often be
designed independent of the scattering parameters of the compact antenna
array. This property is attractive for mass production.

The diversity gain of mutually coupled antenna arrays can be estimated by
virtue of closed-form expressions. In good approximation, mutual coupling
introduces an equivalent insertion loss into the system. These figures of merit
are inevitable for the development of broadband or multi-band designs.

The approximation formulae fit seamlessly into widely applied models for
diversity analysis, and thus enhance the practical applicability of established
approaches.
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The diversity capabilities of a realistic receiver system can only be assessed if
the noise properties of all receiver components are included in the analysis.

An objective assessment of the quality of decoupling and matching networks
necessitates an extensive analysis of network losses and network noise. The
actual enhancements due to these networks may be considerably less than
anticipated in certain receiver applications.

The receiver model developed allows for realistic predictions in respect of
the actual diversity capabilities of mutually coupled antenna arrays and recei-
vers.

Although mutual coupling always impairs the system diversity gain in a
Rayleigh-fading environment regardless of other factors that affect diversity
performance, maximising beam-pattern orthogonality is a theoretical goal of
array miniaturisation, but not a practical one.
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Thesen zur Dissertation

In modernen mobilen Kommunikationssystemen kann die Ubertragungsqua-
litdt durch Ausnutzung der rdumlichen Freiheitsgrade von Gruppenanten-
nen verbessert werden. Bei kompakten Gruppenantennen, wie sie z. B. fiir
Mobiltelefone erforderlich sind, kommt es zur unerwiinschten Verkopplung
der Strahlerelemente.

Der Strahlungsvorgang einer n-Tor Antenne ldsst sich immer als Superpositi-
on von n orthogonalen Strahlungsmoden beschreiben. Strahlerverkopplung
kann als Impedanzfehlanpassung dieser Strahlungsfreiheitsgrade aufgefasst
werden.

Jedem Freiheitsgrad kann eindeutig eine Abstrahleffizienz zugeordnet wer-
den. Dies verallgemeinert den klassischen Effizienzbegriff auf beliebige
Gruppenantennen. Strahlerverkopplung fiihrt zwangsldufig zu einer Vermin-
derung dieser Effizienzen.

Bei verlustlosen Gruppenantennen lassen sich die Effizienzen einfach aus den
Streuparametern ermitteln. Die Beriicksichtigung Ohm’sche Verluste erfor-
dert die Einbeziehung der Fernfelddaten.

Die Anpasseffizienzen konnen mithilfe von Anpass- und Enkoppelnetzwer-
ken verbessert werden. Derartige Netzwerke sind schmalbandig und stark
verlustbehaftet. IThr Entwurf erfordert daher entsprechende Qualitéitskenn-
groBen.

Durch Ausnutzung bestimmter Symmetrieeigenschaften lassen sich Entkop-
pelnetzwerke oft unabhiingig von den Streuparametern der kompakten
Gruppenantenne entwerfen. Diese Eigenschaft ist fiir die Massenproduktion
interessant.

Der Diversititsgewinn verkoppelter Gruppenantennen lidsst sich durch ge-
schlossene Niherungsformeln berechnen. Verkopplung kann in guter Néhe-
rung als Systemeinfiigeddmpfung betrachtet werden. Derartige Kenngro3en
sind fiir Breitband- und Mehrbandanwendungen unentbehrlich.



Die Niherungsformeln fiigen sich nahtlos in bekannte Ansitze und Modelle
zur Diversititsanalyse ein, und vereinfachen somit deren praktische Anwen-
dung.

Die Diversititseigenschaften eines realen Empfingers lassen sich nur un-
ter Einbeziehung der Rauscheigenschaften aller Empfiangerkomponenten er-
mitteln.

Die objektive Beurteilung der Qualitit von Anpass- und Entkoppelnetzwer-
ken erfordert ebenfalls eine umfangreiche Verlust- und Rauschanalyse. Der
Einsatz solcher Netzwerke an einem Empfinger ist, je nach Anwendung,
moglicherweise fragwiirdig.

Das entwickelte Empfiangermodell ermoglicht realistische Vorhersagen be-
ziiglich der tatsidchlichen Diversititseigenschaften verkoppelter Gruppenan-
tennen und dazugehoriger Empfinger.

Obwohl Strahlerverkopplung die Diversititseigenschaften in einem Rayleigh-
Kanal unabhingig von anderen Faktoren stets negativ beeinflusst, stellt die
Maximierung der Orthogonalitit der Torrichtcharakteristiken ein theoreti-
sches, jedoch kein praktisches Optimierungsziel fiir die Miniaturisierung
von Gruppenantennen dar.



Preface

The present work is a compilation of the results and insights collected during
my time as a research assistant at the RF and Microwave Research Laboratory
of the Ilmenau University of Technology. My research was part of the project
“Miniaturised Diversity Antennas for Satellite Communications” (MIDIAS).
The project and thus my position at the laboratory were funded by the German
Aerospace Centre (grant no. 50YB0509) on behalf of the German Federal
Ministry of Economics and Research, for which I am very grateful.

I thank the head of the laboratory, Prof. Matthias Hein, for the opportunity
to work under his supervision and for the freedom to develop my own ideas
and approaches to the subject.

Furthermore, I am grateful to Prof. Reiner Thoma and Prof. Klaus Sol-
bach for reviewing my thesis.

Several people supported me in the pursuit of this work. In particular I
would like to mention: my fellow-researcher Dr. Jorn Weber for fruitful dis-
cussions regarding the project; my other office-mate Dipl.-Ing. Mario Schiih-
ler for technical and non-technical discussions; Dr. Kurt Blau and Dr. Ralf
Stephan for their assistance with both academic and administrative matters;
Mr. Michael Huhn and Mr. Matthias Zocher for their untiring support on tech-
nical issues; my student assistants Dipl.-Ing. Ulf Wetzker and Mr. Christian
GroBmann for introducing me to the art of FPGA and USB programming;
Dipl.-Ing. Hendrik Bayer for doing the LNA designs; all the rest of my col-
leagues for the pleasant work climate.

The following companies have provided me with free samples of their
products: Analog Devices Corp., BFi OPTiLAS GmbH, Cypress Semicon-
ductor Corp., Hittite Microwave Crop., Maxim Integrated Products, Micro-
chip Technology, MSC Vertriebs GmbH, and Richardson Electronics.



Xii

I thank my brother Matthias, my girlfriend Maren Thole, M. Schiihler,
K. Blau, and J. Weber for proof-reading my thesis.

Finally, I thank my parents, my brother, and my girlfriend for their un-
derstanding and encouragement throughout the past years.

Christian Volmer
Ilmenau, 17th December 2009



Contents

1 Introduction

2 Power considerations at multi-port antennas
2.1 Earlierwork . . . ... ... . ...
2.2 Eigenmode description of lossless arrays . . . . . . ... ..
2.2.1  Single-port antenna matching efficiency . . . . . . .
2.2.2  Generalisation to multi-port antennas . . . . . . . .
2.2.3  The fundamental modes of radiation . . . . . . . . .
2.2.4 Reflections of eigenmodes . . . . .. ... ... ..
2.3 Eigenmode far-field patterns . . . . . . .. ... ... ...
2.3.1 Far-field patterns and the radiation matrix . . . . . .
2.3.2 Beam-pattern orthogonalisation . . . ... ... ..
2.4 Non-distinct eigenefficiencies . . . . . . . . ... ... ...
2.5 Ohmicarraylosses . . . .. ... ... ... ........
2.6 Anequivalent circuit for lossless arrays . . . . . ... ...
2.7 Examples of the consequences of radiator coupling . . . . .
2.7.1 Analysis of a manufactured Ay/10 three-port array
2.7.2  Influence of number of radiators and separation . . .
2.8 Summary . . ... ...

3 Decoupling and matching networks
3.1 General conditions for decoupling and matching . . . . . . .
3.2 Decoupling by eigenmode excitation . . . . . . . ... ...
3.3 Directional couplers as decoupling networks . . . . . . . ..
3.3.1 Example: symmetric two-port antenna array . . . . .

xiii



Xiv

Contents

3.3.2 Example: symmetric three-port antenna array . . . .
3.4 A systematic design procedure for decoupling networks . . .
34.1 Two-elementdecoupling . . . ... ... ......
3.4.2 Decoupling across a symmetry plane . . . ... ..
343 Radiatormerging . . . ... ... .. .. ......
344 Eigenmode matching . . . . ... ..........
3.5 CEfficiency considerations . . . . . . ... .. .. ... ..
3.6 Example implementations . . . . . . ... ... ......
3.6.1 Linear Ap/4 three-portarray . . .. ... ... ...
3.6.2 LTCC implementation of a three-port DMN . . . . .
3.6.3 Broadband matched two-portarray . . ... .. ..
3.6.4 Circular 49/10 four-portarray . . . ... ... ...
37 Summary ... ... e

Diversity reception with compact antenna arrays

4.1 Overviewandpastwork . ... .. ... ..........

4.2 Figures of merit for correlated fading . . . . . .. ... ...
42.1 A simplified diversity model . . . . . ... ... ..
4.2.2  Array gain of a mutually coupled array . . . . . ..
4.2.3 Diversity gain over a single receive antenna . . . . .
4.2.4 Diversity loss over an ideal antenna array . . . . . .

4.3 Extensions to the diversitymodel . . . . . . ... ... ...
4.3.1 Influence of the communications environment . . . .
4.3.2 Effects of a decoupling and matching network . . . .
4.3.3 Spatially coloured receivernoise . . . . . . ... ..

4.4 A completereceivermodel . . . .. ... ... ... ...,
4.4.1 Antennaarraynoise . . . . . ... ... ... ...
442 Networknoise . .. .................
4.43 Front-end amplifiernoise . . . . . . ... ... ...
4.4.4 Discussion of the front-end model . . . . . ... ..

45 Summary ... ... e e

Compact antenna arrays in practice: a diversity receiver

5.1 Opverview of the diversity system . . . . . . ... ... ...
5.1.1 Thetransmitter . . . . . ... ... ... ......
5.1.2 Thereceiver front-end . .. ... ..........
5.1.3 Baseband processing . . . . .. ... .. ... ...

52
54



Contents

52
53
54
5.5

5.6

5.1.4 The graphical user interface . . . .. ... .. ...
Benefits of decoupling and matching networks . . . . . . . .
Verification of the diversity figures of merit . . . . . . . . .
Measurements of the signal envelope covariance matrix . . .
Front-end noise characterisation . . . ... ... ... ...
5.5.1 Noise characterisation of a single receiver-branch . .
5.5.2 Noise characterisation of the multi-port receiver . . .
5.5.3 Influence of noise on the SNR diversity gain

Summary . . .. ...

6 Summary and outlook

7 Zusammenfassung und Ausblick

A Proofs and derivations

A.l
A2
A3
A4
A5
A6

Diagonalisation of eigen-reflections . . . . . .. ... ...
Ohmic eigenefficienciesand DMNs . . . . . .. ... ...
Matrix-form of a single-port matching network . . . . . . .
Matrix-form of a decoupling and matching network . . . . .
Eigenmodes fade independently . . . . ... ... ... ..
Series expansion of the diversity gain . . . . .. ... ...

B Waves, scattering parameters, and noise

B.1 Scattering parameters . . . . . . . . ... ...

B.1.1 Definition . . . . . .. ... ... ...

B.1.2 Interconnection of multi-port junctions . . . . . . .

B.1.3 Renormalisation . .. ... .............

B.2 Noise wave description . . . . . . . ... ... ... ...,
Bibliography

Notation and abbreviations

XV

191

197

205
205
206
207
209
213
215

219
221
221
222
225
227

231

247






Chapter 1

Introduction

In mobile communications there is a continuing demand for greater user mo-
bility at even higher data rates. Since the frequency spectrum is a limited and
thus expensive resource, modern systems attempt to increase their capacity by
exploiting the spatial dimension of the communications environment. This is
made possible with the implementation of multiple antennas at one or both
ends of the mobile link. As the 1400 page compilation by Van Trees [20]
suggests, communications engineers are very inventive in the development
of corresponding multi-antenna signal processing techniques. Without going
into much detail here, these algorithms have in common that they exploit the
degrees of freedom available in an antenna array, that is, the ability of an array
to transmit and to receive different and independent signals at the same time
and frequency.

In a multi-path environment, where the line-of-sight between transmitter
and receiver is obstructed, the transmitted signal reaches the receiver from
several directions simultaneously as the result of reflections and scattering
effects. A receiver equipped with a single antenna can only detect the super-
position of these wave fronts, which can be either constructive or destructive
in nature depending on the paths travelled by the signal. If the receiver or any
other part of the communications environment moves, these paths change. In
consequence, the received signal strength typically exhibits strong and rapid
variations with time. This effect is known as short-term fading and considera-
bly degrades the quality of the link, especially when operated near the border
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of the system coverage area. If two or more receive antennas are employed,
each antenna receives the same information but impaired by a different fa-
ding characteristic. Substantial improvements of the link quality are now
achievable simply by choosing the antenna receiving the strongest signal. A
familiar example of such a diversity system is a professional WLAN (wireless
local area network) access point, which often employs two, sometimes even
three antennas for enhanced performance.

So-called multiple-input-multiple-output (MIMO) systems take the idea
one step further and use several transmit antennas to broadcast parallel data
streams in a way that allows clean reconstruction at a multi-antenna receiver
system. This approach promises considerable improvements of the channel
capacity over existing non-MIMO systems. As modern digital signal proces-
sors become smaller, more powerful, and yet less expensive, MIMO tech-
niques presently begin to find their way into consumer equipment. Already
available are preliminary implementations of the upcoming IEEE 802.11n
WLAN standard. Another example is the UMTS-LTE (long-term evolution)
mobile telecommunications standard presently under development.

There seems no question that multi-antenna systems present the key to
meeting our future mobile communications needs. To exploit the benefits at
hand-held mobile terminals, such as cellular phones or personal data assis-
tants (PDAs), the radiating elements that constitute an antenna array must be
placed close together. In this context, “close” is generally considered closer
than half a free-space wavelength. With decreasing separation, however, elec-
tromagnetic coupling causes distinct radiators to increasingly coalesce and
act as a single antenna. The ability of the antenna array to resolve multiple
paths of signal propagation becomes impaired and thus the effective number
of degrees of freedom available is reduced.

The detrimental effects of mutual coupling are widely known in the litera-
ture. Yet the commonly applied method for judging the quality of an antenna
array is largely limited to qualitative statements of the form “good” or “not
good”. A comparison between different antenna array designs, especially
when more than two radiators are involved, is rather difficult, except for few
very special cases. In order to push the limits of miniaturisation further, we
need a quantitative measure not only of mutual coupling itself, but, most im-
portantly, of the influence that mutual coupling exerts on a particular mobile
communications application.

Of course, there is always the possibility to have simulation software for



mobile communications channels and systems compute all conceivable kinds
of system quality parameters. The accuracy of these results could be arbitra-
rily high depending on the amount of effort spent on the development of the
software and the system models employed. On the downside, such simulators
are comparatively laborious and time-consuming to apply. For this reason, the
present work aims at the development and the verification of simple metrics
that are applied quickly in practice, capture the essential parameters related
to array performance, and nonetheless provide the design engineer with an ac-
curate overview of the capabilities of mutually coupled antenna arrays. Such
figures of merit are particularly helpful for the broadband characterisation and
optimisation of very compact arrays, which can often be impedance-matched
over a narrow bandwidth only.

Due to the vast number of different multi-antenna processing techniques,
the present thesis cannot provide a universal solution to the general problem
of mutual coupling. It can, however, encourage to look beyond the phenome-
non “mutual coupling” as such, propose alternative means of its interpreta-
tion to complement established approaches, and demonstrate that the effects
of mutual coupling cannot genuinely be comprehended unless aspects of the
entire system are taken into account.

This thesis is organised as follows:

Chapter 2, Power considerations. The efficiency is not only a crucial
parameter describing system performance in general, but also a simple and
intuitive one. Based on the concept of degrees of freedom, this chapter de-
monstrates how the notion of efficiency can be generalised to arbitrary n-port
arrays.

Chapter 3, Decoupling and matching networks. Recently, passive de-
coupling and matching networks have come under discussion as a promising
way to counteract the effects of mutual coupling. This chapter presents a
general design approach applicable to a wide class of antenna arrays, and
comes up with an accurate performance analysis that accounts for ohmic net-
work losses.

Chapter 4, Diversity considerations. In this chapter we study the ef-
fects of mutual coupling on diversity reception. Closed-form expressions for
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the diversity gain achievable with mutually coupled arrays are devised. These
figures of merit enable an evaluation of array performance over frequency and
thus foster the design and optimisation of broadband and multi-band systems.
The chapter includes a complete receiver noise framework to accurately mo-
del the effects of noise coupling and mismatch.

Chapter 5, Practical verification. The claims of Chapter 4 are confir-
med in a practical setting by means of measurements conducted with a spe-
cifically designed diversity receiver. The chapter concludes with a detailed
analysis of several mutually coupled antenna arrays and decoupling and mat-
ching networks. The results clearly prove that a careful analysis of all system
aspects is essential to predict its actual performance.

Chapter 6, Summary and outlook. This concluding chapter discusses
how the insights developed in the course of this thesis can be put into practice
in order to maximise the performance of future communications devices. In
the context of mutual coupling and decoupling and matching networks it is
crucial to avoid misleading conclusions that often have little to do with reality.



Chapter 2

Power considerations
at multi-port antennas

In this chapter, we are going to investigate the radiation efficiency of multi-
port antennas. “Power” is a valuable resource in a number of regards. It is
therefore desirable that most of the power fed into the input terminal of an
antenna is actually turned into radiation. Far more important perhaps is the
fact that, by the principle of reciprocity, the same efficiency takes effect in
the receive direction as well. Whereas it is basically possible to arbitrarily in-
crease the power level at the transmitter to overcome a lowly efficient transmit
antenna, this is not feasible at the receiver.

The analysis that will be presented here is particularly suited for compact
antenna arrays because it automatically takes coupling between radiators into
account. We will find that any n-port antenna array can be interpreted in
terms of n fundamental modes of radiation. These modes, which we call the
eigenmodes of the array, possess orthogonal beam patterns. Consequently,
they do not exchange power and thus represent an uncoupled description of
the radiation process. Associated with the eigenmodes is a set of n radiation
efficiencies that characterises the radiation capabilities of the degrees of free-
dom available. As radiators move closer together, these efficiencies begin to
diminish rapidly. The principal goal of this model is to convey an intuitive
perception of mutual radiator coupling in respect of mobile communications
applications.
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If a lossless antenna array is assumed, the efficiencies can be determi-
ned conveniently from scattering parameter measurements. This equips the
designer with a simple yet powerful means to quantify and subsequently op-
timise the radiation properties. In the case of very strong radiator coupling,
more realistic results are obtainable from far-field measurements, which com-
plement the analysis with information about ohmic losses inside the antenna
array.

First, an overview of past work in the field of compact antenna arrays will
be given. We then begin our efficiency analysis by looking at lossless antenna
arrays. In a subsequent step, this theory is extended with a description of
ohmic losses. At the end, a detailed practical example will demonstrate the
usefulness of the concepts developed in this chapter.

2.1 Earlier work

Many antenna array textbooks (e.g., Balanis [2], Hansen [5], Kraus and Ma-
rhefka [10]) omit the possible role of radiator coupling throughout major parts
of their analysis and then include a chapter on mutual coupling and the asso-
ciated mutual impedance between elements. The mutual impedance is a quan-
tity that can undeniably be measured, modelled, and treated theoretically; its
expressiveness in respect of power efficiency investigations, however, is ra-
ther limited.

A natural consequence seems to switch from the impedance domain to the
power-wave related scattering parameter description, which has the added ad-
vantage of simple measurability. Obviously, power that is reflected at the ex-
cited port or coupled to other ports is unavailable for radiation. Non-zero scat-
tering parameters therefore indicate reduced array radiation efficiency, and it
is a desirable goal to minimise the input reflection coefficients as well as the
coupling coefficients between ports [34, 57, 105].

In practice, port reflections and coupling cannot be eliminated entirely.
Therefore, the immediate question arises how much coupling is tolerable for
a given purpose. To this end, the active reflection coefficient [48, 71, 87] and
the total active reflection coefficient (TARC) [27, 28, 58] are encountered in
the literature as the ratio of the power reflected at to the power incident on
the array input ports. Since power that becomes reflected cannot radiate, the
TARC is directly linked to the radiation efficiency. As we soon shall see,
however, the TARC, and thus the array efficiency, depends on the amplitude
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and phase distribution exciting the antenna array terminals.

Gilbert and Morgan [42] recognised that highly compact antenna arrays
become sensitive to manufacturing tolerances for certain excitations and ex-
pressed this insight as the classic sensitivity factor. Further analysis revealed
that the sensitivity factor is an immediate indicator for the radiation efficiency
of an antenna array. In the same way as the TARC, however, it is excitation-
dependent and thus not a suitable measure for the radiation capabilities of the
antenna array itself.

More related to antenna diversity than efficiency is the correlation co-
efficient p of the signals received at the antenna ports [66, 79]. Increased
correlation impairs the diversity capabilities of an antenna array and this, in
some regard, may be interpreted as loss of efficiency. The correlation coeffi-
cient is a well-established parameter in the literature [35, 37, 43, 44, 52, 55,
70, 92, 106]. Its popularity stems from the fact that it may be estimated from
the real envelope correlation coefficient p,, which was easier to measure in
the early days of mobile communications [66]. We are going to deal with
antenna diversity later in Chapter 4. Although p is a quantity independent
of array excitation, it only captures the influence of radiator coupling but not
the effects of impedance mismatch at individual array terminals. Both as-
pects are, however, relevant to both the diversity performance as well as the
radiation efficiency. Another drawback is that a clear statement about what
range of values of p is acceptable for good performance is only available for
symmetric two-port antenna arrays.

There have also been publications more closely related to the concepts
of the present thesis. Most notably, Stein [75] in 1962 was the first author
who rigorously described the relationship between array scattering parame-
ters, far-field radiation patterns, and ohmic losses within the array. He also
observed the existence of “canonical beam-patterns”, i.e., the eigenmodes in
our terminology, and their orthogonality properties. As Stein himself writes
at the end of [75, Section XI], he is unsure whether these “patterns may be of
direct physical interest” and concludes that “no obvious engineering advan-
tage ensues”. In the context of mutual radiator coupling, his work has since
attracted no particular attention.

Recently, Chaloupka et al. [88, 89, 95, 119, 120] followed an approach
similar to Stein’s with the introduction of impedance-domain based eigen-
modes, modal admittances, and modal matching factors, all of which are pro-
perties inherent to the antenna array. This novel conception of array radiation
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allows an array description independent of its excitation. Still, the particu-
lar way by which eigenmodes were defined restricts the analysis to certain
symmetric cases.

2.2 Eigenmode description of lossless arrays

The following work builds upon the conceptual foundations laid by Stein and
Chaloupka to come up with a more consistent eigenmode formulation of the
radiation process of arbitrary multi-port antennas. The only requirement is re-
ciprocity of the array. Contrary to Stein’s concluding remark, the advantages
for the array engineer should soon become evident [142].

There are two basic mechanisms in an antenna by which the power avai-
lable from an exciting source (the generator) is “lost” by means other than
radiation: power dissipation and power reflection. Both effects negatively
affect radiation efficiency. Power dissipation takes place in conductors due
to ohmic losses, but also in dielectric substrate materials used for instance
for printed antenna structures. Although ohmic losses play a notable role in
the development of compact antenna arrays, their practical characterisation is
rather taxing. We therefore defer further discussions until Section 2.5 and as-
sume that ohmic losses are negligible for the following analysis of reflection
losses.

2.2.1 Single-port antenna matching efficiency

Consider a lossless single-port antenna with generally complex port imped-
ance Z connected to some generator with complex internal impedance Zj,.
It is a well-known fact that maximum power transfer occurs if and only if
Z = Z;. This condition is commonly referred to as conjugate impedance
matching or power matching. The amount of power radiated by the antenna is
then equal to the available power P,, of the source, where P, is a generator-
specific constant. Note that it is irrelevant whether the generator is a voltage
source or a current source as both are equivalent. When the impedances are
not matched, the power radiated is always less than P,, and the degree of
mismatch is expressed by the complex reflection coefficient I defined as [11,
Eqn. (1.56)]

= Z- Zi*n

= . 2.1
Z+ Zi ( )
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For our purposes, the square of the absolute value of the reflection coefficient
is of particular interest because it represents the fraction of power not accep-
ted by the antenna. More specifically, the power Py, radiated by the lossless
antenna may now be written in terms of I' and P,y as [11, p. 37]

Prag = (1 = TPy (2.2)

Consequently, the quantity 1 —|I'|> may be considered the matching efficiency
between generator and antenna. For passive antennas, where Re {Z} > 0, the
matching efficiency is always between 0 and 1.

The notion of power reflection is borrowed from transmission line theory
where an impedance mismatch at one end of the line causes power to be
reflected physically. This picture often serves as a descriptive explanation of
the interplay between a generator and a load. Naturally, there are fundamental
differences between transmission lines and power sources that are important
to apprehend.

First and most obviously, the above definition of I" contains the complex
conjugate of Zj, in its numerator, which is different from the definition known
from transmission line theory. It is, however, consistent with the concept of
power waves and scattering parameters (Appendix B) and permits the ap-
plication of scattering parameter theory even if the normalising impedance,
here Zj,, is complex.

Second, the term “reflection coefficient” suggests that the fraction of po-
wer not radiated by the antenna due to mismatch is dissipated in the genera-
tor’s internal impedance. Thus, one may argue that power matching is an
essential precondition for an energy-efficient system. In fact, the energy-
efficiency of a power-matched system is always 50 %: the same amount of
power that is radiated by the load antenna is also dissipated in the internal
resistance of the source. In systems where large power levels are involved,
e.g., at television broadcast aerials, this seems a dissatisfying fact. Therefore,
a certain degree of mismatch is often deliberately introduced into the system
to increase the overall system efficiency. This aspect of source efficiency is
not considered any further in this work and the interested reader is referred to
Hoffmann [6, pp. 66-68].

Before we move on to multi-port systems and realise that the matching
efficiency is nonetheless a crucial parameter for mutually coupled antenna
arrays, two numerical examples are given. A resonant half-wave dipole an-
tenna has a terminal impedance of about Z = 73 Q [2, p. 446]. If driven from
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b)

Fig. 2.1: A set of n generators with internal impedances Z;,; connected to a coupled
n-port array of antennas with scattering matrix S. (a) Schematic diagram, (b) signal
flow graph when the wave quantities are normalised with respect to the generator
impedances, and (c) signal flow graph with the familiar 50 Q normalisation.

a generator with Zi;, = 50 Q, then I' = 0.187 and the matching efficiency of
this setup is 96.5 %. A fraction of 3.5 % is reflected to the generator, which
corresponds to a return loss of 14.6 dB. A folded dipole with Z ~ 300 Q [2,
Eqn. (9-25)] driven from the same source has an efficiency of 49 % and a
return loss of 2.9 dB.

As a rule of thumb, antennas with a return loss better than 10 dB, whose
matching efficiency is therefore greater than 90 %, qualify as “good” radiators
(e.g., [22, p. 354]). Depending on the particular application, other criteria
may apply of course.

2.2.2 Generalisation to multi-port antennas

Scattering matrices are the logical extension of the reflection coefficient (2.1)
to multiple ports. We use them here for the description of multi-port antenna
arrays because, unlike impedance or admittance matrices, they are ultimately
related to the power flow within an electronic device and thus lend themselves
to power efficiency investigations. The reader is expected to be familiar with
basic scattering parameter concepts, e.g., [6, 11, 13].

Figure 2.1a shows a set of n generators driving an arbitrary coupled li-
near n-port antenna array with scattering matrix S. The term “linear” refers
to the linearity of the materials employed in the array and not to the arrange-



2.2. Eigenmode description of lossless arrays 11

ment of the radiating elements. In fact, the latter is irrelevant to the following
theory. Mutually coupled antenna arrays will have a scattering matrix with
off-diagonal elements considerably different from zero. The waves a; inci-
dent on each port i will be denoted by the complex incident wave column

vectord = (a; a» --- a,)'. Similarly, the waves reflected from the antenna
will be denoted by the column vector 5, with the familiar relationship
b=Sa. (2.3)

All field quantities encountered in this thesis, and these include @ and I;,
represent complex frequency-dependent harmonic root-mean-square ampli-
tudes. The total power incident on and the total power reflected from the
antenna array are thus expressed by
n n
Py=> laf =ld?=a"d and Po.=> Ibl*=|p?=5"b, (24
i=1 i=1

respectively. From this point on, we deviate from the standard convention of
using a normalising impedance of 50 Q for scattering matrices. As with (2.2),
where the reflection coefficient of the single-port load is expressed with res-
pect to the impedance of the driving source, we normalise the antenna ar-
ray scattering matrix to the internal impedances Zi,; of the generators. In
consequence, the diagonal matrix [, of the generator reflection coefficients
vanishes, i.e., [, = 0. In other words, the normalisation ensures that, ma-
thematically, power in form of b-waves reflected by the antenna array is fully
absorbed within the generators and is not reflected again only to oscillate
back and forth between generators and array. Viewed from the antenna ar-
ray’s perspective, these generators are non-reflective terminations of its ports.

Figures 2.1b and 2.1c portray the signal flow graphs of our system with
normalisation to the Z;,; and with the standard 50 Q normalisation, respec-
tively. The 50 Q normalisation introduces a loop into the flow graph, which
demands special treatment in the form of matrix inverses [72]. Figure 2.1b on
the other hand is trivial; the following theory is free of explicit occurrences
of Zi,,; or [, and can thus concentrate on the properties of the antenna array.
The information about the generators is not lost, of course; rather it is now
implicated by the normalisation of S.

It is important to understand that the above normalisation requirement
does not in any way restrict the applicability of the following theory. Ap-
pendix B presents an overview of advanced scattering parameter topics not
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covered by standard microwave textbooks. There are conversion formulae
between different normalising impedances as well as to and from impedance
and admittance matrices without loss of information. Different ports may even
be assigned distinct normalising impedances.

As the result of the normalisation, there is now a simple relationship bet-
ween the total power P,, available from the generators and what we call the
antenna excitation vector a.

P, = Py, = d"a. (2.5)

Since we assume lossless antenna arrays at this point, we may conclude that
the power P4 radiated by the antenna array is the difference between Py, and
P... Further substitution yields

Y oama 2.6
= (T-§%)a 20
=ad'HAa
The matrix
H=1- 84§, 2.7)

which we call the radiation matrix of the array, can be considered the multi-
port equivalent of the term 1 — | encountered above in (2.2). Since H is
Hermitian (A% = H), P is a real quantity for arbitrary excitation d, as
required [8, Theorem 4.1.3].

By relating Py.q to the power P,, = Pj, available from the generators, we
obtain a matching efficiency function A(&):

P.a dlHa
Py ada -

A@) =

2.8)

We realise that, in contrast to single antennas, the matching efficiency of an
antenna array is not a constant. There are cases where it exhibits strong de-
pendence on the array excitation vector &, as the following numerical example
reveals.

Consider a symmetric two-port antenna array with scattering matrix

- (04 -05
§= (—0.5 0.4)' 29)
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The return loss and the isolation correspond to about 8 dB and 6 dB, respec-
tively. Judging by these numbers, we would not expect this antenna to be
exceptionally efficient. But can we give a more precise statement?

Before we answer this question, let us evaluate (2.8) for a few example
excitations. We start with exciting one radiator and terminating the other.
This makes @ = (1 0)T and A(@) = 59 %. As expected, the efficiency is
moderate. We now excite both radiators with equal power and equal phase,
sod = (1 1)T and A(@) = 99 %. Suddenly the antenna array possesses superb
radiation properties. When we excite both radiators with equal power but with
a phase difference of 180°, however, @ = (1 —1)T and the efficiency becomes
amere 19 %. We observe that in this example the matching efficiency of the
array varies as much as 7 dB depending on the port excitation.

There are limits on the maximum and the minimum efficiency of an an-
tenna array. Expression (2.8) has the form of a Rayleigh-quotient, whose
range is bounded by the smallest and the largest eigenvalue of H [8, p. 176]:

Amin £ A@) < Amax; foralld e C". (2.10)

In our example the eigenvalues are Apj, = 0.19 and A, = 0.99, two num-
bers, which we recognise from the previous paragraph as the efficiencies of
the out-of-phase and the in-phase excitation of the array. Knowing the ei-
genvalues we can now be certain that no array excitation yields an efficiency
lower than 19 %. In this regard, the smallest eigenvalue of A is an important
figure of merit for the radiation quality of a multi-port antenna array and is
easily determined by scattering parameter measurements.

An alternative way of expressing the worst-case matching efficiency is by
the spectral matrix norm [8, p. 295] of the scattering matrix:

Amin = 1= ||5][3.- @.11)

By analogy to (2.2) the quantity ||S]|, may thus be thought of as the worst-case
reflection coefficient of the array.

Besides a reduction of the overall antenna efficiency, a strongly varying
matching efficiency brings about an additional challenge in a transmitting sys-
tem. Amplifiers driving the array confront greatly changing termination im-
pedances. Depending on the momentary impedance, an antenna driver may
be required to deliver considerably higher voltage or current amplitudes than
if it were driving its nominal load; it may even be required to sink the power
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coupling from neighbouring amplifiers and still maintain the correct ampli-
tude and phase of its a-wave. These facts elevate the linearity requirements
imposed on the transmit amplifiers.

2.2.3 The fundamental modes of radiation

Since the radiation matrix H is Hermitian, it diagonalises under a unitary
similarity transformation [8, p. 104]. Hence, we may write

H=0AO", with A = diag {41, A2, ..., 4.}, (2.12)
and O unitary (i.e., Q0" = I). Because
A=0"A0 =1- 08450, (2.13)

with the product SHS being non-negative definite, all eigenvalues A; are real
and less than or equal to one. Furthermore, all eigenvalues can be shown
to be non-negative for passive arrays. To keep the subsequent discussion
simple, we postulate that all eigenvalues are distinct; issues with non-distinct
eigenefliciencies are addressed later in Section 2.4.

Substituting (2.12) into (2.6) and remembering that A is diagonal, we
obtain for the radiated power

SH X =2
=d,_Ad
mem (2.14)
= /li|am1|27
i=1
with
dm = OYa, or  am;=qg'a. (2.15)

We call the ith column of Q the ith eigenmode §; of the antenna array [142].
By their defining equation (2.12), eigenmodes are normalised to unit power
with |7;]> = 1 for all i. Transformation (2.15) decomposes an arbitrary in-
cident wave vector @ into a weighted sum of eigenmodes g;, whose modal
weights are given by the individual elements ay,; of d,,. For this reason, the
vector dp, will be called the modal excitation vector.
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Whereas |a;|> expresses the power fed into the ith port of the array, |am |?
can be interpreted as the power excited in the ith eigenmode. The unitary pro-
perty of O ensures that |d|> = |dy|?, implying that the total power incident on
the array equals the sum of the powers excited in its eigenmodes. Each ei-
genmode 7 has an associated modal radiation efficiency, or eigenefficiency A;,
which equals the proportion of excited eigenmode power that actually radiates
into the far field.

This eigenmode decomposition allows Eqn. (2.14) to express the total ra-
diated power as a single sum over the respective powers radiated in the indi-
vidual eigenmodes. This suggests an interpretation of the radiation process in
terms of n orthogonal and thus independent “mechanisms” or degrees of free-
dom. Furthermore, we may consider the set of eigenefficiencies 41, 4>, ..., 4,
a unique description of the radiation qualities of those degrees of freedom.
There are always as many degrees of freedom as there are array terminals.
The eigenefficiencies consequently serve as a logical generalisation of the
familiar efficiency of single radiators to multi-port antennas. In the course of
this chapter, we will collect additional pieces of evidence for the fundamental
signification of this eigenmode conception.

If we wished to specify some kind of “average” array efficiency, it would
be natural to consider the arithmetic mean of the eigenefficiencies a fitting
parameter. It may be determined without explicit computation of the eigenef-
ficiencies:

| — 1 - 1 -
/lavg = ; Z/ll = Ztr{A} = ;tr{H} . (216)
i=1

The average radiation efficiency thus equals the mean of the diagonal ele-
ments of H, a result which has also been obtained by Kahn [47, Eqn. (11)].

While there is nothing wrong with the above expression, let us contrast a
three-port array with 4; = A, = A3 = 0.65 with an array with 4; = 4, = 0.97
and A3 = 0.01. Both have the same average efficiency A, = 0.65. If we had
the choice, however, we would presumably prefer the first array; it provides
three degrees of freedom with equal efficiency, whereas the second provides
only two degrees of freedom with the third one almost nonexistent. Also, in
view of the aforementioned excitation-dependent impedance variations, the
first array is clearly the more favourable choice.

Depending on the requirements of the particular application, the worst-
case efficiency Ay, introduced previously seems a more appropriate measure
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a) TN TN b) TN N

1 2 3 1 2 3

Fig. 2.2: An incident eigenmode excitation travelling towards an antenna array (a),
and its reflection (b). Relative phases are denoted by Ag; and Ag,.

for comparing antenna array designs. Later, in Chapter 4 about receive di-
versity, we will derive yet another figure of merit that takes the entire set of
eigenefliciencies into account. This will confirm that example number two
is in fact considerably worse than the first example from the perspective of
antenna diversity.

2.2.4 Reflections of eigenmodes

So far, the results presented are valid for any type of linear and lossless an-
tenna array. From now on we will impose the additional requirement of reci-
procity where ST = S can be assumed.

We have learned that only part of the power supplied to an antenna array
is actually radiated; the other part is reflected at the array ports. We will now
examine the special properties of these reflections. Still under the assumption
of distinct eigenefficiencies, Appendix A.1 proves that if O diagonalises H by
virtue of (2.12), then it also diagonalises S via the following transformation:

Im=0"80, with [ =diag{ymi¥Ym2s---»Ymnl- (2.17)

The coeflicients yy,; are complex and represent the modal reflection coeffi-
cients of the antenna array. This will become clearer if the wave relation (2.3)
is rewritten in terms of I'y,:

b=8d=0"Tw O"d =) G ymidla. (2.18)
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An interpretation of the individual terms is as follows:

1. Decomposition of the antenna excitation vector @ into modal excita-
tions according to (2.15).

2. Computation of the reflected eigenmode amplitudes via the modal re-
flection coefficients yp ;.

3. Transformation of the reflected eigenmode amplitudes into reflected
wave vectors.

Figure 2.2a illustrates the significance of the complex conjugation in step 3.
There, we see a set of power waves travelling towards the antenna array ports.
Together these waves form an eigenmode ¢;. The wave at port 2 is ahead
of the wave at port 1 by a phase difference of Ag;. Similarly, the wave at
port 3 lags behind port 1 by Ag,. Upon reflection (Fig. 2.2b) some power has
been radiated, and the waves thus travel in the opposite direction with smaller
amplitudes. Notice that this time, however, the wave at port 2 is behind the
wave at port one by the same amount A¢;; similarly at port 3, where the wave
is now ahead by Ag,. Reflection apparently reverses the phase relationship
within an eigenmode; complex conjugation is the mathematical description
of this phase reversal.

If we took a time-snapshot of the waves on the transmission lines, or, in
other words, if there were no arrows in Fig. 2.2 indicating the directions of
propagation, there would be no way to judge whether the eigenmode is tra-
velling towards or away from the array, even though we know §;. Thus, a
prominent feature of eigenmodes is that the “shape” of an eigenmode reflec-
tion cannot be distinguished from its original. We will use this property to
our advantage for the discussion of decoupling networks in the next chapter.

The phases of the y,,; depend upon the particular choice of the set of
eigenmodes Q. They are therefore not unique and, unlike the eigenefficien-
cies A;, play a subordinate role for array characterisation. They do appear,
however, in the later development of an array equivalent circuit and in the
mathematics behind decoupling and matching networks. The absolute values
of the yp,; are related to the eigenefficiencies by conservation of energy in the
eigenmode domain; the following is straightforward to prove:

A=T-

=

M o A= 1—lymil* (2.19)
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2.3 Eigenmode far-field patterns

In the preceding section, a lot could be deduced about the radiation properties
of antenna arrays by examining the power flow taking place at their terminals.
We now proceed to apply the eigenmode theory to the radiation process itself.

2.3.1 Far-field patterns and the radiation matrix

The electric field radiated by a single-port antenna is a function of distance r,
azimuth ¢ € [-m;7), and elevation 6 € [-n/2;7/2]. In our notation, zero
elevation describes the horizontal plane and 8 = /2 refers to the zenith. If
we consider radiation in the far-field region of the antenna, then the electric
field vector E(r, ¢, 0) consists of two orthogonal polarisations. The choice
of these polarisations is arbitrary, linear or circular polarisation pairs work
equally well. We follow the common nomenclature and call the components
of E the co-polar component and the cross-polar component, in that order.
The total power radiated P4 is then found by integrating the flow of the
Poynting-vector through some closed surface. If the surface of integration is
a sphere with radius r large enough for the far-field approximation to apply,
P4 1s given by [75, Eqn. (6)]

7’2 /2 T .
Prag = — |E(r, ¢, 0)* cos @ d¢ do, (2.20)
1o -n/2 J-n

where n9 ~ 377 Q is the impedance of free space. In order to remove the
dependence on r and 179, we introduce the normalised far-field pattern (cf. [75,

Eqn. (4)]):
2
F¢.0)= 4/ 47711?@ 6, 6) 2710, 2.21)
0

In descriptive terms, Fi (¢, 0) is the complex realised amplitude gain with res-
pect to an ideal isotropic radiator. It accounts for matching losses as well
as ohmic losses. For example, a lossless isotropic radiator sensitive to the
co-polar component only would have F (¢,0) = (1 0)T. With the aid of the
infinitesimal solid angle element dQ = cos 6 d¢ df, we write the total power
in compact form as

1 N
Pua = o ]{ IF(¢.0) dQ. (2.22)
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a) b)

Fig. 2.3: Naming convention used in the text for a transmitting (a) and a receiving
antenna array (b).

Besides its independence of » and 779, another advantage of the normalised far
field is that it can be calculated intuitively from far-field measurements if a
calibrated standard antenna is available.

Now consider a reciprocal and passive n-port antenna array. The complex
far field radiated upon excitation of the ith port with unit power and with all
other ports terminated with their normalising impedance is called the ith port
pattern F (¢, 6). This is sometimes referred to as the embedded pattern or the
active pattern of the ith element. By the principle of superposition the total
far field produced by a given excitation & is

Fuou($,0) = > axFi(e,0). (2.23)

k=1

With (2.22) we obtain the total radiated power (Fig. 2.3a) as a function of a:

1
Prad(‘_{) = E%

After rewriting the integrant and expanding the resulting product we arrive at

H
1 S "
Pra(@) = 57{ <Z arFi(e, 9)) . <Z aiF (o, 9)) dQ
k=1

=1

1 not }
~ in (Zzazﬁazf?(cﬁ, 0) - Fy(¢, 9)) do

k=1 [=1

2
Q. (2.24)

> aFi(.0)
k=1
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1 n n .
== Gm%ﬁwaM@aﬁ

L
_ =Hy -
=a Hpqd, (2.25)
where the individual elements of the matrix H,,q are given by

1 —»
%M=EfﬁwWmem. (2.26)

Comparison of the last two equations to (2.6) reveals that there are two ways
to calculate the radiation matrix H. Unlike (2.6), however, the above equa-
tions do not assume a lossless array. They account for ohmic losses inside the
array in addition to reflection losses.

Because far fields are usually measured with respect to the standard 50 Q
impedance, Appendix B lists formulae that let us re-express the far-field data
and the corresponding radiation matrix for arbitrary normalising impedances.

We will meet the radiation matrix at many places throughout this thesis
and most expressions are meaningful with the radiation matrix based on scat-
tering parameter measurements or on far-field measurements. Scattering pa-
rameters are much easier and quicker to obtain both by simulations as well as
by experimental setups and present a perfectly valid approach if ohmic losses
of the array are negligible. Care must be taken though, because seemingly
small losses can have significant impact on the array eigenefficiencies in the
presence of strong mutual coupling, as the example at the end of this chapter
demonstrates. Especially, if the array employs a feed network of some kind,
far fields should generally be preferred over scattering parameters unless the
properties of the network are otherwise accounted for, for instance by (3.16).
In any case, scattering parameters are useful to get an initial, optimistic im-
pression of an antenna array.

The notation H,.. will be used explicitly to signify a radiation matrix
based on scattering parameters. The subscript refers to the power accepted,
i.e., not reflected, by the antenna array. At places where we specifically refer
to the far-field based radiation matrix, we will use the notation Hy,q to indicate
the power radiated by the antenna array. Whenever the choice is up to the
engineer, the subscript will be omitted. Where appropriate, subscripts will
also be used on O and A as well as §; and 1;. Of course, we have [76, Eqns. (8)
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and (9)]

Hiaq = Hyee = 1 - §HS for lossless arrays. 2.27)

The diagonal elements of H,d correspond to (2.22) and stand for the po-
wer radiated by the beams associated with individual array terminals. The
off-diagonal elements are a measure for the overlap between two beams i and
j. If these elements evaluate to zero, the far-field patterns are said to be or-
thogonal or uncorrelated.

In this thesis we use the term “ideal multi-port array” to refer to a lossless,
reciprocal, and perfectly matched antenna array where H is the identity ma-
trix. Such an array has 100 % radiation and matching efficiency at all ports
and exhibits no beam overlap or port coupling. The specific shape of the beam
patterns is irrelevant to this definition.

For lossless arrays, we can assert that decoupled input ports are a suffi-
cient condition for orthogonal port patterns. This follows from the fact that
it is impossible to find a diagonal matrix § such that H is non-diagonal. In
other words, overlapping beams necessarily imply coupled input ports. The
converse, however, is not always true. A specifically constructed example is
a lossless two-port array with

«_ (05 j05
§= <j0.5 0.5) ' (2.28)
Although its ports are significantly coupled, the radiation matrix turns out as
~ 05 0
H = < 0 0.5> , (2.29)

indicating orthogonal beams. If ohmic losses are allowed, then it will always
be possible to find examples that do not conform to this principle.

In the literature, the pattern correlation coefficient p;; is often encounte-
red as a figure of merit for mutually coupled arrays. It normalises the beam
overlap to the powers of the individual beams [76, Eqn. (12)], [24, 70]:

pij = —F/—.
\/ HiiHjj

This way, p;; is a complex number with absolute value 1 for full beam over-
lap and value O for orthogonal beams. As the result of the normalisation,

(2.30)
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however, information about the individual port efficiencies (power mismatch
or ohmic loss) cannot be extracted from the correlation coefficients alone. In
the example above, the pattern correlation py; is zero, but the array nonethe-
less possesses an efficiency of only 50 % for all excitations. Although the
example is a specifically constructed one, it does suggest that the significance
of pattern orthogonality often proclaimed in the literature may be somewhat
overrated (cf. the discussions in Section 2.1 and Chapter 4).

2.3.2 Beam-pattern orthogonalisation

Let us proceed with the investigation of array radiation patterns, and as-
sume that the radiation matrix H,,q has been determined from a given set
of n port patterns Fi(¢, 6). The eigendecomposition is H.,=0,4A,,01, in
accordance with (2.12). We now establish a new set of beam-patterns cal-
led F, m.i(¢, 0) by exciting the array in turn with each of its eigenmodes raq,;
and normalising the resulting pattern to the square-root of the associated ei-
genefficiency. This is accomplished by the following linear transformation on
the set F)i(qﬁ, 0):

\/_ Z Oraa ki F (4. 6). (2.31)
rad,i k=1

The beam overlap between these eigenpatterns is found by virtue of (2.26):

Fri(¢,0) =

4L ]{ FY.(6,0) - Fouj(6,6) dQ
T

1
=1 ra lﬁ 0 ra ﬁ 7
4ﬂj{<mkz;Q dkiF k(9 )) (\/TOUIZ:Q a1 Fi(e, ))

n n
1

dr \/m kz_l: lz_; ( rad,ki <rad,/j k |

n

E E Qrad lerad IjHrad kl
vV radz radj k=1 =1

1 _ 1 i=]
= ——— Andij = = . (2.32)
Arad,idrad, j 0 otherwise.
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It turns out that the beam patterns associated with eigenmodes are mutually
orthogonal (cf. Stein [75, Section XI]). Since these patterns in (2.31) are nor-
malised, the F m.i(¢, 0) constitute an orthonormal basis for the linear pattern
space that can possibly be formed by a given antenna array. In conjunction
with the eigenefficiencies A4, these patterns completely describe the de-
grees of freedom available in the array: eigenpatterns define the shape, and the
eigenefficiencies the corresponding radiation efficiencies due to power mis-
match and ohmic losses. This insight once again emphasises the fundamental
character of the eigenmode representation initially observed in Section 2.2.3.

Because Qy,q is unitary, ie., O, = OH,, we may write the inverse of
transformation (2.31) as

Fi(¢.0) = Oraix V/Araak Froi(¢,6). (2.33)

k=1

Substitution into (2.23) yields the following form of the excitation dependent
far field Fioi (¢, 6):

n n
Fota($,0) = Z a <Z Oraik v/ Atk Frni(8, 9)>

=1 k=1
n n

= Z (F mk(@, 0) \/ Arad k Z QZm,/k“/) (2.34)
k=1 =1
n

=Y Fui(8.0) /Aax Grasd.
k=1 ¢ ' ' !

3. 2. 1.

Analogous to the discussion of eigenmode reflections in Section 2.2.4, the
radiation process may be described in terms of eigenmodes and eigenpatterns
as follows:

1. Decomposition of the antenna excitation vector @ into modal excita-
tions, cf. (2.15).

2. Computation of the radiated modal power via eigenefficiency A k-

3. Radiation in form of eigenpattern F m.i(¢, 6) associated with mode i.
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Suppose the antenna array is used as part of a digital beam-forming trans-
mitter, where the power supplied to the array ports may be changed arbitra-
rily. In principle, we can compensate for the losses within the array by pre-
distorting the excitation vector @ to increase the power selectively in lowly
efficient eigenmodes. This may for example be accomplished by the transfor-
mation

a=0,,AM0" % (2.35)

rad

which cancels the /A4, term in (2.34) and yields

Fiou(¢,6) = ZFm,ws 0) G, T, (2.36)

i=1

where the total power radiated is always equal to the total power in the desired
excitation vector .

In practice, however, the approach described raises the linearity require-
ments of the amplifiers driving the array beyond what was mentioned above
at the end of Section 2.2.2: the amplifiers must deliver still higher voltage
and current amplitudes in order to overcome the efficiency impairments due
to coupling. Therefore, the feasibility of this approach is dependent on the
output power and on the specific eigenefficiencies of the target system.

Now suppose the receiving case. A plane wave with amplitude Ep im-
pinges on the antenna array from direction (¢, 6p) as in Fig. 2.3b. The waves
b1, by, ..., b, that consequently arise at the antenna ports are given by [76,
Eqgn. (10)]

Ao
VA

where Ay is the wavelength of electromagnetic radiation in free space. After
substitution of (2.33) we may express the received waves b in vector form as

bi = FY(¢0,60) - Enn, (2.37)

p X
Z Toti /i w%m FT o 60) B . (238)
3. 2. 1.

Thus, the modal interpretation of reception is as follows:

1. Reception in mode i via eigenpattern F, m.i(9, 0), cf. (2.37).
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2. Computation of the received modal power via eigenefficiency A ;.

3. Transformation from eigenmode representation to the received waves
. =
domain b.

As expected by the principle of reciprocity, the eigenefficiencies are effec-
tive in the receive direction as well. In contrast to the transmitting case, ho-
wever, the eigenefliciencies cannot be compensated for by means of digital
beam-forming algorithms. The reason is that receiver sensitivity depends on
the signal-to-noise ratio (SNR). Additional noise is generated within recei-
ver components such as amplifiers, mixers, or analogue-to-digital converters.
Thus, if the signal received by the antenna array is weakened due to coupling,
then the SNR will be degraded permanently, since there is no way to improve
the SNR of a non-deterministic signal. The influence of noise on the receiving
properties of compact antenna arrays will be addressed in detail in Chapter 4.

2.4 Non-distinct eigenefficiencies

We know already that any eigenmode §; multiplied by a unit phasor is again
an eigenmode. This follows from the definition of eigenvectors of a matrix.
In consequence, the phases of the modal reflection coefficients yy; (2.17) as
well as the phases of the eigenpatterns (2.31) are dependent on the particular
choice of the matrix of eigenmodes Q.

When there are eigenefliciencies with multiplicity greater than one, addi-
tional degrees of freedom arise in the determination of Q. In this case any
linear combination of eigenmodes with the same eigenefliciency also consti-
tutes an eigenmode.

This fact has a noteworthy impact on eigenmode reflections. Let us revisit
the lossless example antenna array discussed towards the end of Section 2.3.1
with

= _ (05 j05 ~ (05 0
S = (jO.S 0.5) and thus H = ( 0 O.S) . (2.39)

The eigenvalues of H obviously share the same value, namely 1, = A, = 0.5.
We have already observed that its port patterns are orthogonal although its
input ports are coupled. Moreover, the two excitations §; = (1 0)T and
g>» = (0 DT are valid eigenmodes according to definition (2.12). Yet they
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are an example for the fact that in the presence of multiple eigenefficiencies
eigenmode shapes are not necessarily maintained upon reflection as in (2.17).
Similar examples may be constructed for larger arrays. The fact that (2.17)
is guaranteed to hold for non-distinct eigenefficiencies only, is a general ma-
nifestation of the previous insight that beam-orthogonality is not a sufficient
requirement for uncoupled ports.

The multiplicity of eigenefliciencies is irrelevant to the description of the
radiation properties of antenna arrays, since the eigenefficiencies 4;, as well
as the pattern space spanned by the set of eigenpatterns, characterise the de-
grees of freedom available; these parameters remain unambiguous under all
circumstances. For the mathematical analysis of decoupling and matching
networks in the following chapter, however, it is crucial that both (2.12) as
well as (2.17) are fulfilled. This is accomplished by a matrix decomposi-
tion known as Takagi’s factorisation [8, pp. 204], [128, 136] which, given a
symmetrlc complex matrix S, always finds a non-negative real diagonal ma-
trix ', and a unitary matrix Q according to (2.17). It is straightforward to
show that (2.17) implies (2.12). The existance of some O that fulfills (2.12)
and (2.17) is thus guaranteed in all cases.

2.5 Ohmic array losses

So far, we have looked at the power accepted by an antenna array via the
matrix H,.. and the power radiated by the array using the matrix Hq. In the
presence of ohmic losses, it is expedient to round out the concept of eigenef-
ficiencies by including a quantification of these losses.

Consider the excitation-dependent quotient y (&) of the radiated power to
the accepted power:
a'H,qd

P
x(@ =" =

Picc &’HHacca).

(2.40)

This function gives information on what fraction of the accepted power is
actually radiated for a given port excitation @. It disregards power mismatch
at the input terminals and is therefore characteristic of ohmic losses within
the array itself. In the absence of ohmic losses, y(d) evidently equals unity
for all excitations.

The information about a worst-case ohmic efficiency ymin is of particu-
lar practical interest. It is given by the smallest eigenvalue of the product
I:I;CICI:Irad (cf. the derivations in Section 4.3.3). The important consequence
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for an antenna designer is that, no matter what measures are undertaken to
improve power matching to the antenna array (without modification to the
array itself), there will be some excitation where the efficiency of this system
does not exceed Ymin-

Networks that aim to restore power matching at the array terminals are
called decoupling and matching networks (DMN) and are discussed in the
next chapter. In the context of DMNss, the statement behind ohmic efficiencies
is in fact very specific: Appendix A.2 demonstrates that the set of eigenva-
lues y; of the product A\ A_, defines an upper limit to the eigenefliciencies
that can possibly be achieved with a passive DMN. Any practical DMN rea-
lisation will naturally perform worse due to additional network losses. To the
above definition of ohmic efficiencies, the origin of the losses is irrelevant.
They can be part of the radiating parts of the array, caused by the insertion
losses of connecting cables, or even be part of some type of feed-network—
not necessarily a DMN—in front of the array.

Mind that, in the presence of strong mutual coupling, one or more ei-
genvalues of H,c. will be very small; the matrix H,.. will therefore be close
to singular. In this case, the computation of the matrix inverse and thus the
computation of the ohmic efficiencies y; is an ill-conditioned problem [8, Sec-
tion 5.8] and as such sensitive to measurement errors. We will see an example
of this implication later on.

2.6 An equivalent circuit for lossless arrays

The results of the eigenmode analysis may be put together conveniently as a
descriptive equivalent circuit model for lossless coupled antenna arrays [144].
Since in this case Hyq = Hyee, the corresponding subscripts are omitted for
clarity. The lossless circuit model extends the discussion by Stein [75, Sec-
tion XI].

Consider the equivalent circuit in Fig. 2.4. Shown is a set of n impedances
with reflection coefficients yp, ; connected to some lossless and reciprocal 2n-

port network Sq with
(0 o

The first n ports of this network correspond to the left-hand side ports in the
figure from top to bottom. Likewise, the last n ports correspond to the right-
hand side.
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Fig. 2.4: Equivalent circuit model for lossless coupled n-port antenna arrays compri-
sing a set of uncoupled equivalent radiators with diagonal scattering matrix ', and a
coupling network Sy. The pictograms on the right-hand side represent the eigenpat-
terns F, m,i(¢, 6) associated with the equivalent radiators.

The scattering matrix S resulting from the interconnection of the above
networks is readily obtained using (B.14):

S =S8q12Tm Sq21 = 0T OV, (2.42)

where I, is the diagonal matrix of the reflection coefficients y,, ;. We observe
that if O and T, are determined by the eigenmode analysis, then Fig. 2.4
models the input port behaviour of an antenna array with scattering matrix S.
Suppose the antenna array is used for transmission. The matrix signal
flow graph [72] in Fig. 2.5a is a graphical representation of the power flow ta-
king place in the equivalent circuit. Power is supplied from n external sources
via the wave vector &. These waves are transformed through QY to yield

waves dp, with
am = OMa. (2.43)

This transformation has been identified earlier in (2.15) as the decomposition
of the incident wave vector into modal excitations. These excitations ap,; are
now incident on the load impedances with reflection coefficients yy,;. The
power P; dissipated in impedance i is therefore

P; = (1 = lymi®) lamil* = Alaml (2.44)
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Fig. 2.5: Matrix signal flow graphs illustrating the power flow in a transmitting (a) and
a receiving antenna array (b).

which, being the power available in eigenmode i times the corresponding
eigenefficiency, expresses the power radiated in the ith eigenmode. We may
therefore regard the impedances yn; as equivalent power sinks for the power
radiated in the individual eigenmodes. Moreover, the contribution of the ith
eigenmode to the overall far-field radiation pattern is given by

Foani($,0) VA; am,, (2.45)

the superposition of which leads us to our previous interpretation according
to (2.34). Power not radiated by the array is reflected to the sources in the
form of modal reflections I;m = I, @y, which are subsequently transformed
into port reflections via b=0"by.

Reciprocity allows us to apply the same model in the receive direction.
The only difference is that the impedances yn,; are now regarded as equi-
valent power sources with internal reflection coefficient yp,;. According to
Hoffmann [6, Eqn. (5.46)], a power source with available power Py, 5y ; and
internal reflection coefficient yy, ; can be modelled by some wave by, ¢; as in
Fig. 2.5b, with

|bm,0,i|2 =(1- |')/m,i|2)Pm,av,i = AiPmav,. (2.46)

Although this equation leaves the phase of by; undetermined, we assert the
following relationships involving an available modal power wave by, ,y i

bm,O,i = \//l_z bm,av,iy (247)
with
Ao

bmav,i =
,av, \/ZFT]O

FT (60, 60) - Ein. (2.48)
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In other words, by ay; represents the modal power wave available in eigen-

mode i in response to a plane wave Ej, incident on the antenna array. Conti-
nuing with the transformation along the signal flow graph we obtain

B = bmo = 0" fbmav (2.49)

for the waves received at the array ports; the waves available in the eigen-
modes are weighted with their eigenefficiencies and are finally transformed
into received port waves. If we now substitute (2.48), we arrive at our pre-
vious interpretation of array reception (2.38).

In summary, the proposed equivalent circuit is an accurate embodiment
of the eigenmode concept developed in this chapter—at least for lossless ar-
rays. All important pieces are brought together: eigeneﬂiciencies A;, modal
reflection coefficients yp, ;, elgenmodes 0, eigenpatterns F m.i(9, 6), modal ex-
citations dn,, modal reflections bm, and available modal power waves bm av-
The circuit model decomposes a coupled antenna array into a set of uncou-
pled equivalent radiators and a lossless and reciprocal coupling network. Vie-
wed this way, the only sources of radiation, the degrees of freedom of the
antenna array, are the equivalent radiators; their matching efficiencies and
consequently the radiation capabilities of the antenna array as a whole are
characterised uniquely by the set of eigenefficiencies A;.

2.7 Examples of the consequences of radiator coupling

It is about time to apply the ideas developed in this chapter to a practical
context. The intention of the examples provided here is to convince the rea-
der of the usefulness of the eigenmode approach in engineering problems.
Questions about what range of values can be expected for the eigenefficien-
cies, what eigenpatterns look like, and what other factors influence the per-
formance of a compact antenna array are addressed in the following.

2.7.1 Analysis of a manufactured 4y/10 linear three-port monopole an-
tenna array

We start with a rather thorough analysis of a manufactured three-port mono-
pole array for a frequency of 2.45 GHz. The ground plane is a 14 cm by 14 cm
copper plate with a thickness of 1 mm. Silver-plated copper wires with a
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Fig. 2.6: Photographs of the fabricated 1,/10 three-port monopole array for 2.45 GHz.

diameter of 1 mm and a length of 29 mm (= 0.24 Ay, where Aj is the wave-
length of free space) were used as radiators with a spacing of one tenth of the
wavelength. The radiators were soldered to SMA flange jacks, which were
subsequently inserted though holes in the ground plane and bolted on to it.
Photographs are shown in Fig. 2.6.

The scattering parameters of the antenna array are plotted in Fig. 2.7.
Due to manufacturing deviations, the scattering parameters are not perfectly
symmetrical. At the centre frequency of 2.45 GHz the decibel absolute values
of the scattering coefficients are:

w  [-89 -72 99
S| =(-72 -63 -68]| dB. (2.50)
99 -6.8 -9.0

Coupling between elements is characterised by the off-diagonal elements. Va-
lues lie between —9.9 dB and —6.8 dB, which corresponds to 10 % and 21 %
power coupling to neighbouring elements. At first glance this may not seem a
lot. However, if we take a closer look at the second radiator, for instance, we
find that 23 % of power are lost due to impedance mismatch, and that ano-
ther 40 % are lost through coupling to the first and the third port. Only 37 %
are left for radiation.
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Fig. 2.7: Measured scattering parameters of a 4y/10 linear array of three monopoles.

These port efficiencies constitute the diagonal elements of the radiation
matrix Haec:

0.578 0.293 - j0.069 —0.0312 — j0.0081
Hue = [ 0.293 +j0.069 0.366 0.304 + j0.046
~0.0312 +j0.0081 0.304 — j0.046 0.565
(2.51)

They express the radiation efficiency if one port is excited while the others are
terminated with matched loads. The off-diagonal elements in the radiation
matrix quantify the amount of overlap between beam patterns. Normalised
to the port efficiencies they yield the popular correlation coefficient defined
earlier (2.30):

lo12] = 0.653, |p13] = 0.0564, and |p23|=0.677. (2.52)

These numbers indicate significant beam overlap between the first and the
second as well as the second and the third radiator. The similarity between
the outermost elements seems considerably less. When we look at azimuth
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cuts through the port beam patterns in Fig. 2.8a, we notice that it is virtually
impossible to use them as a basis for judging the magnitudes of the correlation
coefficients. The reason why the seemingly similar and greatly overlapping
patterns of ports one and three can nevertheless exhibit very low correlation is
that the entire three-dimensional patterns are relevant to the calculation of p,
and also the relative phases of the power radiated towards different angles.

Another thing we notice about the shapes of the beam patterns is that they
are greatly distorted from the circular pattern of an isolated monopole radia-
tor. One cause of this effect is the close proximity between radiators. Power
fed into one antenna port not only excites the radiator directly connected to
that port but also, due to field coupling effects, its neighbouring elements.
Another contributing factor not specifically related to radiator coupling is the
small size of the ground plane. Currents flowing in the antenna elements in-
duce currents on the ground plane surface that contribute to the radiated field.
Clearly visible is the effect of the ground plane corners in the beam pattern of
the centre port.

In this chapter, eigenmodes were introduced as a means for the unique
characterisation of the radiation capabilities of a mutually coupled antenna
array. The set of eigenefficiencies was considered the logical extension to the
radiation efficiency of a single radiator. In our example the eigenefficiencies
as determined from its scattering matrix are

Aucet =892%, duecr =602%, and dpees = 144 %.  (2.53)

Therefore, depending on its excitation, the radiation efficiency of the array
(based on the accepted power) varies between 89.2 % and as little as 1.44 %.
The eigenmodes, which were shown to represent the excitations that give rise
to these efficiencies, are given by the columns of the matrix

0.553 2£0° 0.710 £0° 0.437 £0°
Quce = [ 0.632215.3° 0.0306 £—-105.0° 0.7742/-168.0° | , (2.54)
0.544 £8.90° 0.704 £-174.0° 0.457 £2.62°

written in polar form. The first eigenmode excites all elements with roughly
equal amplitude and equal phase. Mutual coupling can be expected to be in-
effective in this case, which is supported by the excellent radiation efficiency.
Due to the close proximity of the radiators, the corresponding beam pattern
shown in Fig. 2.8b resembles that of a single radiator. In view of the even
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Fig. 2.8: (a) Measured azimuth cuts of the port beam patterns of the 1/10 linear three-port array. (b) The eigenpatterns
computed from the far-field data. All diagrams are plotted at an elevation of 8 = 20°.
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symmetry of the far-field pattern and of the excitation vector, we call this
mode the “even” mode.

Eigenmode number two only excites the outermost radiators and spends
negligible power on the centre radiator. The phase difference is close to 180°.
This time the correlation between the associated patterns takes effect and ad-
versely affects the radiation efficiency. Since the correlation is small though,
the effect is only moderately pronounced and the efficiency is still 60.2 %.
The resulting beam pattern in Fig. 2.8b is the difference pattern with a dis-
tinct radiation-zero perpendicular to the line of radiators. There is a 180°
phase difference between the left-hand and the right-hand lobe. Owing to its
odd symmetry, this mode is called the “odd” mode.

The last eigenmode involves all three radiators with a phase difference
of around 180° (equivalent to 7 radians) between adjacent elements. On this
account, we call it the “n”-mode. In consequence of the small element se-
paration, the superposition of the beam patterns produced by the individual
radiators is primarily characterised by destructive interference. Thus, only
little power finds its way into the far field and the larger proportion is reflec-
ted to the sources. The extent, to which cancellation of energy takes place,
is evident from the minute radiation efficiency of this mode. The phase diffe-
rence between adjacent lobes in Fig. 2.8b is 180°.

Since mainly the phase differences within an eigenmode vector determine
the extent of destructive or constructive interference, we will occasionally
employ the following notation in the course of this thesis:

“even’’: [+ + +} s “odd”: [+ o —} s and “m’’: [+ — +} .

Roughly speaking, the more adjacent phase changes there are in an eigen-
mode the more annihilation takes places in the far field and the lower is the
corresponding eigenefficiency.

Let us now investigate how arbitrary excitations can be expressed in terms
of eigenmodes. For simplicity we take the excitation of the centre port as
an example, so the excitation vectoris @ = (0 1 0)T. With (2.15) @ is
decomposed into its modal constituents d@,. The magnitude squares of the
elements of @, represent the amount of power available for the individual
eigenmodes. In our example 40 % contribute to the “even” mode and 60 %
to the “n”-mode. For symmetry reasons, negligible power is assigned to the
“odd” mode.
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The total radiation efficiency of the centre port comes about as follows:
of the 40 % available for the first mode, 89.2 % are radiated. In the third
mode, only 1.44 % of the available 60 % are radiated. This amounts to an ef-
ficiency of 0.4 X 0.892 + 0.6 x 0.0144 = 0.365, a number which we recognise
from (2.51) above. (The missing 0.1 % go into the second mode because
the manufactured array is not perfectly symmetric.) The discussion explains
why the resulting beam pattern closely resembles that of the “even” mode,
although the larger proportion of input power is assigned to the “n”-mode. It
should also be clear by now that, in general, the third mode will be mostly
underrepresented during array operation, unless measures are undertaken to
pre-distort the array excitation @ to compensate for the mode-dependent effi-
ciency loss.

So far the discussion was based on information that had been deduced
from the scattering matrix of the antenna array. Previously in this chapter
we derived the close relationship between scattering parameters and far-field
patterns. The important difference is that far-field patterns, unlike scattering
parameters, convey information about ohmic losses in the array. Since the
array was built from the best conductors available, namely copper and silver,
we can surely neglect the influence of losses. Can we really?

To answer this question, the radiation matrix H,,q was determined by nu-
meric integration over the measured far-field patterns. The result is

0.579 0.288 —j0.072 -0.0397 - j0.0098
Heq = 0.288 +j0.072 0.347 0.292 +j0.046 ,
—-0.0397 +j0.0098  0.292 - j0.046 0.562

in comparison with the matrix of accepted power

0.578 0.293 -j0.069 -0.0312 —j0.0081
Hyo = 0.293 +j0.069 0.366 0.304 +j0.046 ,
—-0.0312 +;0.0081 0.304 —j0.046 0.565
(2.55)

obtained previously. Their remarkable agreement not only confirms the vali-
dity of the theory but also demonstrates that practical far-field measurements
are accurate enough to produce meaningful results. However, we do spot
some notable differences between the eigenefficiencies /de and Zacc asso-
ciated with these matrices (see Table 2.1). For the “odd” mode excitation,
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Excitation @ Aacc(@) Awa(@) x(@)  Directivity Realised gain

Port1 58 % 58% 100 % 5.6 dBi 3.2dBi

Port2 37 % 35 % 95 % 5.3 dBi 0.73 dBi

Port3 57 % 56 % 99 % 5.1dBi 2.6 dBi

“Even” mode 89 % 87 % 97 % 5.3 dBi 4.7 dBi

“Odd” mode 60 % 61% 101 % 6.9 dBi 4.7 dBi
“r’-mode 14% 1.0% 69% 5.5dBi —-14.5dBi

Table 2.1: Selected parameters of the example array. The values for the directivity and
the gain are included for information only.

the array displays unphysical behaviour in that the amount of power radia-
ted (61 %) is seemingly greater than the power accepted by the array (60 %).
The discrepancy, in both absolute and relative terms, is small enough, though,
to be ascribed to measurement tolerances.

The numbers of the “m”’-mode on the other hand suggest the presence
of significant ohmic losses for that particular excitation. It appears only
about 70 % of the power accepted by the array are actually radiated. Since
this observation is caused by only a small absolute difference between /lg?i
and AQ. of 0.4 %, it is crucial that we confirm the plausibility of the measu-
rement data.

To this end, the variations of the modal ohmic efficiencies y; are plotted
versus frequency in Fig. 2.9a. The ripple clearly apparent in these graphs is
because their computation is ill conditioned as mentioned at the end of Sec-
tion 2.5. Small numerical variations in the matrix H,. due to measurement
noise or calibration errors for instance cause large changes to the y;. In order
to investigate whether or not the materials of the antenna array are respon-
sible for the degraded “n”’-mode efficiency, a second version of the array was
fabricated, this time with a stainless steel ground plane. The conductivity of
stainless steel (1.4 x 10° Sm™') is more than one order of magnitude smal-
ler than the conductivity of copper (5.8 x 107 Sm™!), so any influence of the
material should clearly show up in the measurements.

Figure 2.9b portrays the results. The ripple in these curves is conside-
rably larger, possibly because it was deemed unnecessary to recalibrate the
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Fig. 2.9: Modal ohmic eigenefficiencies as determined from scattering parameter and
far-field measurements. These plots portray the results for a copper ground plane (a),
and a stainless steel ground plane (b).

network analyser a second time for the stainless steel measurements. If we
ignore the outliers in the plots, we nonetheless find that there is not much
difference between the efficiencies of the stainless steel array and the copper
array. The conductivity of the ground plane material evidently has no measu-
rable bearing on array efficiency. This fact has subsequently been confirmed
by computer simulations using CST Microwave Studio [126].

Still, there is one further array component that we have not yet paid any
attention to: the SMA connectors used to feed the radiators. They use PTFE
(Polytetrafluoroethylene, Teflon®) as the dielectric, which is a low-loss ma-
terial with relative permittivity € = 2.05 and a dielectric loss tangent (tan §)
of around 2.5 x 10~* at microwave frequencies [123].

In order to understand the effects of these connectors we consider the
setup of Fig. 2.10a. Shown is a lossless single-port antenna with reflection
coefficient I' fed through an attenuating element. The attenuating element,
which models the effect of the SMA port, is characterised by its insertion
loss a (in decibels) or, alternatively, its s, scattering parameter. Since eigen-
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Attenuation a dB
(e.g., coaxial line)

)

Fig. 2.10: (a) An antenna with reflection coefficient I' is connected to a generator
with available power P,, through a reflectionless attenuating element (e.g., a piece of
transmission line) with decibel insertion loss a. (b) The equivalent signal flow graph.

modes were shown to provide essentially a description of a coupled array in
terms of uncoupled equivalent radiators, Fig. 2.10a may conveniently be used
to model the losses of, say, the “n”’-mode.

Due to the attenuation, the reflection coefficient I'; measured at the in-
put port deviates from the actual reflection coefficient I' of the antenna. Fi-
gure 2.10b shows the corresponding signal flow graph, by which we can de-

duce the following relationships between the variables:
ol = |52 1T, with 52| = 107/, (2.56)

where a is measured in dB. If we let P,, denote the power available from the
driving source, P,.. the power accepted at the input port, and Py, the power
finally radiated by the (lossless) antenna, we can establish the “acception ef-
ficiency” Aaec = Pacc/Pav and the radiation efficiency Arag = Prag/Pay Of the
system as

dace = 1= = 1= |sy[*ITP,  and  Awg =Isu* (1-1TF).  (2.57)
Solving for |s51]> and T in terms of A, and Ayq yields
A Qrad \ 2 Arad
Isail? = 224 3 1= e + ( “‘d> and [P =1- ", (2.58)
2 2 [$21]

Substituting the data of the “n”’-mode, i.e., dgec = 1.4 % and Arag = 1.0 %, the
above formulae result in

a = 0.0087 dB, I'=0.995, and I'; =0.993. (2.59)
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In other words, an attenuation as small as 0.009 dB reduces the efficiency
of the “n”-mode by as much as 30 %. Subsequent electromagnetic simu-
lations of the SMA-connector reported an insertion loss between 0.005 dB
and 0.01 dB, depending on the configuration of the solver. This confirms that
the values obtained by measurement for Aycc ;, Arad,i, and y;, reflect the perfor-
mance of the array in terms of both impedance mismatch and ohmic losses to
within reasonable accuracy.

The insight that even tiny losses in a compact array can have substantial
impact on its efficiency is a crucial one. Whereas in principle it is possible to
compensate for mismatch or coupling losses via a matching network (Chap-
ter 3), nothing can be done to overcome ohmic losses—other than to redesign
the array. Suppose a matching network is inserted between the generator and
the input of the attenuating element in Fig. 2.10. The operation of the mat-
ching network can be pictured in the way that it stores the energy reflected by
the antenna and then appropriately releases it again on the next cycle until all
energy is radiated. The higher the impedance mismatch, the more often the
energy must travel between the load antenna and the matching network. If
there are losses on the way, the energy becomes successively absorbed each
time it passes by.

SMA connectors are not the only potential source of losses. Cables and
antenna feed networks, such as decoupling and matching networks, possess
considerably larger losses that will severely degrade array performance. For a
graphical assessment of the influence of these losses, Fig. 2.11 plots the ohmic
efficiency y of the system in Fig. 2.10 versus the matching efficiency 1 — |[?
of the (lossless) radiating element for varying attenuation a. According to the
graphs, if our example array were connected to a decoupling and matching
network through coaxial cables with an attenuation of 0.1 dB, then its “n”-
mode efficiency would not exceed 20 % under any circumstances.

As a rule of thumb, if the decibel attenuation a has the same value as the
decibel return loss I', then the efficiency is 33 %: one third is absorbed on the
way to the antenna, one third is radiated, and one third is absorbed on the way
back to the generator.

The examples demonstrate that mutual radiator coupling defines a physi-
cal limit to the feasible compactness of antenna arrays. This limit cannot be
overcome, for the plain reason that completely lossless materials do not exist.
With the concepts introduced in this chapter, however, we have the necessary
tools at hand to accurately assess the quality of an antenna array and thus the
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Fig. 2.11: Maximum achievable total efficiency of the system in Fig. 2.10 dependent
on the matching efficiency 1 — |['|? of the lossless antenna and the insertion loss a of
the attenuating element.

ability to come to a decision whether or not an array design is suited for a
particular engineering application.

2.7.2 Influence of the number of radiators and their separation

To get an idea of the amount of space reduction possible with uniform li-
near arrays, Fig. 2.12 plots the worst-case efficiency A, (2.11) as a function
of the number of radiators n and the spacing d between them. The graphs
were obtained by simulating arrays of Ay/2-dipoles consisting of thin, loss-
less cylinders placed in free space using CST Microwave Studio [126]. Lum-
ped 50 Q-ports were used to excite the dipoles. Detuning of the resonant
frequency due to the mutual coupling has been taken into account by loo-
king for the frequency of best power match and adjusting the positions of the
sampling points in the graph accordingly.

The trends conveyed by the figure are obvious. As expected, lower ra-
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Fig. 2.12: Worst-case eigenefficiencies of uniform linear dipole arrays for varying
radiator spacing d and different numbers of radiators n. The graphs have been obtained
by electromagnetic simulation and subsequent interpolation between the results.

diator spacings give rise to a degraded efficiency of at least one eigenmode.
Whereas a spacing of 1y/4 appears feasible at n = 4 or perhaps n = 5, an
array with eight elements is probably of little use in most applications be-
cause at least one degree of freedom is unavailable. According to the graphs,
remarkably small separations are achievable with two radiators.

With increasing number of antenna elements, the transition region bet-
ween high and low efficiency not only moves towards greater separations,
but becomes sharper, i.e., the dependence on the radiator separation becomes
more sensitive. On the one hand, the graphs indicate that a noteworthy reduc-
tion of the radiator spacing is only sensible with few radiators; for larger n,
however, even a small reduction of the spacing has considerable effect on the
overall dimensions of the array. It is remarkable that for “conventional” (/2
arrays, some degradation due to residual coupling is still observable.

Note that the graphs are specific to linear dipole arrays and 50 Q loads.
Naturally, the eigenefficiencies depend on a number of additional factors,
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such as the impedances of the loads, the radiator arrangement (e.g., linear
or circular), but also the directivity, orientation, and efficiency of the isolated
radiators.

2.8 Summary

In this chapter, we have investigated the transport of power from a set of ge-
nerators to a mutually coupled antenna array. We have found that as the result
of mutual coupling, the radiation efficiency A is not constant but rather a func-
tion of the amplitude and phase excitation of the antenna array terminals. The
range of efficiencies that can be observed is bounded by the smallest and by
the largest eigenvalue of the radiation matrix. It was consequently suggested
that this worst-case efficiency is used as a figure of merit for the quality of an
antenna array. In the typical lossless case, the worst-case efficiency is easily
extracted from the scattering matrix of the antenna array and thus lends itself
to simple comparisons between different compact array designs.

The eigenvalues of the radiation matrix were examined further. It turned
out that they can be interpreted as the efficiencies of the degrees of freedom,
the eigenmodes, available in an antenna array. There are always as many ei-
genefficiencies as there are array terminals. In this sense, they generalise the
notion of radiation efficiency from a single radiator to multi-port antennas.
Mutual coupling generally causes one or more eigenefficiencies to degrade.
In this context we have to keep in mind, however, that the eigenmodes are not
a property inherent to the antenna array itself but rather characterise a parti-
cular combination of antenna array and the internal impedances of the signal
sources (power amplifiers) or signal sinks (receiver front-end amplifiers) em-
ployed in the system.

Later sections proceeded to identify the interrelationship between the ra-
diation matrix and the far-field patterns of the array. The fundamental si-
gnification of the eigenmode concept is supported by the fact that eigen-
modes possess orthogonal beam-patterns that do not exchange power. It was
concluded that these eigenpatterns and the corresponding eigenefficiencies
uniquely characterise the radiation capabilities of the array, in terms of both
the available pattern space and its efficiency. The eigenmode theory was sub-
sequently extended to include possible ohmic losses of the array in addition
to reflection and coupling losses. An equivalent circuit model for lossless
arrays was developed that puts together the various mathematical pieces of
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this chapter. Examples finally demonstrated the usefulness of the eigenmode
theory for the characterisation of practical arrays. It became clear that see-
mingly negligible ohmic losses can cause additional efficiency impairments
in the presence of strong mutual coupling.



Chapter 3

Decoupling and matching
networks

With the information from the last chapter we have a number tools available
to assess the radiation capabilities of an antenna array, both in terms of power
mismatch but also in terms of ohmic losses within the array.

There is not much one can do about ohmic antenna losses other than using
better materials. On the other hand, if array performance is degraded by input
port mismatch or coupling, then there is the possibility of inserting a decou-
pling and matching network (DMN) between the antenna array and the rest
of the system. A DMN can be thought of as the multi-dimensional equiva-
lent of the well-known single-port impedance matching circuit. Its purpose
is to provide full power matching for all excitations. In mathematical terms,
this means that the scattering matrix resulting from the interconnection of
the coupled antenna array and the DMN becomes the zero matrix: zero off-
diagonal elements imply that no coupling exists between ports; zero diagonal
elements indicate perfect matching. Both conditions together ensure that the
incident power waves @ remain inside the antenna system and do not reflect to
the exciting sources. DMNs possess as many input terminals as the antenna
array. Fewer ports seem pointless, as they would remove degrees of freedom
from the array. A larger number of decoupled and matched ports necessitates
ohmic losses inside the DMN. Otherwise, the network would add radiating
degrees of freedom to the system, which obviously is unphysical.

45
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We must understand that DMNs only affect the power transfer between
the system and the antenna array. Hence, they only influence the eigeneffi-
ciencies A;. The beam pattern space, on the other hand, is solely defined by
the radiating parts of the array and therefore remains unchanged. Further-
more, DMNs cannot generally counteract the fact that the excitation of one
radiator induces currents in neighbouring elements thereby causing the resul-
ting (embedded) radiation pattern to deviate considerably from the pattern of
the isolated radiator [23]. It is thus impossible to equip a 4y/10 linear dipole
array, for instance, with a lossless DMN whose input terminals produce ap-
propriately phase-shifted instances of the familiar “donut”-shaped pattern of
the isolated dipole. This follows from the non-orthogonality of the resulting
beam-pattern set.

Similar to single-port matching networks, DMNs can be implemented
using distributed transmission line structures, lumped (i.e., discrete) elements,
or a mixture of both. After the following section about the basic mathema-
tics behind DMNSs, the rest of this chapter mainly concerns one particular
type of transmission line based DMNs. The primary reason is that these
networks are closely linked to the eigenmode theory of the previous chap-
ter. Furthermore, lumped and quasi-lumped designs are treated extensively
by Wang [120], Chaloupka et al. [88-90], and Weber [121]. References to
additional DMN approaches will be given where appropriate.

3.1 General conditions for decoupling and matching

Before a practical design method for DMNSs is presented, the general condi-
tions for its scattering matrix are derived. We will consider reciprocal and
lossless matching networks only, although practical realisations will be lossy,
of course. A study on how to account for network losses during the DMN
design procedure is presented by Weber et al. [148].

We begin with the most trivial form of a DMN, the single-port matching
network. Practical ways for their implementation are found in most textbooks
on microwave engineering, e.g., [13, Chapter 5]. At this point, however, we
are interested in a mathematical description of the scattering matrix of this
kind of network.

We assume the setup in Fig. 3.1a where a network Sy is used to match the
load (e.g., a single antenna) with impedance Z to the internal impedance Zj,
of the generator. The reflection coefficient of the load is denoted by I' and
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Fig. 3.1: (a) Illustration of a matching network inserted between a load impedance Z
and a generator with internal impedance Z;,. (b) The corresponding signal flow graph.

the reflection coefficient of the system (matching network including the load)
is denoted by I's. The signal flow graph in Fig. 3.1b clarifies the naming of
the scattering coefficients of Sy;. For given T, the goal is to find a lossless
and reciprocal network Sy so that I's = 0. According to Appendix A.3 the
solution is given by

S = —u’r u+/1-|I? G0
MT w1 r ' '

The parameter u is an arbitrary unit phasor (i.e., u = e with ¢ arbitrary
real), implying that for a given load I there exists an infinite set of impedance
matching circuits. From a mathematical point of view, it may be tempting to
think of the parameter u merely as a piece of lossless transmission line with
line impedance Z;, inserted at the input port. It is this degree of freedom,
however, which gives rise to the great number of different practical network
implementations. Examples are LC matching networks, quarter-wave trans-
formers, or double-stub tuners. All these perform the same mathematical
impedance transformation, yet each network has its distinct implementation-
specific advantages and disadvantages.

For multi-port arrays, the setup is very similar to the single-port case. This
time we have an n-port antenna array S instead of the single radiator I and the
DMN is consequently described by a 21 x 21 network matrix Sy;. The goal is
to determine Sy for given § so that the system scattering matrix S5 becomes
the zero-matrix. Following the derivation in Appendix A.4 the solution can
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be expressed in block matrix form as

~0"S0 or [1-55H)"

Sw={ /0 - 3 . : 32
M ([I—SSH}‘”)TU 3" G2

where the superscript /2 denotes the matrix square-root as defined in the ap-
pendix on page 209. The first n ports are referred to as the input ports of
the network and the last n ports are the output ports. As with the single-port
case (3.1), the solution is not unique and the degrees of freedom are reflected
in the unitary but otherwise arbitrary matrix U. All solutions have in common
that the reflection coefficients as well as the coupling coefficients at the output
ports Sy22 of the DMN are conjugately matched to the load array.

As with single-port matching networks, the parameter U may be adjus-
ted to yield different practical DMN implementations. Weber [121], [148]
not only demonstrates how the degrees of freedom in U can be harnessed to
minimise the number of network elements required, but also points out the
possibility to assign arbitrary radiation patterns to each network port within
the limits imposed by pattern orthogonality and the pattern space provided by
the array.

In the following sections, we will introduce one specific type of DMN
implementation that intuitively relates to the eigenmode theory presented in
the previous chapter. One resulting advantage is that this kind of network is
especially straightforward to design.

3.2 Decoupling by eigenmode excitation

Let us start by setting U equal to the matrix of eigenmodes Q,. as determined
from the scattering matrix of the antenna array. With (2.17) and (A.32) the
solution (3.2) then becomes:

SNM — _fm V Aacc QNZ,FCC
Qacc V Aacc § *

where [y, is the diagonal matrix of modal reflection coefficients and Agec isthe
diagonal matrix of eigenefficiencies. By inspection of the signal flow graphs
in Fig. 3.2, it becomes clear that this network is mathematically equivalent to

; (3.3)
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respectively.

Since Sp is composed of diagonal sub-matrices only, it actually repre-
sents n independent two-port networks. If we compare Sp to (3.1) and re-
member that Adyee; = 1 — |ym,,'|2, we discover that Sp describes a bank of
single-port matching networks whose input ports are matched to the norma-
lising impedance and whose output ports are matched to the modal reflection
coefficients yp,; of the antenna array.

About network Sp we notice that its input and output ports are matched
and decoupled among themselves. Power is transferred from the input ports
to the output ports according to the matrix of eigenmodes Q.. For instance,
if input port 1 of Sp is excited, the waves emerging from the output ports form
the first eigenmode Facc.1- In other words, each input port of the decoupling
network excites a different eigenmode of the antenna array. In Section 2.2.4
we learned that the “shapes” of an eigenmode and its reflection cannot be dis-
tinguished from one another. Consequently, if a reciprocal network produces
an eigenmode Gy at its output ports as the response to an excitation of one of
its input ports i, then, due to reciprocity, the reflection of that eigenmode will
be combined by the network so to arrive at input terminal i only. No power
will appear at the remaining terminals. We therefore refer to the network Sp
as a decoupling network.
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decoupled and matching decoupling coupled array
matched system ports

Fig. 3.3: Two-step approach to n-port array decoupling and matching: a decoupling
network Sp is inserted in front of the antenna array whose inputs are individually
matched in a subsequent step with network Sp. MN = Matching network.

This decoupling property of Sp is readily verified mathematically with
the help of (B.14), which calculates the system scattering matrix Ss resulting
from the interconnection of the decoupling network to the antenna array S.
We have

~ - - ~ e o~ =1 ~
Ss =8p.11 +8p.128 (I - 8p225) " Spar
= QZCC N Qacc = f‘m7

which is diagonal and therefore describes an uncoupled set of ports. Given
that we previously (Section 2.6) identified the reflection coefficients yy,; as
the ultimate origins of port coupling and mismatch, it should not be surprising
to see them emerge at the inputs of the decoupling network. Another way to
picture the actions of a decoupling network is to think of it as the inverse
to the coupling network Sg in the equivalent circuit of Fig. 2.4. Since after
decoupling, the input ports have become independent, all we need to do is
match the individual ports to the desired impedances. This is precisely what
is accomplished by the network Sp.

The separation into two network parts (3.4) not only helps us understand
the operation of the DMN in terms of eigenmodes, but it also serves us the
information necessary to do an implementation. This dual step principle of

(3.5)



3.3. Directional couplers as decoupling networks 51

a)

“Odd”

Fig. 3.4: A microstrip implementation of a 180° “rat-race” hybrid coupler decouples
a symmetric two-port antenna array. The figure illustrates the power flow through the
hybrid when the “even” mode of the antenna array is excited. (a) shows the waves
travelling towards the antennas and (b) the associated reflections.

operation is sketched in Fig. 3.3. The matching networks Sp (“MN” in the
figure) are easily designed using textbook techniques. Methods for designing
the decoupling part Sp, of the network are covered below.

3.3 Directional couplers as decoupling networks

Before we devise a systematic design procedure for eigenmode DMNs let us
start with a descriptive discussion of two common practical examples, namely
the symmetric two-port array and the symmetric three-port array.

3.3.1 Example: symmetric two-port antenna array

In an early example on page 12 we learned that the eigenmodes of a sym-
metric two-port array are the in-phase and the out-of-phase excitation of both
radiators. We call these modes the “even” and the “odd” mode:

“even’’: [+ +] s and “odd”: [+ —] .

What is needed for decoupling is a lossless and reciprocal four-port device
that produces these modes at its outputs in response to feeding the individual
input ports. Such a device is known as a 180° hybrid coupler.

Its implementation using microstrip transmission lines is called the “rat-
race hybrid” [13, Section 7.8] and is depicted in Fig. 3.4. The ring consists of
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four transmission line sections of equal line impedance. Three of these sec-
tions have a length of 1,/4, and one section has a length of 34,/4, where A,
denotes the guided wavelength on the transmission line. These sections the-
refore incur a phase-shift of 90° and 270°, respectively.

Figure 3.4 illustrates the behaviour of the hybrid when used as a decou-
pling network. When the port labelled “even” is excited in Fig. 3.4a, power
splits evenly at the T-junction and reaches both radiators with equal amplitude
and phase. This port obviously excites the even mode of the array. In order
to reach the remaining port (“odd”), however, the waves have to travel 360°
clockwise around the ring and 180° in the counter-clockwise direction. The
waves therefore cancel.

Since eigenmodes are preserved upon reflection by the array, the reflected
waves travel towards the hybrid coupler equal in both amplitude and phase.
The waves sum at the “even” port and again superimpose destructively at the
“odd” port (Fig. 3.4b). We observe that no power arrives at the “odd” port at
any time, i.e., the “odd” port is decoupled from the “even” port. By similar
reasoning it can be shown that the “even” port is decoupled if the “odd” port,
which introduces a 180° phase difference between the antenna elements, is
excited.

Note that the decoupling action of the hybrid is the consequence of exci-
ting the array eigenmodes. It does not come about because the decoupled port
is termed the “isolated” port in standard directional coupler nomenclature; it
is easily verified that the above network will not decouple an asymmetric
array where the eigenmodes differ from the even and odd excitation of the
symmetric array.

3.3.2 Example: symmetric three-port antenna array

We saw in Section 2.7.1 on page 30 that the eigenmodes of a symmetric linear
three-port array could be classified as the “even” mode, the “odd” mode, and
the “n”’-mode. The approximate relative phases within the eigenmode vectors
were notated

“even”: [+ + +|, “odd”: [+ o -], and “n:[+ - +].

The decoupling network in Fig. 3.5 consists of two directional couplers.'

The initial idea of employing two directional couplers for three-port decoupling is due to
Dr. Jorn Weber, a former colleague of the author.
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Fig. 3.5: Network for exciting the three eigenmodes of a mutually coupled symmetric
linear three-port array. The directional coupler on the right-hand side is a hybrid cou-
pler (symmetric power division). The left-hand side directional coupler possesses a
non-symmetric coupling factor k. Both k and the length ¢ of the interconnecting trans-
mission line must be matched to the antenna array. The centre radiator is labelled “2”.
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When we excite the top right-hand side port in Fig. 3.5a, then radiators “1”
and “3”, i.e., the outer radiators, are excited with equal amplitude but opposite
phase. The rest of the network and the centre radiator “2” do not receive any
power. This input port evidently excites the “odd” mode of the array.

Figures 3.5b and 3.5c illustrate the power flow for the “even” and for the
“n”-mode, which involve all three radiators. The directional coupler on the
left-hand side exhibits a non-symmetric power division ratio, i.e., the cou-
pling factor is different from 3 dB. Both the coupling factor k£ and the electri-
cal length ¢ of the interconnecting transmission line must be matched to the
eigenmodes of the antenna array in order to account for the generally uneven
power distribution and phase imbalance between the centre radiator and the
outer radiators.

The following section will prove that this kind of network can always be
designed to decouple arbitrary reciprocal three-port antenna arrays with port
symmetry around their centre radiator.

3.4 A systematic design procedure for decoupling networks

The last, introductory section has shown that directional couplers can be used
to decouple certain two and three-port antenna arrays. An early attempt to
extend this idea to an arbitrary number of radiators is due to Riech [71]. Al-
though it was found that a directional coupler can be used to decouple ar-
bitrary pairs of ports, problems arose in subsequent stages to decouple any
remaining ports: ports that had been decoupled in previous steps usually be-
came coupled again. The proposed solution was to repeat the decoupling
procedure until any residual coupling has become negligible.

A truly general and exact approach is presented by Geren et al. [41]. It
is based on the insight that any matrix is diagonalised by a finite number of
Givens-rotations, which in turn can be implemented as directional couplers.
The major drawback of this method is that the required number of directional
couplers is very large, even if array symmetries are exploited by the algo-
rithm.

The design procedure presented here is only applicable to antenna arrays
possessing certain port symmetries [142]. Despite this limitation, we will find
that it includes a large number of practically relevant array constellations. For
those cases to which it applies, the algorithm is mathematically exact.

We begin by proving that a four-port directional coupler can be designed
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to excite the eigenmodes of arbitrary two-port arrays, not just symmetric
ones. In order to avoid the problems encountered by Riech [71], a method
is proposed to split an antenna array into two independent halves across a
plane of symmetry. This process is repeated until effectively only two-port
arrays remain, which can be decoupled individually without affecting one
another. With the help of a mathematical trick, it becomes possible to devise
decoupling networks for antenna arrays having an odd number of radiators.
A further result is that the decoupling network for a circularly symmetric
four-port array can be simplified compared with the networks found in the
literature [31, 94, 110, 116].

We will denote the normalising impedance of the scattering matrices in-
volved by the symbol Zy and require it to be positive real. The reason is that
practical directional couplers and transmission line components in general
can only be fabricated with positive real characteristic line impedances. This
assumption has no influence on the possibility to manufacture DMNs for ar-
bitrary complex Z;,. In this case we would design the decoupling part of the
network based on Zy = 50 Q, for instance, and then individually match the
resulting ports to Ziy,.

3.4.1 Two-element decoupling

The two-port decoupling network constitutes the foundation for decoupling
larger antenna arrays. A two-element array possesses two eigenmodes, so the
matrix Q. has the general form

= a ¢
Qacc = <b d> > (36)

where (a  b)T is the first and (¢ d)T is the second eigenmode. Since the
absolute phase of an eigenmode is undetermined, we may normalise Qe
such that a,¢ € R* without loss of generality. The unitary nature of Qe
imposes the following constraints on the matrix elements:

la> + 16 = |c? +1d)* =1, and ac* = —bd", (3.7)
which can be shown to be equivalent to

el =1bl, |d|=lal, and argd = argh + . (3.8)
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Fig. 3.6: A generalised directional coupler resulting from the connection of a 180°
directional coupler with coupling factor k to a transmission line of electrical length ¢.
The line impedance matches the normalising impedance Z, of the system.

Now consider the general directional coupler in Fig. 3.6. It is matched at
all ports and may thus be described by some block matrix Sp of the form [6,
Eqn. (13.62)]

i 0 ST, . . k V1-#
Sop={ . = with Spor=—j | .
Spai e /1 —-k2 kel@te)
(3.9)

The coupling factor and the electrical length of the transmission line are de-
noted by k and ¢, respectively. It is easily verified that Sp; satisfies the
above constraints; therefore, the directional coupler can be designed to excite
the eigenmodes of an arbitrary reciprocal two-port antenna array. Provided
that k and ¢ are chosen to match the eigenmodes of the antenna array, the
circuit of Fig. 3.6 presents a two-port decoupling network. Note that any type
of directional coupler is appropriate for practical implementation. For reali-
sation as a microstrip network, rat-race couplers [21, 68], [13, Section 7.8]
and branch-line couplers [13, Section 7.5] are probably the most convenient
forms.

We have reasoned already that a hybrid coupler with k> = 1/2 and ¢ = 0
decouples a symmetric antenna array with s;; = s2>. Then (3.9) becomes

- (11
SD,21—%(1 _1) (3.10)

and the decoupling action is also confirmed mathematically when 50,21 is
substituted into (3.5). A useful feature of the symmetric case is that the exact
scattering parameters do not have to be known for the design of the decou-
pling network.



3.4. A systematic design procedure for decoupling networks 57

1 2 n
| | |
“aven” ]vé?_—/ 2/#_—/ n/‘ [ 7/
e Dl e D e D
“odd” (n+1)'¢=18° | (n+2) o180 (2n)'$1—=180°
i i i
n+1 n+2 2n

Fig. 3.7: A bank of symmetric 180° hybrid couplers is used to decouple an antenna
array across a plane of symmetry.

As mentioned earlier, decoupling two ports of an array usually destroys
decoupling that has been achieved in previous steps. The next section ex-
plains how larger antenna arrays can be partitioned into independent subparts.

3.4.2 Decoupling across a symmetry plane

Figure 3.7 portrays a 2n-port antenna array connected to bank of symmetric
180° hybrid couplers. The scattering parameters of the array must possess at
least one plane of symmetry; i.e., whereas antenna elements 1 to n may be
different, they must be indistinguishable from elements n + 1 to 2n by mea-
surement. Usually, but not necessarily, this port symmetry is the result of
geometric symmetries. Although the figure suggests a rectangular arrange-
ment of radiators, the above requirements are also fulfilled by certain linear
or circular constellations, as we will see later. By inspection, it becomes
evident that the scattering matrix of the antenna array can be written in block

matrix notation as B .
s_ (S Sn
S= (2 o) 3.11
(512 S11> G

with both S}, S}, € €™ and symmetric.

Consider the bank of all n hybrid couplers as one 4n-port junction. The
primed ports shall be its input ports and the unprimed ports shall be its output
ports. Borrowing the notation from (3.9), this hybrid network is described by

5o, = 3 (L1
Spp1 = \/E(i _1~>, (3.12)
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where I is the n x n identity matrix. The scattering matrix Ss of the system re-
sulting from the interconnection of the antenna array and the bank of hybrids
is readily obtained by applying (3.5):

& _ §12+§11 0
SS - < (‘) §12 _S~11> . (313)

Here the important observation is that the network not only decouples
array ports i and n + i, that is, the two ports each individual hybrid coupler is
connected to. Rather the hybrids separate the fully coupled 2n-port antenna
array into two mutually independent sets of n ports with scattering matrices
Si=8n+S1and S, =S, -S4, respectively. Following the terminology of
Section 3.3.1 we call these the “even” and the “odd” set of ports. Subsequent
decoupling may now be performed on each set separately without influencing
the other. The procedure may be repeated if the newly derived system ports
again fulfil the symmetry requirements.

Decoupling across symmetry planes can be accomplished without know-
ledge of the array scattering matrix. In combination with the two-port decou-
pling technique discussed in the last subsection, we are now able to design
decoupling networks for certain antenna arrays whose number of radiators is
a power of two.

Figure 3.8 illustrates some example array constellations that are decou-
pled with the techniques described so far. A square arrangement of four ra-
diators is depicted in Fig. 3.8a. According to Fig. 3.7 this array is decoupled
by connecting two hybrid couplers across the plane of symmetry “a”. One
hybrid is applied to decouple elements 1 and 3 and another one decouples
elements 2 and 4. This creates an “even” and an “odd” set of ports which are
independent of each other. As a result of the additional symmetry plane “b”,
both sets are port-symmetric themselves and can therefore be decoupled with
a hybrid coupler as in Section 3.3.1. The final decoupling network consists of
four hybrid couplers. Its design does not depend on any measurement data.

The array of Fig. 3.8b is decoupled in a similar fashion. Since this ar-
rangement lacks a second symmetry plane, however, the second step of de-
coupling requires the asymmetric technique from the previous subsection.
Although this time the scattering matrix of the antenna array must be known,
the network complexity remains the same: four directional couplers, two of
which are hybrids.
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Fig. 3.8: Examples of antenna array constellations with one or two planes of symme-
try. Parenthesized numbers indicate the number of directional couplers required.

Figure 3.8c exhibits the same port-symmetry as Fig. 3.8b and can there-
fore be decoupled with the same type of network. The example demonstrates
that geometric reflection symmetry is not a prerequisite for port symmetry.

An array of eight radiators is depicted in Fig. 3.8d. Decoupling across
symmetry plane “a” causes the array to decompose into two sets of ports
that exhibit the same symmetry as Fig. 3.8b. The full decoupling network
therefore requires twelve directional couplers, eight of them being hybrids.

The same decoupling network also applies to the circular array of Fig. 3.8e.

3.4.3 Radiator merging

Additional constellations and decoupling scenarios arise, when two radiators
are virtually merged into one across a plane of symmetry. The number of
radiators is reduced by one and, in consequence, one or more directional cou-
plers degenerate into short circuits or uncoupled “couplers”. There are two
applications for this procedure. One is to derive decoupling networks for ar-
rays with an odd number of radiators. The other application is to create sim-
pler versions of decoupling networks for arrangements, for which networks
already exist.

The example of Fig. 3.9 illustrates how, starting with a linear four-element
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Fig. 3.9: A symmetric four-element linear array is transformed into a linear array of

three radiators (a), whereby the number of directional couplers is reduced by two (b,
¢). The final network was introduced earlier in Section 3.3.2.
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Fig. 3.10: Examples of antenna array constellations that benefit from radiator mer-
ging. Parenthesized numbers indicate the number of directional couplers required for
decoupling.

array, the decoupling network for a linear three-element antenna array can
be derived systematically. We have seen in the last subsection that, in the
most general case, a four-port array with one plane of symmetry requires four
directional couplers for decoupling, two of which are hybrids.

In a first step, the two centre radiators are merged into one (Fig. 3.9a).
Because the “odd mode” of the single radiator is a short circuit, this causes
the “odd” port of the coupler to be effectively grounded whereas the “even”
port becomes directly connected to the radiator. The hybrid coupler may
therefore be removed from the network (Fig. 3.9b). Clearly, the “odd” port
of the remaining hybrid coupler and the newly created ground connection
are not coupled. We can therefore eliminate the right-hand side coupler as
well (Fig. 3.9c). The final decoupling network was introduced earlier in Sec-
tion 3.3.2. We have thus provided proof that this network is in fact applicable
to arbitrary linear three-port arrays with port symmetry around the centre ra-
diator.

Four additional examples of antenna arrays that benefit from radiator mer-
ging are depicted in Fig. 3.10. The arrangement of six elements in Fig. 3.10a
is first decoupled across symmetry plane “a” and then employs two instances
of the three-port decoupling network on the remaining ports. Seven directio-
nal couplers are required, of which five are hybrids.

A four-port array is created in Fig. 3.10b by merging the outer radiators
on each side of a six-port array. This removes four directional from the six-
port decoupling network so that the final network consists of two hybrids and
one directional coupler. Note that simply by placing the symmetry planes in
a different way, the number of directional couplers required is reduced by one
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in comparison with Fig. 3.8a and with the networks previously described in
the literature [31, 94, 110, 116].

The reason why two different decoupling network topologies exist for
the circularly symmetric (i.e., square) arrangement is that the array has one
repeated eigenefficiency as the result of its symmetry. Consequently, any
linear superposition of the corresponding eigenmodes is again an eigenmode.
Consider the excitations produced by the network of Fig. 3.8a:

“even’’: [+ +] , “odd 17: F 1 , “odd 2”: [+ _] , “m F _] .
+ + - - + - -+

Any orthogonal pair of linear combinations of the modes “odd 1” and “odd
2” is again a decoupled pair of eigenmodes. If we compose the sum and the
difference of these two modes, we obtain the following set:

“even”: [+ +] , “odd 17 F o} , “odd 27: [o +] O {+ —] ’
+ 4+ o — _ T

which is precisely the one excited by the network of Fig. 3.10b.

Figure 3.10c depicts a rather unusual constellation of five radiators. The
decoupling network is derived from the six-port network. It requires four
hybrids and one directional coupler, and excites the following modes:

Notice how these modes are essentially the modes of the four-port array with
an additional decoupling step inserted between the centre radiator and the
“even” mode of the outer radiators. If the planes of symmetry are chosen as
in Fig. 3.10b, then, again, one hybrid can be saved.

As a final example, we consider the circular eight-port array in Fig. 3.10d.
If pairwise diagonally opposed radiators are decoupled using symmetry de-
coupling with four hybrid couplers, then the resulting “even” port-set will
exhibit the same mathematical symmetry as the array of Fig. 3.10b and can
consequently be decoupled with three hybrids. The “odd” port set does not
possess this kind of symmetry; however, it will have two pairs of ports that are
decoupled already. Decoupling one of these pairs a second time using a hy-
brid yields two mutually isolated pairs of ports that require one hybrid each as
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the final decoupling step. This is another example where judicious placement
of the symmetry planes saves directional couplers: the final network consists
of ten hybrids as opposed to twelve directional couplers for Fig. 3.8e.

3.4.4 Eigenmode matching

In the preceding sections, we have learned a systematic method to decouple
the ports of various antenna array constellations. The proposed decoupling
networks are eigenmode excitation networks. If the above steps are per-
formed correctly, the resulting network will have a scattering matrix of the
form (3.4). The fact that only the relative phases within eigenmode vectors
matter facilitates the interconnection of directional couplers in a decoupling
network using transmission lines. Since the input ports of the decoupled an-
tenna array are independent, matching them to the impedances Z,; of the
driving generators is readily accomplished with textbook methods.

Matching a highly mismatched load, such as the higher order eigenmodes
of a compact antenna array, generally results in a narrow matching band-
width [39]. Furthermore, component and manufacturing tolerances can cause
the manufactured network to fall outside the desired frequency range. In this
context, the approach presented has the specific advantage that the decoupling
bandwidth is usually very wide compared with the matching bandwidth. The
frequency response of individual ports can therefore be adjusted even after
fabrication. One matching network implementation with the specific goal of
tunability is the double-stub network [13, p. 266]. Another benefit of this
two-step approach is that established methods for broadband or multi-band
matching can be employed to implement a desired frequency response. Yet
another idea is a varactor-tuned matching network approach to adapt the an-
tenna array to different frequency channels and operating conditions.

Although the directional coupler approach discussed so far is systematic
and has been shown to apply to a wide range of antenna array topologies it
does bear its disadvantages. One is its large size and the other one is the
resulting insertion loss. On this account, it is pointed out that the directio-
nal coupler-based two-port decoupling network introduced in Section 3.4.1
can be replaced by any type of two-port decoupling network. In multi-port
decoupling networks, all directional couplers directly attached to the input
terminals can be so replaced. Wang [120], Nilsson et al. [102], and Chen
et al. [29], for instance, suggest a systematic and generally valid method for
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two-port decoupling (and matching) that is not based on directional couplers.
The approach, which is illustrated in Fig. 3.11a, employs transmission lines
in front of the radiators to make the real part of the Z;, element in the imped-
ance matrix vanish. The remaining imaginary part is then compensated for
by a transverse reactive element. Thereby the two ports become decoupled.
In a final step, the inputs are matched to Z;,.

An even more compact network arises with the following approach: im-
pedance transformation networks transform the antenna port impedances in
such a way that the subsequent connection of a transverse reactive element
not only neutralises the mutual coupling but also causes the ports to be mat-
ched. This principle is illustrated in Fig. 3.11b. An example implementation
in microstrip is depicted in Fig. 3.11c. The major advantage is that the energy
storing elements are moved as close to the array as possible, which not only
reduces the footprint of the network but also, most importantly, mitigates oh-
mic losses.

Although no closed-form formulae for the component values of this type
of network could be derived, the design is straightforward with the help of
the non-linear optimisers found in modern RF design software, such as the
Agilent Advanced Design System (ADS) [122]. In contrast to the hybrid cou-
pler based network, the full scattering parameters of the antenna array must
be known. Example implementations are covered in Sections 3.6.3 and 3.6.4
below.

3.5 Efficiency considerations

The networks considered have been assumed lossless, which is rarely the
case in reality. The return losses measured at the input ports of a practical de-
coupling network implementation (without matching) will be notably better
than the modal reflection coefficients yy, ; predicted by the eigenmode analy-
sis of the array. This is due to ohmic losses in the network, which dissipate
power and in this way improve the apparent power matching. Impedance
matching networks implemented at the inputs of the decoupling network will
not only improve power transfer to the antenna array, but also to these losses.
In Section 2.7.1 we have previously investigated the extent to which even
small losses in the feeding structure degrade the efficiency of the entire sys-
tem, especially, if the insertion loss introduced by the decoupling network
approaches the return loss of a particular eigenmode. Consequently, good
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Fig. 3.11: An alternative two-port decoupling and matching method. (a) The ap-
proach found in the literature, (b) an improved version, which eliminates one imped-
ance transformation step, and (c) possible microstrip implementation of (b).

decoupling and matching indicates that any power supplied is accepted by
the system, but it provides by no means sufficient evidence for its efficient
operation.

We have already learned that the matrix H or, more specifically, the asso-
ciated set of eigenefficiencies, contains all information necessary to charac-
terise an antenna array in terms of its efficiency. Two versions of the matrix
were introduced: the matrix H,.. considers only port mismatch and coupling,
whereas the matrix Hyq additionally includes ohmic losses of the antenna
array. For the optimisation and comparison of decoupling and matching net-
works, it would be very helpful if a system matrix Hs could be constructed
that takes into account the influence of the network based on its scattering
matrix Sy. The eigenvalues of this matrix would then represent the eigeneffi-
ciencies of the newly established antenna array system.

Figure 3.12 illustrates the situation. The solution of the corresponding
set of matrix equations lets us express the waves a travelling in the reference
plane of the array ports in terms of the waves ds supplied at the system termi-
nals:

a= fac—l)s, with fa = (i— S‘N,QQS‘)_I SN,21~ (3.14)

Matrix 7, is the “d-wave transfer matrix”. The familiar block-matrix notation
is used for the network matrix Sy with the ports indexed “2” connected to
the antenna array, and the ports indexed “1” being the new system ports. If
we recall the previous assumption that the scattering matrices used in the
calculations are normalised to the impedances Z;,; of the driving generators,
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Fig. 3.12: Tllustration of the power waves ds and l_;s at the inputs of an antenna system
consisting of an arbitrary network Sy and an antenna array S. The waves travelling in
the reference plane at the antenna ports are @ and b.

then the power radiated by the antenna array is

T

Po=d"Had=as (' Hi,) ds, (3.15)
where H is the radiation matrix of the sole antenna array, either Hycc or Hyyg.
Thus, the radiation matrix Hg of the complete system equals

Hs =1 AT, (3.16)

It should be emphasised at this point that the above formulation holds for any
network connected to the antenna array and is not restricted to DMNs. Ohmic
losses as well as residual coupling and impedance mismatch at the input ports
are taken into account. This enables the broadband evaluation of networks
where the decoupling and matching properties diminish for frequencies away
from the centre frequency. By comparing the eigenvalues of H and Hg the
engineer receives information about the true improvements brought about by
the designed network. For this analysis, the full 2n-port scattering parameters
of the network must be known, either by measurement or by simulation. It is
not sufficient to measure the scattering parameters at the system ports only.
The scattering matrix Ss at the system terminals can be expressed in terms
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of 7,. With (B.14) we have

~ - ~ Y s~ =1 ~
Ss = Sn11 + 557215 (1 - SN,225) Sn21
= S‘N,” + Sg,Zlg fa. (3.17)

3.6 Example implementations

The following subsections demonstrate how the design concepts developed
in this chapter can be put into practice, and reveal what levels of DMN per-
formance are actually achieved if ohmic losses are considered in the analysis.
The examples use monopole arrays over a ground plane as they are not only
easy to manufacture, but produce repeatable results in scattering parameter
and far-field measurements.

3.6.1 Linear Ay/4 three-port array

Our first example is a linear three-port monopole array with a radiator separa-
tion of Ay/4, which corresponds to 7.5 cm at the design frequency of 1 GHz.
The monopoles were mounted to an aluminium ground plane with dimensions
50 cm x 50 cm. This antenna array would evidently not pass as a compact an-
tenna array for use in mobile phones; yet the example will clearly reveal the
problems that arise with even moderate attempts of antenna array miniaturi-
sation [140, 142].

We refrain from plotting the scattering parameters of the antenna array
and only quote the absolute numbers at the centre frequency:

s [-149 -837 -138
= [-837 -102 -837| dB. (3.18)
~138 -837 -149

As we are aware of by now, the scattering matrix itself delivers no useful in-
formation about the radiation quality of the array. For this reason, we inspect
its eigenefliciencies instead:

A8 =91 g, A%~ 999 and A™ . =27%. (3.19)

acc,1 — acc,2 — acc,3

As opposed to the 1o/10 design of Section 2.7.1, the first two modes show
little degradation. This is not surprising since for the “odd” mode, which
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excites the outer two elements only, the radiators have a separation of 1p/2 in
which case mutual coupling is known to have little effect. In fact, the residual
coupling evidently improves impedance match in the “odd” mode slightly
compared with the “even” mode.

The degradation found in the “n”-mode is less severe than for the 1y/10
separation. Still, an efficiency of 27 % corresponds to 5.7 dB insertion loss in
that mode or, put another way, to a return loss of less than 1.4 dB, which is
generally considered unacceptable for an antenna.

Since the decoupling network in Fig. 3.5 on page 53 consists of a 180°-
hybrid and a directional coupler whose coupling factor and phase relations
must be adapted to the antenna array, we need to know the matrix of eigen-
mode excitations Oy, of the array. It is more convenient to consider the power
distribution (rather than the amplitudes) within an eigenmode, separate from
the corresponding phase relations. The magnitude squares of the individual
matrix elements and the phases are

0.234 0.5 0.266
0wl =[0532 0 0.468 (3.20)
0.234 0.5 0.266

and
0° 0° 0°
[Qae = | 225° n/a -157.5°], (3.21)
0°  180° 0°
respectively.

The decoupling and matching network was fabricated as a microstrip
network on 0.5 mm Rogers RO3203 substrate with ¢ = 3.02 and tand =
0.0016 [134]. Figure 3.13 portrays the layout. As the result of the relatively
low frequency of 1 GHz the network is rather large, it measures about 20 cmx
20 cm. The directional couplers, labelled “a” and “c” in the figure, are minia-
turised by periodic capacitive loading of the ring. This technique is known
as an “artificial transmission line” and is explained in detail by Eccleston and
Ong [38].

The hybrid coupler “a” is responsible for exciting the outer two radiators
out of phase for the “odd” mode on the one hand, and, on the other hand, for
the equal phase excitation in the “even” mode and in the “n”-mode. Thus,
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Fig. 3.13: Prototype realisation of the three-port decoupling and matching network.
a) hybrid coupler, b) “odd” mode connecting lines, ¢) asymmetric directional coupler
d) “n”-mode connecting lines, e) double-stub matching networks, f) air-bridges.

the electrical lengths of the two transmission lines labelled “b” leading to the
outer radiators must be equal. At this point, it should be clear that exciting
the “odd” terminal on the left-hand side in the figure excites the “odd” mode
of the array with the rest of the network isolated.

The complete decoupling network requires a second directional coupler
“c”. Alook at the first column of the left-hand matrix in (3.20) reveals that the
“even” mode directs 53.2 % of the power to the centre element, and equally
shares the remaining 46.8 % between the outer radiators. Coupler “c” must
therefore be designed with a coupling loss of 2.74 dB. Furthermore, the net-
work must conform to the phase relations within the eigenmode vectors. To
this end, the electrical lengths of the two transmission lines “d” were adjus-
ted to account for the 22.5° phase difference in the “even” mode between
the centre radiator and the outer radiators. Since this type of decoupling net-
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Fig. 3.14: Photograph of the manufactured three-port DMN connected to the back
side (left-hand side) of the antenna array. Both network and array are mounted to
a positioner (right-hand side) in an anechoic antenna measurement chamber. The
radiator separation is 1yo/4 at 1 GHz.

work was shown to decouple any symmetric linear three-port array we can
rest assured that the correct implementation of the “even” mode completes
the “n”-mode as well.

Matching networks were implemented at the terminals of the “even” mode
and of the “n”’-mode as double-stub tuners “e”, which can be tuned to the de-
sired impedance by changing only the lengths of the stubs [13, p. 266]. This
way, the centre frequency of the matching network could be re-adjusted after
fabrication. No matching network was implemented at the “odd” terminal
since it exhibits excellent matching already. The final network requires two
air-bridges “f”, which do not cause problems at 1 GHz. Figure 3.14 shows a
photograph of the setup.
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Fig. 3.15: Measured scattering parameters of the decoupled and matched 1y/4 three-
port antenna array.

Figure 3.15 plots the measured scattering parameters with the decoupling
and matching network in place and after the “n”-mode centre frequency had
been adjusted. We notice excellent decoupling (thin lines) better than 20 dB
over a bandwidth of at least 100 MHz. For “n”-mode, we may argue that this
is mainly caused by its poor return loss away from the centre frequency. After
all, if most power is reflected at the input port in the first place, it can hardly
couple. However, a more realistic line of thought is the other way round: if
the decoupling performance of the network were insufficient, the “n”’-mode
return loss would be better since power could flow off at the remaining ports.

Matching better than 19 dB was achieved at the centre frequency at all
ports (thick lines in Fig. 3.15). As the result of the poor eigenefficiency of
the “n”-mode of the antenna array, the corresponding 10 dB return-loss band-
width is a mere 8 MHz, i.e., less than 1 % with respect to the centre frequency.

Considering the large size of the network, we can expect network losses
to have significant effect on the overall efficiency. For this reason, the six-port
scattering matrix of the network was measured and the analysis pursuant to
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Fig. 3.16: Eigenefliciencies of the three-port antenna array before (A, ;, thin lines)
and after decoupling and matching (Ag;, thick lines).

Section 3.5 was carried out. The results are graphed in Fig. 3.16, where the
thin lines and the thick lines represent the situation before and after decou-
pling and matching, respectively. Although the network exhibits excellent
decoupling and matching at the centre frequency, the efficiency of the “n’-
mode could be improved from 27 % to merely 49 %. The efficiencies of the
other two modes were reduced from 91 % to 81 % in the “even” mode and
from 99 % to 86 % in the “odd” mode. The net improvement provided by this
network implementation is little indeed. In a diversity system, (see Chapter 4
and (4.37)) the network delivers a signal gain of 0.5 dB.

The far-field patterns associated with the input ports of the network are
plotted in Fig. 3.17. Their clear resemblance to the eigenmode patterns ob-
tained by numerical orthogonalisation in Fig. 2.8 on page 34 confirms that
the network indeed excites the eigenmodes of the array. Furthermore, the
eigenefficiencies A5\ = 82 %, Ay5" = 86 %, and A} = 48 % calculated
by far-field integration excellently agree with the numbers from the previous
paragraph that had been estimated by virtue of (3.16).
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Fig. 3.17: Calibrated azimuth cuts of the beam patterns associated with the input ports
of the decoupling and matching network. All diagrams are plotted at an elevation

of 6 = 30°.
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3.6.2 LTCC implementation of a three-port DMN

The main purpose of the preceding example was to provide proof for the
concepts developed in this chapter. Of course, its large size and its poor
performance render it inappropriate for most practical applications.

In this example, the implementation of a decoupling “chip” in multi-layer
LTCC technology (low temperature co-fired ceramics) is discussed [137].
The antenna array operates at 2.45 GHz and consists of three monopoles
arranged in an equilateral triangle with a separation of 1p/10 = 1.2 mm.
Figure 3.18 shows photographs of the antenna array and the manufactured
decoupling chip. Due to the circular symmetry of the array’s scattering para-
meters, the matrix of eigenmodes Oace 18 always

V13 /12 /16
Ouec = | V1/3 0 —/2/3 (3.22)
V173 =12 /176

irrespective of the actual values of the scattering parameters. Consequently,
a decoupling network can be designed without any previous measurements
of the array. Such a network is made up of one 180° hybrid coupler and one
directional coupler with a coupling loss of 4.77 dB. Matching networks are
not part of the chip and were implemented empirically after fabrication of the
decoupled array.

In order to achieve a particularly small network footprint, the directional
couplers were not implemented as transmission line structures but rather as
their lumped equivalent circuits. Additional simplifications were possible be-
cause a special form of 90° couplers in place of the 180° couplers was used
as the starting point for the development of the lumped circuit. The tradi-
tional textbook “branch-line coupler” consists of four A, /4 transmission line
sections [6, p. 336]. However, one pair of opposing lines may be replaced by
34g/4 segments as shown in Fig. 3.19a. This results in the equivalent circuit
shown in Fig. 3.19b and Fig. 3.19c. It is especially suited for implementation
as a multi-layer LTCC circuit because it comprises mostly capacitors, which
are straightforward to fabricate as parallel plates. The two series inductors
were fabricated as spiral inductors over multiple layers [104].

The final network in Fig. 3.20 includes a 90° phase shifting network in
addition to the directional couplers in order to excite the eigenmode phases
correctly. It requires eleven layers of LTCC tape and occupies a footprint
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Fig. 3.18: Photograph of the three-port decoupling network manufactured as an
LTCC-chip. The radiator separation of the circular array is Ay/10. Strips of copper
foil (arrows) were used to match the ports of the decoupling network manually.
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Fig. 3.19: The 90° branch-line hybrid. (a) Transmission line structure with a pair of
32;/4 segments. (b) Lumped equivalent circuit using II-networks. (c) Simplification
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of the shunt elements. “in” = input, “iso” = isolated, “I” = in-phase, “Q” = quadrature.
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Fig. 3.20: (a) Schematic of the LTCC decoupling network consisting of a 90° hybrid, a
90° directional coupler with 4.77 dB coupling loss, and a 90° phase shifting network.
(b) Its three-dimensional, multi-layered implementation.

size of 9.6 mm x 8.8 mm at a thickness of 1.8 mm. With its pads pointing
downward, the chip was soldered directly onto a microstrip transmission line
structure on a circular printed circuit board. Three wire radiators were sub-
sequently inserted through holes in the board and soldered to the microstrip
structure. The backside of the board, which is solid copper, acts as a ground
plane for both the printed transmission lines and the monopole radiators.
After the radiators had been decoupled by the chip, matching networks
were implemented manually at the input ports with small strips of copper
foil (indicated by arrows in Fig. 3.18). These were moved along the input mi-
crostrip lines until an acceptable return loss had been achieved. Figure 3.21
plots the scattering parameters. All parameters are better than —15 dB at
the centre frequency. The bandwidth with all parameters below —10 dB is
about 35 MHz corresponding to 1.4 % with respect to the design frequency.
Figure 3.21 provides information about the eigenefficiencies of the an-
tenna array with and without the network. The graphs for the system eigenef-
ficiencies Ag are based on far-field measurements, the graphs for the sole an-
tenna array A were obtained by simulation. Note that the circularly symmetric
antenna array has one repeated eigenefficiency; the corresponding graphs thus
lie on top of each other. At the centre frequency, the network yields an effi-
ciency improvement from A = (0.93 0.24 0.24)Tto A5 = (0.94 0.31 0.50)".
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Fig. 3.21: Measured scattering parameters of the decoupled and matched 1y/10 circu-
lar three-port antenna array with LTCC decoupling network.

The reduced efficiencies of the higher order modes are the result of the inser-
tion loss of the decoupling chip of 0.6 dB in the “odd” mode and 0.9 dB in
the “n”-mode.

The mean power gain (2.16) due to the network is just less than 1 dB,
the signal gain in a diversity application is almost 1.5 dB. The bandwidth
over which the network provides positive diversity gain is about 60 MHz,
or 2.4 %. A diversity gain of 1.5 dB actually corresponds to energy savings
of up to 29 % at a base station and consequently leads to a clear reduction in
operation costs. Bear in mind, though, that these numbers are estimates, as
they are partly based on simulations.

This example has demonstrated the practical feasibility of small-scale
decoupling and matching networks. The fact that, under certain symme-
try conditions, the decoupling chip can be fabricated without knowledge of
the antenna array’s scattering parameters fosters mass production and cost-
effective application in mobile end-user devices. Due to its robust surface
mount package the chip seamlessly integrates into present manufacturing
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Fig. 3.22: Eigenefficiencies of the 1y/10 circular three-port antenna array without (4;,
thin lines, simulation), and with the LTCC-based DMN (s, thick lines, measure-
ment).

workflows in terms of automatic component placement and reflow soldering.
Since this chip is a first prototype design, further improvements with regard
to size and insertion loss are conceivable.

3.6.3 Broadband matched two-port array

In this example, we investigate the possibility of broadband matching [141]
by exploiting the fact that the eigenmode decoupling approach allows for in-
dependent matching networks at each port. In addition to a standard matching
network and two different multi-stage broadband networks, the alternative de-
coupling and matching method mentioned in Section 3.4.4, which does not
use a hybrid coupler for decoupling, will be discussed.

A brass chassis was manufactured in which the various networks can be
replaced (Fig. 3.23). For easy handling, the radiators were printed on the
same circuit board as the network. As seen on the photograph, there is a
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Fig. 3.23: Photograph of the 4,/10 two-port antenna chassis, and layouts of the feed
networks used for comparing the performances of different DMN techniques.

slit at the top of the housing to allow the radiators to stick out. The idea
behind the additional circular ground plane is to suppress surface waves on
the chassis and to support the repeatability of both scattering parameter and
far-field measurements.

Six different network versions for the same 1y/10-spaced array that ope-
rates at 2.45 GHz have been manufactured. Also shown in Fig. 3.23 are the
network layouts, which were printed on 55 mm X 120 mm Rogers RO3203
microwave substrate (thickness 0.5 mm, €, = 3.02, tand = 0.0016, [134]).
The different networks under test will be referred to with their corresponding
letter.

o Network “A” merely connects the SMA-jacks near the base of the chas-
sis to the radiators and performs no further action.

e Network “B” decouples the radiators with a hybrid coupler without
matching.
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Fig. 3.24: Plots of select scattering coefficients of the networks shown in Fig. 3.23.

e Network “C” employs a standard single-stub network for “odd” mode
matching.

e Network “D” includes a multi-stage matching network that aims at bet-
ter than 10 dB return loss over a broadened bandwidth.

e Network “E” was designed to provide a constant improvement of mat-
ching over a bandwidth of 100 MHz.

e Network “F” follows the aforementioned alternative decoupling ap-
proach.

Before we carry out an eigenmode analysis of these networks, let us exa-
mine their scattering parameters. At the SMA-jacks the coupling coefficients
s12, $21 and the reflection coeflicients 511, 522 of network “A” were measured
as —9.7 dB and -5.5 dB, respectively. Note that these numbers include the
insertion loss of the feed lines of 0.2 dB each. From 2.4 GHz to 2.5 GHz
network “B” achieved isolation better than 25 dB between the ports. The



3.6. Example implementations 81

Fig. 3.25: Close-up of the multi-stage matching network of network “D”.

“even”-port return-loss was 8 dB, equivalent to 84 % matching efficiency. To
keep things simple, the “even” port was not considered during matching net-
work design. On the other hand, a return loss of 1.3 dB was measured at the
“odd” port. On this account, the intention of networks “C”, “D”, and “E” was
to improve matching over as wide a bandwidth as possible.

Matching network “C” is the classical narrow-band single-stub tuner [13,
Section 5.2]. The measured input reflection coefficient is shown in Fig. 3.24
where the 10 dB (matching efficiency 90 %) bandwidth is 15 MHz.

Matching network “D” was designed by means of the “simplified real
frequency technique” (SRFT) with the goal of a broad matching bandwidth
with 10 dB return loss [85, 107]. The advantages of the technique can be
summarised as follows: there is no need for an explicit expression or a circuit
realisation of the load; measured impedance data can be used. In addition,
there is no need to select any network topology as it is the natural consequence
of the matching process. Using SRFT it is possible to design broadband mat-
ching networks converging to the upper flat transducer power gain limit based
on measured antenna impedance data. The matching network was designed
using lumped components, resulting in a sixth-order low-pass ladder struc-
ture. Inductors were replaced by available standard values from muRata’s
LQW18A high-Q series [132]. Since the capacitor values obtained after post-
optimisation are not available as standard values, they were replaced by shunt
open stubs implemented in microstrip. A close-up of the final manufactured
matching network is shown in Fig. 3.25. Measurements revealed that mat-
ching better 10 dB had been achieved over a bandwidth of 51 MHz—a more
than three-fold improvement over the single-stub tuner (Fig. 3.24).

The goal of matching network “E” was to achieve an improvement in
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matching over 100 MHz bandwidth from 2.4 GHz to 2.5 GHz. This time no
systematic design procedure was followed. Rather, the non-linear optimisa-
tion features included with the ADS simulation software [122] were used in
conjunction with the transmission line models provided to determine the re-
quired component values and dimensions. Such “blind” optimisation is often
successful and yields quick results if only few components are involved. In or-
der to obtain a better accuracy of the geometry of the transmission-line-based
parts of the network, an electromagnetic optimisation was carried out. The
final network comprises two series inductors (chip inductors) and two shunt
capacitors implemented as printed shunt open stubs. Scattering parameter
measurements revealed matching better than 5 dB (matching efficiency 68 %)
over the stipulated frequency range (Fig. 3.24).

In order to assess the alternative decoupling and matching network “F”,
the coupling coefficient s, and one matching coefficient s;; is plotted in
Fig. 3.24. In contrast to the eigenmode-based networks, its decoupling band-
width is considerably narrower. At its centre frequency, the network achieves
better than 17 dB return loss and better than 20 dB isolation. The bandwidth
where both coefficients are below —10 dB is about 43 MHz.

The far-field based eigenefficiencies are compared in Fig. 3.26. The top
graphs represent the “even” mode efficiencies, which are very similar for all
types of networks. This is because no matching networks were implemen-
ted at the “even” port of the hybrid coupler. Only network “F” shows some
improvement because it is not based on the eigenmode concept and therefore
always affects both modes at the same time. The bottom graphs in Fig. 3.26
represent the “odd”-mode efficiency. Thin lines show the efficiency of the
direct feed network “A” (solid line) and the decoupling-only network “B”
(dashed line), respectively. In contrast to the matching efficiency of 25 %
mentioned in Section II, the actual radiation efficiency including all losses
is less than 10 %—a dramatic difference caused by the insertion loss of the
respective network.

Thick graphs in Fig. 3.26 compare the efficiencies of networks “C” to “F”.
The single-stub matching network “C” is plotted as the solid curve and dis-
plays a more than 2.5-fold efficiency improvement at the centre frequency.
The bandwidth, over which this simple network performs better than the an-
tenna array without network, is almost 80 MHz.

The efficiency of the 10 dB broadband matching network “D”, which is
plotted as the thick curve with the long dash pattern, turned out as a disap-
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Fig. 3.26: Eigenefficiencies of the networks of Fig. 3.23 determined from measured
far-field data.

pointment. Contrary to its broad matching performance, its peak efficiency
is not only lower than that of the single-stub network, but it is also narrower
in bandwidth. The reasons are the large number of (lossy) reactive elements
involved and the attempt to achieve good matching at the input. Both facts
increase the amount of energy stored within the system and thus contribute
additional losses.

With matching network “E”, where the design focus was on the 100 MHz
bandwidth rather than on the matching efficiency, it was possible to increase
the bandwidth over the single-stub network. The dash-dot graph in Fig. 3.26
reveals a bandwidth of about 110 MHz where the matching network outper-
forms the sole array. The peak efficiency is 86 % of the single-stub imple-
mentation.

Finally, the alternative matching network “F” surpasses all previous net-
works in terms of both efficiency and bandwidth, as the curve with the short
dash pattern in Fig. 3.26 reveals. This is only natural since the network is
a lot smaller in size and minimises the electrical distance between the an-
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Fig. 3.27: Diversity gains of the networks of Fig. 3.23 at the 1 % probability level.
The gain of an ideal two-port system is indicated by Gq.

tenna array and the reactive, energy-storing elements of the network. Its peak
efficiency is around 53 %, which is twice the efficiency of the single-stub
network. Its bandwidth is about 130 MHz.

Figure 3.27 plots the diversity gains (Chapter 4) of the various networks
versus frequency. The peak improvement achieved with a hybrid coupler
based network is about 2 dB, whereas the alternative network delivers a di-
versity gain of almost 4 dB.

The example has demonstrated three things. First, the possibility to em-
ploy broadband matching techniques with the eigenmode decoupling net-
work. Second, that the input port scattering parameters convey insufficient
and misleading information about DMN performance, and that instead the
power efficiency of the system must be analysed. Third, that the alternative
two-port DMN approach is greatly superior to the hybrid-based network in
terms of both footprint size and efficiency. On this account, the next sub-
section illustrates how this alternative network is incorporated into a hybrid-
coupler based four-port DMN.
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3.6.4 Circular 1y/10 four-port array

We will now provide proof-of-concept of a hybrid-based four-port DMN for
a “circular” (square) arrangement of radiators. We will also demonstrate how
the alternative decoupling and matching technique implemented in the pre-
vious example (network “F”) can be incorporated into multi-port matching
networks.

Figure 3.28 portrays a photograph of the antenna system. The radia-
tor separation is 12 mm corresponding to 1y/10 at the operating frequency
of 2.45 GHz. The ground plane measures 7 cm X 7 cm. The layout of the
DMN in the photograph is outlined in Fig. 3.29a. Meandering was employed
to reduce the footprints of the hybrid couplers. The numbers adjacent to the
ports at the top correspond to the numbering in Fig. 3.10b, i.e., the two hy-
brids closest to the array decouple diagonally opposing elements. Matching
networks were omitted from the printed network and were implemented ma-
nually with strips of copper foil. Since there are ten scattering coefficients,
we refrain from showing the full plot and only state that all matching coeffi-
cients are better than —12 dB and all coupling coefficients are below —17 dB
at the centre frequency. The eigenefliciencies of the matrix of accepted power
after decoupling and matching are /—I)S,acc = (1.0 0.99 0.97 0.89)T implying a
matching efficiency of at least 89 % for all excitations.

In the network of Fig. 3.29b, one hybrid has been replaced by the alter-
native matching network. According to measurements, all matching coeffi-
cients are better than —17 dB and all coupling coefficients are below —15 dB
at the centre frequency. The eigenefficiencies of the accepted power are
js,m = (1.0 0.99 0.95 0.90)T and thus confirm the correct operation of
the network.

Plots of the eigenefficiencies derived from measured far-field data are gi-
ven in Fig. 3.30. Alike plot styles refer to the same antenna system. Both
networks are able to improve the efficiencies of the impaired eigenmodes
notably. The two “odd” modes—the medium efficient pair of modes—are
improved by a factor around 1.6 at the centre frequency. In the “n”’-mode,
the networks achieve an enhancement by the factor 3, from 3.3 % to 10 %.
The fact that the alternative network is only marginally better is not too sur-
prising since power dissipation primarily takes place within the remaining
hybrid couplers and within the coaxial cables seen in Fig. 3.28 between the
array and the DMN. It remains to be investigated what efficiency gains will be
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Fig. 3.28: Photograph of a four-port circular array with decoupling and matching
network. The radiator separation is 4,/10 at 2.45 GHz.

a) antenna array b) antenna array
1 3 2 4 T 1 3 2 4
g
g
3
input ports input ports
< 115 mm >

Fig. 3.29: Layouts of the two different four-port decoupling and matching networks.
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Fig. 3.30: Eigenefficiencies of the four-port antenna array without DMN, with a
hybrid-only DMN, and with an alternative decoupling and matching method.

achievable if the connecting transmission lines are kept as short as possible.
From the point of view of diversity reception both networks deliver an
additional gain of about 2 dB. The bandwidth over which an improvement
comes about is just over 50 MHz, as Fig. 3.31 reveals. Whereas 2 dB re-
present a remarkable gain, particularly in view of the insertion loss of the
coaxial cables, the overall diversity performance is still inferior to an ideal
three-port system. Of course, the question of whether such an ideal three-port
system can be realised within the same space constraints is another matter.
The beam patterns produced by the eigenmode (hybrid-only) DMN are
reported in Fig. 3.32. The two “odd” modes, each of which feed one pair of
diagonally opposing radiators, are readily identified as beam-patterns 1 and 4
by their pronounced radiation zeros. The beam-pattern of one “odd” mode
is a rotated copy of the other “odd” mode, therefore these modes share the
same eigenefficiency, at least in theory. In practice there are considerable
differences in the eigenefficiencies plotted in Fig. 3.30 but also in the beam-
patterns, which is mainly caused by mechanical inaccuracies of the array. The
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Fig. 3.31: Diversity gains of the four-port array without DMN, with hybrid-only
DMN, and with alternative DMN. The right-hand axis indicates ideal n-port gains.

more obvious asymmetries in the “even” mode and the “n”’-mode on the other
hand stem from shortcomings of the DMN. The meandering of the hybrid ring
in conjunction with the air-bridges distorts the symmetry both of the power
and of the phase balance.

3.7 Summary

The central topic of this chapter was a particular family of decoupling and
matching networks (DMN) that exploit the orthogonal nature of array eigen-
modes. These networks have the prominent advantage that, if a network exists
for a given constellation of radiators, it will be especially simple to design.
They consist of a series of directional couplers, which decouple the radiator
as a first step. The decoupled ports are subsequently matched using fami-
liar single-port techniques. If the antenna array exhibits certain symmetries,
considerable parts, if not the entire decoupling section, of the DMN can be
designed without knowledge of the scattering parameters of the array. As
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Fig. 3.32: Measured azimuth cuts of the beam patterns associated with the input ports
of the four-port eigenmode DMN (Fig. 3.29a). All diagrams are plotted at an elevation
of § = 30°.

the LTCC example has shown, this last property is particularly attractive to
mass-produced applications if one day compact and low-loss hybrid couplers
should become available. Another advantage is the broad decoupling band-
width, which enables post-production adjustments simply by tuning of the
single-port matching networks. It also allows for broadband or varactor-tuned
matching techniques.

An accurate means to predict the influence of an arbitrary lossy feed net-
work (DMN or other network) on the antenna array radiation matrix and thus
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on its eigenefficiencies was presented. This analysis revealed that the goal
of achieving decoupled and matched input ports comes at the high cost of a
high DMN insertion loss. Considerable ohmic losses are present in all types
of DMNSs, yet researchers seem to focus on the scattering matrix of the input
terminals only. For the first time a formula for the quantification of ohmic
losses in terms of the DMN scattering parameters was given and confirmed
by far-field measurements.

Ohmic losses present a general problem with DMNs, yet their impact is
certainly more pronounced with the present approach. This is because the
insertion loss of the directional couplers, although only of the order of a few
tenths of a decibel, becomes amplified by the impedance transformation of
the matching networks. For this reason, an alternative two-port decoupling
and matching technique was introduced that can also be incorporated into
higher-order eigenmode DMNSs.

Two parameters are important to the assessment of DMN performance.
First, the relative gain (eigenefliciency gains or diversity gain) between the
antenna array without and with DMN determines whether the implementa-
tion is actually worth its while. Second, we must also look at the absolute
performance and critically examine whether an array with fewer radiators,
and thus a less complex DMN, may in fact perform equally well.

Although noteworthy DMN gains of up to 3.8 dB were demonstrated in
the present chapter and also elsewhere [121], a major inhibiting factor for
the practical use of DMNs is their generally narrow bandwidth. Until the
time writing, investigations had been focussed on “mathematically correct”
approaches, i.e., with decoupling and matching as the design goal. Howe-
ver, with the knowledge and the efficiency formula of the present chapter, it
seems worthwhile to concentrate future efforts on design strategies with the
overall network efficiency and bandwidth in mind. It is anticipated that net-
works exist that do not create a perfectly decoupled and matched system, but
that nonetheless, due to their simplicity and compactness, perform better than
present approaches.



Chapter 4

Diversity reception
with compact antenna
arrays

Between a wireless transmitter and a receiver there is usually more than one
path of signal propagation due to shadowing by and scattering off nearby
objects such as the ground, mountains, buildings, or people. Therefore, the
field strength actually available at the receiver is the result of the superposition
of a multitude of signals. Depending on the paths and the distances travelled,
the superposition may be constructive or destructive in nature.

If any part of the communications scenario moves, these path lengths
change and so will the received signal strength. Depending on whether or
not a direct path (“line-of-sight”) is present between the communicating par-
ties, the instantaneous signal-to-noise ratio (SNR) may fade away by as much
as 40 dB [9, Fig. 1.1-1]. At receivers operating indoors or on the border of
a transmitter’s coverage area, fading may severely degrade the quality of the
mobile link. Fading is random in nature and therefore described with statisti-
cal means.

The problems associated with fading may be alleviated with multiple an-
tennas at the receiver—a technique known as antenna diversity. If these an-
tennas are spaced apart far enough, they all receive the same information but

91
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are subjected to independent fading characteristics. With increasing number
of radiators n, the chance that at least one antenna receives sufficient signal
power grows. Thus, one way to enhance the stability of the communications
link is to continuously choose the antenna receiving the strongest signal. This
represents a simple form of a so-called diversity combiner, and more advan-
ced techniques are available. As the antenna array is made smaller and mutual
radiator coupling starts to set in, however, fading becomes increasingly cor-
related and the effectiveness of antenna diversity diminishes [56, 79].

In the present chapter, we carry out an analysis of this effect and sug-
gest new figures of merit to support the diversity performance evaluation of
compact antenna arrays. The influence of a non-uniform communications en-
vironment will be outlined by means of a widely accepted channel model for
mobile terminals. The chapter concludes with a detailed model of receiver
noise and a discussion of the consequences that arise thereof.

4.1 Overview and past work

Eventually, any diversity receiver is bound to combine the signals received
by its antennas into a new, single signal with improved fading characteris-
tics. The inputs to this combiner are also referred to as the branches of the
diversity system. There are various types of combiners with more complex
implementations generally performing better. The improvements due to di-
versity are usually expressed as a decibel gain, called the diversity gain [26],
which we define in the next section.

The focus of this chapter will be on maximal ratio combining (MRC),
which, of all combiner types, yields the maximum SNR possible. Although
MRC is the most complex combiner to implement in practice, its mathema-
tical analysis is comparatively straightforward. The probability density func-
tion of MRC in the presence of correlated fading for Rayleigh-type environ-
ments is derived in an early paper by Pierce and Stein [66]. Additional details
follow in [17, Chapter 10].

These works identified the branch correlation coefficient p (cf. (2.30)) as
the principal factor determining diversity performance. Later, the relationship
between mutual radiator coupling, the correlation coefficient p, and array di-
versity performance was published in a pioneering paper by Vaughan and
Bach Andersen [79]. It was concluded that p < 0.5 is a sufficient criterion
for “good” diversity performance, provided that the radiating elements them-
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selves are sufficiently “good”.

Nowadays, the branch correlation coefficient has become the standard
way of assessing array diversity. Its popularity stems from the fact that, in
the early days, it required no sophisticated measurement equipment. In ad-
dition, the few formulae involving p are so simple, they can be evaluated
on a slide rule; additional parameters are read off graphs [56, 79]. Since
then, many papers have been published that affirm its role as the measure of
choice [35, 37, 43, 44, 52, 55, 70, 92, 106].

This analysis, however, does have its shortcomings. For the theory to
be applicable, all branches must receive the same mean power. In this case,
methods for estimating the diversity gain exist for two array elements only;
larger arrays require special attention. Even then a concluding statement is
only qualitative and of the form “appropriate” or “not appropriate for diversity
reception”. In many cases it is impossible to distinguish a better array from
the worse, which hampers the optimisation of array designs subject to certain
constraints (e.g., space) because a cost-function cannot be formulated.

Comprehensive studies of a two-element array and a four-element array
are for example given by Kildal and Rosengren [50] and by Chiau et al.
[30], respectively. The reader might agree that the introduction of the terms
“mean effective gain”, “apparent diversity gain”, “actual diversity gain” and
“effective diversity gain” [51] complicates matters unnecessarily. Additional
sources of error arise since the “envelope correlation coefficient” and the “cor-
relation coefficient” are related, yet substantially different quantities. Another
disadvantage is that no diversity-based bandwidth can be established for an
array; instead the radiator efficiency and the correlation coefficient must be
considered separately [55]—a rather unwieldy undertaking, especially if three
or more radiators are involved.

Times have changed since the first introduction of p and it is about time to
move on and to adapt the way of diversity analysis to the tools available to the
average antenna engineer in present days [144]. This chapter demonstrates
how useful yet compact expressions for the diversity capabilities of mutually
coupled arrays are only few steps away from the original theory by Pierce and
Stein [66]. These formulae are closed-form expressions that allow a simple
quantitative comparison between different designs and that are eligible as
cost-functions for array optimisation.

The close relationship to the eigenmode analysis in Chapter 2 is pointed
out. It is also shown that, in certain cases, the antenna array cannot be cha-
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racterised unless the noise properties of the receiver front-end are taken into
account [84]. As the existing ways of analysis, the new formulae are also
limited to communications environments that lack a line-of-sight component
and that therefore may be modelled by the Rayleigh probability distribution.

Past work includes papers by Ngrklit et al. [64, 103] who propose the ef-
fective (fractional) number of ideal diversity branches that would perform si-
milar to a given coupled system as a diversity figure of merit. No closed-form
expression or approximation exist for this metric, however, and the effective
diversity order must be read off graphs manually. Closed-form approxima-
tions for the two-port diversity gain are given by Mattheijssen et al. [61] and
by Turkmani et al. [78]. The former is a six-term series and requires the
branch efficiencies to be equal. The latter is given for an outage probability
(defined below) of 10 % only.

MIMO (multiple-input multiple-output) systems, which employ antenna
arrays at both the transmitting and the receiving end of the link [12, 40],
promise a substantial increase of the mobile channel capacity and have thus
attracted considerable attention recently. Although these systems are not ad-
dressed further in the present thesis, the question of the effects of mutual
radiator coupling is still an important one. Several authors (e.g., [80, 82, 112,
114]) have carried out investigations on this topic by generating a large set of
random channel realisations to obtain an estimate of the statistical distribu-
tion of the channel capacity numerically. Smith et al. [74] derive a correspon-
ding approximation in closed-form. Although the latter presents a promising
step towards the right direction, a compact expression directly related to the
MIMO performance of mutually coupled arrays has yet to be found. These
examples demonstrate that the quest for more general and easier to handle
figures of merit is indeed justified.

4.2 Figures of merit for correlated fading

In a communications scenario lacking a dominant path of propagation, such
as a line-of-sight, the signals that arrive at a moving receiver’s antenna im-
pinge from random directions with random amplitude and phase. By the cen-
tral limit theorem, the complex signal envelope (envelope including phase in-
formation) of the superposition of these paths will be distributed according to
a zero-mean circularly symmetric complex Gaussian distribution [15, p. 159].
(L.e., its real and imaginary parts are independent zero-mean Gaussian ran-
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bR,l

br

b R.n

VR,n

branch signals + noise linear diversity combiner

Fig. 4.1: General block diagram and signal flow graph of a linear diversity combiner.
The complex received signal envelopes and the receiver noise are denoted by bg;
and vy ;, respectively. Branches are multiplied by weights w; before summing. The
combined signal and noise are denoted by b¢ and v, respectively.

dom variables with equal variance.) The received signal power consequently
follows a chi-square distribution with two degrees of freedom [14, p. 41];
the resulting distribution of the signal amplitude is called the Rayleigh distri-
bution [14, p. 44]. Since few random paths suffice to produce a reasonable
approximation to the Gaussian distribution, the Rayleigh distribution often
shows up in practice [17, Fig. 9-2-1]. It therefore represents an appropriate
channel model for systems operating indoors or inside a street canyon, for
instance.

4.2.1 A simplified diversity model

Figure 4.1 depicts the general form of a linear diversity combiner. The re-
ceived complex signal envelopes are denoted by br; with i being the branch
number. We keep in mind that, as the result of fading, these signal enve-
lopes are time-varying random processes. Before the branches are added to-
gether to yield a single combined signal bc, they are weighted by complex
branch weighting coefficients w;. (The complex conjugation is just a notatio-
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nal convenience). Writing bg; and w; as vectors, we have

be = wHbg. 4.1)

Pegna = [#Br|” = M [BeBH] . 4.2)

In any communications system, the presence of noise imposes a funda-
mental limit on the quality of the transmission and therefore on the amount of
information that can be reliably transmitted in a given span of time. Several
different physical mechanisms, which are beyond the scope of this thesis, are
responsible for the creation of noise. The interested reader is referred to [67]
for an introduction and references for further reading. We shall follow the ge-
nerally accepted approach and model noise as a zero-mean Gaussian random
process vg; superimposed on each receiver branch, as indicated in the figure.

In this initial discussion, we assume that all receiver branches are equally
noisy and that noise is uncorrelated between branches. The additive noise
power in each receiver branch i may be expressed in terms of the equivalent
temperature Tr [16, Section 2.1.5] of the received noise:

Pronoisei = B {IvrI*} = kTrB, 4.3)

where k = 1.3806504 J/K is the Boltzmann constant and B the equivalent
receiver noise bandwidth, which typically equals the equivalent noise band-
width of the matched filter employed at the receiver. The spectral noise po-
wer density is assumed constant inside this bandwidth. The noise power after
weighting and branch combination is then given by

Pcnoise = E {W7RI*} = WHE {[r*} W = kTr B w0, (4.4)

For the subsequent analysis, the signal-to-noise ratio (SNR) oc at the
combiner output is of further interest since it expresses the quality of the
received signal. It is a function of the combiner weights w:

PC,signal _ 1 WH [bRgIlﬂ W
PC,noise kTRB wHp ’

oc(W) = 4.5)

The goal of a diversity combiner is to choose W so to maximise oc(w). We
recognise the second factor of the above product as a Rayleigh-quotient [8,
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p. 176], which is maximised if w equals the eigenvector associated with the
largest eigenvalue of the n X n matrix I;RI;E in the numerator. Since this matrix
is Hermitian and rank-one, there is only one non-zero eigenvalue. It is easily
verified [8, Equation (1.1.3)] that the corresponding eigenvector is by itself
and that the eigenvalue is II;RIZ. The optimum weight vector is therefore

Vvopl = by, (4.6)
and the maximum achievable combined SNR becomes

S
|brI*

. 4.7
kTrB “.7)

OC,max = QC(Wopl) =
A combiner that achieves this optimum result was introduced before as the
maximal ratio combiner, or MRC [17, Section 10-5]. Its operation can be pic-
tured as a co-phased sum with all branches weighted with their instantaneous
SNR. Because an actual implementation is rather demanding in terms of the
processing power required, practical systems often employ simpler combiner
types with less-than-optimal results [26]. There is the additional fact that the
received signal envelopes bg; are not known in advance and vary with time.
Therefore, the combiner weights have to be estimated continuously from the
received signal. The quality of this estimate is naturally subject to the rate at
which the channel changes (cf. Doppler-spread, [12, p. 14]) and to the amount
of noise and interference present. We will nonetheless assume that the recei-
ver has perfect knowledge of the received envelope vector bg and thus of the
optimum weights W at all times.

The following model will investigate diversity as a function of frequency.
We therefore require that the abovementioned noise bandwidth B of the recei-
ver is sufficiently narrow so that not only the electrical parameters of the re-
ceiver components (antenna array, amplifiers, noise) can be assumed constant
over that bandwidth, but also that all frequencies within B undergo exactly
the same fading process. This is called a frequency-flat fading channel [12,
p. 15].

Practical systems are unlikely to fulfil any of the above assumptions.
They either accept the impairments or employ techniques to counteract the ef-
fects of fast fading and frequency-selective fading (e.g., interpolation between
channel estimates, RAKE-reception [69], OFDM (orthogonal frequency divi-
sion multiplex) [12, Section 9.2], turbo-equalisation [53]). Our presumptions
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are nonetheless justified since the goal is to describe the consequences of mu-
tual radiator coupling itself rather than the properties of a particular receiver
implementation. The following should therefore be considered a best-case
description with practical systems usually performing worse.

The same processes that produce Rayleigh-fading at a single-port antenna
also take place at antenna arrays. So the complex envelopes bg ; at the recei-
ver branches all follow a zero-mean circularly symmetric complex Gaussian
random process. Together, the bg; describe a complex multivariate Gaussian
distribution. The multivariate Gaussian distribution is uniquely characterised
by the vector of first moments, i.e., the means, and the matrix of second mo-
ments, i.e., the variances and covariances [15, p. 158]. Since the means are
zero, the covariance matrix of the received signal envelopes suffices to des-
cribe the joint statistical distribution of the received amplitudes at multi-port
antennas in a Rayleigh environment.

For the first part of our discussion, we require the directions of arrival
of all wave fronts reaching the array to be uniformly distributed in azimuth,
elevation, and polarisation. Such an environment is created, for instance, in a
reverberation chamber [51] used to measure the diversity gain of manufactu-
red antenna arrays. Irrespective of whether or not this is a realistic assumption
to make, it seems sensible if nothing is known about the target environment.
Later in Section 4.3.1, we will discuss more appropriate models to include
known aspects of the communications environment. We also assume a loss-
less antenna array. Although the covariance matrix was derived previously
by Wallace and Jensen [81] based on purely mathematical reasoning, a des-
criptive interpretation in terms of the eigenmode concept and the equivalent
circuit developed in Section 2.6 on page 27 is given here.

It is shown in Appendix A.5 that, under the above conditions, the eigen-
modes of an arbitrary antenna array fade independently. This insight supports
our perception of eigenmodes as the principal degrees of freedom of an array.
Moreover, since the array is assumed lossless and all directions of the inci-
dent wave fronts are uniformly distributed, the powers Pp, ,,; available in the
eigenmodes are all equal as a consequence of power conservation and recipro-
city. So, recalling the discussion around Eqn. (2.46), the covariance matrix of
the received modal power wave vector Bln,av is simply a scaled version of the
identity matrix:

Var {Bm,av} =E {Bm,av l_;f[n,av} = Psignali, 4.8)
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where Pggna signifies the mean available signal power. With (2.49), we
can write down the covariance matrix of the signal envelopes at the receiver
straight away:

Var {Be} = Var {5} = E {chc Ruce BB /A chc}

. ~ - Pl ~ ~
= Qacc \V Aacc E {bm,avbm,av} Aacc Qgcc
= Psignal QNZCCAaCCQ;Fm
= Psignalﬁgcc = Psignal (i_ STS*) = Psignal (i_ SSH) . 4.9)

Evidently, under the above conditions, the covariance matrix of the complex
signal envelopes is easily found from the scattering matrix of the antenna
array. This result agrees with the result of Wallace and Jensen [81], who also
showed that in the presence of ohmic losses the signal covariance matrix is
given by Py, HY, according to (2.26).

The signal covariance matrix itself, however, does not provide any mea-
ningful information about the resulting performance of the diversity receiver.
This fact was already criticised in the introductory section as the major short-
coming of existing approaches to assessing the diversity capabilities in the
presence of mutual coupling. We shall therefore proceed to analyse the dis-
tribution function of the SNR ¢ max at the MRC combiner output to see what
kinds of practically useful parameters can be derived from it.

In order to keep the following formulae as clear as possible, we do not
wish to carry Pgigna and KTrB through the entire derivation. We therefore
define a combined o that is normalised to the mean SNR of a single, lossless,
and perfectly matched radiator o9 = Pgigna/ (kTR B). Then

_ ©OC,max _
2= "o =

N

be|”  with  Var{bxl=A",  (4.10)

instead of (4.7) and (4.9). For the time being, we stick to the matrix H to
emphasise the relationship between diversity performance and the efficiency
considerations of Chapter 2. Later in Section 4.3.1, the matrix will be re-
named to Hy for reasons of notational consistency. Note that our covariance
matrix A has nothing to do with the channel matrix A commonly encountered
in MIMO theory.
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The probability density function (PDF) p(o) of o was derived by Pierce
and Stein [66]. A general expression can only be given in terms of its Laplace
transform P(s), though:

n -1
P(s) = det{T+sH} ' = [H(l + sﬁi)] , (4.11)
i=1

where s is the Laplace variable. We observe that the PDF is uniquely determi-
ned by the eigenvalues A; of the matrix A. In other words, the eigenefficien-
cies introduced to characterise the available degrees of freedom of an antenna
array in terms of their radiation efficiency also uniquely determine the array’s
quality in a diversity application.

With the help of the inverse Laplace transform of P(s), the PDF p(o)
can always be found in terms of exponential functions. The reason why no
generally valid closed-form expression can be given is that its particular form
depends on the multiplicities of the eigenefficiencies. For an ideal n-port
antenna array, all eigenefficiencies are 1 and

er— 1 e @

W, fOrQ > 0. (412)

plo) =

This type of distribution is a chi-square distribution with 2n degrees of free-
dom and parameter o = 1/vV2 [9, Eqn. (5.2-14)], [14, Egn. (2.1-110)]. For
o < 0 these power-related PDFs are identical zero. In case all eigenefficien-
cies are distinct, the PDF becomes [64, Eqn. (30)]

n e~/

1
P =——> = ,  foro>0. (4.13)
H/li i=1 H(i_l>
i=1 =1 A
JEI

For other eigenefficiency multiplicities, which arise in circular array arran-
gements, for instance, the corresponding form must be worked out indivi-
dually by expanding (4.11) into partial fractions. The following subsections
demonstrate that a number of important parameters can nonetheless be deri-
ved without requiring an explicit expression of p(o).
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4.2.2 Array gain of a mutually coupled array

The mean improvement of the SNR at the combiner’s output over a single
perfectly matched radiator is called the array gain G, [12, Section 1.2.1]. It
is simply the expected value of o and, in principle, could be derived from the
PDF by integration [14, Eqn. (2.1-61)]:

G, =E{o} = /DO r p(r) dr 4.14)
0

As Pierce and Stein [66, Eqn. (25)] pointed out, this integral can be evaluated
in terms of the Laplace representation of the PDF as

dP(s)
G,=E{o} = - 1 . (4.15)
S 5=0
If we rewrite (4.11) in polynomial form as
1
P(s) = (4.16)

l4+cis+cas?+--+cpst’

where the c¢; are placeholders for the expanded coefficients of the denomina-
tor, then
dP(s) c+2cs+---+ ne,sh

= . 4.17
ds (L+cis+cas?+ -+ cps)? @.17)
Clearly, if s = 0, Eqn. (4.15) becomes (cf. [8, pp. 40—42])
n
Elof=c1=)» A=t{A}=u{A}. (4.18)
i=1
Since o is a power quantity, the array gain is expressed in dB as
_ |dB ~
Ga(H)‘ =101logE {o} dB = 10logtr{H} dB. (4.19)

For ideal arrays, where all A; = 1, the array gain equals the number of ra-
diators n. For an ideal single radiator the array gain is 0 dB in accordance
with the previous normalisation (4.10). Furthermore, this result agrees with
our intuitive understanding that the amount of power collected by an antenna
array is proportional to the sum of the efficiencies of its degrees of freedom.
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4.2.3 Diversity gain over a single receive antenna

Diversity not only yields an improvement of the average SNR but, most im-
portantly, changes the statistics of the received SNR in a way that reduces
the probability of deep fades. This effect is best visualized by means of the
cumulative distribution function (CDF) d(o) of 0. The CDF is defined as

©
d(o) = /0 p(r)dr (4.20)

and yields the probability that o is below some specified value. Again, for
the reasons stated earlier, a general closed-form expression in terms of A; is
not available. For ideal n-branch diversity (see (4.12), [9, Eqn. (5.2-15)], [14,
Eqn. (2.1-114)]), d(o) becomes

n—1 k
o\ O
— — © =
do)=1-¢ Zk!, for o > 0. 4.21)
k=0
By integration of (4.13) the CDF becomes
1~ (1l —e2%)
d@) = ——> - ,  foro>0 4.22)
14 1 .1
i=1 l A A

J=l
J#
if all eigenefficiencies are distinct.

Figure 4.2 plots the CDFs of ideal diversity systems with up to four
branches on double-logarithmic scales. It is evident that an increasing number
of radiators n not only shifts the curves towards higher SNRs (which would
correspond to array gain only), but also changes their slope. The slope ap-
proaches the constant value of n for small SNRs and thus reflects the order of
the diversity system.

The CDF plots let us determine the so-called outage probability of the
communications link. For instance, the probability that the instantaneous
SNR falls more than 10 dB below its mean value is around 10 % if only one
radiator is used for reception. With two radiators, the probability is reduced
to 0.5 %; with three radiators the probability is less that 0.02 %. One or two
additional receiver branches obviously suffice to improve the reliability of the
communications link substantially in a strongly fading environment.
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The benefits due to diversity are usually not expressed in terms of proba-
bilities but rather as an equivalent system insertion gain, called the diversity
gain Gq [26], [79, Eqn. (67)]. For this, an outage probability p is chosen,
for instance p = 1 %. Then the diversity gain is defined as the SNR ratio
of the diversity system in question to the SNR of the single-branch system at
the specified outage probability. Figure 4.2 clarifies this definition with an
arrow indicating the diversity gain G4, of an ideal two-branch system. The
value of the diversity gain is 11.7 dB in this case, which is considerably better
than the 3 dB array gain alone. The diversity gain thus expresses the amount
of transmit power that can be saved with respect to a non-diversity system
whereby the reliability of the mobile link is unchanged.

Some examples of the effects of mutual coupling are shown in Fig. 4.3.
The figure plots the CDFs of one two-branch system and two different three-
branch systems. The legend provides information about the eigenefficiencies
A; that were used in (4.22) for the production of these graphs. In general,
mutual coupling causes the graphs to shift towards lower SNRs with respect
to the corresponding ideal systems. For instance, the two-branch system,
whose second eigenefficiency is only 20 %, delivers a diversity gain of 8.3 dB
at the 1 % probability level—around 3.4 dB worse than the ideal system.

The development and optimisation of compact antenna arrays would be-
nefit greatly from closed-form formulae for the diversity gain in terms of the
signal covariance matrix. Engineers could then rely on simple scattering pa-
rameter measurements to judge the diversity capabilities of their array.

In mathematical terms, the diversity gain G4 as a function of A and the
probability level p can be written as

&P

G4(H, p) = (4.23)

where d;'(-) and d;' (") signify the inverse functions of the CDFs of a single
radiator and of a diversity system characterised by H, respectively. The deno-
minator turns out as —log(1 — p), but, unfortunately, no closed-form expres-
sion of the numerator is available in the literature. In principle, the numerator
can be evaluated numerically by iterative root-finding algorithms. However,
this whole process is rather cumbersome to implement: one first has to deter-
mine the eigenvalues of A, check if there are any duplicates, then construct
the CDF, and finally search for the root of dg(0) = p.
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A simpler and faster approach is via the Maclaurin series expansion of
d;ll (p). The derivation of the first four terms is discussed in Appendix A.6,
however, the first two terms usually provide sufficient accuracy. We define

g = y/n!det{H} p, (4.24)

and obtain for the inverse CDF

d—l( ) tr{H_l} 2 (4 25)
- Rqg+ ———q +--. .
AP =4 nn+1) g

The diversity gain with respect to an ideal single radiator is then given by the
following second-order approximation:

- N g tr{I:I‘l}
Gq(H, p) = » [l + 7n(n T q} s (4.26)

The denominator in (4.23) was replaced by p, its first-order approximation,
in order to counteract the error introduced by the approximation of the nu-
merator. It is difficult to give a clear statement about the accuracy of the
above approximation because it not only depends on the outage probability
chosen but also on the eigenefficiencies of the array. Thus, Table 4.2 reports
some numeric examples at three different probability levels and for varying
eigenmode degradations, so the reader can get an idea about the accuracy.
Empirical test show that, at p = 1 %, the error in Gy is less than 0.5 dB for
up to four radiators if the ratio Amax/Amin < 100. The accuracy not only in-
creases towards smaller values of p but also for smaller numerical spreads of
the eigenefficiencies A;.

4.2.4 Diversity loss over an ideal antenna array

In case less accuracy is sought, an even simpler indicator for diversity perfor-
mance can be derived. According to [17, Eqn. (10-5-29)] the first term in the
series expansion of (4.22) is

71 71 71

A "
Il A nldet{A} n! det{I:I}’

d(o) = forpo — 0. 4.27)
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Diversity Gain in dB

Eigenefficiencies p=10% p=1% p=01%

n ir Exact Est. Exact Est. Exact Est.
2 (1.0 1.0) 703 7.1 117 11.7 16.6 16.6*
(1.00.2) 381 380 828 828 13.1 13.1*

(1.0 0.02) 0.760 -0.121 3.80 3.69 825 824
3 (1.0 1.0 1.0) 102 101 164 163 228 22.8*
(1.00.90.3) 850 832 146 145 209 209*

(1.00.5 0.03) 590 530 112 11.0 17.1 17.1%
(1.00.30.01) 470 398 9.60 925 152 151

4 (1.01.01.01.0) 122 119 19.1 19.0 263 26.3%*
(1.01.00.90.3) 11.0 106 178 17.7 250 249
(1.00.90.50.03) 9.56 9.07 160 158 229 228
(1.00.60.1 0.005) 6.87 652 127 126 191 19.0

5 (0101010100 136 132 21.0 209 28.7 28.6
(1.0090.60.10.01) 981 940 165 163 236 235
(1.00.50.20.01 0.001) 723 7.00 134 135 20.0 202

Table 4.1: Numeric examples demonstrating the accuracy of the diversity gain ap-
proximation G4 according to (4.26). The starred (*) examples are plotted in Figs. 4.2
and 4.3.
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Eigenefficiencies Approx. Lq Exact Ly in dB

n Ar in dB p=1% 01% 10%
2 (1.0 0.2) 3.49 3.42 3.47 323 %

(1.0 0.02) 8.49 7.90 832  6.27
3 (1.0 0.9 0.3) 1.90 1.82 1.86 1.70 *
(1.0 0.5 0.03) 6.08 5.20 5.68 430 *

(1.0 0.3 0.01) 8.41 6.78 7.61 5.49

4 (1.0 1.0 0.9 0.3) 1.42 1.31 1.36 1.21

(1.0 0.9 0.6 0.05) 3.92 3.13 3.45 2.63

(1.0 0.6 0.1 0.005) 8.81 6.42 720  5.33

Table 4.2: Numeric examples demonstrating the accuracy of the diversity loss ap-
proximation Ly according to (4.28). The starred (*) examples are plotted in Fig. 4.3.

This linear approximation is included as thin lines in Figs. 4.2 and 4.3. It
clearly serves as a reasonable approximation to d(p) at small probability le-
vels. We note two things in the graphs of non-ideal diversity in Fig. 4.3. First,
the slope of the limiting line depends only on the number of branches n and
is independent of the eigenefficiencies. For this reason the slope cannot be
used as a measure for non-ideal diversity performance. Second, the limiting
line undergoes a shift towards lower SNRs as the eigenefficiencies decrease.
We can interpret this shift as a system insertion loss caused by the efficiency
reduction due to radiator coupling. This diversity loss of a coupled n-port
antenna array with respect to its ideal n-port counterpart is found by rearran-
ging (4.27):

dB 10 N
Ly| ~-—logdet{H} dB. (4.28)
n

Table 4.2 reports some numerical examples of this approximation. The CDF
of the first three-port example (third row from the top of the table) is plotted in
Fig. 4.3 as the dashed curve. We find that it runs almost parallel to the graph
of ideal three-branch diversity. The diversity loss estimate (4.28) of 1.90 dB
agrees nicely with the exact value of 1.82 dB at the 1 % probability level. In
the second three-port example, which is also plotted in Fig. 4.3, the curves
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are not as much in parallel and the diversity loss estimate consequently ove-
restimates the true loss by almost 0.9 dB at the same probability level. On
the other hand, there is probably limited practical relevance to the second
example because it actually performs worse than a two-element array at pro-
bability levels greater than 0.3 %. As with the diversity gain approximation,
the diversity loss estimate becomes more accurate towards lower probability
levels. Further tests revealed that at p = 1 % the error in Lq is less than 0.5 dB
for up to four radiators if the ratio Apax/Amin < 10. So, if a particular an-
tenna array design exhibits only moderate coupling, then (4.28) is a useful
and simple measure for the diversity loss due to mutual coupling independent
of the probability level.
Notice how in the single-port case Ly reduces to

~101log (1 - |s11|2) dB, (4.29)

which equals the loss due to impedance mismatch at the antenna input. The
diversity loss may therefore be considered a generalisation of this term to
multi-port arrays.

In contrast to the mean radiation efficiency (2.16) defined earlier, the
diversity loss particularly penalises low eigenefficiencies. In view of the
examples on page 15 this means that the example array with eigenefficiencies

=(0.97 0.97 0.01)T induces a diversity loss of 6.75 dB whereas the array
with A = (0.65 0.65 0.65)T achieves a loss of only 1.87 dB—although both
arrays possess the same mean efficiency of 65 %. This insight is consistent
with intuitive reasoning, namely that an array with three acceptable degrees
of freedom ought to be superior to an array where one eigenmode is hardly
existent.

An alternative way to express the diversity loss is in terms of the arithme-
tic mean of the eigenmode insertion losses:

dB 10 . 10 z
L‘ ~ —— logdet{ A} dB = —— 1 2| dB
" <o aafay nog[r[ ]

_ Z ( 1010g/l)

The influence of individual degraded eigenefficiencies therefore shrinks with
increasing number of radiators n. For example, a single radiator with 25 %

(4.30)
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radiation efficiency introduces a 6 dB insertion loss in the system. In two,
three, and four-branch systems on the other hand, a single degraded eigen-
mode with the same efficiency reduces the diversity gain by 3 dB, 2 dB, and
1.5 dB, respectively. By implication, the possible gains that can be achieved
with decoupling and matching networks also scale inversely with n, i.e., if a
network provides a 6 dB improvement in one eigenmode of a three-port array,
the net diversity gain increase will only be 2 dB. In this context, however, we
have to keep in mind that the diversity gain brought about by additional recei-
ving branches diminishes considerably beyond n > 2, even for ideal systems
(cf. Fig. 4.2).

The approximation formulae developed in this section facilitate the fre-
quency-dependent characterisation of mutually coupled arrays in terms of
their diversity capabilities. An earlier example in Fig. 3.27 on page 84 de-
monstrates the usefulness of this possibility, especially if decoupling and mat-
ching networks are employed, whose properties generally change considera-
bly with frequency.

Figure 4.4 portrays another example of diversity evaluation versus fre-
quency with the intent to compare the accuracies of the approximation for-
mulae graphically. The antenna array used was manufactured by Weber et al.
[146]. The thick, solid graph represents the approximation according to (4.26)
and the thin, dotted line shows the exact values. Both graphs are in excellent
agreement; at the high end of the frequency range, where A, = 0.8 %, the
approximation error is only 0.36 dB. Also shown is a plot based on the di-
versity loss according to (4.28). (thick, dashed line; Ly was subtracted from
the value of ideal three-port diversity.) At the centre frequency A, = 33 %
and the diversity loss Lq = 1.98 dB is very close to the exact value (1.92 dB).
Only towards the ends of the frequency range, where the three-port array
becomes worse than an ideal two-port array, the discrepancy grows consi-
derably. Since we now have the ability to express the diversity capabilities
as a single number, we may readily establish the bandwidth of an array or a
decoupling and matching network. For instance, the bandwidth in Fig. 4.4
where the array outperforms an ideal two-port system is around 23 MHz.

As a final example of broadband evaluation, Fig. 4.5 plots the diversity
gain of a simple multi-band array. The array consists of three dipole-radiators
with a separation of 0.154¢ at 1 GHz, and exploits the fact that dipoles are not
only resonant at their design frequency, but also at odd multiples thereof [2,
Fig. 4.9]. The graph reveals the clear performance difference between the
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Fig. 4.4: Demonstration of the accuracy of the diversity figures of merit (4.26)
and (4.28) by means of a frequency sweep of a manufactured 4y/10 array with
DMN [146]. G4, and G4 identify ideal two- and three-port diversity.

two frequency bands arising from the different effective radiator separations
at these frequencies.

4.3 Extensions to the diversity model

Due to its simplicity, there are obvious limitations to the model and to the
formulae derived from it. The assumptions of a lossless array, a uniformly
distributed multi-path environment, and uncorrelated receiver noise seldom
apply in practice, and the calculations based on the scattering matrix of the
antenna array evidently cannot capture these effects. Still under the condi-
tion of Rayleigh fading, we may interpret these cases in the sense that our
previous assumption of equal and independent eigenmode fading (4.8) is vio-
lated. This in turn implies that merely the value of the covariance matrix H is
affected; the approximation formulae for array gain, diversity gain, and diver-
sity loss, on the other hand, remain valid without modification. For instance,
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Fig. 4.5: Similar to Fig. 4.4 but showing the first two resonances of a simulated 0.152,
dipole array as an example of a multi-band application.

it was mentioned previously that the matrix H,aq can be substituted for the
matrix H,. to account for array losses in the system [81]. The following sub-
sections explain in some more detail what other factors may influence array
performance and how these can be accounted for in the calculation of H.

4.3.1 Influence of the communications environment

Although we shall see in the next subsection that the diversity loss derived
from the array scattering matrix can be understood as the sole result of mutual
radiator coupling, it is important to discuss aspects of the communications
environment in which the antenna array is to be deployed. For an outdoor
mobile satellite terminal for example, there is no point obviously in using an
antenna array that is most sensitive to waves arriving in the horizontal plane.
Any antenna array with main beam directions pointing towards the sky clearly
will be the better choice.

Several formulae that account for the characteristics of the environment



112 4. Diversity reception with compact antenna arrays

are available in the literature. Wallace and Jensen [81], for instance, propose
a highly general formula that essentially extends (2.26) with a probability
density function. The covariance matrix of the received signal envelopes is
then given by

Var {br} = E {bpbk } = AL, 4.31)
with

mmﬁ/huﬁ¢mﬁwmwmmz¢®MMﬁQ (4.32)

where p(Pi,, &, ¢, 0) is the joint probability density function of the incident
power Py, the complex polarisation vector €, and the far-field angles of ar-
rival ¢ and 6. The new subscript “env” refers to the communications envi-
ronment. For meaningful comparisons between different environments, care
must be taken that the incident power Py, is scaled appropriately. In prac-
tice one would usually evaluate the integral numerically by creating a large
sample of br with the desired statistics in a channel simulator and estimating
the expectation operation in (4.31) via the sample mean [81].

An alternative and simpler expression for Heyy,;; based on the most widely
applied channel model for mobile systems [79] is given by

B 1 2r
27(1 + XPR) J,

oo (55 1) Foow @

Henv,ij =
The “surface” of integration has been reduced to an infinitesimal strip around
zero elevation because this is considered the principal direction of arrival in
an indoor environment [99]. XPR (cross-polar ratio) signifies the mean ratio
of the received co-polar to the cross-polar component [12, p. 27]. Typical
values range from 0 dB to 6 dB, where 0 dB indicates that the received power
is shared equally between the co-polar and the cross-polar component. The
main diagonal elements I:Iem,,,-,- evaluate to the mean effective gain (MEG), i.e.,
the branch efficiencies in our terminology, used for instance in [30, Eqn. (5)],
[52, Eqn. (6)], [101, Eqgn. (3)], [77, Eqn. (6)]. The off-diagonal elements are
chosen so that calculations of the correlation coefficient p;; (see (2.30))

Pij = I:Ienv,ij/ \/ Flenv,iiI:Ienv,jj (4.34)

yield the popular expression [30, Eqn. (5)], [46, Eqn. (5)], or [52, Eqn. (5)].
The above integral thus unites two essential components of antenna array
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diversity analysis into a single matrix, and enables the application of the di-
versity figures of merit developed to established channel models.

Since we now have several different ways at hand to determine the ma-
trix “H” for diversity analysis, it is time to summarise and to straighten out
the notation employed on the following pages. The covariance matrix of the
received signal envelopes will be denoted by

Var {bg} = E {bgbi} = Ay ~ from now on. (4.35)

The word “received” refers to the inputs of the combiner (see Fig. 4.1); the
new subscript “R” is introduced at this point to be consistent with the tempera-
ture covariance matrix T of the received noise to be defined later. Depending
on whether or not there is a feed network in the system, we have two ways to
calculate Hy:

Hg = H, without network,

or I:IR = I:IS = i’:l{l:l f., with network, (3.16), fa = (i— §N,22§)_1 S~N)21.

Furthermore, there are three different possibilities to establish H, depending
on the accuracy sought and the information available about the antenna array:

H = Hy., lossless arrays, uniform environment, (2.6),
or H=H,, lossy arrays, uniform environment, (2.26),
or H=H.,, non-uniform environment, (4.32) or (4.33).

We have to keep in mind that the formulae for array gain, diversity gain,
and diversity loss compare the antenna array in question relative to some ideal
system. When the properties of the communications environment come into
play, however, an “ideal system” is difficult if not impossible to define. So,
if the covariance matrix is calculated by virtue of (4.33), for instance, essen-
tially two things can happen. Suppose the XPR is equal to 0 dB, i.e., there
is no preference in the direction of polarisation of the received wave fronts.
Since an antenna array can only be sensitive to one direction of polarisation at
atime in a particular far-field direction, it misses half the power that is theore-
tically available from the field (cf. [51, Section “MEG, MED, and Radiation
Efficiency”]). The diversity figures of merit (array gain, diversity gain, and
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diversity loss) are consequently biased with a 3 dB loss.'

On the other hand, suppose the XPR is very large, the incident wave fronts
therefore arrive mainly in the co-polar orientation. Further suppose the an-
tenna array is sensitive to this co-polar component only. This time, there is
no such 3 dB penalty; moreover, the diversity loss Lq may actually turn out
negative since a properly designed array for a cellular environment would
specifically exploit the field concentration around the horizontal plane, and
thus produce a gain with respect to a uniform environment.

Much of this confusion can be avoided if, for the comparison between
array designs, the different definitions of A are not mixed. For evaluations
based on H, and H,,q the formulae can be applied as is. If H., is used, the
array gain (4.19) or the diversity gain (4.26) based on the ratio of the gain
values of Hé’;‘fvmy ), the matrix of the array in question, and Hgfvﬂ, the matrix of
an arbitrary single-port reference antenna, should be preferred. The reference
antenna can be an isotropic antenna, a dipole antenna, or anything else that
seems appropriate. In a similar fashion, an arbitrary reference antenna array
must be chosen for the diversity loss calculation according to (4.28).

This insight that relative comparison between array designs should be
preferred over absolute measures of array performance is reinforced when we
include aspects of the received noise in our analysis later on.

4.3.2 Effects of a decoupling and matching network

In Chapter 3 the influence of a passive decoupling and matching network
(DMN) on the antenna array eigenmodes was investigated. The same for-
mula (3.16) can be shown to work for covariance matrices as well [144,
Eqn. (32)]. Let us, in particular, take a closer look at the effects of a DMN on
the diversity loss Ly s of the system. With (4.28) we have

Lgs

Q

dB 10 N
‘ -— logdet{ Ar} dB

_1’1_0 logdet{7' H7,} dB

10 - 20 -
{—7 logdet{H} - — logdet{7,}| dB

IThis seeming inconsistency could readily be resolved by multiplying Eqn. (4.33) by a factor
of two; however, such a formulation is not generally applied in the literature.
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dB dB

- L - Ga| (436)

where the last term Ggqn may be interpreted as the diversity gain brought

about by the network. Further expansion yields

20

dB det{ S
Gin| = 2—: logdet{7,} dB = — log { et{Sxar}

det{7 — Sum 5}} dB. (4.37)
Evidently, the above expression depends only on the scattering parameters of
the DMN and of the antenna array. It is independent of the matrix A. That
is, the diversity gain provided by a DMN may be estimated regardless of the
way H was obtained. It is therefore a measure independent of the commu-
nications environment and of ohmic losses in the antenna array. This result
holds for any reciprocal network connected to the array, whether lossless or
not. The scattering matrices of the antenna array S and of the network Sy have
to be known separately, of course, either by measurements or by simulation.

This insight leads us to another fundamental conclusion. Suppose L is
the diversity loss of a lossless antenna array calculated from its scattering
parameters. Further, imagine an ideal and lossless DMN for this array. Since
the scattering matrix of the resulting system would be the zero matrix, its
diversity loss Ly s would be 0 dB. When losses are present in the DMN, the
resulting diversity loss will be greater than zero:

=Ly

dB dB
‘ ‘ , (4.38)

dB
0dB < Ld,S‘

- GyN

and thus

Gan| < L (4.39)

‘dB ‘dB
In other words, the diversity loss as calculated from the scattering parame-
ters expresses the maximum gain that may be achieved with a passive DMN.
Since Gy was shown to be independent of the covariance matrix AT, we may
finally conclude that the diversity loss based on the scattering parameters of
the antenna array expresses the loss caused by mutual coupling and imped-
ance mismatch in a Rayleigh environment irrespective of any other factors
that affect diversity.

At first glance this statement seemingly contradicts findings by other re-

searcher, namely that mutual coupling can actually be beneficial in certain
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cases [81, 96, 114]. To resolve this contradiction we have to understand two
distinct effects: mutual coupling and beam-pattern distortion. Mutual cou-
pling impairs the flow of power between the antenna array and the receiver
front-end. This was just proved to hold without exception. On the other hand,
mutual coupling also affects the shapes of the beam-patterns. That is, the pat-
tern space covered by a pair of closely spaced radiators can be very different
from the pattern space of the same radiators placed further apart. Thus, it may
well happen that a mutually coupled array takes advantage of a non-uniform
environment in a way that more than compensates for the loss due to port
coupling itself. Still, the general statement that mutual coupling can be bene-
ficial is misleading, since it is the pattern shapes and the environment, which
are responsible for these improvements, and not the mutual coupling.

Although (4.37) becomes exact in the limit of zero probability, it tends to
overestimate the gain provided by the network significantly at practical levels.
The reason is that those antenna arrays that benefit from a DMN the most are
usually of such poor quality that the diversity loss approximation of the array
itself is rather inaccurate. Nonetheless, a gain estimate, even a rough one, is
an indispensable tool for the design and optimisation of broadband DMNs. If
higher accuracy is sought, the designer can always resort to the second-order
diversity gain formula (4.26).

4.3.3 Spatially coloured receiver noise

For the initial description of the diversity combiner in (4.5), we have assumed
that the branch noise is equal and uncorrelated, i.e., the receiver noise was
assumed spatially “white”. This assumption, however, is not always justified
in practical receiver systems, as we shall soon see. To include the effects of
coloured receiver noise in our description, Eqn. (4.5) is rewritten as

W)= — ———=——,
&c kB AT

(4.40)
the only modification is that the received noise is modelled by a temperature
covariance matrix Ty rather than a scalar temperature. The next section pre-
sents a complete receiver noise model, so TR can actually be calculated from
measured or simulated component data. Before we do this, however, we wish
to extend the existing formulae to account for coloured noise. To this end, we



4.3. Extensions to the diversity model 117

introduce a transformation
= wHw (4.41)

on the combiner weights w, where W is some non-singular matrix. The trans-
formation is thus one-to-one. We then express (4.40) in terms of the new
combiner weights w’

ocW) = — ——————"—. (4.42)

Choosing W such that kBWTr WH = I, e.g., W = T "*/ VkB, we have
W [(Why) (BRW™)] W

Wids Syild ’

wew

oc(W) = (4.43)
which has the same form as the initial white-noise combiner (4.5). For this
reason the transformation W is commonly referred to as a pre-whitening filter.
Following the derivation of Section 4.2.1 we finally obtain

0=0cms = |Whe|  with  Var{Whe} = WATWH. (444

Thus, in order to incorporate coloured noise into the existing diversity formu-
lae, all we need to do is replace H{ by the covariance matrix WHIWH of the
filtered signal WbR Since the performance of the MRC comblner depends
on only the eigenvalues of the covariance matrix, we can, by Proposition 2 on
page 206,

i 1. .
replace g bythe marix® g (72", (4.45)

which possesses the same eigenvalues as WHE WH but avoids the explicit cal-
culation of W. Note that we must formally assign a power unit (e.g., Watts)
to Ay for the new matrix to be dimensionless. Let us apply this substitution
to the diversity loss Ly (4.28):

Lal" ~ —Elogdet Hy(T )" dB = -10log 7Vdet{HR} dB.
n kB kB {/det{ Ty}

2Bear in mind that until the matrix Hpg was introduced in Section 4.3.1, the notation H without
the subscript was employed in the formulae.

(4.46)
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The fraction inside the logarithm represents a signal-to-noise ratio: the nume-
rator is a signal power quantity and the denominator a noise power quantity of
the form “kT B”. We may therefore define a first-order approximation to the
equivalent mean temperature of the received noise of an equivalent receiver
with equal and uncorrelated branch noise:

Tx ~ {/det{Tx ). (447)

This term may be considered a generalisation of the familiar system noise
temperature to MRC diversity systems. By the same reasoning as with the
(signal) diversity loss due to mutual coupling, the effect of coloured noise
and the calculation of the equivalent temperature are independent of any other
factors that otherwise affect the diversity gain of the system. (We are still
assuming a Rayleigh environment, though.)

The above diversity loss formula enables us to carry out relative compa-
risons between different systems with known Hg and Tx. Its value, however,
does not represent the loss with respect to some ideal system as the original
definition (4.28) in terms of the signal covariance matrix does. As with the
definition of an ideal antenna array in a non-uniform communications envi-
ronment, the definition of an ideal system in terms of noise is not a trivial one.
Noiseless systems do not exist in practice and even if they did, their diversity
gain would be infinite. Such a system would hence not be a meaningful refe-
rence in the definition of a diversity gain or loss. The next section examines
more closely the various sources of the noise received by a system, and sug-
gests possible reference systems for a “noisy” diversity loss definition.

4.4 A complete receiver model

Receiver noise is the ultimate parameter limiting sensitivity. Whereas the
previous subsection investigated the influence of noise on the diversity per-
formance, the following subsections are concerned with a detailed noise mo-
del of a multi-branch receiver front-end. The aim is to be able to predict the
receiver noise covariance matrix k7 B from as few parameters as possible.
A noisy front-end model was introduced by Straumann and Monich [113]
and subsequently refined by a research team around Jensen [62, 83, 84] to
include the effects of a decoupling and matching network. However, except
for the work by Warnick and Russer [115], the thermal noise picked up by the
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Fig. 4.6: Block diagram of a typical diversity receiver with antenna array and de-
coupling and matching network. The scattering matrices of the individual blocks are
normalised to the input impedances ZF’in of the front-end branches, as indicated.

antenna array is neglected. Furthermore, all authors assume a lossless net-
work and hence disregard the noise produced by it. As power consideration
from Chapter 3 have revealed, however, network losses cannot be ignored.
The following analysis will therefore extend the model appropriately. We
also remember the previous requirement that the scattering matrix of the an-
tenna array and of the feed network be normalised to the input impedances
of the receiver branches. In the mathematical description, this eliminates any
waves reflected from the receiver inputs, reduces the number of loops in the
corresponding signal flow graph representation, and, in contrast to the works
cited above, minimises the number of matrix inverses and auxiliary matrices
necessary.

The following description is based on the notion of noise waves [4, 16, 65,
118] because, unlike the traditional approach with equivalent noise voltage
and current sources, they fit in seamlessly with the usual scattering parameter
description of microwave systems. A short introduction on working with
noise waves and signal flow graphs is presented in Appendix B.2.

Figure 4.6 portrays the major building blocks of a typical diversity re-
ceiver including antenna array and DMN. All components to the right of the
DMN are referred to as the “front-end”. The front-end usually consists of
low-noise amplifiers (LNA) followed by one or more stages of frequency
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Fig. 4.7: (a) Complete matrix signal flow graph of the receiver of Fig. 4.6 including
the antenna array signal waves b, and the noise waves ¥ and [ of the constituent parts.
(b) Collapsed signal flow graph involving the received signal vector 511 and a combined
received noise vector vy at the front-end inputs.

conversion down to a low intermediate frequency (IF). Analogue down-con-
version directly into the complex baseband is also possible with quadrature
mixers. The IF or baseband signal is then quantised and sampled, with the
final processing usually done in the digital domain. The latter includes SNR
estimation, branch combining, and recovery of the original data stream.

To understand better the origins and the propagation of both the signal
and the noise through the receiver system, we inspect the complete signal
flow graph of the receiver shown in Fig. 4.7a. Symbols without a subscript
refer to the antenna array. The subscripts “N” and “F” refer to the network
and the front-end, respectively. The vector b represents the only signal source
present, namely the signals received by the antenna array. Noise is signified
by the wave vectors ¥ and f, which travel towards and away from the front-
end, respectively. The choice of —1 for the edge weight at noise wave Vg
is arbitrary and follows the convention employed by other authors [4, 84].
The front-end noise waves not only describe the noise by the low-noise am-
plifiers but also include any other type of noise generated anywhere within
the front-end, i.e., noise in the frequency converters, quantisation noise of
the analogue-to-digital converters, and round-off noise in the digital compu-
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tations. Note that the loop between the network and the amplifiers has disap-
peared as the result of the normalisation of the scattering matrices. There is
only one loop left between the antenna array and the feed network.

The vast complexity of the complete signal flow graph can actually be re-
duced to the simple graph shown to its right in Fig. 4.7b. The signal vector br
and the noise vector ¥ are known from past discussions (see Fig. 4.1). The
different ways to obtain the covariance matrix Hg of l;R were summarised on
page 113.

The covariance matrix of the received noise Vg is the superposition of
several noise sources: the antenna array, the network and the front-end. As
before, noise and noise correlation is expressed in terms of equivalent tempe-
rature matrices:

Var{?R} = kTRB,
with  Tg = TR+ TR + TR, (4.48)

Subscripts refer to the origin of the noise and the superscript reminds us that
the matrices refer to the received noise wave Vg in Fig. 4.7b. The matrix Tr
was termed the temperature covariance matrix of the received noise.

The diagonal matrix G comprises the internal (voltage) gains of the front-
end channels resulting from the various amplification and frequency conver-
sion stages, and presents a major simplification over the original model by
Warnick and Jensen [83], which requires a number of auxiliary matrices.
Since it operates equally on both the signal and the noise, the received SNR
and thus the receiver performance are unaffected by G. Its value is therefore
irrelevant for the subsequent discussion, yet it becomes helpful during the
practical characterisation of the receiver as explained in the next chapter.

Before we proceed with the calculation of the noise matrices, we note that
the edge weights in the graphs are matrices, which in general do not commute
under multiplication. For this reason, the graph cannot be analysed with the
familiar Mason-formula [6, Chapter 9]. A Mason-like approach by Riegle
and Lin [72] specifically developed for matrix signal flow graphs in principle
could be applied to our problem, but, since the graph contains one single loop
only, the systems of equations that arise during the following derivations are
easily solved by standard methods of equation solving. The matrix 7, first
introduced in Section 3.5 is, by the way, the result of the remaining loop in
the flow graph and hence continues to appear in the formulae below.
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4.4.1 Antenna array noise

A lossless antenna array produces no noise itself. The noise power measu-
red at its terminals is the result of noise collected from its environment. If
the reciprocal array is placed in a passive environment of uniform equivalent
temperature Teny, such as an indoor environment, then the noise covariance
matrix and the equivalent noise temperature covariance matrix of ¥ are given
according to [16, Eqn. (2.46)], [118, Section 2.6.5]:

Var {#} = kTB,
with

T = Teny (1= SS%) = Teny (I -8"S%) = T, Hy.. (4.49)

env

If the antenna array possesses ohmic losses then, by superposition,

- ~ ~ ~ \T
T =T, ;[z;d + Tamb (Hacc - Hrad) > (4.50)

where Tomp is the ambient temperature of the antenna array. In case envi-
ronment noise is non-uniformly distributed over azimuth and elevation, T is
found by integrating the noise temperature over the array far-field patterns in
the manner of (2.26) (cf. Dijk et al. [36]):

T= {ﬁ f Ten($,6) FT (¢, 0F3(6,0) dQ| + Tump (Huce — Araa) ' - (4.51)

Finally, the noise covariance of the received noise waves ¥g due to the
antenna is given by

, without network, (4.52)
with network. (4.53)

4.4.2 Network noise

If the feed network of the antenna array is lossless it does not contribute any
noise and 7R is the zero matrix. Otherwise the joint covariance matrix of the
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waves ¥y and fiy of the reciprocal network Sy at ambient temperature Tymp.N
is given by:

Var { (;N) } — KTumsB (T = SSH)

. . (4.54)
= kB (TV,N 7:1//[,N>
TE:,N T/t,N '
with
Tn = Tamon (7= SniSn = SR2iS%21) - (4.55)
TILN = TambN (i - §N,22§1§,22 - §N,21§II\-II,21) s (4.56)
TV/J,N = TambN (_S~N,115~1{1{,21 - §£,21§I§,22) . 4.57)

As the signal flow graph reveals, the noise waves fiy travelling away from the
network are fed back into the system by the antenna array. The network’s
noise contribution 7X to the total receiver noise is therefore dependent on
the array scattering matrix S. Following the rules of noise superposition of
Appendix B.2 we have

.  aga (T T T
m-w 9 (3, ) (6h)

vi,N
= Tyn + Toun SU + 518 TH ( + 718 Tn SME,. (4.58)

The term 7S is the matrix transmission coefficient from the node fy to the
node pointed to by V.

Considerable simplifications are possible if the antenna array and the net-
work are at the same ambient temperature, i.e., if TampN = Tamb, because
then the ohmic losses of the network and of the antenna array can be combi-
ned into an equivalent lossy array without network. We can then determine
the total noise contribution 7R + TR of the newly created system by virtue
of (4.50). All we need are the new matrices of accepted power H,c.s and ra-
diated power Hy,qs. These can be computed with (2.7) and (3.17) according
to

Hoes =1- 5§85, where  Sg =Sy, + S80S 7, (4.59)

and by (3.16):
Huas = 1 Hopg T, (4.60)
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where H,,q is the radiation matrix of the array without network. Of course,
the matrices Hyqs and Ss can be measured directly if a manufactured array
with feed network is at hand.

4.4.3 Front-end amplifier noise

The characterisation of the front-end channels is similar to that of the feed
network. The joint covariance matrix of the noise waves V¢ and fiF is given

by
VN TVF Tvy F
Vi N =kB | =y =7, 4.61
. { (ﬂN) } (TS,E,F TﬂyF> @oh

and the front-end noise contribution 7X to the total receiver noise is calculated
according to (cf. [4, (4.50)])

N . Tor  Tor\ (-1
TR=(-T Ss)(+t0 (¢
F ( S) <T11/1,F T.F SSH

=Typ— Tyur 8§ = Ss Ty + Ss Tur S5 (4.62)

where Ss is the antenna system matrix given above in (4.59).

The principal difference between the active front-end and the passive feed
network is that the matrices TV,F, Tﬂ,p, and TVH’F cannot be derived from scat-
tering parameters or the ambient temperature; they must be known, either
by simulation or by measurement. Since internal coupling between receiver
branches is usually negligible, the matrices are diagonal. If, in addition, all
front-end branches are equal, the matrices reduce to scalar coefficients.

In Chapter 5 we will learn to measure the noise waves of a manufactured
receiver front-end directly. Simulation software, measurement equipment,
and datasheets provided by amplifier manufactures, however, usually specify
the noise performance of a circuit or device in terms of a different set of para-
meters, for instance, the minimum noise figure Fy;,, the optimum reflection
coeflicient 'y (complex), and the equivalent noise resistance R,. There is
a one-to-one correspondence between these parameters and the noise wave
description above. Conversion formulae between various representations are
provided by Engberg and Larsen [4, Section 4.3.1].

It is generally known that the noise figure expresses the SNR degradation
due to an amplifier. The noise figure is dependent on the reflection coefficient
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seen by the amplifier input terminal, and reaches a minimum for some reflec-
tion coefficient I'op. Further implications of this fact for multi-port receivers
follow below.

4.4.4 Discussion of the front-end model

The complete noise characterisation of a diversity receiver including antenna
array, decoupling and matching network, and front-end amplifiers is rather la-
borious. In spite of that, the preceding sections enable us to predict the noise
performance under many practical circumstances. Before we apply these for-
mulae to a fabricated system in Chapter 5, in the upcoming sections we shall
discuss some limiting cases of the model, in which one or more contributors
of noise become negligible for some reason.

Very noisy amplifiers. Let us first consider a poorly designed receiver that
produces a great amount of noise internally. This may be the case if ready-
made integrated circuits are used that take care of the entire down-conversion
process. These chips have the disadvantage of a high noise-floor. (e.g., the
AD8347 down-converter by Analog Devices [124] with a specified noise fi-
gure of 11 dB.) The analogue-to-digital converter is also a potential candidate
for a bad overall noise performance if the gain of the analogue amplification
chain is insufficient to overcome the quantisation noise floor for very weak
signals. We will see an example of such a receiver in the next chapter.

We now assume that the antenna array and the feed network do not contri-
bute any noise. It is further assumed that the amplifier noise is independent
of the impedance connected to its input terminal. Thus, by (4.48) and (4.62):

T = T, = constant. (4.63)

It is almost needless to say, that this allows the comparison of different an-
tenna arrays and DMNs solely by means of the signal covariance matrix Hg.
An analysis of receiver noise is not required. Decoupling and matching net-
works can provide significant SNR gains in this case because they improve
the signal transfer between the antenna array and the front-end branches. The
noise produced by lossy DMN implementations is negligible compared with
the front-end noise generated internally.
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Noiseless amplifiers. The opposite extreme is attained if we assume noise-
less front-end channels. Let us further suppose for the time being that any
network inserted between antenna array and front-end is lossless and, hence,
produces no noise either. For the signal covariance matrix, we have

]

r = H, without network (4.64)
Hy = Hs = AT, with network, (4.65)
and, by (4.52),
TR=TR=T, without network (4.66)
Tr=TR =11T7, with network. (4.67)

According to the discussion around Eqn. (4.45) the system diversity gain is
defined by the matrix product Hy(Tz")" or, more specifically, the eigenvalues
thereof. With the above definitions we obtain for the case without network

Hy(TH' =HT N, (4.68)

and for the system with network

Ag(TRHT = MA7T, ((f}Ti;’;)“)T = #ATHTEY . (4.69)

By Proposition 2 on page 206, the eigenvalues of these two expression are
identical. A noiseless (e.g., a lossless) network in conjunction with noiseless
amplifiers thus seems to have no influence on diversity whatsoever. To ap-
prehend this matter of fact we suppose an ordinary single-port antenna that
is impedance mismatched to a noiseless front-end. Because, from an elec-
trical point of view, there is no difference between what we call the “signal”
and the “noise”—both are signals after all—the noise experiences the same
mismatch, and therefore the same mismatch loss, as the (desired) signal. Any
lossless matching network inserted will thus enhance the noise power transfer
in the same way as the signal and have no influence on the SNR at all. For
multi-port antennas, matters are very similar since previously in Section 2.6
we interpreted mutual coupling as a generalisation of impedance mismatch.
Only the calculations are more cumbersome as they involve covariance ma-
trices instead of scalar power quantities.
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Since practical network implementations are usually lossy, they not only
attenuate the signal received by the array, but contribute their own noise. The
SNR available at the outputs of a DMN will consequently always be worse
than the SNR directly at the array terminals. The SNR gains due to a network
discussed in the above description of very noisy amplifiers are only possible
because additional noise is introduced after the network has improved the
power matching of the signal. Although practical amplifiers always produce
some noise, they can nowadays be manufactured very quiet indeed, with a
noise contribution far below thermal noise at room temperature. For instance,
the NE3515S02 hetero-junction field-effect transistor (HJ-FET) manufactu-
red by NEC Electronics Corporation [133] possesses a specified noise-figure
of 0.2 dB. The additional noise contributed by the amplifier is less than 5 %
of the thermal noise produced by a passive load (e.g., an antenna) at room
temperature. So, if the noise contributed by the receiver front-ends is below
or of the order of the noise received by the antenna array, we should be wary
by now that improvements due to a DMN may turn out less than anticipated
unless a careful noise analysis is carried out.

This insight is also relevant to systems whose performance is primarily
limited by external random-like interference rather than receiver noise. Na-
turally, the power ratio between the desired signal and the unwanted interfe-
rence is affected neither by mutual coupling [112] nor by the insertion of a
DMN.

The original definition of the diversity loss (4.28) expressed the signal
loss of a mutually coupled n-port system with respect to some “ideal” n-
port system. In terms of signal power, an ideal system was readily defined
as an uncoupled, matched, and lossless antenna array in a uniform Rayleigh
environment. We will now propose a possible definition for the SNR loss
of a noisy system that takes a noiseless front-end as the reference where the
only noise is contributed by an ideal antenna array (lossless, uncoupled, and
matched) seeing a uniform temperature Tepy:

B 10 o (7yT
LEISNR)‘ z_7 []ogdet{EHR (TRI) }

1 . o AT
—log det{EHR,ref (Trer) H dB.
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With I:IR’ref =Jand TR’ref = Tenvl, we obtain

N det{ﬁR}

EMEE
ST By det{Tr )

10 det{7}
Tl ((kTean)" det{T} )] ®

~[10 det{ AR }
= - |:7 10g (m) + 1010g Tenv:| dB. (470)

dB
(SNR)
L ’

In uniform environments, this loss definition is always positive. However, it
bears the same problem as our original diversity loss definition in that the loss
may become negative if the statistical properties of the surrounding environ-
ment are included in the analysis (cf. end of Section 4.3.1). As long as we
understand how to interpret such a result, this is a perfectly valid and even
desirable one, since it informs us that our antenna array design takes particu-
lar advantage of the narrow elevation angular spread of the communications
environment.

We can also think of an alternative diversity loss definition that, however,
only makes sense if the choice of antenna array and target environment is
already fixed, and if the design focus is on the decoupling and matching net-
work and on the front-end amplifiers. Since the network and the amplifiers
always degrade the SNR available at the array terminals, the latter is another
possible choice as a reference system for the diversity loss:

LEINF)‘dB N _1n_0 [mg (%) ~log (det{H}ﬂ dB.  (471)

det{Tx ! det{7}

This definition is always positive irrespective of the way the reference system
(i.e., H and T) is calculated—for instance by (4.33) and (4.51). The only re-
quirement is that the same H and T are used in the calculations of Hg and Tg.
It expresses the SNR degradation due to the front-end components, and thus
provides us with a generalisation of the traditional noise-figure concept to
multiple receiver branches. Hence the superscript “(NF)” in the definition.
For lossless (but possibly coupled and mismatched) antenna arrays in a
uniform environment, both definitions yield identical values. In all other
cases it is vital that we understand the subtle differences between these two
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diversity-loss concepts, and that we are aware of the system characteristics
that we actually wish to compare or investigate. Definition (4.70) enables
the comparison between all kinds of systems (with the same number of ra-
diators) and accounts for all conceivable losses and gains. Definition (4.71),
on the other hand, only accounts for aspects of the components that follow
the antenna array, i.e., the DMN, the amplifiers, the down-converters, and the
digital signal processing. The expression is useful, for instance, to optimise
a DMN or to choose the right type of low-noise amplifier for a given antenna
array in a given environment.

For uniform environments, we may work out an approximation formula
of the diversity gain (4.26) for noisy systems. The substitutions are the same
as in (4.70) above, so the final expression is

w{TRHR'}

det{I:IR}
s ith = ———n!
nn+1) 1 Wi 1 "

det{Tet "7

(4.72)
No such formula can be established for non-uniform environments since the
properties of the single-branch reference system are not well defined. Re-
lative comparisons between arbitrary systems with known signal and noise
properties can nonetheless be carried out at all times.

- T,
Gu(H,p)~ ==
P

Noiseless antenna array and lossless network. We will now investigate
the noise produced by the amplifiers. To this end, we disregard the noise due
to the antenna array and assume a lossless and thus noise-free feed network.
We mentioned earlier that the SNR degradation caused by an amplifier is ge-
nerally dependent on the source impedance seen by its input terminal, and that
optimum operation is achieved for a single source reflection coefficient I'oy
only. The amplifier is then said to be noise-matched. Noise matching usually
occurs at a different impedance than power matching. Warnick and Jensen
[84] extended this idea to multi-port receivers and proved that optimum SNR
performance is achieved if and only if the amplifiers face uncoupled and in-
dividually noise-matched array ports.

Figure 4.8 may help us gain more insight into this fact. Shown is the
front-end part of Fig. 4.7 together with the relevant noise wave vectors Vg
and jip. The front-end sees a scattering matrix Ss, i.e., an arbitrary antenna
array with optional network. In the single-port case, vp and up as well as
the noise temperatures Ty, T, r, and T,,r are scalars. The complex tem-
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perature T, r describes the amount of correlation between vg and pg, and is
usually non-zero. The reflection coefficient of the load impedance, which in
the single-port case we denote by I's rather than Ss, causes part of the “re-
verse” noise wave ur emerging from the amplifier input to superimpose on
the wave vp already travelling in the forward direction. Due to non-zero cor-
relation between these waves, the superposition can be either constructive or
destructive in nature depending on the arguments of I's and T, . Thus, by
appropriate choice of I's, the noise produced by the amplifier can actually be
reduced below vg. In a multi-port system, on the other hand, the noise waves
produced by separate amplifiers are uncorrelated. Hence, noise reaching from
one amplifier to another as the result of mutual coupling increases the noise
level. Optimum noise performance evidently cannot be achieved unless Ss is
a diagonal matrix, i.e., describes an uncoupled set of impedances [84].

Let us return to single-branch systems for the moment. Although I's can
be chosen to minimise amplifier noise, non-zero I's also has the opposite
effect of introducing power mismatch into the signal flow. For optimum SNR,
a compromise between amplifier noise reduction and signal power mismatch
must therefore be found. If the noise waves of an amplifier are known, e.g., by
direct measurement as in Chapter 5, then the optimum reflection coefficient
is given by’

T+ Ty = ) (Top o+ T = 41T,
ZT:/;,F

IﬁS,opt = P (4.73)

although most datasheets and simulation software report the optimum imped-
ance directly. For multi-port loads SS,opt» the above formula applies to each
port individually. Substitution into (4.62) finally yields the (diagonal) front-
end noise covariance matrix of a noise-matched multi-port receiver. Note that
a decoupled and noise-matched receiver system is a desirable goal from a
theoretical point of view. Whether this is a sensible condition to strive for in
practical mutually coupled receiver systems is another matter due to the una-
voidable noise contribution of the decoupling and (noise-)matching network
required.

3The original work by Warnick and Jensen [84] includes the positive square root in its solu-
tion; however, with [4, Eqn. (4.56)] it can be shown that this never yields a passive I's opt as the
result.
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Fig. 4.8: Signal flow graph of a multi-port front-end amplifier showing the equivalent
noise waves Vg and f.

At this point, we could pursue the formulation of a diversity loss expres-
sion that quantifies the decibel departure from optimum noise-matching. Ho-
wever, this produces yet another diversity loss definition, which may be use-
ful in one situation but not another. Moreover, the complete formula is not
compact at all, so its derivation is omitted here.

In principle, these insights allow DMNs to have a two-fold positive effect
on system performance: first, the signal transfer between the antenna array
and the front-end is improved. Second, the noise produced by the front-end is
reduced by means of noise matching. Hence, the resulting SNR gain would
be greater than the signal gain alone. In reality, this situation will rarely
occur since we already learned that the noise received by the antenna array
is also amplified by the network and that lossy networks contribute signifi-
cant amounts of noise themselves. The front-ends would therefore have to
be particularly sensitive to noise mismatch (7, r > T,r). For the majority
of practical applications, however, we can expect network losses to outweigh
invariably the benefits of (perfect) amplifier noise matching.

4.5 Summary

In this chapter, we have looked at diversity reception as a specific application
of compact antenna arrays in mobile communications systems. First, we re-
vised the theory of maximal ratio combining (MRC) in a correlated Rayleigh
fading channel, and thereby identified the close relationship with array eigen-
modes. What used to be the radiation matrix of the previous two chapters
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has now become the covariance matrix of the received signal envelopes. The
corresponding eigenefficiencies uniquely define the fading statistics.

We then proceeded to derive figures of merit for the simple yet accurate
quantification of diversity performance in the presence of mutual coupling.
A second-order approximation calculates the familiar diversity gain with res-
pect to a single radiator at a given outage probability. In the case of moderate
mutual coupling, a first-order approximation yields a particularly simple ex-
pression for the diversity loss with respect to an ideal antenna array that is
roughly independent of the probability level chosen. The various methods
introduced in previous chapters of calculating the radiation matrix also apply
to diversity system characterisation. In particular, this allows for the use of
simple scattering matrix measurements to estimate the prospective diversity
performance. The impairments due to mutual coupling can thus be expressed
as a single quantity, which facilitates performance evaluation over frequency,
simplifies the definition of a diversity bandwidth, and is easily employed as a
cost function for array optimisation.

Because these initial derivations were based on the simplifying assump-
tion of a completely uniform scattering environment, more advanced formu-
lae for the covariance matrix were given that allow for the seamless applica-
tion of the derived figures of merit to established channel models. A formula
for the diversity enhancements due to a decoupling and matching network
(DMN) was also proposed. In this connection, it became clear that, under
the supposition of a Rayleigh environment, the impairments due to mutual
coupling as manifested in the scattering matrix are independent of any other
factors that influence diversity, e.g., ohmic losses or a non-uniform environ-
ment.

Until this point, we had been looking at signal power transfer only. It is
the signal to noise ratio (SNR), however, which ultimately determines the
quality of a mobile transmission. For this reason, a front-end model was
developed to include the principal sources of noise in the analysis, i.e., noise
picked up from the environment, noise due to ohmic losses in a DMN, as well
as noise produced by the receiving amplifiers. The diversity loss formula and
the diversity gain formula were amended accordingly, and an equivalent mean
temperature of the received noise was defined.

Discussion of the noise model revealed that the noise captured by the
antenna array experiences precisely the same power mismatch due to mu-
tual coupling as the signal. If the rest of the receiver were noiseless, mutual



4.5. Summary 133

coupling would have no effect at all on the SNR. Indeed, if a DMN were in-
troduced into such a system, it would degrade the SNR because DMN ohmic
losses attenuate the signal but keep the noise floor constant. Although prac-
tical noiseless receivers do not exist, modern amplifiers can be manufactured
with an equivalent noise temperature far below room temperature. This in-
sight is also relevant to systems that are primarily limited by strong external,
random-like interference rather than internal receiver noise. In this case, too,
mutual coupling will have little impact on link quality. Therefore, unless the
receiver under consideration is very noisy, the improvements due to a DMN
can only be correctly quantified if front-end noise, network noise, antenna
noise, and interference are accounted for in the calculations.






Chapter 5

Compact antenna arrays in
practice: a diversity receiver

The previous chapter has put forward a number of figures of merit related to
the diversity performance of mutually coupled antenna arrays as an alterna-
tive and an extension to the evaluation methods currently established in the
literature. In order to substantiate these results further, a diversity receiver
was manufactured. The measurement results will be the topic of the follo-
wing sections.

In principle, a continuous wave transmitter and a high dynamic range
power detector is all that is required to evaluate the diversity performance of
antenna arrays [33, 98]. The power detectors would record the signal fading
at each antenna terminal and the resulting combined signal would be worked
out mathematically according to the desired combining scheme.

The reasons why nonetheless the design of a full-featured digital diver-
sity receiver was pursued are manifold. First, it was felt necessary not only
to demonstrate the usefulness of decoupling and matching networks by aca-
demic means, but to examine the effects on realistic systems. Indeed, this
was a requirement of the project that funded the present work. Second, an
intended goal was the estimation of the complex signal covariance matrix Ay
at the receiver terminals for comparison with theoretical considerations. It
was decided that this is best accomplished using digital signal processing on
the complex baseband representation. Third, this also applies to the practical

135
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verification of the receiver noise model devised.

In the upcoming sections, the close agreement between the measured SNR
fading distributions and the predictions based on array and DMN scattering
parameters will be releaved. At the same time, this will also confirm the
applicability of the diversity figures of merit, since these were derived by
manipulation of the SNR distribution function (CDF). We conclude the chap-
ter with a complete noise characterisation of the receiver and a discussion of
the effects of mutual coupling, noise, and decoupling and matching networks
(DMNs) for several example systems.

5.1 Overview of the diversity system

Before we begin with an overview over the various system components, it is
important to understand that the diversity system is not meant to be a scien-
tific treatise of communications system design. It rather embodies a straight
implementation of textbook concepts; many aspects would probably be im-
plemented differently if this were a commercial system. The intention was
to keep development efforts as low as possible, and at the same time achieve
an accurate verification of the theoretical framework devised in this thesis.
The measurement results presented in later sections clearly demonstrate that
this goal has been achieved. To keep the following presentation concise, the
reader is expected to be familiar with basic communications system concepts,
e.g. Proakis and Salehi [15].

The diversity system features a single-channel transmitter unit and a mo-
dular multi-channel receiver unit. Both units were designed from the ground
up and geared towards one another for optimum cooperation. The general
idea is to transmit a predefined pseudo-random symbol pattern that is known
to the receiver. The receiver then compares the received symbol stream to
the expected one, estimates the instantaneous SNR of each channel, performs
diversity combining, and finally estimates the SNR of the combined stream.
Quadrature phase-shift keying (QPSK) was the modulation scheme of choice
due to its straightforward implementation in both the transmitter as well as
the receiver hardware.

To accelerate development, only the down-conversion into the complex
baseband is implemented in hardware. The baseband data are digitised as
early as possible and sent to a personal computer (PC) for further processing
via the well-established universal serial bus (USB). The PC performs mat-
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ched filtering, clock and symbol recovery, carrier recovery, SNR estimation,
and diversity combining. In order to enable experimenting with the received
data without having to redo the measurement, all symbols including noise are
recorded on hard disk drive.

Figure 5.1 portrays a block diagram of the diversity system, which ope-
rates at a centre frequency of 2.45 GHz within a license-free ISM (industrial,
scientific and medical) band at a QPSK symbol rate of 504 kBaud. Since one
symbol encodes two bits, the system transmits about 1 Mbit of data per se-
cond. The system occupies an RF bandwidth of around 1 MHz, which is the
result of the pulse shape chosen. Consequently, the baseband bandwidth is
about 500 kHz each for in-phase and the quadrature channel.

5.1.1 The transmitter

The transmitter is built around the AD8349 direct up-conversion quadrature
modulator integrated circuit manufactured by Analog Devices [124]. It takes
the carrier frequency and the in-phase and quadrature baseband waveforms
as inputs, and produces the modulated carrier at its output without the need
for an intermediate frequency. Circuitry that derives the quadrature carrier
necessary for direct up-conversion is included on-chip. An SMT06 Rohde
& Schwarz signal generator supplies the 2.45 GHz carrier externally. The
transmit power is —2 dBm, equivalent to 0.6 mW.

Figure 5.2 shows a photograph of the insides of the transmitter module.
During normal operation, the aluminium chassis is closed to avoid carrier lea-
kage. A Spartan3 field programmable gate array (FPGA) by Xilinx [135] pre-
sents the heart of the transmitter.! Additional auxiliary components include a
frequency divider, a Cypress CY7C68014A USB microcontroller [127] and
two Analog Devices AD9774 digital-to-analogue converters (DAC) to inter-
face the digital baseband outputs of the FPGA to the analogue inputs of the
modulator. An advantageous feature of this particular DAC is its up-sampling
capability: it contains a phased-locked loop (PLL) and a high-order digital
interpolation filter to increase the user-supplied sampling rate by a factor of
four. This considerably alleviates the requirements of the analogue recons-
truction filter—a simple RC low-pass proved sufficient.

The author thanks his student assistants Ulf Wetzker and Christian GroBmann for their sup-
port with the development of the transmitter and receiver hardware and firmware.
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Fig. 5.1: Block diagram of the diversity system comprising the transmitter module, the receiver module, and baseband
processing done on the PC. LO = local oscillator, D/A = digital/analogue conversion, AGC = automatic gain control, GUI =

graphical user interface.
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The USB controller serves two basic purposes: first, to alter the confi-
guration of the various building blocks seen in Fig. 5.1 without having to
reprogramme the FPGA. And second, to supply any user data if the system is
used for actual data transmission.

Let us go through the individual transmitter components from right to
left. We have already mentioned the up-converter, the reconstruction filters,
and the DACs. Next in line is a block labelled “offset/scale”. It is meant
to compensate for linear imbalances of the up-converter: DC offsets cause
the carrier to feed through to the modulated waveform causing unnecessary
radiation of power bearing no information. More relevant to our application,
however, is the fact that the demodulated constellation points become shifted
from their designated positions, which limits the dynamic range of the SNR
measurement. This last point also applies to an amplitude imbalance between
the in-phase and the quadrature component.

For easy configuration of the “offset/scale” block, the transmitter employs
a “test signals” block. One test signal outputs a sine wave on one channel and
no waveform on the other channel. In this configuration, the DC offset of ei-
ther channel is most easily zeroed. Another configuration outputs a sine wave
on one channel and a cosine wave on the other to produce single-sideband
amplitude modulation. One of the sidebands will not be fully suppressed
unless the channel amplitudes are balanced.

The block labelled “pulse shaping” is a finite impulse response (FIR) fil-
ter implementation specially optimised for the pulse shaping operation. In
order to minimise the processing power for matched filtering at the receiver,
the pulse length is limited to four symbol durations. The pulse function is
a root-raised-cosine pulse with roll-off factor 8 = 0.1 multiplied by a Hann
window. It is shown as thick graphs in Fig. 5.3 and was chosen for its com-
paratively narrow bandwidth. The figure includes two wider bandwidth pulse
waveforms with different roll-off factors and window functions that were pre-
viously taken into consideration but then discarded due to their broader band-
width. All three waveforms have the important property that they are free of
inter-symbol interference (ISI) after matched filtering at the receiver.

The pulses are oversampled at 32 samples per symbol duration to mini-
mise the complexity of the reconstruction filter. A symbol rate of 500 kBaud
therefore necessitates an appropriate sample clock at 16 MHz. At the very
beginning of the design, it was considered beneficial if RF carrier and sym-
bol clock were phase locked. For this reason, the 16 MHz clock is derived
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Fig. 5.3: Three different pulse functions and the associated power spectral densities.
The function with the thick, solid line is used in the present system. Symbol duration
T2 us.

from the RF carrier by means of a digital divide-by-152 counter—the modu-
lus counter present in the Analog Devices ADF4112 PLL chip was used for
that purpose. Of course, 2.45 GHz divided by 152 is not exactly 16 MHz but
rather about 16.12 MHz, which explains the odd symbol rate of 504 kBaud.

One task of the “pattern source” block is to emit a continuous pseudo-
random symbol sequence for SNR measurement purposes. A random search
was conducted until an acceptable sequence, called synchronisation sequence,
based on the following criteria was found:

e A sequence of fixed length is transmitted periodically so the receiver
can quickly resynchronise in case synchronisation is lost due to noise
or interference.

e The sequence length must be a power of two to enable fast code exe-
cution on the receiver PC. A length of 32 QPSK symbols was chosen
arbitrarily.
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Fig. 5.4: The in-phase and the quadrature part of one period of the symbol sequence
used for synchronising the receiver to the transmitter.

o Correlated with itself, the sequence must produce one pronounced peak

so its beginning is easily recognised by the receiver even in the pre-
sence of heavy noise. This is essentially a matched-filtering operation
to reduce the noise floor.

Not only must the sequence be DC free in the in-phase and the quadra-
ture component but the accumulated DC offset must also be minimised.
In other words, runs of identical binary zeros or ones must be kept as
short as possible. The reason is not to interfere with the DC compensa-
tion routines employed at the receiver.

The number of state changes in the in-phase and the quadrature com-
ponent should be maximised to support the symbol clock recovery loop
at the receiver.

For information only, Fig. 5.4 depicts the in-phase and the quadrature part
of the synchronisation sequence. Figure 5.5 demonstrates the correlation pro-
perties of the sequence without and with the presence of strong noise. For
the creation of these figures, the operations carried out at the receiver were
reproduced by taking a stream of 512 (noisy) QPSK symbols (i.e., 16 ins-
tances of the synchronisation sequence) and performing a cyclic correlation
with the ideal sequence. Even with noise ten times stronger than the actual
signal (SNR = —10 dB), the beginning of the sequence is readily identified
by the highest peak.



5.1. Overview of the diversity system 143

. 100 SNR = o SNR = —10 dB
£ 75
5
E 50
£
3 25
0 [ b et 18T ||I|”|| |||||| LA
1 16 21 16 32

Sample index Sample index

Fig. 5.5: Receiver synchronisation with the help of the synchronisation symbol se-
quence. The beginning (peak) of the sequence is clearly identified even in the presence
of strong noise.

The second task of the pattern source is to interleave any user data sup-
plied via USB cleanly into the transmitted symbol stream. For easy detection
and synchronisation at the receiver, the length of the data packets must be an
integer multiple of the synchronisation sequence length. Furthermore, data
packets are only inserted between transmissions of entire synchronisation se-
quences. To mark the beginning of a data packet, a packet sequence with
essentially the same properties as above was found that is orthogonal to the
synchronisation sequence for reliable detection. The VHDL source code of
the transmitter hardware counts more than 1000 lines.

5.1.2 The receiver front-end

The photograph in Figure 5.6 portrays the modular hardware of the receiver.
The receiver consists of three receiver branches and auxiliary modules: a
power supply, a clock and carrier generator, and a an RF power divider.

The power supply module comprises two 3.3 V voltage regulators, one
for the digital circuitry and the other one for the analogue components of the
system. Regulated power is then supplied to all modules via the black ribbon
cable on the rear side of the receiver (the one seen on the picture). Power-on-
reset circuitry required for proper start-up of the microcontrollers employed
in the receiver branch modules is also included in this module.
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RF power divider

branch 3 (slave)
branch 2 (slave)

branch 1 (master)

carrier & clock
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Fig. 5.6: Photograph of the receiver and its constituent modules. On the left-hand side
the receiver is connected to a three-port planar inverted-F antenna (PIFA) array with
decoupling and matching network designed by Weber [121].

For carrier generation, the ready-made MAX2750 voltage controlled os-
cillator (VCO) chip manufactured by Maxim Integrated Products [131] is
locked to a 25 MHz crystal oscillator reference using the Analog Devices
ADF4112 PLL. An external passive Wilkinson power divider distributes the
carrier to the receiver branch modules using coaxial cables. As with the trans-
mitter, a 16 MHz clock signal necessary for received baseband waveform di-
gitisation is derived from the RF carrier by digital frequency division. The
clock is shared between the branch receiver modules via the gray ribbon cable
at the top of the modules. The ribbon cable also communicates configuration
waveforms to the PLL chips.

Essentially, the three receiver branch modules are identical; only the first
module is different in that it acts as a “master” module responsible for the
configuration of the clock and carrier module and for proper synchronisa-
tion between the branch modules. All modules consist of a down-converter
chip (AD8347, Analog Devices), analogue baseband filters, a dual-channel
analogue-to-digital converter (ADC, AD9281, Analog Devices) and a USB
microcontroller (CY7C68014A, Cypress), as seen in Figs. 5.1 and 5.7.

Similar to the modulator chip used at the transmitter, the demodulator
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converts straight down to the baseband, and produces the in-phase and the
quadrature channels as separate outputs. It also features an automatic gain
control (AGC) loop with a dynamic range of almost 70 dB. The baseband fil-
ters are modified seventh order Chebyshev low-pass filters [7, Section 3.2.2]
optimised for flat group delay response within the bandwidth of the trans-
mitted signal on the one hand, and, to avoid frequency aliasing at the ADCs,
maximum attenuation towards the Nyquist frequency on the other hand. Note
that these filters are not the matched filters yet; matched filtering is done at a
later stage by the PC.

The filtered baseband waveforms are finally digitised at 4 Msamples/s.
This rate corresponds to eight digital complex samples per transmitted sym-
bol. With one 8 bit ADC each for the in-phase and for the quadrature chan-
nel, the total amount of digital data that must be transferred to the PC for
further processing amounts to 8§ Mbyte/s. Given the maximum data rate of
high-speed USB of around 40 Mbyte/s—which is shared between all devices
connected to the same host-controller—we could connect up to four receiver
branches to the PC and still have sufficient headroom for any additional traffic
on the bus.

The Cypress CY7C68014A USB microcontroller used inside the receiver
modules is the same as the one employed at the transmitter. Aside from its
8051-based microcontroller core used for low-speed tasks such as configuring
the carrier and clock generation module, it features a dedicated high-speed
data interface for the seamless transport of data from an arbitrary data source,
in our case the baseband ADCs, to the PC. The USB controller includes first-
in-first-out (FIFO) memory buffers to prevent data from becoming lost if the
bus is congested and the acquired data cannot be deployed to the PC imme-
diately. Another handy feature is Cypress’ “general programmable interface”
(GPIF) of the USB controller, which can be programmed to take care of any
controlling waveforms required for the dual-channel baseband ADC. In our
case, the ADC cycles through four states: sample both analogue inputs at the
same time, read data from the first channel, switch channels, and read data
from the second channel. Since the baseband waveforms are sampled every
four GPIF states, the 16 MHz clock from the carrier and clock generation
module produces the abovementioned sampling rate of 4 Msamples/s. Syn-
chronisation of the data acquisition processes between the modules is accom-
plished by the gray ribbon cable. There are more than 1000 lines of C source
code for the essential parts of the microcontroller firmware.
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5.1.3 Baseband processing

Once the baseband data has arrived at the PC, processing proceeds as shown
earlier in Fig. 5.1. Matched filtering is performed on each channel using a 32-
tap FIR filter [19, Chapter 7]. For performance reasons, the filtering operation
is hand-optimised and written in assembly language to take advantage of the
“single instruction, multiple data” (SIMD) extended instruction set available
in the Intel Pentium 4 family of processors. These instructions are akin to the
ones found in dedicated DSP chips and were introduced to satisfy the digital
processing demands of today’s multimedia and internet applications. The
filter implementation is inspired by the methods outlined by Shahbahrami
et al. [108] for an older SIMD instruction set. Next, any DC offset present
in the baseband waveforms is removed by an efficient implementation of a
digital high-pass filter with a very low cut-off frequency.

The subsequent processing stage, labelled “clock recovery”, is required
because the symbol clock at the receiver runs asynchronous to the clock at
the transmitter. Thus, the correct sampling instants at which the SNR of the
recovered symbol stream becomes maximised must continuously be adjusted
and determined from the received waveform. The method employed is called
the “square-law synchroniser” [45, 97]: it calculates the magnitude square
of the received complex waveform of each branch, adds the results together,
and passes the summed waveform through a narrow bandpass filter centred
around the anticipated sampling frequency. The symbol clock is then derived
from the zero-crossings of the quasi-sinusoidal output of the bandpass.

A major problem with this sort of digital clock recovery implementation
is that the optimum sampling instant usually falls between two of the eight
digital samples available per symbol duration. As Fig. 5.8 illustrates, simply
choosing the closest neighbouring sample is not an option, since it introduces
ISI and, in consequence, causes the apparent SNR of the recovered symbols
to vary dramatically with time. Measurements revealed that in the high-SNR
regime the (apparent) SNR swung periodically between 25 dB and 35 dB,
which is clearly undesirable for accurate SNR measurements. It turns out that
simple linear interpolation can alleviate this effect considerably. Although
the variations are still of the order of 3 dB at high SNRs, the effect quickly
diminishes as soon as reception becomes impaired by random noise. It was
therefore decided that the performance is sufficient for the measurement tasks
ahead.
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Fig. 5.8: Eye diagram of the output signal of a hypothetical analogue matched filter
implementation in the absence of noise. Only the sampling instants at = k7, k € Z are
free of ISI. Not hitting these instants exactly, due to coarse sampling of the waveform
for instance, impairs the SNR of the recovered QPSK symbols.

Although the symbols that drop out of the clock recovery block are free
of ISI, their carrier states are yet unknown. Unless transmitter and recei-
ver are precisely synchronised, the four QPSK constellation points will spin
around the centre of the state diagram with an angular speed proportional
to the carrier frequency difference as illustrated in figure Fig. 5.9a. In order
to counteract this effect, the receiver employs the “carrier recovery” block,
which implements the digital second-order PLL described by Cupo and Git-
lin [32]. The loop, also known as a Costas-loop, ensures that the recovered
carrier states assume the familiar positions shown in Fig. 5.9b. The coeffi-
cients of the loop filter were adjusted manually for fast loop-acquisition and
low susceptibility to noise.

Even with carrier synchronisation loop, there remains a rotational 90° un-
certainty in the recovered QPSK symbols, which can only be resolved with
the help of training sequences that are transmitted at regular intervals and
that are known to the receiver. In the present system such a sequence is conti-
nuously transmitted for the purpose of SNR measurements.

The “estimation and combining” block in Fig. 5.1 operates on units of 512
QPSK symbols, which we shall call a “baseband block”. Each baseband
block, which comprises 16 synchronisation sequences, is correlated with the
known sequence and yields a result similar to the one shown in Fig. 5.5 earlier
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Fig. 5.9: Snapshot of 300 consecutive received QPSK carrier states before (a) and
after (b) carrier recovery in the presence of additive noise.

on. By the position of the peak, the receiver knows the temporal relation of
the received symbols. The 90° phase uncertainty of the carrier recovery loop
is finally resolved by means of the phase of the peak.

Now that the receiver has an exact noiseless copy of the (noisy) received
symbol stream, the signal power can be estimated from the noiseless copy
and the noise power from the vector difference between the received symbols
and the noiseless version. The SNR in each branch is thus easily establi-
shed. As a final step, maximal ratio combining (MRC) between all branches
is performed and the resulting SNR is estimated in a similar manner.

The receiver branches each have an SNR dynamic range of about 40 dB.
At SNRs below —8 dB, the carrier recovery loop loses lock. Above 32 dB,
noise of non-thermal origin, e.g., quantisation noise and clock jitter, begins to
prevail, and eventually limits the measurable SNR span.

For later analysis, the following information about every baseband block
is stored to the hard disk drive:

e Complete complex output of the carrier recovery loop including noise
but after resolution of the abovementioned 90° uncertainty.

e Index of the first sample within the synchronisation sequence.

e Estimated SNR of each receiver branch.
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e Estimated SNR of the combined stream.

e Phase state information of the carrier recovery loop of each branch.
Together with the SNR information, this lets us reconstruct the com-
plex received signal envelope vector br, and subsequently estimate the
complex covariance matrix Hg (4.10).

In spite of numerous manual optimisations, the amount of processing des-
cribed in this section cannot be handled by even the fastest “single-core”
consumer PCs available at the time of writing. A major challenge was the-
refore the manual parallelisation of the receiver architecture to multiple pro-
cessors. To this end, the various parts of the receiver chain are assigned to
different processors: processor 1 performs USB reads and matched filtering.
Processor 2 is responsible for clock recovery. And processor 3 performs
carrier recovery and SNR estimation. Baseband blocks are then passed on
through these different stages. Once processor 1 has finished its work on the
first baseband block, it can hand it on to processor 2 and immediately begin
work on the next baseband block in line—and so on. Thus, three processors
are kept busy at a time, and the workload that cannot be handled by a single
processor alone is shared between multiple processors.

An Intel “Core2 Quad Q9450” based machine with four cores, i.e., essen-
tially four processors, was used to run the measurements. The source code of
the PC part of the receiver implementation comprises more than 2300 lines
of C++ source code.

5.1.4 The graphical user interface

In addition to the possibility of storing the received baseband data to disk, a
graphical user interface (GUI) was developed to provide visual feedback to
the operator while the measurement is being conducted. Monitoring informa-
tion about the received waveforms proved to be a valuable aid not only for the
development of the receiver firmware and software, but also for the measure-
ments. The GUI thus saved tens of hours of needless measurements because
errors due to broken coaxial cables, short circuits between the ground plane
and the radiators of an antenna array, as well as interference from nearby wi-
reless local area network (WLAN) access points were identified the moment
they happened and not during the later evaluation of the SNR data.
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Fig. 5.10: Screen shot of the graphical user interface (GUI) of the receiver software.

The screen shot in Fig. 5.10 reveals that the GUI is divided into three
different sections: the top left section displays not only the recovered car-
rier states of the received QPSK symbols of all branches but also the phase
states of the carrier recovery loops, i.e., the relative phase delays between the
individual branch signals. Directly beneath is the display of the estimated
branch SNRs and the combined SNR as they vary with time. The diagram
to the right constructs the CDFs of the SNRs and draws them along with the
theoretical graphs of up to four branches. These CDFs represent rough ap-
proximations that allow the operator to check quickly the order of diversity
during the measurement. A more precise evaluation of the SNR data after the
entire measurement is nonetheless indispensable.

The GUI includes a visual indicator of the rare event that a USB transmis-
sion error, which disrupts the synchronisation between the receiver branches,
has occurred. In this case, the measurement must be repeated. Also included
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Fig. 5.11: Printed circuit boards (PCB) used as feed networks for a two-element 4y/10
array. Network (a) feeds the radiators directly, wheares network (b) decouples the
radiators. Matching of the “odd”-mode is accomplished manually with small strips of
copper foil.

is a means to specify a destination file name for storing the received data.
These file names are numbered automatically for consecutive measurements.
Finally, the GUI offers a choice between two acquisition modes, namely the
SNR measurement mode discussed so far, as well as a special mode for user
data transmission (e.g., music) implemented for live demonstration purposes.
The GUI automatically detects and adapts to the number of receiver branches
connected to the PC. Its implementation is another 1200 lines of C# code.

5.2 Benefits of decoupling and matching networks

The first diversity measurements were conducted before any of the diversity
theory of Chapter 4 had been developed. At that time, the mere goal was to
provide evidence that decoupling and matching networks (DMN) can in fact
improve diversity reception in practical systems [143].

To this end, arrays with radiator separations Ay/5, 4o/10, and 4¢/20 were
manufactured. Two types of feed networks were designed, one feeding the
radiators directly (Fig. 5.11a), and a decoupling-network based on a rat-race
hybrid coupler (Fig. 5.11b, cf. Section 3.3.1). Rogers RO3203 was used as
the substrate with a thickness of 0.5 mm, ¢ = 3.02, and tan§ = 0.0016 [134].
The networks can be bolted to an aluminium ground plane with the monopole
radiators sticking out on the other side in the manner of Fig. 2.6 on page 31. In
both Figs. 5.11a and b, the radiators are situated at the centre of the network.
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The networks feature surface-mounted SMA jacks, and are connected to the
receiver branch modules via coaxial cables.

The hybrid coupler decoupling method was chosen for its simplicity be-
cause the decoupling part of the network can be manufactured independent of
the scattering parameters of the antenna array. The “odd” port was matched
manually with thin strips of copper foil as shunt open-stubs. No matching
networks were implemented at the “even” port, as its return loss was already
better than 10 dB at all radiator separations.

Two additional antennas were fabricated for reference: one single mono-
pole and a Ayp/2-spaced two-port monopole array. In order to carry out the
measurements and to produce a time-varying multi-path environment, the an-
tenna arrays and the PC were placed on a trolley and moved along a corridor.
The transmitter was located in an office adjacent to that corridor with no (opti-
cal) line-of-sight to the receiver. Each antenna array under test was manually
moved eight times over a distance of about 7 m along roughly the same path
with the radiators oriented in the vertical polarisation. For every antenna ar-
ray, four measurements were taken with the line of the array aligned with the
direction of movement and another four were taken with the arrays perpen-
dicular to the direction of movement. This way each antenna array produced
about 9 minutes of recorded baseband data and SNR information.

In order to obtain a range of SNR values that is more intuitive to work
with, the same normalisation as in the theoretical analysis of the previous
chapter was applied (4.10), i.e., the SNR data of each antenna array was nor-
malised to the mean SNR of the single-element antenna that was measured for
reference. To assess the diversity performance of the antenna arrays further,
the cumulative distribution functions (CDFs) d(p) (see Section 4.2.3) of the
received SNRs were estimated. This was accomplished by means of the defi-
nition of the CDF: for some given SNR value o the number of SNR samples
less than or equal to o was counted, and the results subsequently normalised
so that d(c0) = 1.

Figure 5.12 shows the graphs of the CDFs of the antenna arrays without
DMN. Also shown is the CDF of the single-radiator measurement (thin solid
line), which is in excellent agreement with the theoretical graph of Rayleigh
fading (thin dotted line). This is a clear indication that the measurement en-
vironment was in fact sufficiently rich in multi-path to produce a complex
Gaussian distribution of the received signal envelopes, and that no line-of-
sight component was present.
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Fig. 5.12: Comparison between two-port antenna array with Fig. 5.13: Comparison between two-port antenna array with
different radiator spacings and without decoupling and mat- different radiator spacings and with DMN.
ching network (DMN).
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If we look at the CDF of the 1y/2 array, on the other hand, we have to
admit that it deviates considerably from the graph of ideal two-branch diver-
sity. Since mutual coupling is small at this radiator separation, the cause of
this discrepancy must lie elsewhere. Before we discuss possible reasons, let
us first continue with a qualitative analysis of the remaining antenna arrays.

The figure reveals that the mutual radiator coupling present in the y/5,
Ao/10, and Ay/20 arrays substantially degrades diversity reception; with de-
creasing radiator separation the graphs move in the direction of lower SNR
values. The degraded CDFs run in parallel to the theoretical graph of two-
branch diversity at low probability levels as anticipated by the discussion of
the diversity loss in Section 4.2.4. Only the measured graph of the 1y/2-array
deviates from this behaviour. However, this can be attributed to the imma-
nent statistical uncertainty at lower probability levels: without resorting to a
rigorous uncertainty analysis here, we can reason that an outage probability
of 0.1 % implies that the corresponding part of the CDF graphs is based on
this very fraction of the entire measurement data. At a total measurement
duration of 540 s this corresponds to a mere half of a second.

For the rather strongly coupled Ay/20 array, the impairments are also
evident in the plots in Fig. 5.14a of the SNR variations against the distance
moved. The close proximity of the radiators essentially causes them to be-
have like a single radiator: both diversity branches show very similar, i.e.,
correlated, fading characteristics. This is also reflected in the CDF graph,
which follows the graph of the single radiator at higher outage probabilities.
The diversity gain at lower probabilities comes about because the rare event
of a deep fade occurs at slightly different instants in the two branches (e.g., at
around x = 2.2 m in the figure), or differs in depth (e.g., x = 4.7 m).

Figure 5.14b conveys the effect of the network, where clearly the two
branches exhibit independent fading. Further inspection reveals that the se-
cond branch, which was connected to the “odd” port of the DMN, has a lower
mean SNR than the first one due to ohmic losses in the network. This beha-
viour is not so evident at the right end of the graph because the first branch
becomes limited by the dynamic range of the receiver.

The CDFs in Fig. 5.13 of the decoupled and matched antenna arrays more
explicitly portray the improvements brought about by the DMN. All graphs
have moved towards higher SNRs with respect to the graphs without DMN.
Note that the graphs of the single antenna and the 1y/2 antenna array are the
same as in Fig. 5.12. At Ay/20 the additional diversity gain brought about
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Fig. 5.14: Recorded SNR fading data of the two diversity branches of the 4y/20 antenna array without (a) and with (b)
decoupling and matching network. The graphs in (a) reveal considerable correlation between the branches whereas the
graphs in (b) do not.
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Separation Eigenefficiencies Diversity gain
without DMIN with DMN due to network
didg AV A0 pleven 04D Neasurement  Prediction
1/2 0.93 0.92 n/a n/a n/a n/a
1/5 0.94  0.61 093 092 2.5dB 0.89dB
1/10 0.88  0.25 0.87  0.81 4 dB 2.5dB
1/20 0.80 0.088 0.79 0.52 6 dB 3.9dB

Table 5.1: Eigenmode data of the antenna arrays under test and comparison between
measured and expected diversity gain improvements due to the network.

by the network at the 1 % outage level is around 6 dB, as estimated from
the graphs. At Ay/10 the gain is about 4 dB, and at 1p/5 the DMN gain
is still 2.5 dB. These numbers demonstrate that DMNs can in fact lead to
noteworthy improvements in practical communications systems.

5.3 Verification of the diversity figures of merit

In Fig. 5.13, it appears that the Ady/5 antenna array with DMN performs
slightly better than the uncoupled Ay/2 reference array. This observation
does call the usefulness of the idea of using scattering parameter measure-
ments for diversity performance estimation into question; the derivations of
the previous chapter state that a mutually coupled antenna array—with or wi-
thout DMN—cannot be better than an uncoupled array unless there are other
factors influencing diversity, e.g., the statistics of the communications envi-
ronment.

To help investigate this issue, Table 5.1 lists the eigenefficiencies of the
antenna arrays without and with the DMN. Because the scattering parameters
of the feed networks cannot be measured reliably due to the absence of ap-
propriate RF connectors at both ends of the network, the numbers are partly
based on simulations. The procedure was as follows: first, the direct feed
network of Fig. 5.11a was simulated taking conductor and substrate losses
into account. Then, the scattering parameters of the antenna arrays including
this feed network were measured. Since the scattering parameters of the feed
network were known from the simulations, the scattering parameters of the
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antenna array itself, i.e., without the network, could be de-embedded. The
eigenefliciencies in the second and third column of the table were thus eva-
luated using (3.16).

In a next step, the decoupling network of Fig. 5.11b was loaded into an
electromagnetic simulator [122], amended with a single-stub matching net-
work at the odd-port, and, together with the array’s scattering matrix obtai-
ned in the previous step, optimised for impedance match. The simulation thus
yielded an estimate of the four-port scattering matrix of the DMN, and finally
for the eigenefliciencies in the fourth and fifth column of the table.

From these numbers, the theoretical diversity loss (4.28) can be calculated
if we recall that the determinant of the matrix H is the product of the two ei-
genefficiencies. The differences between these diversity loss numbers finally
yield the diversity gain improvements due to the DMNs. They are reported
in the rightmost column of Table 5.1. The numbers in the “Measurement”
column were estimated from the CDF plots.

The great disagreement between the theoretical gains and the measured
ones is obvious. This impression is reinforced by the fact that, according to
Section 4.3.2, the theoretical figures constitute optimistic estimates. Moreo-
ver, these discrepancies cannot simply be attributed to the possible influence
of the communications environment, because the network gain was shown to
be independent thereof.

As it turned out, a subtle shortcoming of the measurement setup is res-
ponsible for this large mismatch between theory and practice. Let us inspect
Fig. 5.15, which shows a photograph of the trolley on which the receiver se-
tup was moved along the corridor. On the top surface, there is the receiver
with the two monopole-antennas, a power supply unit, a flatscreen monitor,
and keyboard and mouse. The PC itself was placed on the bottom shelf of the
trolley. The operator stood on the left-hand side in the picture and pulled the
trolley in the direction indicated by the arrow.

During the measurements, the transmitted signal not only reflects off the
corridor walls, but also off parts of the receiver equipment, most notably the
metal parts of the trolley, the flatscreen monitor, and the operator moving the
trolley. Put another way, these objects become part of the antenna array and
effectively disturb its radiation characteristics. Every time the antenna array
or its feed network was replaced, the relative positions of these objects chan-
ged, and so did the characteristics of the antenna array. Moreover, the data
acquisition took two days to complete, so on the second day the measurement
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Fig. 5.15: Mobile trolley carrying the receiver setup. The arrow indicates the position
of the operator and the direction of movement. The photograph was taken from inside
the office where the transmitter was situated.

setup could have been a different one altogether.

The following examples conducted specifically to investigate the connec-
tion between array scattering parameters and diversity performance, reveal
the dramatic effects these additional scatterers have on the quality of the re-
corded fading data [145]. For the upcoming measurements, only the array
and the receiver front-end were placed on the top surface of the trolley; eve-
rything else was put on the bottom shelf. In addition, the operator made sure
to keep his body as far down as possible during data acquisition in order to
minimise his interaction with the antenna array under test.

To produce a reasonably uniform communications environment seen by
the antenna array, twelve measurements were carried out for each array. Bet-
ween measurements, the arrays were successively turned by 30°. This proce-
dure even reflects a realistic scenario if we imagine a mobile phone user on
the corridor walking and turning around freely. Of course, this only ensures
uniformity in azimuth and not in elevation.

Another reason for rotating the arrays between measurements has to do
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Fig. 5.16: Theoretical (lines) and measured CDFs (dots) of a single radiator and va-
rious three-port monopole arrays. Error bars indicate the estimated standard error.

with directions of preference both of the communications environment and
of the antenna array. Suppose a satellite communications link with a dish
antenna, where, due to its high directivity, small alignment errors cause large
variations in the received SNR. If we recall the strong angular dependence
especially of the “odd” and the “n”-mode beam patterns of a three-port array
(Fig. 2.8, page 34), we can imagine similar effects in the present scenario,
albeit less pronounced. Rotating the antenna arrays by a full 360° minimises
any systematic errors introduced by misalignment. A test measurement was
conducted that undeniably showed that rotating the antenna array alone, i.e.,
without removing the aforementioned scatterers in its proximity, has no bea-
ring on the stark discrepancies listed in Table 5.1.

The corridor, where the measurements were carried out, leads to a stair-
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case. For the new measurements, the transmitter was set up on the floor be-
low at the bottom of that staircase. The first set of measurements compares
the performances of three three-port antenna arrays with radiator spacings
of 0.61 Ay, 0.25 Ay, and 0.10 Ay, respectively. Figure 5.16 shows the measured
CDFs (dots) along with the theoretical graphs calculated from the scattering
matrix of the antenna array (thick graphs with various patterns) using (4.22).

Since the measured CDFs represent the average of several measurements,
the figures include estimates of their standard error (estimate of the standard
deviation of the mean-estimate) as error bars. The interpretation of the stan-
dard error is as follows: if the same measurement is repeated an infinite num-
ber of times, 68 % of them will likely include the true mean within the interval
defined by their standard error. We must keep in mind, however, that the stan-
dard error is an estimate itself, and is based on a number of assumptions. Most
notably, it requires the measurements to be repeatable and independent. Nei-
ther is true in our scenario, because the antenna arrays were rotated between
measurements (i.e., the setup was changed), and because all measurements
followed similar paths along the corridor (i.e., they are dependent). The error
bars must therefore not be considered a rigorous statistical measure but rather
an indicator for the factual deviations in a particular set of measurement data.

In contrast to the previous results of Fig. 5.12, we observe considerable
differences of up to 2 dB between the new single-radiator reference measure-
ment (thin, solid line) and the theoretical graph of Rayleigh fading. Since the
theoretical graph lies far beyond the error bounds of the measurement, it is
unlikely that this deviation is caused by purely random effects. A possible ex-
planation is that the new communications environment was not entirely free
of a line-of-sight component so that the received SNR did not exactly follow
the Rayleigh distribution. (cf. Dietrich et al. [35, Fig. 6b])

On the other hand, the plots of the three-port antenna arrays (thick lines)
show remarkable agreement with the predicted distributions on a quantitative
level. Although the 0.25 1y measurement deviates from the theoretical graph
around p = 1 %, the fit is close both at the low and at the high end of the
probability range.

Next, the 19/20 two-port array measurements of the previous section, wi-
thout and with DMN, were repeated with the new measurement setup. The
obtained graphs in Fig. 5.17 not only draw a completely different picture com-
pared with Figs. 5.12 and 5.13 but, this time, they also conform well to the
predicted CDFs, mostly at higher probability levels. The measured additio-
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Fig. 5.17: Calculated and measured CDFs for a 1,/20 two-port monopole array wi-
thout and with DMN in relation to a single monopole.

nal diversity gain brought about by the network is now consistent with the
predicted value of 3.9 dB in Table 5.1.

Although the new reference measurement lies closer to the theoretical
Rayleigh graph than the previous one in Fig. 5.16, the discrepancy again can-
not be explained by the estimated standard error. So, this observation sup-
ports our previous suspicion that the environment may not be completely free
of a line-of-sight component. The graphs of the antenna arrays, on the other
hand, raise doubts as to the expressiveness of the standard error. Both mea-
surements employed the same radiating structure; the only difference was the
absence or presence of a DMN, which should manifest itself as a mere hori-
zontal shift in the graphs. However, both graphs exhibit significant deviations
from the theoretical CDF in opposing directions, yet this is not accounted for
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by the magnitude of the standard error. The interquartile range (not shown) of
the acquired data shows similar behaviour: strong bias away from the theory,
but no indication that the measurements are especially uncertain in the region
of interest. Aside from purely random variations, it seems additional factors
affect the quality of the measurements. These may include the position of the
person operating the trolley (although it was attempted to minimise the effect)
and the path along the corridor chosen.

One last example is presented in Fig. 5.18 where the performances of pla-
nar inverted-F antenna arrays (PIFA array, photograph see Fig. 5.19) without
and with DMN are compared. Since no reliable scattering parameters of the
DMN were available, the theoretical plots are based on the matrix H.q, ie.,
on the measured far-field patterns of the array (see (2.26)). Apart from de-
viations at lower probability levels, the agreement with the predicted graphs
is excellent. The diversity gain due to the DMN is about 1.7 dB according to
both the measurements and the theory.

In summary, the above results demonstrate a number of important aspects
of diversity reception with compact arrays. They show the severe negative
impact of mutual radiator coupling on the received signal strength and verify
the beneficial effects of decoupling and matching networks in the context of a
practical receiver system. Most importantly, they reveal the close consistency
between the theoretically predicted and the measured SNR distributions in a
realistic communications scenario, and thus emphasise the practical value of
the diversity figures of merit developed in the previous chapter.

5.4 Measurements of the signal envelope covariance matrix

The CDF graphs are not the only information we can extract from the acquired
baseband data. Knowing the received signal SNR in both amplitude and phase
essentially means knowing the complex received signal envelope vector br
introduced in Fig. 4.1 up to a constant factor. The received signal covariance
matrix AL is then estimated by approximation of the expectation operator
in (4.31) via the sample mean, i.e.,

N

~ - T 1 -

Aen = E {bgbi} =~ 5D by k1bRIK]. (5.1
k=1

The sample index is denoted by k, and N is the total number of samples
acquired. For comparison with the theoretical matrix Hyo =1-SUS, Heyy is
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Fig. 5.18: Calculated and measured CDFs of the 0.154, three-port planar inverted-F
antenna (PIFA) array in Fig. 5.19 without and with DMN.

Fig. 5.19: Photographs of the planar inverted-F antenna (PIFA) array under test [121].
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Antenna array — Eigenefficiencies —
under test Prediction Measurement Standard error
3-port, 0.614 0.97 0.94 0.89 1.1 0.90 0.82 0.13 0.035 0.038
3-port, 0.252, 0.95 0.94 0.27 0.96 0.83 0.40 0.048 0.015 0.025
3-port, 0.104 0.87 0.57 0.012 0.90 0.66 0.014 0.039 0.055 0.00087
A0/20 w/o DMN 0.93 0.074 1.1 0.078 0.055 0.0081
Ao/20 w/ DMN 0.79 0.52 0.86 0.65 0.058 0.051
PIFA w/o DMN 0.77 0.74 0.13 0.63 0.57 0.25 0.038 0.024 0.019
PIFA w/ DMN 0.74 0.70 0.45 0.84 0.56 0.45 0.062 0.037 0.017

Table 5.3: Overview of the eigenefficiencies of the predicted covariance matrix Hy. = I — SUS or H,q (for the PIFA array)
and the measured covariance matrix H,,,. The measured values include the estimated standard error.
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normalised to the mean received power of the corresponding single-radiator
measurement.

Table 5.2 summarises the diversity losses (4.28) predicted from the ma-
trices Hyee = I — SHS or Hy,q (for the PIFA arrays) in comparison with the
values obtained from the measurement-based matrices H.,,. The numbers in
the table are derived from the same sets of data as the CDF plots of the pre-
vious section. The estimated standard error is also shown and is generally
below 0.3 dB.

The maximum difference between measured and predicted diversity loss
is with the decoupled and matched 4y /20 array and amounts to about 0.65 dB.
This corresponds to an uncertainty in the linear diversity loss of around 16 %.
The disagreement between most pairs of values again cannot be explained by
the standard error alone. On the one hand, most measured diversity losses
are smaller compared with the theoretical ones, i.e., according to the measu-
rement most arrays perform better than predicted. On the other hand, this is
in contrast to the CDF graphs, where, strictly speaking, the measured arrays
perform worse than predicted when compared with the single-radiator mea-
surement. Furthermore, given that the influence of a DMN ought to be inde-
pendent of the communications environment, the measurements of the 1y/20
and the PIFA array strongly suggest that the error is non-systematic: whereas
the measured and the predicted DMN gains show excellent agreement for the
Ao/20 array, the discrepancy is rather large for the PIFA array. Judging by the
corresponding CDF graphs, though, we would probably consider the PIFA
measurement more accurate than the 1y/20 measurement.

Table 5.3 lists the eigenvalues (eigenefficiencies) of the corresponding
covariance matrices. Since we interpreted the effect of a non-uniform com-
munications environment as an uneven distribution of received signal power
over the array eigenmodes (cf. Section 4.3), we would certainly tolerate any
disagreement between theory and practice, but, at the same time, would ex-
pect some consistency in these deviations. This is not the case, particularly
with the PIFA arrays. Without DMN the measured “n”’-mode eigenefliciency
is almost twice the predicted value, whereas with DMN the “n”-mode values
conform exactly, although both arrays only differ in their feed network and
therefore possess the same beam-pattern space. Similar contradictions exist
between the 0.254 and the 0.104, array and in fact between all arrays, albeit
to a far lesser extent.

We can now conclude that the observed deviations both in the envelope
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covariance matrix as well as in the CDF graphs cannot be explained by sta-
tistical uncertainty alone. Yet the errors seem arbitrary and in this way do not
suggest a general and reproducible bias in the diversity theory or the formulae
derived from it. Instead, the measurements manifestly support the practical
applicability of scattering parameter measurements for the evaluation of the
diversity performance of mutually coupled antenna arrays. This applies to the
effects of the antenna arrays themselves as well as to the evaluation of DMN5s
based on simulated network data.

On a final note, we must keep in mind that, between measurements, the
antenna arrays were rotated in order to achieve a uniform power distribution
in the azimuth plane. The elevation angle, on the other hand, certainly ex-
perienced a non-uniform power profile, which violates the basic prerequisite
of the diversity gain and loss formulae of the previous chapter. The measure-
ments nonetheless conform well to the theory. The reason is that we compare
antennas and antenna arrays that exhibit similar far-field characteristics and
thus similar focusing properties over elevation. That is, monopole arrays are
compared with a monopole antenna and the PIFA array is compared with it-
self without and with DMN. If we investigated the performances of antenna
arrays with greatly differing focusing properties, we could expect conside-
rable disagreements. The reason why no comparison between the PIFA and
the monopole arrays is given at this point is because the measurements were
carried out on different days and no reference data for the PIFA is available.
Even if the measurements agreed, we would not learn anything from it, be-
cause such an agreement would contradict the theoretical expectation and
would therefore likely be caused by happenstance. Still, this discussion is ir-
relevant to the fact that the diversity loss calculated from the scattering matrix
is a measure for the system loss due to port coupling independent of any other
factors that influence the absolute diversity performance of the system. For
comparisons between different types of arrays, Section 4.3.1 explains how the
statistics of the environment can be included in the calculations on the basis
of widely accepted channel models.

5.5 Front-end noise characterisation

During the derivation of the diversity model in the previous chapter, we found
that diversity performance is governed not only by the correlation properties
of the received signal power but also by the correlation and the amount of
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noise present in the received waveforms. The reason why we could none-
theless interpret the diversity measurements without spending a thought on
receiver noise is that the receiver with its noise figure of 12.2 dB belongs to
the class of very noisy front-ends discussed in Section 4.4.4. That is, the
noise created internally within the receiver is so strong that it covers up any
noise produced at the front-end inputs. The temperature covariance matrix of
the received noise TR (4.48) is thus a constant and as such independent of the
antenna array or the network connected to the system inputs.

Section 4.4.4 also revealed that, in the case of a low-noise front-end, the
SNR diversity gain due to a DMN is often less than its signal gain (4.37)
alone, as the result of the noise floor created by ohmic losses in the network.
In the present section, we will therefore pursue a reduction of the receiver
noise-figure with the help of fabricated low-noise pre-amplifiers. We will
then develop and verify a detailed noise characterisation procedure that will
subsequently allow us to calculate the SNR performance of practical low-
noise receivers for a variety of antenna arrays and DMNSs.

Three different low-noise amplifiers (LNA) were designed in order to
have different sets of noise parameters at hand for comparison later on. The
first amplifier is based on the BFP640 bipolar NPN transistor manufactured
by Infineon [130]. This transistor is a good starting point for a decent low-
noise amplifier because it is straightforward to bias and to stabilise, and hap-
pens to be noise-matched to 50 Q at the 2.45 GHz centre frequency without
the need for a matching network. The final design exhibits a noise figure
of 1 dB and an insertion gain of 16.5 dB.

The second LNA employs the NE3515S02 hetero-junction field effect
transistor (HJ-FET) manufactured by NEC Electronics Corporation [133]. A
charge pump integrated circuit negates the supply voltage and, after additio-
nal stabilisation and filtering, provides the negative gate-voltage for biasing.
Because the transistor is very unstable up to high frequencies, a combination
of broadband and selective stabilisation techniques was employed. The final
amplifier also displays a gain of 16.5 dB with a noise-figure between 0.3 dB
and 0.5 dB, depending on the measurement equipment used. A matching net-
work was implemented to noise-match the transistor to 50 Q.

A third amplifier was manufactured using the ready-made HMC478 am-
plifier integrated circuit provided by Hittite Microwave Corporation [129].
Its gain is 16 dB with a noise figure of 3 dB. All three amplifiers are placed
in an aluminium chassis to shield them from external interference and noise.
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Fig. 5.20: Signal flow graphs for the discussion of the front-end noise characterisa-
tion procedure. (a) Full signal flow graph and (b) simplified signal flow graph. The
subscript “L” identifies quantities related to the load connected to the front-end.

Further implementation details on these LNAs can be found in [117]. The
fact that all amplifiers are noise-matched to 50 Q is an important one because
this causes all previous antenna array and DMN designs, which we optimised
with respect to 50 Q from a power matching perspective, to be noise-matched
to the receiver front-end.

5.5.1 Noise characterisation of a single receiver-branch

We proceed with the practical characterisation of the amplifiers’ noise proper-
ties when connected to the receiver channels. Commercial noise characterisa-
tion equipment is of no use since the receiver has no output terminal that we
could connect to the measurement instrument. In the following, the receiver
is therefore device under test and measurement equipment at the same time.
The goal is to have all information at hand necessary to predict the noise co-
variance matrix of a given receiver front-end upon connection to a mutually
coupled antenna array with known scattering matrix.

Figure 5.20a shows the signal flow graph of a single noisy front-end
branch (subscript “F”) connected to a noisy single-port load (subscript “L”).
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The front-end is characterised by its equivalent noise waves vg and ug, and
some internal linear gain, denoted by G. All quantities in the graph are nor-
malised to the front-end input impedance Zg i, which can be determined with
a vector network analyser. As we know from previous discussions, this nor-
malisation procedure simplifies the signal flow graph by elimination of a loop.
The load, which we assume passive, is fully described by its reflection coeffi-
cient 'L and the noise wave vy..

Following Section 4.4 and Appendix B.2 we can express the noise wave
power in terms of the equivalent temperature 71 of the load, which in our case
corresponds to its physical temperature [118, Eqn. (2.94)]:

Var{vi} = E{v v} = E{*} = kTLB(1 - [P, (5.2)

where k is Boltzmann’s constant, and B is the equivalent receiver noise band-
width introduced in Section 4.2.1. A description of the front-end noise waves
was given in (4.61) in terms of the equivalent front-end noise temperatures
TyF, Tyr, and T\, . In contrast to passive devices, these quantities must be
determined by measurements or simulations.

The above noise waves combine as wave vg in Fig. 5.20b, which then
becomes amplified, down-converted to baseband, digitised, and finally dis-
played on screen as the expected value of the quantity denoted as vp. The
constant |G|? is the factor of proportionality between the actual noise po-
wer E {|vg’} at the front-end input terminal and the power value Pp =
E {Ivnlz} reported by the receiver software. In general, G is complex. We
have

m:szGm—w+Hm} (5.3)
and thus for the displayed noise power (cf. (4.62) and [4, (4.47)])

Pp =E{wl*}

= KBIGE | TL(1 = ITLP) + Ty + P T = T T = T T,

(5.4)

which is a function of the load reflection coefficient I'r.. The receiver soft-
ware approximates the expectation operator by an exponential moving ave-
rage filter, and yields three stable significant digits after around 60 seconds of
averaging. Since Pp is merely a number in computer memory, we can assign
arbitrary power units to it. To keep the value of the internal gain G within
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reasonable bounds it was decided that the readout is in fW, i.e., 1 x 10715 W,
The unknown constants G, T, T,,r, and T, F are established via the measu-
rement procedure outlined in the following.

The absolute value |G| of the gain is found by the familiar Y-factor me-
thod, also referred to as the hot-cold method [16, Section 3.5]. This re-
quires a switchable noise source with constant known terminal impedance
(usually 50 Q) and two different known noise temperatures. The “cold” tem-
perature 77 .o usually corresponds to ambient temperature but is often assu-
med 290 K.2 The “hot” temperature T hot is specified by the (known) excess
noise ratio (ENR) of the source according to

T pot = (1 + ENR)TL co14- (5.5

If we perform two noise power measurements Pp ¢o1q and Pp por, it is straight-
forward to show that the gain is given by

IGP. = Pp hot = Pp cold 5.6)
kB(Tipot — Ticola)(1 = [TL?) )

Note that I'y, is generally non-zero since the 50 Q impedance of the source
is normalised as indicated in the flow graph. A method to determine the
argument of G will be explained later.

Let us rewrite (5.4) with the remaining unknowns on the left-hand side
and all known quantities on the right-hand side of the equal sign:

£3 * P
Typ + TP T e — T Ty — T P T (- TP, (5

wE = FBIGR

If we treat T, r and T, - as independent variables, the above is a linear equa-
tion in four unknown variables. In order to solve for the unknowns, we can
establish a system of four such equations by conducting a series of measure-
ments with different load impedances I'.. In fact, we can record more than
four measurements and use the resulting over-determined system of equations

20f course, this is not correct for most laboratory setups and correction methods exist for
arbitrary ambient temperature. Since the resulting error is below 3 % at room temperature
(say 296 K) we will refrain from such methods.
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to smooth out any measurement errors. In matrix notation we have

% Pp, 2
1 |rL,1|2 FL,l IﬁL,l TV,F k]l;\DGllz - TL(l - |FL,1| )
1 Mo T, T T.r o — Tl = [TLalP)
. . . . N T 7F = .
: : , K ‘;ﬂ ) . (5.8)
PolwE Tiy Tuw/ o \owef/ \ gt = Tu( = TP
L - 7 = i,

where L is the matrix of load reflection coefficients, 7 the unknown vector of

front-end noise temperatures, 7 the vector based on the measured powers,

and N the number of measurements. A solution that minimises the error
[

, (5.9)

between the left-hand and the right-hand side is found with the help of the
Moore-Penrose pseudo-inverse of L:

7=L"m. (5.10)

If only N = 4 measurements are available, the Moore-Penrose pseudo-inverse
is identical with the regular matrix inverse L.

The precision of the solution is dependent on the particular set of load
impedances chosen. Obviously, there is no point in determining the front-end
noise temperatures based on I'r; that are all very similar, and subsequently
expect the result to accurately extrapolate over the entire complex reflection
coefficient plane (Smith-chart). We would therefore choose the I'L ; as diverse
as possible so they test a wide range of different load conditions. In mathema-
tical terms, we would aim to minimise the condition number ¢ of the matrix L.
The condition number is the ratio of the largest to the smallest singular value
of the matrix, and defines an upper bound on the factor by which the relative
error in our solution 7 possibly exceeds the relative error in our input data L
and 7 [3, p. 523], [8, Section 5.8]. Put differently, the base-10 logarithm
of ¢ is an upper bound on the number of decimal digits of precision that may
become lost in the result.

Since the I'r,; are normalised to and thus are dependent on the input im-
pedance of the front-end, one set of loads that is suitable for one type of
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front-end may be inappropriate for another if their input impedances differ
greatly. For the characterisation of the amplifiers presented above, a set of
eleven complex test impedances with ¢ < 8 for all amplifiers was determined
empirically and manufactured.

For the noise parameter extraction, each amplifier was connected to one
of the front-end channels: the BFP640 was connected to channel one, the
NE3515S02 to channel two, and the HMC478 to channel three. Then the ma-
gnitudes of the channel gains G and the noise temperatures were determined
as outlined above. Table 5.4 lists the extracted noise parameters (the extrac-
tion of the phase of G is explained in a moment) of the complete front-end
branches, i.e., the numbers include the noise generated by the pre-amplifiers
as well as the noise of the remaining branch components. For this reason, the
branch noise-figures listed in the last column are considerably greater than the
noise-figures of the sole LNAs stated earlier. Based on the extracted model
parameters, Table 5.5 compares the actual powers recorded to the predictions
according to (5.4) for the test impedances. The maximum relative error bet-
ween any pair of numbers is 1.2 %, which proves the validity of the noise
model and the feasibility of the measurement procedure chosen.

5.5.2 Noise characterisation of the multi-port receiver

The amplifier data from the previous subsection can be implemented directly
into the multi-port receiver formulae developed in Section 4.4 by filling the
diagonal entries of the matrices TV,F, TMF, and TVH’F with the noise tempe-
ratures of the corresponding amplifiers. The covariance matrix of the noise
emitted by the load can be determined using (4.49). For various passive multi-
port loads we would now like to investigate to what extent the received noise
covariance predicted by (4.48) agrees with measurements. The only pieces
of information still missing from the noise parameters are the phases of the
internal receiver branch gains Gy.

For this, consider the diagonal matrix G (see Fig. 4.7), which contains the
branch gains Gy, on its main diagonal. The covariance matrix of the wave vec-
tor ¥p displayed by the receiver software is related to the covariance matrix
of the received noise vector ¥R via

Var {¥p} = G Var {ir} G!. (5.11)

Writing out the individual matrix elements and substituting the polar form
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Load impedance, — Displayed power, Pp, in fW —
Zy;,in Q BFP640 NE3515S02 HMC478

Meas. Pred. Meas. Pred. Meas. Pred.

0.6+j23.9 33.0 33.1 78.1 78.5 46.7 46.6
180—-j119 72.8 72.7 36.7 36.7 63.6 63.0
38.8-j2.5 72.8 73.1 86.4 87.4 64.2 64.0
14-j652 44.8 44.5 26.3 26.2 67.8 67.3
04+j6.7 32.7 329 165.0 165.0 48.1 48.3
1.5-j54.0 43.4 43.3 27.8 27.7 67.3 67.2
13.1+j26.8 50.1 49.7 95.0 94.0 52.8 53.1
62.6-j7.5 78.7 78.7 68.3 68.0 65.7 65.9
2.32+j69.3 37.3 37.3 32.6 32.9 48.0 47.8
3.45-j106 49.5 49.8 24.9 24.8 65.7 66.5
50.0 75.8 75.7 77.8 779 64.5 64.7

Table 5.5: Result of the noise characterisation procedure with eleven complex test
impedances.

Gy = |Gyléi* of the branch gains yields
Var {p};; = |IGillG;l €9¢7| Var {#r});; . (5.12)

We notice that the absolute values of all elements of Var {Vp} are unaffected
by the phases of the G;. The elements on the main diagonal (i = j) remain
real-valued (as is the case for any covariance matrix), and the phases of the
off-diagonal elements are affected by the phase difference ¢; — ¢; between
corresponding branch gains. As their absolute phases need not be known, we
can arbitrarily set the phase of the first branch to 0°.

For the remaining phases, we measure the scattering parameters of a high-
quality coaxial cable that we subsequently connect between the first branch
and the branch k in question. Next, the 2 X 2 covariance matrix between
these two branches is measured and compared with the prediction according
to (4.48). The absolute values of all matrix elements should be consistent; the
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178 5. Compact antenna arrays in practice: a diversity receiver

phase error in the off-diagonal elements is finally equal to the phase of the kth
branch gain. This procedure is repeated until all phases are known. Table 5.6
shows the results of this calibration procedure.

For final verification, three measurements with passive three-port junc-
tions were carried out. The following are the results of a T-junction made by
soldering three semi-rigid coaxial lines together:

43.1 15.7 £ -58° 5.8 £92°
Measurement: 15.7 £ 58° 68.6 19.5 £ 149° | W,
5.8 £-92° 19.5 7 -149° 52.5

43.8 15.9 £ -58° 6.1 £87°
Prediction: 15.9 £ 58° 68.1 19.0 £ 148° | fW.
6.1 £ -87° 19.0 2z —148° 52.8

A T-junction is essentially a lossless component, which causes noise to couple
between amplifier terminals but which adds little noise itself. For this reason,

a measurement with a three-port 6 dB power divider was performed:

65.0 12.9 £ -156° 25275°

Measurement: 12.9 £ 156° 56.7 104 2 —-162° | fW,
2572-75° 104 £162° 56.7
64.7 12.8 £ -156° 2.8 £79°
Prediction: 12.8 £ 156° 55.8 99/ -163° | fW.
2.8 £ -79° 99 /163° 56.9

And finally, the 1y/10 antenna array of Fig. 2.6 was measured. Since the elec-
tromagnetic interference captured by the antenna array in an ordinary labo-
ratory room would obstruct the sensitive noise measurements, the recordings
were carried out in an anechoic chamber. This has the additional advantage
that the array sees a uniform temperature environment so that the noise it
produces is predicted easily and accurately by virtue of (4.49). The results
are

73.6 12.1 2£27° 4.2 7 -79°
Measurement: 12.1 £ =27° 37.9 9.7 £ =22° | W,
4.2 1 79° 9.7 £ 22° 64.8
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72.0 11.1 £25° 32 ,-97°
Prediction: 11.1 £ =25° 37.5 8.4/ -21°| fW.
32 297° 8.4 ,21° 63.7

Although the relative errors in some of the off-diagonal elements may
seem large at first, they are in fact small compared with the mean of the main
diagonal elements, i.e., the mean noise power received. The excellent agree-
ment between measurements and predictions validates the proposed multi-
channel noise model. In conjunction with the previously verified model of
the received signal covariance matrix, we are finally able to investigate relia-
bly the true diversity performance of compact antenna arrays in terms of their
SNR without and with DMN under a variety of operating conditions.

5.5.3 Influence of noise on the SNR diversity gain

In the following, we will be looking at a number of compact antenna array
receivers in terms of signal power transfer, noise temperature, and available
SNR, as well as the consequent effects on diversity.

The antenna arrays under test include the three-port monopole arrays al-
ready known from the CDF measurements in Fig. 5.16 with separations 0.14,
0.2540, and 0.614, and also include a hypothetical ideal array (lossless, de-
coupled, and matched to 50 Q2). All these arrays have a 50 cm x50 cm ground
plane. The final array in the list is a second 0.14 array (Fig. 2.6) whose only
difference is its 14 cm X 14 cm ground plane. Table 5.7 lists the performance
results, which we will discuss below.

We then examine the effects of DMNs. To this end, we have three of the
two-port Ao/ 10 array systems from Section 3.6.3 on our list: the directly fed
array with coupled radiators, the decoupled and matched array with hybrid
coupler and single-stub matching network, and the decoupled and matched ar-
ray using the alternative DMN technique. These arrays are listed in Table 5.8.
The parenthesized letters correspond with Fig. 3.23 on page 79. For compa-
rison, a hypothetical ideal array is also included.

The final pair of arrays in Table 5.8 without and with DMN was developed
by Weber [121], [146]. It was chosen because at the time of writing this DMN
with its diversity gain of 3.66 dB at low outage probabilities was the best
design available for a linear 1y/10 three-port array in terms of signal power
efficiency.’

3Weber states a diversity gain of 2.86 dB at the 0.5 % level. In the present work, however,
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All these arrays will be analysed in conjunction with four different re-
ceiver front-ends with varying noise performance. The first front-end is a
hypothetical front-end with 50 Q input impedance. Its noise temperatures
of T,p = 4500 K and T, = T,,r = 0 K approximate the noise properties of
the diversity receiver lacking low-noise pre-amplification.

The remaining three front-ends use the noise data collected in the previous
subsection (see Table 5.4). Although for the practical verification of the noise
model each front-end branch used a different LNA, we assume for the follo-
wing investigation that all front-end branches are identical. We remember that
the front-end amplifiers are noise matched—not power matched—to 50 Q.

For each antenna array and front-end, Table 5.7 lists a number of parame-
ters. Ly denotes the signal diversity loss approximation according to (4.28),
which, until now, represented the principal figure of merit of mutually cou-
pled antenna arrays. It only accounts for power mismatch between the array
and the receiver front-end, and disregards the effects of noise. The received
noise is characterised by its equivalent mean temperature Tr (4.47). Both
effects together are accounted for by the SNR diversity loss LgSNR) defined
in (4.70). The SNR diversity loss is the quantity that ultimately describes the
diversity performance of a given constellation of antenna array, DMN, and re-
ceiver front-end. As explained previously, LSSNR) quantifies the SNR loss with
respect to an ideal system with noiseless front-end branches. The necessary
matrices Ay and T were calculated according to Eqns. (2.7), (2.26), (4.48),
(4.50), and (4.62), depending on the information available. Because far-field
data is available for the arrays without and with DMN, the influence of the
network could be accounted for by treating the decoupled and matched array
as an equivalent lossy array without network as suggested at the end of Sec-
tion 4.4.2. Attention was paid that all matrices, i.e., both the scattering and
the covariance matrices, were appropriately normalised to the front-end input
impedances Z;, (see Appendix B.1.3). We assume an ambient temperature
and a uniform environment temperature of Tymp = Teny = 290 K.

We begin with the first four antenna arrays in Table 5.7. The second co-
lumn in the table reports the signal diversity loss Lg at a 50 Q receiver as used
throughout the present work; the loss increases considerably with decreasing
radiator separation. The equivalent temperature T of the noise received by

the diversity gain due to (4.37) is used, which yields a larger value and which represents the
limiting gain towards low outage probabilities. Also, the array actually operates at 1 GHz, but
we nonetheless use the data for the 2.45 GHz front-end.
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182 5. Compact antenna arrays in practice: a diversity receiver

the system is listed in the third column. It represents the superposition of the
front-end noise temperature 7, r = 4500 K and the thermal noise picked up by
the array. In the ideal case, this is 4500 K+290 K = 4790 K. With decreasing
radiator separation, the antenna noise experiences the same amount of imped-
ance and coupling mismatch as the signal. The received noise consequently
decreases too. However, since most noise is contributed by the very noisy
front-end itself, the relative change in noise power remains small. The SNR
loss LgSNR) in the fourth column thus very closely tracks the signal loss Lg.
Because the SNR loss specifies the loss relative to a noiseless front-end, it
does not drop to zero for the ideal antenna array; it rather becomes equal to
the noise-figure of a single receiver branch at a 50 Q load.

Let us skip the columns of the HMC478 and the BFP640 amplifiers for
the moment and turn to the NE3515S02-based front-end (rightmost three
columns), the lowest noise front-end we have available. We observe that
the signal diversity loss of the ideal array is greater than zero, which stems
from the fact that the amplifier input impedance is very different from 50 Q
(see Table 5.4). In this example, we have the additional effect that the signal
diversity loss increases more rapidly than with the high-noise front-end in the
presence of mutual coupling, though this behaviour cannot be generalised to
all non-50 Q front-ends. As with the high-noise example, there is a reduction
of the equivalent received noise temperature T as radiator move closer to-
gether. This time, since the noise contribution by the front-end is small, the
relative change is much more significant compared with the high-noise front-
end. Putting these two pieces of information together, we arrive at the SNR
loss column L™, which tells us that the SNR degradations due to mutual
coupling are in fact considerably less pronounced than we would expect from
the signal loss analysis alone. The SNR loss of the 0.1y array with respect
to the ideal case, for instance, amounts to 6.66 dB, which is more than 2 dB
better than the corresponding signal loss difference, and still 0.76 dB better
than the signal loss at the 50 Q front-end. Recall that the amplifiers are noise-
matched to 50 Q, so the SNR performance of L&SNR) = 1.88 dB of the ideal
three-port 50 Q array is actually the best we can achieve with this amplifier
(cf. the noise figure in Table 5.4).

The noise figure of the noise-matched BFP640-based front-end is 0.25 dB
worse than the NE3515S02-based front-end. It seems remarkable that this
fact is only reflected by the ideal and by the 0.614 array; the 0.251, and
0.14¢ arrays perform better than with the NE3515S02, the 0.14y array by as
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much as 0.89 dB. Two mechanisms can be identified that possibly give rise
to this effect. One is that the input impedance of the BFP640 is closer to 50 Q
compared with the NE3515S02, which reduces the impact of signal power
mismatch for the particular example arrays reported in the table. The other
one is that the noise produced by different amplifiers differs in its sensiti-
vity to impedance variations at the amplifiers’ inputs. For instance, the noise
contributed by an amplifier lacking a backward travelling wave up would
be constant regardless of the impedance connected to it. The other extreme
would be an amplifier with T, very large and strong correlation between its
noise waves vp and ug. In our example, the sensitivities of the BFP640 and
the NE3515S02 are difficult to compare because of their unequal input imped-
ances. The example does demonstrate, however, that the amplifier with the
lower noise figure specification is not necessarily the wiser choice if mutual
coupling is involved.

Lastly, the HMC478-based front-end with its noise figure of 4.52 dB is
yet another example that the signal diversity loss is an insufficient measure
for diversity performance evaluation. Whereas the SNR loss seems to track
the 50 Q signal loss down to 0.254 separation, the deviation is almost 1 dB
with the 0.14 array.

The second 0.14¢ array with the smaller ground plane demonstrates that
seemingly similar arrays can perform very differently in terms of the SNR:
even though its 50 Q signal loss is comparable with that of the previous
0.14¢ array, the associated SNR losses differ with all front-ends. With the
HMC478 LNA, the difference is as large as 1.2 dB. The plain reason is that
the scattering matrices of the two arrays have little in common, other than
their signal loss.

We move on to the examples involving DMNs in Table 5.8. According
to the signal column of the 50 Q front-end, the single-stub matching net-
work “C” achieves an improvement of 2.18 dB with respect to the direct
feed network “A”. The improvement of the alternative DMN “F’ amounts
to 3.87 dB. As we move towards lower noise front-ends, however, the achie-
ved SNR gain considerably diminishes. The performance is especially poor
with the lowest noise NE3515S02 amplifier: the gain due to network “C” is
only 0.58 dB and the gain of network “F” is 2.14 dB. One explanation for
this outcome is that, in terms of the signal loss Lg, the directly fed array is
obviously matched better to the NE3515S02 than to the 50 Q front-end. The
second cause is the unequal influence of the DMN on the signal and on the
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Teny =290 K High noise » Low noise
Tamb = 290 K No LNA, 50 Q HMC478 BFP640 NE3515S02

L, Ty hmmz_c hM_sz hM_sz L, Tq hmmz_c

Array name indB inK indB in dB indB indB inK indB
Direct (A) 5.62 4676 17.7 9.81 7.07 478 359 5.71
Single (C) 344 4762 15.6 7.81 5.34 5.80 248 5.13
Alternative (F) 1.75 4781 13.9 6.11 3.79 397 264 3.57
2-port ideal 0 4790 122 4.52 2.13 2.17 271 1.88
Weber w/o DMN  6.58 4648 18.6 11.1 7.81 5.17 369 6.22
Weber w/ DMN 292 4785 15.1 7.46 5.02 512 268 4.78

Table 5.8: Computed effects of decoupling and matching networks on the SNR performance of various receiver front-ends.
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noise: without DMN, the signal and the noise captured by the antenna array
are subjected to the same impedance mismatch. Since the DMN provides un-
coupled 50 Q terminals, it induces the same amount of noise into the system
as an ideal array. Ohmic losses, however, cause the transfer of signal power to
be less than ideal. We have addressed this matter previously in Section 4.4.4.
There we concluded that practical DMN implementations cause a degradation
of the SNR available directly at the array terminals. In fact, the only reason
why DMNs are nonetheless able to enhance system SNR performance is the
noise contributed by the receiver front-end after the DMN.

The final example of the three-port DMN due to Weber [121], [146] bears
the same problems. Although the 50 Q signal gain is 3.66 dB the actual SNR
gain is merely 1.44 dB with the low-noise NE3515S02 front-end.

To conclude the discussion on noisy receiver front-ends, we examine the
role of the noise picked up from the environment. Suppose that this envi-
ronmental noise is not of thermal origin but is rather the result of interfe-
rence from other systems operating in the same frequency band. If we further
suppose a large number of interfering devices (e.g., cellular phones) we can
assume a random behaviour in amplitude and space and can thus roughly
model its effects by raising the equivalent noise temperature T, of the en-
vironment. Table 5.9 shows what happens when interference is about 22 dB
above the thermal noise floor, i.e., if Tepy = 50000 K. We are not going to
discuss the full table in detail, it is mainly provided for informational pur-
poses. It is however obvious that, in accordance with previous discussions,
the degradations due to mutual coupling become noticeable only at very low
radiator separations. Since there is little degradation, there is little need for a
DMN, at least for the front-ends that employ a pre-amplifier of some sort.

So, if a high-noise environment alleviates the effects of mutual coupling,
it would be interesting to investigate the other extreme of a very “cold” en-
vironment. Table 5.10 thus lists the receiver parameters at an equivalent en-
vironment temperature of T,y = 10 K as encountered in space communi-
cations. The SNR quantities are generally higher than at room temperature,
because the amount of noise added by the system is much greater in relation
to the noise collected by the arrays. For the same reason, the adverse effects
of mutual coupling are also considerably more pronounced. On the converse,
this fact does not seem to help the effectiveness of the DMNs. The respec-
tive DMN gains of the “Single (C)” network and the “Weber” network are
still 0.5 dB and 1.4 dB, as with the 290 K-environment in Table 5.8. This
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Teny = 50000 K NoLNA,50Q  HMC478 BFP640 NE3515502
Tamb = 290 K Ly Ty L L™ $™ L, 1y LW
Array name indB inK indB indB indB indB inK indB
3-port 0.1, 7.42 20038 3.45 1.00 0.39 11.0 4641 0.68
3-port 0.252 2.05 36442 0.68 0.11 0.03 5.16 15364 0.04
3-port 0.611 0.29 51267 0.40 0.05 0.02 2.52 28076 0.02
3-port ideal 0 54500 0.37 0.05 0.02 2.17 30439 0.01
3-port0.12p (b)  7.59 20054 3.71 1.57 0.69 939 6270 0.46
Direct (A) 5.62 20369 1.72 0.34 0.16 478 16986 0.09
Single (C) 3.44 27761 0.88 0.15 0.07 5.80 13354 0.07
Alternative (F) 1.75 38170 0.57 0.08 0.04 3.97 20219 0.03
2-port ideal 0 54500 0.37 0.05 0.02 2.17 30439 0.01
Weber w/o DMN  6.58 21712 2.96 0.97 0.45 5.17 16006 0.22
Weber w/ DMN 292 31855 0.97 0.18 0.09 5.12 15677 0.08

Table 5.9: Computed performances of various compact antenna arrays and receiver front-ends in the presence of strong

external noise or interference.
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is because the DMNs operate at ambient temperature Ty, = 290 K and thus
contribute noise that is an order of magnitude stronger than the environmental
noise at Tepy = 10 K. Only the “Alternative (F)” network shows slightly bet-
ter performance with an SNR network gain of 2.7 dB in the cold environment
instead of 2.14 dB in the 290 K environment.

5.6 Summary

The past chapter was dedicated to the verification of some of the diversity
formulae and models developed previously. After a description of the mea-
surement system that had specifically been developed for this purpose, we
discussed measured cumulative distribution functions (CDF) of the received
SNR for a number of antenna arrays. These results clearly confirmed the an-
ticipated impairments due to mutual radiator coupling. It was also demons-
trated that, in these examples, decoupling and matching networks were able
to enhance the quality of the mobile link considerably.

However, these results were not very consistent with the diversity figures
of merit derived in Chapter 4. After errors in the execution of these initial
measurements had been identified, another set of antenna arrays without and
with DMN was tested. The new results are in good agreement with the pre-
dicted behaviour in terms of both the statistics of the fading as represented
by the CDF, as well as the signal covariance matrix as estimated from the
collected complex envelope data. The practical applicability of the suggested
figures of merit for diversity reception has thus been confirmed. Because of
the high noise figure of the receiver system, we could dispense with a detailed
noise analysis and thus base the above predictions solely on the signal power
analysis.

The preceding chapter also proposed a complete receiver model that in-
cludes noise of various origins. Discussions indicated that for low-noise sys-
tems a detailed noise description is inevitable for an accurate assessment of
the implications of radiator coupling. In order to verify this noise model, the
receiver was equipped with three different low-noise pre-amplifiers. These
were subsequently characterised in a way that enabled an accurate prediction
of the complex received noise covariance matrix upon connection of a passive
multi-port load (e.g., a mutually coupled antenna array) based on the load’s
scattering matrix.

With the help of these two practically verified models—one for the signal
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and one for the noise—we spent the last part of the chapter on an SNR di-
versity analysis of several mutually coupled antenna arrays and DMNs. The
results confirm earlier suspicions that with low-noise front-ends the SNR im-
pairments due to mutual coupling are not as severe as they first seem from
a signal-only analysis. Unfortunately, this observation applies to DMNs as
well in that their actual SNR gains typically turn out considerably lower than
anticipated on the basis of signal efficiency considerations alone. Finally, we
investigated the influence of the equivalent noise temperature of the commu-
nications environment. We observed that the influence of both mutual cou-
pling and DMNs becomes negligible when system performance is primarily
limited by external noise or random interference. Although towards lower ex-
ternal temperatures the implications of mutual coupling become increasingly
severe, the DMN gains on the other hand show little improvement due to the
additional noise produced by ohmic network losses.






Chapter 6

Summary and outlook

The established way to characterise mutual radiator coupling is based on the
scattering parameters of the antenna array or, alternatively, on the correlation
coefficient between the far-field patterns associated with the array ports. In or-
der to assess the implications of radiator coupling, a number of figures of me-
rit related to the performance of mobile communications systems have been
devised. Some are straightforward to work with—for instance, the scattering-
matrix based worst-case efficiency or the signal diversity loss—others require
considerably more effort, such as the SNR diversity loss. They all have one
important aspect in common: they express system performance as a single
number.

As such, they open up new possibilities for the successful implementa-
tion of compact yet effective antenna arrays for several reasons. First, it has
become possible for the first time to compare easily and quantitatively array
designs where mutual coupling cannot be eliminated due to areal require-
ments. Second, array performance can be evaluated over frequency, which
considerably eases the characterisation of broadband or multi-band designs.
Lastly, these figures of merit lend themselves as cost-functions for the non-
linear optimisers found in modern electromagnetic simulators, and thus foster
the automated determination of optimum design parameters.

We learned to interpret the radiation process of an arbitrary n-port antenna
array in terms of its n underlying degrees of freedom, which we called the
eigenmodes, and the associated eigenefficiencies. Based on this eigenmode

191
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concept, an array equivalent circuit was developed that portrays mutual cou-
pling as a manifestation of impedance mismatch. We can thus expect that
lowly efficient eigenmodes represent those degrees of freedom that are largly
underrepresented during normal array operation—in the transmitting as well
as the receiving direction.

We then considered diversity reception as a specific application of com-
pact antenna arrays and developed closed-form expressions related to the di-
versity gain of the system. Both the efficiency-based and the diversity-based
concepts have a central parameter in common: the radiation matrix “H”.
There are three different ways to compute H. The first method is very simple
to apply in practice because all that is required is the scattering matrix of the
antenna array. If ohmic losses inside the array are of concern, the radiation
matrix can be calculated by numerical integration over the measured or simu-
lated far-field patterns. Both approaches were shown to yield identical results
for lossless arrays. The third method is relevant to diversity reception and ac-
counts for the statistics of the multi-path communications environment. A
formula was proposed that is the logical consequence of a channel model of-
ten assumed in the literature. The diversity formulae therefore enhance the
established procedure of diversity analysis and do not mean to replace it.

Until this point, we had been looking at the properties of the signal trans-
mitted or received by an antenna array. The quality of a mobile link, however,
is ultimately determined by the signal-to-noise ratio (SNR) at the receiver. In
order to analyse the effects of receiver noise, a complete front-end model was
proposed that includes noise sources of several origins: noise or random in-
terference collected by the array, noise due to ohmic losses of the array and
its feed network, as well as the noise produced by the receiving front-end
components such as amplifiers, mixers, or quantisation noise. For low-noise
front-ends in particular, we realised that from an SNR point of view, the im-
pairments due to mutual coupling are far less pronounced than in terms of
signal power alone. This result also applies to systems, whose performance
is primarily limited by external random interference. Signal power conside-
rations are therefore by no means sufficient to predict the reception quality of
a mutually coupled receiver system.

Considerable efforts were spent on the verification of the proposed mo-
dels and formulae. Fading measurements with up to three diversity branches
were carried out, and the statistics of the combined signals as well as esti-
mates of the complex covariance matrices of the received signals were com-
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pared with theoretical predictions. The close agreement between theory and
measurements not only confirms the validity of the models developed, but
substantiates the practical applicability of simple scattering-parameter-based
expressions for predicting system diversity performance. Measurements also
support the accuracy of the front-end noise model. In view of these results,
we can therefore expect that the conclusions drawn from the final examples
in Chapter 5 closely reflect the true capabilities of the systems in question.

Chapter 3 investigated decoupling and matching networks (DMN) as a
possible means to combat the degradations due to mutual coupling. A syste-
matic eigenmode-based design approach using directional couplers was pro-
posed and shown to be applicable to a wide class of antenna arrays. Its pro-
minent advantage is that decoupling can often be achieved without knowledge
of the array’s scattering parameters by explicit exploitation of electrical sym-
metries of the array. The broad decoupling bandwidth makes the approach
less susceptible to manufacturing tolerances. An example demonstrated that
these properties are especially attractive for the mass-production of decou-
pling chips, because the latter can be deployed in a wide range of products
as long as certain symmetry conditions are fulfilled. The resulting decoupled
set of ports can then be matched by virtue of familiar single-port techniques.
Varactor-tunable matching networks are thinkable to adapt the system elec-
tronically to changing frequency bands of operating.

Based on the DMN scattering matrix, a method was introduced to ac-
count for the influence of the network on the eigenmodes and the diversity
gain of the system. This enables the broadband characterisation and thus a
bandwidth definition of the decoupled and matched system including ohmic
network losses as well as any residual coupling and mismatch at the network
input terminals. On this connection, the two major drawbacks of DMNs be-
came evident: although they can be manufactured to achieve the theoretical
optimum condition of decoupled and matched ports, their ohmic losses to a
great part outweigh the benefits of decoupling and matching. And even if
lossless networks existed, their practical applicability would still be rather li-
mited due to their extremely narrow bandwidth. We also outlined the reasons
why DMNss are even less effective when implemented at low-noise receivers.
These drawbacks are inherent to DMNs in general and are not specific to the
approach presented here. However, we argued that the eigenmode method
may be especially susceptible to these issues due to the insertion loss of the
directional couplers involved.
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Considering the aforementioned drawbacks of DMNS, it seems sensible
first to exhaust all possibilities to maximise the performance of the antenna
array itself. Only then should we examine the potential benefits of a DMN.
In view of this optimisation procedure, we are aware of by now that pattern
orthogonality (decorrelation) is not the principal goal to strive for, because
impedance mismatch has equally adverse effects. Rather, a compromise bet-
ween correlation and mismatch should be sought that maximises system per-
formance over the bandwidth of interest. On this connection, we revealed
that, in general, different criteria apply to the transmitting and the receiving
ends of the system. Whereas transmitters benefit from seamless power trans-
fer to the antenna array, receivers must be optimised with respect to the SNR.

It is worth noting that there is nothing special about the familiar 50 Q
reference impedance. It is therefore not sensible to first build an amplifier
inclusive of a 50 Q matching network, and then design the antenna array with
respect to that impedance. Instead, the antenna array should be optimised
with respect to whatever impedances the amplifiers happen to have without
any intermediate networks. The frameworks in this thesis were explicitly de-
veloped to allow for arbitrary reference impedances. Moreover, it may be
worthwhile to try out several types of amplifiers because it is likely that cer-
tain output impedances (transmitter) or noise parameters (receiver) are more
favourable to a particular compact array design than others.

The example arrays presented in this work were merely provided for de-
monstration purposes and are evidently inappropriate for implementation in
compact mobile devices. More sophisticated designs targeting small phy-
sical dimensions in addition to low mutual coupling have been carried out
by Braun et al. [25], Chiau et al. [30], Diallo et al. [93], and Karaboikis et al.
[49], for instance. Examples of compact multi-band diversity arrays are given
by Lindmark and Garcia-Garcia [57] or Minard et al. [100], amongst others.
The considerable influence of the ground plane size on the mutual impedance
was investigated by Solbach and Famdie [111]. Chaudhury et al. [91] sho-
wed that even the ground plane itself can be utilised as a multi-port antenna.
It is anticipated that, in the future, these and similar developments can be-
nefit from the compact expressions for mutually coupled array performance
devised herein.

Decoupling and matching networks can be employed as a next step when
antenna array and amplifier optimisation does not yield satisfactory results.
Network losses were shown to play a major role and should therefore be ac-
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counted for early in the design process with the help of the framework presen-
ted. Systematic and mathematically ideal design strategies such as the ones
discussed in Chapter 3 or by Weber [121] or Wang [120] are desirable from
a theoretical point of view. The practical applicability of these networks is
however limited as the result of their narrow bandwidth, high losses, and of-
ten large footprints. Losses can be minimised to some extent by moving the
DMN as close to the radiating parts as possible, or by even incorporating the
DMN into the array as was accomplished by Efer and Chaloupka [95] and
Shaker et al. [109]. These techniques however, cannot resolve the inherent
bandwidth limitations of mutual coupling. It is therefore supposed that “non-
ideal” networks exist that do not yield a perfectly decoupled and matched set
of ports, but that nonetheless achieve better results than mathematically cor-
rect networks in terms of bandwidth and overall system performance. Such
networks could comprise fewer components, be smaller, and in the end suffer
less dissipation due to ohmic losses. Objective means to judge and compare
the actual effectiveness of such networks have been developed in this thesis.

At a transmitter, we could think about deliberately introducing losses into
a DMN to achieve adequate matching and linear operation of the power am-
plifiers over a broad bandwidth. At the same time, the network can be op-
timised to keep the associated degradations of system efficiency as small as
possible with the help of the loss characterisation formulae given. Receiver
DMNss could take advantage of the fact that different transistor types (e.g., the
BFP640 and the NE3515S02) are noise matched to greatly differing imped-
ances. A possible design would consist of an eigenmode decoupling network
and then, at each port, employ the transistor closest to the emerging decoupled
port impedance. To some extent, this procedure would reduce ohmic dissipa-
tion losses by avoiding the large impedance transformation ratios involved if
all ports had to be (noise-)matched to the same impedance.

These are only some of the potential alternative antenna array and DMN
approaches that merit further investigation. We must not forget, though, that
mutual coupling imposes physical restriction on the amount of miniaturisa-
tion obtainable. No design, no matter how clever, can overcome these limits;
however, we can attempt to approach these limits as close as possible.

The techniques introduced in this work aim to provide an alternative van-
tage point on the problem of mutual radiator coupling, which seemingly im-
pedes the successful miniaturisation of antenna arrays. It should have become
clear by now that future designs of compact arrays and feed networks must
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concentrate on optimising system performance rather than attempt to mini-
mise mutual coupling. Of course, the present work only investigated the po-
wer efficiency of a transmitting system and the diversity capabilities of maxi-
mal ratio combining at a receiver. Thus, it remains to be seen if and how these
results can be generalised to other mobile communications techniques, such
as MIMO or multi-user systems. It is hoped that the concepts and the frame-
work put forward in this thesis present a decent starting point for subsequent
research and prove useful in meeting our future communications needs.



Kapitel 7

Zusammenfassung und
Ausblick

Der tibliche Weg zur Charakterisierung der Strahlerverkopplung geht von den
Streuparametern einer Antennengruppe, beziehungsweise dem Korrelations-
koeffizienten zwischen den mit den Antennentoren verkniipften Fernfeldern
aus. Um nun die Auswirkungen dieser Verkopplung einschitzen zu konnen,
wurden einige neuartige Kenngrofien entwickelt, die im Zusammenhang mit
der Leistungsfihigkeit eines mobilen Kommunikationssystems stehen. Eini-
ge davon lassen sich besonders einfach einsetzen, so zum Beispiel die Worst-
case-Effizienz oder der Signalverlust bei Diversitidtsempfang, die sich beide
aus den Streuparametern der Gruppe berechnen lassen. Andere, beispielswei-
se der SNR-Verlust bei Diversititsempfang, erfordern zusitzlichen Aufwand.
Alle KenngrofBen haben jedoch eines gemeinsam: sie fassen die Leistungsfi-
higkeit eines Systems in einer einzigen Zahl zusammen.

Aufgrund dieser Tatsache ergeben sich neue Moglichkeiten bei der Ent-
wicklung sowohl kompakter als auch effizienter Mobilfunkantennen. Es ist
nun erstmalig moglich, auf einfache Weise und auf quantitativer Ebene ver-
schiede Entwiirfe von Gruppenantennen zu vergleichen, bei denen aufgrund
von Platzbeschrinkungen die Strahlerverkopplung nicht ganz vermieden wer-
den kann. Die Leistungsfihigkeit der Gruppe kann in Abhdngigkeit von der
Frequenz aufgetragen werden. Dadurch wird die Einschédtzung von Breit-
band- oder Mehrbandantennengruppen deutlich vereinfacht. SchlieBlich eig-
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nen sich diese KenngroBen als Kostenfunktionen fiir die nicht-linearen Opti-
mierungsverfahren, die zum iiblichen Lieferumfang moderner elektromagne-
tischer Simulationssoftware gehoren.

Es ist dargestellt worden, wie man den Abstrahlvorgang einer beliebigen
n-Tor Antennengruppe als Superposition ihrer n zugrundeliegenden Freiheits-
grade interpretieren kann, welche als die Eigenmoden der Gruppe bezeichnet
wurden. Jedem Freiheitsgrad kann eine Eigeneffizienz zugeordnet werden.
Ausgehend von dieser Idee wurde ein Ersatzschaltbild entwickelt, welches
die Strahlerverkopplung auf eine besondere Erscheinungsform von (Impe-
danz-)Fehlanpassung zuriickfithrt. Man kann nunmehr davon ausgehen, dass
Eigenmoden mit einer niedrigen Strahlungseffizienz diejenigen Freiheitsgra-
de beschreiben, die bei Normalbetrieb der Antennengruppe mafigeblich un-
terreprisentiert sind. Dies gilt gleichermalflen fiir die Sende- als auch die Emp-
fangsrichtung.

AnschlieBend wurde eine konkrete Anwendung kompakter Gruppenan-
tennen, der Diversititsempfang, ndher beleuchtet. In diesem Zusammenhang
wurden geschlossene Ausdriicke fiir den Diversititsgewinn hergeleitet. Bei-
de genannten Ansitze — der effizienzbasierte wie auch der diversititsbasier-
te — haben dabei einen zentralen Parameter gemeinsam: die Strahlungsma-
trix ,, A", wobei es drei verschiedene Moglichkeiten gibt, diese Matrix zu be-
stimmen. Die erste Methode ist praktisch sehr einfach anzuwenden, da sie
lediglich die Kenntnis der Streuparameter der Antennengruppe voraussetzt.
Falls Ohm’sche Verluste in der Antennengruppe selbst eine Rolle spielen, so
kann die Matrix durch Integration iiber die gemessenen oder auch simulierten
Fernfelder ermittelt werden. Im verlustlosen Fall liefern beide Methoden die
gleichen Ergebnisse. Speziell fiir Diversitdtsuntersuchungen gibt es dariiber
hinaus eine dritte Moglichkeit, welche die Eigenschaften des Mobilfunkka-
nals einbezieht. Insbesondere wurde ein Formel vorgestellt, die sich als logi-
sche Konsequenz aus einem Kanalmodell ergibt, welches in der Literatur hiu-
fig Anwendung findet. Die DiversitdtskenngréBen sind also dazu gedacht, die
bisherigen Moglichkeiten der Diversitdtsbetrachtung zu erginzen und nicht,
diese zu ersetzten.

Bisher galt die Darstellung den Eigenschaften der Signaliibertragung zwi-
schen Antennengruppe und Sender beziehungsweise Empfanger. Die Qua-
litdt einer Mobilfunkiibertragung wird jedoch letztendlich iiber den Signal-
Rauschabstand (SNR) am Empfinger bestimmt. Um dieser Tatsache wei-
ter auf den Grund zu gehen, wurde ein vollstindiges Empfiangermodell unter
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Einbeziehung siamtlicher Rauschquellen entwickelt: Rauschen oder zufilli-
ge Storeinstrahlungen an den Antennen, Rauschen aufgrund von Ohm’schen
Verlusten im Speisenetzwerk, sowie Rauschen, welches von den Empfanger-
komponenten stammt, also den Verstirkern, Mischern oder das Quantisie-
rungsrauschen. Dabei ist festgestellt worden, dass insbesondere bei rauschar-
men Empfangszweigen die negativen Einfliisse der Strahlerverkopplung nicht
anndhernd so stark ausgeprdgt sind, wie es eine reine Signalanalyse vermu-
ten lassen wiirde. Dies gilt ebenso fiir Systeme, die in erster Linie unter exter-
nen zufilligen Storeinstrahlungen an der Antenne leiden. Die Schlussfolge-
rung ist, dass Untersuchungen, die lediglich die Signalleistung betrachten in
keiner Weise ausreichen, um die Empfangsqualitit eines verkoppelten Mehr-
kanalempfingers vorherzusagen.

Es wurde nennenswerter Aufwand getrieben, die erarbeiteten Modelle
und Formeln zu verifizieren. Dazu wurden Kanalschwundmessungen mit bis
zu drei Diversititszweigen durchgefiihrt. Die Statistiken der kombinierten Si-
gnale, sowie Schitzungen der Signalkovarianzmatrizen wurden mit theoreti-
schen Vorhersagen verglichen. Die gute Ubereinstimmung zwischen Theorie
und Praxis bestitigt nicht nur die Giiltigkeit der beschriebenen Modelle, son-
dern untermauert vor allen Dingen die praktische Anwendbarkeit von Streu-
parametermessungen zur Vorhersage der Diverstitdtseigenschaften eines Sys-
tems. Die Giiltigkeit des Rauschmodells wurde ebenfalls mithilfe von Mes-
sungen belegt. In Anbetracht dieser Ergebnisse ist letztendlich davon auszu-
gehen, dass die Schlussfolgerungen, die aus den abschlieBenden Beispielen in
Kapitel 5 gezogen wurden, ein ziemlich genaues Bild der Leistungsfahigkeit
der jeweiligen Systeme zeichnen.

Eine Moglichkeit den Auswirkungen von Strahlerverkopplung entgegen-
zuwirken, ist der Einsatz von Anpass- und Entkoppelnetzwerken (AEN). Die-
se wurden in Kapitel 3 untersucht. Es wurde ein systematischer Ansatz zum
Netzwerkentwurf basierend auf der Eigenmodentheorie vorgestellt und ge-
zeigt, dass dieser fiir eine breite Klasse von Antennengruppen anwendbar
ist. Ein besonderer Vorteil dieser Art von Netzwerken besteht darin, dass der
entkoppelnde Teil des Netzwerkes oft ohne Kenntnis der Streuparameter der
Antennengruppe hergestellt werden kann, indem man sich elektrische Sym-
metrieeigenschaften der Gruppe zu Nutze macht. Die Netzwerke zeichnen
sich weiterhin durch eine breite Entkoppelbandbreite aus, was ihre Anfillig-
keit gegeniiber Herstellungstoleranzen herabsetzt. Ein Beispiel hat gezeigt,
dass diese Eigenschaften besonders fiir die Massenfertigung von ,,Entkop-
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pelchips™ interessant sein konnten, da ein solcher Chip in einer Vielzahl von
Produkten Einsatz finden kann, solange gewisse Symmetrievoraussetzungen
erfiillt werden. Die entstehenden, nun entkoppelten, Tore kdnnen abschlie-
Bend mit herkommlichen Eintornetzwerken angepasst werden. Es sind auch
Varaktor-abstimmbare Netzwerke denkbar, die das System wihrend des Be-
triebes verschiedenen Frequenzbédndern anpassen konnen.

Auf Grundlage der Streuparameter eines AEN wurde eine Methode ein-
gefiihrt, mit der die Einfliisse des Netzwerkes auf die Eigenmoden sowie den
Diversititsgewinn des Systems berechnet werden konnen. Dies ermoglicht ei-
ne breitbandige Beschreibung und eine Bandbreitendefinition des entkoppel-
ten und angepassten Systems unter Einbeziehung Ohm’scher Netzwerkver-
luste sowie restlicher Verkopplung und Fehlanpassung an den Eingangstoren.
In diesem Zusammenhang wurden auch die Hauptschwéchen von AENs of-
fensichtlich: Obgleich diese Netzwerke so hergestellt werden konnen, dass
sie das theoretische Optimum angepasster und entkoppelter Tore erreichen,
so werden die daraus resultierenden Vorteile zu einem groflen Teil durch
Ohm’sche Verluste aufgezehrt. Selbst wenn man vollig verlustfreie Netzwer-
ke herstellen konnte, so wire die ndchste Beschrinkung ihre sehr schmale
Bandbreite. Diese Nachteile gelten naturgemiB fiir alle AEN-Formen, nicht
nur fiir den hier vorgestellten Ansatz. Allerdings war festzustellen, dass auf-
grund der Einfiigeddmpfung der eingesetzten Richtkoppler, die Eigenmoden-
methode moglicherweise besonders anfillig fiir die genannten Schwichen ist.

In Anbetracht dieser Nachteile von AENSs scheint es sinnvoll, zunichst
alle Moglichkeiten zur Optimierung der Gruppenantenne selbst auszuschop-
fen. Erst dann sollte iiber den Einsatz eines AEN nachgedacht werden. Im
Hinblick auf die Optimierung der Gruppenantenne sollte nun klar sein, dass
die Orthogonalitiit beziehungsweise Dekorrelation der Tore nicht das unbe-
dingte Ziel darstellen, da eine Impedanzfehlanpassung an den Einzeltoren
gleichermallen zu Verschlechterungen fiihrt. Es sollte vielmehr ein Kompro-
miss zwischen Korrelation und Fehlanpassung angestrebt werden, welcher
die Leistungsfihigkeit des Gesamtsystems iiber die erforderliche Bandbrei-
te maximiert. Dabei ist nun ebenfalls klar, dass fiir Sender und Empfanger
jeweils unterschiedliche Bewertungskriterien gelten. Wihrend es am Sender
auf reibungslosen Leistungstransport zur Antennengruppe ankommt, so muss
der Empfianger im Hinblick auf sein SNR optimiert werden.

Es sei an dieser Stelle angemerkt, dass die geldufige 50 QQ Bezugsimpe-
danz einen willkiirlichen Wert darstellt. Es ist daher nicht ratsam, erst einen
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Verstirker inklusive 50 Q Anpassnetzwerk herzustellen, um anschlieend die
Antennengruppe auf die gleiche Impedanz hin zu entwerfen. Die Antenne
sollte vielmehr auf die Impedanz hin optimiert werden, die der Verstirker (be-
ziehungsweise der Transistor) zufillig besitzt. Die KenngroBen dieser Arbeit
sind zu diesem Zwecke darauf ausgerichtet, mit beliebigen Bezugsimpedan-
zen arbeiten zu konnen. Dariiber hinaus kann es sich lohnen, verschiedene
Verstirkertypen auszuprobieren, da moglicherweise bestimmte Ausgangsim-
pedanzen (am Sender) beziehungsweise Rauschparameter (am Empfinger)
fiir einen konkreten Gruppenantennenentwurf besser geeignet sind als ande-
re.

Die Antennenbeispiele, die im Laufe dieser Arbeit prisentiert wurden,
galten lediglich Demonstrationszwecken und sind fiir den Einsatz in mobi-
len Endgeriten ganz offensichtlich ungeeignet. Elegantere Entwiirfe, die ne-
ben einer geringen Strahlerverkopplung auch kleine Abmessungen anstreben,
wurden unter anderem von Braun et al. [25], Chiau et al. [30], Diallo et al.
[93], und Karaboikis et al. [49] veroffentlicht. Entwiirfe kompakter Mehrban-
dantennen wurden beispielsweise von Lindmark und Garcia-Garcia [57] oder
Minard et al. [100] durchgefiihrt. Der deutliche Einfluss der Groe der Mas-
seflache auf die Strahlerverkopplung wurde von Solbach und Famdie [111]
untersucht und es wurde von Chaudhury et al. [91] sogar gezeigt, dass die
Masseflache selbst als Mehrtorstrahler eingesetzt werden kann. Diese oder
dhnliche Untersuchungen konnten moglicherweise von den in dieser Arbeit
entwickelten kompakten Kenngrofen fiir die Leistungsfahigkeit einer verkop-
pelten Antennengruppe profitieren.

Entkoppel- und Anpassnetzwerke stellen nun den néchsten Schritt dar,
wenn die Optimierung von Antennengruppe und Antennenverstérker nicht zu
zufriedenstellenden Ergebnissen fiihrt. Es wurde gezeigt, dass Netzwerkver-
luste eine grof3e Rolle spielen und dass diese deshalb mithilfe der entwickel-
ten Beschreibungsformeln moglichst friih in den Entwurfsprozess eingebun-
den werden sollten. Systematische und mathematisch ideale Entwurfsstrate-
gien, wie die aus Kapitel 3, aber auch andere, wie zum Beispiel von Weber
[121] oder Wang [120], sind von einem theoretischen Standpunkt aus na-
tiirlich wiinschenswert. Die praktische Anwendbarkeit dieser Netzwerke ist
auf der anderen Seite begrenzt, aufgrund von Verlusten, schmaler Bandbrei-
te und oft auch groflen Abmessungen. Verluste konnen in gewissen Grenzen
reduziert werden, indem man sich bemiiht, das Netzwerk so nah wie moglich
an die Antennen heranzusetzen. Noch besser ist es, das Netzwerk gleich als
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Teil der Antenne zu entwerfen, wie Efer und Chaloupka [95] sowie Shaker
et al. [109] gezeigt haben. Aber selbst diese Techniken kénnen die inhéren-
ten Bandbreitebeschrinkungen aufgrund der Strahlerverkopplung nicht um-
gehen. Es wird daher angenommen, dass ,,nicht-ideale Netzwerke existieren,
die zwar keine perfekt entkoppelten und angepassten Tore erzeugen, trotzdem
aber aus Systemsicht groB3ere Verbesserungen bewerkstelligen, als mathema-
tisch korrekte Ansitze. Derartige Netzwerke bestiinden aus weniger Kompo-
nenten, konnten kleiner ausfallen und letztendlich geringere Ohm’sche Ver-
luste verursachen. Objektive Mittel, um die tatsdchliche Effektivitit dieser
Ansitze beurteilen zu konnen, wurden in dieser Arbeit entwickelt.

An einem Sender konnte man dariiber nachdenken, vorsitzlich Verluste
in ein AEN einzubauen, um die Anpassung und somit die Linearitdt der Sen-
deverstirker bei vorgegebener Bandbreite zu verbessern. Gleichzeitig konnen
mithilfe der erarbeiteten Formeln zur Verlustbeschreibung die damit verbun-
denen Einbuflen der Systemeffizienz so gering wie moglich gehalten werden.
An einem Empfinger konnte man die Tatsache ausnutzen, dass verschiede-
ne Transistortypen (zum Beispiel der BFP640 und der NE3515S02) an vollig
unterschiedliche Impedanzen rauschangepasst sind. Ein moglicher Entwurf
konnte aus einem Eigenmodenentkoppelnetzwerk bestehen und dann an je-
dem Tor den Transistor einsetzen, der am nichsten an der entstandenen ent-
koppelten Torimpedanz liegt. Auf diese Weise konnten Verluste, die ansons-
ten mit den hohen Impedanztransformationsverhiltnissen verbunden wiren,
reduziert werden.

Dies ist nur eine kleine Aufzihlung von moglichen Entwurfsalternativen
fir Antennengruppen und AENs bei denen sich weitere Nachforschungen
lohnen konnten. Dabei darf man allerdings nicht vergessen, dass Strahlerver-
kopplung der Miniaturisierung physikalische Grenzen setzt, die von keinem
Entwurf, sei er noch so ausgefeilt, tiberschritten werden konnen. Wir knnen
dennoch versuchen diese Grenzen so nah wie moglich zu erreichen.

Die Ansitze, die in dieser Arbeit vorgestellt wurden, mochten eine alter-
native Auffassung des bekannten Problems der Strahlerkopplung vermitteln,
welches offensichtlich die erfolgreiche Verkleinerung von Antennengruppen
erschwert. Es sollte nun deutlich geworden sein, dass zukiinftige Entwiirfe
von kompakten Gruppenantennen und Speisenetzwerken die optimale Leis-
tungsfihigkeit des Gesamtsystems und nicht nur die Verringerung der Strah-
lerverkopplung zur Zielsetzung haben sollten. Die vorliegende Arbeit hat na-
tirlich nur die Leistungseffizienz eines Senders sowie die Diversititseigen-
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schaften von Maximal-Ratio-Combining néher untersucht. Es bleibt daher
abzusehen ob und auf welche Weise diese Ergebnisse auf andere Mobilfunk-
konzepte, wie zum Beispiel MIMO oder Mehrbenutzersysteme, verallgemei-
nert werden konnen. Die Hoffnung ist, dass die vorgeschlagenen Konzep-
te einen verniinftigen Ausgangspunkt fiir anschlieende Forschungsarbeiten
darstellen und einen Beitrag zur Bewiltigung unseres zukiinftigen Kommu-
nikationsbedarfs leisten.






Appendix A

Proofs and derivations

A.1 Diagonalisation of eigen-reflections

Proposition 1. If O is unitary, S symmetric, H = I — S1S, and Q"H 0 = A
is diagonal with distinct elements, then Q'S O =T is also diagonal.

Proof. The singular value theorem [8, Theorem 7.3.5] states that any matrix
§ can be decomposed as
S=0%VH, (A.1)
with U and V unitary, and £ real and diagonal. It also states that the columns
of U are eigenvectors of SS™ and the columns of V are eigenvectors of SHS.
Observe that eigenvectors of H = T — SHS are also eigenvectors of SHS.
From § = ST it follows that eigenvectors of SSH are the complex conjugates
of the eigenvectors of SHS. If all eigenvalues are distinct, the eigenvectors
will each be arbitrary to within multiplication by a unit phasor. Thus:

V=0¢& and U =0, (A2)

where & and 7 are diagonal and unitary to account for this arbitrariness.
Now (A.1) becomes

S=0 7L& oM, (A.3)

and
Q'S0 =pL&" (A.4)
the right-hand side being the product of three diagonal matrices. O
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A.2 Ohmic eigenefficiencies and decoupling and matching
networks

Proposition 2. The eigenvalues of a product of N non-singular matrices
Y = X1 Xy - Xy are invariant under cyclic shifts (e.g., Xa--- XyX1) of the
constituent factors.

Proof. The eigenvalues A; of a matrix ¥ are the roots of its characteristic
polynomial det{ ¥ — AI'}. For above product we have

det{7 - AT} = det{X, %, - Ry — AT} (AS5)

The characteristic polynomial of a cyclic shift can be written and rearranged
as

det{ X, XyX, - AT} (A6)
= det{ X7 K%y Ky Xy - AT} (A7)
= det{X;'VX, - AX{'X, } (A.8)
= det{X}'} det{¥ - AT} det{X, } (A.9)
=det{¥ - al'}, (A.10)
which is the characteristic polynomial of the original product. O

Proposition 3. The eigenvalues of the product H ;clcﬁrad define an upper limit

to the eigenefficiencies that can be achieved with a passive decoupling and
matching network (DMN).

Proof. The proof determines the eigenvalues of the system radiation ma-
trix Hyags which results from the interconnection of the antenna array with
scattering matrix S and radiation matrix Hy,q to a lossless and reciprocal DMN
with scattering matrix Sy;.

Equations for calculating I:I,ad,s based on its constituent components were
given in Section 3.5. The general solution for a DMN is derived below and
given in (A.62). The fact that the set of DMNs for a given antenna array is
infinite is accounted for by a unitary but otherwise arbitrary matrix U.

We start with (3.16)

Hrad,S = g{ﬁrad fa’ (All)
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and substitute (3.14)
fo= (1= Su2S) ™ Sua (A.12)

and the submatrices of the DMN (A.62)

Sw = SH, (A.13)
a (7 semV2\T 5 _ 172 >
Smar = ([T-88"] U=0,A208 0 (A.14)
to obtain
~ H _ . - o —] ~
Hiags = ((1 Sm 225) Sm 21) Hug (T-8u228)" Sma (A.15)
= U QaccA;{:%:QaccQacc accQacc Nraancc accQaccQaccA;{:%Qacc d
(A.16)
= 0HQ3CCA301({2QaCC ~raanccAaclézQacc y (A'17)
=0"A A A0 (A.18)

Above expression defines the set of radiation matrices Hi,q s obtainable with
a lossy antenna array and a lossless decouphng and matchmg network. Since
we are interested the elgenvalues of Hmd s, wWe set Hrad s = ABC with A =
URA Y2, B = Hyg, and C = H/2U. According to Proposition 2 the eigen-
values of the two products ABC and CAB are identical. The second product
finally simplifies to

CAB=HPUUMAH g = Hy. Ha. (A.19)

acc

The eigenefficiencies obtained by using a lossless network to decouple and
match the ports of a lossy antenna array are given by the eigenvalues of above
matrix product and are thus independent of the type of DMN chosen. O

A.3 Matrix-form of a single-port matching network

The following derives the 2 X 2 scattering matrix of a lossless and reciprocal
network for matching an arbitrary impedance with reflection coefficient I to
the system normalising impedance. First, the scattering matrix is partitioned
into its elements, the scalar scattering coefficients:

Sy = (SM,n SM,n) ' (A.20)
SM21  SM22
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These are the unknowns in the system of equations we are going to establish.
As mentioned above, the network is supposed to be reciprocal, therefore Sy =
Sy, and hence

SM,12 = SM21- (A.21)

Furthermore, the network ought to be lossless, which requires Su to be uni-
tary. We have SﬂSM = I, which imposes the following conditions on the
network

Isvunl® + smial* = 1, (A.22)
Ismoal® + Ismial” = 1, (A.23)

and
Swa2 St Sm22 Smpe = 0. (A.24)

Equation (B.14) provides an expression for the input reflection coefficient I's,
which we would like to vanish. So the final requirement is

53,0
Ts = sm11 + —— =0, (A.25)
’ 1- SM)zzr
or, alternatively
—sm11(1 = smool) = sy ol (A.26)

Rearranging (A.24) for sy,11 and substituting into (A.26) yields

SX1on S

w(l — smool) = S%/mr

SM,12

smao(1 = sm22l) = Isp. 12’ T

" 5 (A.27)
smo(1 = sm22D) = (1 = [sm22 )0
S22 — Ismo2’T =T = [smo2l'T

smo =T,
where condition (A.23) was used in the third step. This determines sy22. In
order to solve for syp12 we recognise that requirement (A.23) is fulfilled for

smi2 = u /1 -T2 (A.28)
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with arbitrary u having unit modulus, i.e., u = ¢ for arbitrary real ¢. For the
final parameter sy 11, we rearrange (A.24) and obtain:

—ul+/1- ]2
M1 = ————F/—
u /1 -2 (A.29)
= —u’T.

Note that requirement (A.22) was not explicitly used in the derivation, but it
can easily be shown that it is satisfied by above set of solutions.

A.4 Matrix-form of a decoupling and matching network

The derivation of a general form for the scattering matrix Sy of a decoupling
and matching network for a reciprocal antenna array S follows along the same
lines as the ordinary matching network. Before we begin, we need a number
of propositions and definitions:

Proposition 4. Let H be a complex Hermitian matrix and let QAQY be its
spectral decomposition with Q unitary and A real non-negative and diagonal.
Then there is a matrix A such that BBY = H. This matrix is not unique.

Proof. The solution is

B=0VAU, (A.30)
with U unitary and arbitrary and where the square root operates element-wise
on A. Substitution into the original requirement concludes the proof

BBY = 0 VAU VAQ! = 0RO = A. (A31)
O

Definition 5. We define the square-root of a Hermitian matrix H with spectral
decomposition QAQY as

R=H"=0VAOM (A.32)
This square-root is Hermitian and thus RR = RR" = RNR = H.

Proposition 6. Let X be a complex and normal matrix, i.e., let XX" = XHX.

Then (T - X1%)"* X (T- XM%)™"* = %
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Proof. Since X is normal [8, Section 2.5], there is a decomposition X =
A®AH such that A is unitary and ® diagonal complex. We can thus write

- i—cixi))ci)(\/i—éé)_l,i“.

(A.33)
(A.34)
(A.35)

(A.36)

(A.37)

Since the three matrices between A and A" are diagonal, they commute and

the square root terms cancel:

= APAM = X.

(A.38)

O

Proposition 7. Given a complex symmetric matrix S = ST, a complex Her-
mitian matrix H = I — SUS, and its spectral decomposition H = QAQY it

follows that X = QSO is normal.

Proof. We recognise that, with § = §T,
A" =7-8"S*=1-SS"

Proceeding with the condition for matrix normality,

we obtain

(A.39)

(A.40)

(A41)
(A.42)
(A.43)
(A.44)
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Proposition 8. Given is a complex symmetric matrix § = ST, a complex
Hermitian matrix H = T — §H§, and its spectral decomposition H = OAQM.
Then O*AV2QTSOAV?QH = §

Proof. As in Proposition 7 we define a matrix X = 0TSQ and recognise that

A =T - X"X. We rewrite the original expression in terms of X:

—1/2 x

0" AV QTSOAPQM = g (T-X"%) P X (T-"%) 2 0. (A45)

By Proposition 6 this simplifies to 0*XQO" and thus yields 0*0TSQQ" =
S. O

Let us begin with the derivation of the DMN scattering matrix Sy;. First,
we write Sy as a block-matrix.

Su= (e Swiz) (A.46)
SMJQ SM,22

The Syi21 element has been replaced by S‘g,“z because the DMN is supposed
to be reciprocal. For the same reason we have

§M,11 = SAT/I,ll and SNM,zz = 5‘54,22. (A47)

We further want the DMN to be lossless, i.e., SNI\/IS~1\I}I =1 Expansion of the
block-matrix yields

SNM,HSNI\I}I,H + §M,12§1\P/I[,11 =1, (A.48)
S~M,225~1\I}I,22 + gg/[,lzglt/l,lz =1 (A.49)
and Sy 1Si + SwiSiie = 0. (A.50)

Lastly, we have to formulate the objective that the network actually decouples
and matches the reciprocal load antenna array S. With (B.14) we have

~ ~ ~ oy o =1 ~ ~
SM,” + SM,le (I - SM,QZS) S{\F/L]z =0. (A.51)
We continue with above equation and multiply from the right by Sy ;,. Thus

- SNM,IISNK}[,lz = §M,12§ (i— §M,22§)_l S'E/LIZS‘;“Z. (A.52)
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The left-hand side is replaced with the help of (A.50) and the last factor on
the right-hand side is replaced with (A.49):

Sv288 50 = Sv2S (7= SmanS) ™ (S - SwaaSHo) . (A.53)
Disregarding the meaningless solution Sy 1> = 0, this equation is fulfilled for
Smoz = SH, or, since § = ST, Smaz = S*. (A.59)

‘We substitute this result back into (A.49) and obtain
SwSwz =I1-88"  andthus Sy ,Su, =7-SS"%  (A55)

With Proposition 4 and Definition 5 the right-hand side factors as

SH ., =[T-88"" 0" andthus Sy =0T [T-SSH]". (A56)
This result is substituted into (A.50) and rearranged for SNM,H:
~ ~ ~ Six _1
Smi1 = =Sm,128 (SMJZ) (A.57)
Ty & a2 & s aam 2\ 7!~
=0T [1-§5"" s (([1-55M")) 0. (A.58)
With Definition 5, (A.39), and Proposition 8 this simplifies to
S = —0TG*R2QTS ((0*AV20")) ' U (A.59)
= TG APOTSOA 20N T (A.60)
=-0"SU. (A.61)

The general expression for the scattering matrix Sy of a lossless and recipro-
cal decoupling and matching network for a reciprocal antenna S is thus given
by
) ~0"S0 or [i-551" A
S = - o T _ - y ( .
(=55 o s
with U unitary but otherwise arbitrary. The computation of the matrix square-
roots in this solution does not demand for the Takagi-factorisation of S (cf.
Section A.1); the familiar unitary decomposition of the radicand is thus suf-
ficient. Note that the derivation did not explicitely make use of (A.48). It is,
however, straightforward to show that this condition is also satisfied by above
result.
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A.5 Eigenmodes fade independently

Proposition 9. The eigenmodes of a lossless and reciprocal but otherwise
arbitrary multi-port antenna array fade independently in a uniform Rayleigh
environment.

Proof. Although is implicated by Wallace and Jensen [81, Eqn. (31)], a more
detailed proof is presented here due to its fundamental significance to the idea
of eigenmodes.

Let there be a reciprocal and lossless n-port antenna. As described in Sec-
tion 2.3.1 the excitation of an individual port i with all other ports terminated
with matched loads produces a far-field beam pattern described by a function
F}(db, 0) dependent on azimuth ¢ € [—x; 7) and elevation 6 € [-7/2;/2]. In
order to conserve space, we will concentrate on one-dimensional beam pat-
terns in one polarisation for the first part of the proof. Thus, the F;(¢) are
complex-valued scalars dependent on azimuth only.

Let m plane waves impinge on the array from random directions ¢y dis-
tributed evenly across the azimuthal range. The kth wave has a random non-
negative amplitude c; with unknown distribution and a uniformly distributed
random phase ;. The complex waves b; received at the antenna ports are
the superposition of these waves weighted by the far-field response F; in the

direction ¢y:
m

bi =Y cFi(goe. (A.63)

k=1

With a large number of plane waves m the distribution of the received signal b;
will approach a normal distribution by the central limit theorem [15, p. 159].
Because the phase angles i have uniform distribution, the b; are circularly
symmetric complex and zero mean. The covariance between ports i and j is
given by

Var {b;,b;} = E{bib}} =

f = f <Z ckFi(aﬁk)eW) <Z ckF;f(dsk)e‘W) :
k=1

k=1
pe(c) - pe(em) - pe(d1) -+ Po(Pm) - Py(P1) -+ - Py(Wim)
dCl o dcmd¢1 e d¢mdlpl e dwm’ (A64)
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where the limits of integration are taken over the range of the corresponding
random variables. The probability density functions p(-) are

1
Po(®) = py(Y) = o and

pc(c) = unknown.

The product of sums can be factored out as

D GFGOF g+ Y | ckFilg) | Y eF5gne ™ | e | (A65)
k=1 k=1 =1
I#k

The second sum vanishes when integrated in turn over the i, whereas the
first sum is independent of any of the ;. Thus, (A.64) can be written as

Var {b;.b;} = f . f (Z &E(@)F}*(@)) peler) -
k=1
pc(cm) : P¢(¢1) o ‘P¢(¢m)dC1 e dcmd¢1 e d¢m~ (A66)

Exchanging the order of integration and summation yields

Var {bi,bj} =3 ( /0 | @rwor;eo: pc<ck)p¢<¢k)dckd¢k), (A67)
k=1 d

which can be simplified further to

m

1 Ve
Var{bi,bj} = TNE{ZL%}/_ Fi(§)F;(¢$)d¢

k=1

~ / Fi($)F(¢$)dg. (A.68)

We conclude that the signals received by different beam patterns are uncor-
related if and only if above integral vanishes, i.e., if the two beam patterns
are orthogonal. Because the b; are Gaussian random variables we can further
conclude that orthogonal beams fade independently [15, p. 158].
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In order to extend the proof for two-dimensional radiation patterns in two
polarizations the following amendments are necessary. The joint PDF of the
azimuth ¢ and the elevation 6 must be proportional to the unit surface element
of the spherical coordinate system, i.e., pgo(¢, 8) = (cos)/(4x). We assume
that, on average, the power incident on the array is shared equally between
both orthogonal polarizations. So, the sum in (A.63) has to be duplicated, one
sum for each polarization. Proceeding with the integration as above yields an
expression similar to (A.68):

Var {b;, b;} ~ f f Fl(¢,0)- Fi(¢,6) cos 0d¢ db, (A.69)

Again, beam pattern orthogonality implies independence of fading. This
concludes the proof for two-dimensional radiation patterns in two polariza-
tions. O

A.6 Series expansion of the diversity gain

We sketch the derivation of the Maclaurin series expansion of the inverse
function ¢ = d~'(p) of the CDF (4.20), which is required for the calculation
of the diversity gain approximation (4.26). The problem that no closed-form
expression exists for o = d~!(p) is overcome by calculating all series co-
efficients from the Laplace transform of d(o). Familiarity with the integra-
tion rule, the differentiation rule, and the initial value theorem of the Laplace
transform is assumed [18, Section 7.2.2]

We define a function x(0) = n!det{H} d(o) and examine its Laplace
transform based on (4.11):
ntdet{A} , ntded )
s det{l~ + sH }

n! n!

s det{ﬁ‘l} det{f+ sﬁ} ) s det{si— (—ﬁ‘l)}

X(s) = (s) =

(A.70)

The determinant in the denominator of the last term is now of the form used
in [73], where it is shown that the coefficients of the characteristic polyno-
mial of a matrix can be expressed in terms of traces of integer powers of that
matrix. Thus, X(s) can be written as

n!

X(s) =
s a st +apstl 4

: (A.71)
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and the first three coefficients are

a =1
- 1@ )
ay = ) L T2
1
az = 3 (T? = 371115 + 273), (A.72)

with 7; = tr{I:I - } Higher order coefficients are found with a recursion for-
mula in [73], but usually this will be neither practical nor necessary. Coeffi-
cients a; vanish for i > n, so the subsequent discussion is valid for any number
of radiators n.

With the aid of the differentiation rule and the initial value theorem, we
find the Maclaurin series of x(0),

2
n ai n+1 a)—a n+2
~ Q" — +
MO > O = T e D
B al —2amay +ay ., - (A73)
n+Dm+2)(n+3)
and its derivatives:
X =n"" —a" +- -
X' = (- Dng"? —ang"" +---
(A.74)
Then we define a function y(0) = 1/ x(0) and use
1 e
Y@ = — (¥ '¥ (@)
24 1 l— a 1’
Y'(©) = = (X (1= D¥' (@) + nx(e)1x" (@) )
(A.75)
in conjunction with (A.73) and (A.74) to construct the series of y(0):
~o— 2
) ~ o nn+ D
Z+n+2)al -2nn+1
(n n ) aj nn+Nay 4 o (A76)

2n2(n+ 1)2(n + 2)
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Here it is important that for the evaluation of y(0), y'(0), ...a sufficient number
of terms is included in the series of x(0), since otherwise indeterminate ex-
pression may arise. By virtue of power series inversion [1, p. 366], we obtain
the series expansion of the inverse function o = y~'(g):

T 5, (4n+ 6)7% —nn+ D1y 4
2rnd T T 22 D2+ 2)

e=qg+

N (16n% + 58n + 48)‘1’? -9+ D(n + 2)tt; + 12 + 1)%13 q4
33+ 1)} +2)(n+3)
- (A.77)

where the coefficients a; have been replaced by their trace-expressions (A.72).

As a final step we set
g=1/n!det{H} p (A.78)

and arrive at a closed-form approximation for the SNR-level o, for which the
CDF d(p) yields a given probability level p.






Appendix B

Waves, scattering
parameters,
and noise

In microwave engineering, scattering parameters are an established means for
describing the linear behaviour of passive and active devices. Measurement
equipment and device manufacturers usually specify scattering parameters
with respect to a 50 Q environment. There is nothing special about 50 Q
other than the fact that, for seamless interoperability, most commercial mi-
crowave components, such as coaxial cables, attenuators, or amplifiers, are
in some way optimised with regard to this impedance. When designing com-
ponents to fit into this system, 50 Q scattering parameters present a perfectly
appropriate tool for analysis. The reflection coeflicient, for instance, is an in-
tuitive indicator for the quality of the impedance match (with respect to 50 Q)
at a particular device terminal.

For the developement outside this standard framework, however, 50 Q
scattering parameters may be more of a hindrance than a help (cf. [125]).
Consider for example an amplifier, which happens to have an output im-
pedance of 10 Q, and an antenna with a terminal impedance of 5 Q. In
many cases, the impedance match between both devices will be considered
acceptable. Yet, there is no insightful way to assess the quality of the im-

219
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pedance match from the 50 Q-based reflection coefficient (cf. Hoffmann [6,
Eqn. (5.51)]).

If we wished to optimise above antenna array for optimum power match
to the amplifier, it would be desirable to express its reflection coefficient with
respect to the amplifier’s impedance. Especially when it comes to the evalua-
tion of multi-port antennas, the possibility to normalise scattering matrices to
arbitrary impedances presents a powerful tool because it keeps explicit oc-
curences of the amplifier impedances out of the analysis. Formulae become
more compact and are thus easier both to interpret and to remember. Scat-
tering parameter renormalisation essentially separates the problem of evalua-
ting the interplay between an antenna array and a set of amplifiers into two
smaller independent problems: first the normalisation with respect to the am-
plifier’s impedances and then the analysis or optimisation of the antenna array
as an independent problem.

Scattering parameter renormalisation is a long known concept. Unfor-
tunately, there are two competing and incompatible extensions of classical
transmission line theory to complex normalising impedances [125]. Each me-
thod has its specific advantages and drawbacks. One concept is called pseudo-
waves and claims to closely model the wave propagation phenomena that
physically take place on transmission lines even for complex line imped-
ances [59, 60]. The other concept due to Youla [86] and Kurokawa [11, 54]
is called power waves and yields especially simple expressions (cf. (B.4)) for
the power transferred from one device to another. Since the present thesis
mainly concerns the power flow between an antenna array and some load, the
choice of power waves was a natural one. Additional information on traditio-
nal wave and scattering parameter theory is given by Hoffmann [6]. Howe-
ver, attention must be paid since not all concepts can be generalised to power
waves; especially the well-known Smith chart requires special attention [54,
Eqn. (13)], [63].

This appendix gives a concise review of the key concepts relevant to this
thesis. Additional techniques for which no reference could be found are ex-
plained in little more detail. A final section is dedicated to the concept of
noise waves, which, unlike the traditional approach based on noisy voltage
and current sources, fits in with the idea of power waves and signal flow
graph analysis. Familiarity with basic scattering parameter theory is assumed
in the following.



B.1. Scattering parameters 221
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Fig. B.1: Voltages, currents, waves, and normalising impedances at a linear two-port
junction described by its impedance matrix Z or its scattering matrix S.
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B.1 Scattering parameters
B.1.1 Definition

Figure B.1 portrays a linear two-port junction. Both ports possess a common
ground potential. One way to describe the junction is by the voltage v and by
the current i; at each port k. All voltages are referred to ground potential and
all currents flow info the junction. The idea can be generalised to an arbitrary
number of ports, n, by writing all voltages as a voltage column vector V =
i, va,. .., vn)T and all currents as a current column vector i = (i1, 00,..., in)T.
Then their linear relationship is written as

V=27 (B.1)

where Z is called the impedance matrix of the junction.

The junction can equivalently be described in terms scattering parameters.
At each port we define two power waves a; and by, in terms of the port voltage
v and i [54, Eqn. (1)]":

Vi + Zo ik Vi _ZSkik
ay = —————— and by = ———, (B.2)
2 +/Re {Z(),k} 2 \/ Re {ZO,k}
with
b=Sa. (B.3)

The power wave qy travels towards the junction and is commonly called the
incident wave. Conversely the wave by is called the reflected wave. We call

IThere is a typographical error in the corresponding formulae in [11, Eqn. (5.74)]
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Zy x the normalising impedance of the kth port. The choice of Zy is entirely
arbitrary as long as its real part is (strictly) greater than zero. In particular,
the normalising impedance may be complex and every port may have a dif-
ferent impedance assigned to it. A junction port is said to be matched if it
is terminated with its normalising impedance. This is a purely mathematical
conception and holds regardless of any physical reflections that do or do not
take place at that port.

An essential property of power waves, which is extensively exploited in
the present work, is that the real power P; transported into the junction via
port k is given by [86, Eqn. (7)]

Py =l = il (B.4)

that is, the (mathematical) power travelling towards the junction minus the
power travelling away from the junction. The total amount of power dissipa-
ted in the junction is consequently given by the sum over all P;.

Reciprocal junctions have § = ST, i.e., their scattering matrix is symme-
tric. Lossless devices fulfil SSY = 7, i.e., their matrix is unitary [54].

Since conversion formulae between Z and S matrices are not relevant to
the present thesis, they are omitted here and the interested reader is referred
to Kurokawa [11, p. 222] or Kurokawa [54, Eqns. (18) and (19)]. Formulae
for changing the normalising impedances of scattering matrices and related
quantities are given later on. In this context we will only state the definition
of the reflection coefficient I' of an impedance Z normalised to impedance Zy:
b Z-17

r==--= .
a Z+ 7

(B.5)

Beware that certain rules apply to the choice of the Zy; when it comes to
connecting two junctions together. These are explained next.

B.1.2 Interconnection of multi-port junctions

In order to mathematically describe the behaviour of a combination of two or
more multi-port junctions, boundary conditions must be defined at their inter-
faces. Consider Fig. B.2, which illustrates the voltages and currents as well
as the waves at such an interface. The boundary conditions for the voltages
and currents are easily established using Kirchhoff’s laws:

V) = V1 and iz = —il. (B6)
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Fig. B.2: Close-up view on an interface between two connected multi-port junctions.
The question is how to choose the normalising impedances of the two interfacing
ports.

In the wave domain, the corresponding boundary conditions are what we
would expect from intuition, i.e., the reflected wave b; of junction one be-
comes the incident wave a, of junction two, and vice-versa:

bz =ai and ay = bl- (B7)

Attention must be paid, however, to the normalising impedances Z, ; and Z»
of the two interfacing ports. Let us therefore substitute the definitions of the
wave quantities (B.2) as well as the voltage and current boundary conditions
into b, = ay:

. Z* .
= vitZorh _ VitZooht by (B.8)
2v/RelZo1}  2+/RelZps)
(Vl + Zo,lil) Re{Zpy} = (V1 + ZS,Zil) Re{Zy,1} (B.9)
V1 (\/Re {Z(],z} - \/RC {Z()»]}) =1 (Zaz V Re {ZO,I} - ZO,l V Re {ZO,Z}) .
(B.10)

Clearly the last equation can only be fulfilled for all v; and i, if the paren-
thesized terms on both sides are zero, i.e., if Z,; = Z;,. The same holds for
the waves a, = b, travelling in the opposite direction. Multi-port junctions
described by scattering parameters can therefore only be combined if the nor-
malising impedances at the respective interfaces are complex conjugates of
each other. This applies to mathematical manipulations both in the form of
matrix equations as well as signal flow graphs. In this thesis the correct nor-
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Fig. B.3: Clarification of the quantities involved in the interconnection of two multi-
port junctions (a) and the resulting equivalent network (b).

malisation is therefore always indicated in block diagrams and signal flow
graphs.

With this knowledge we will now derive the scattering matrix of the com-
pound junction Sc that arises when a junction S| having » input and n output
ports is terminated with an n-port junction S, as in Fig. B.3a. We begin by
partitioning the 2n X 2n matrix S into block-matrices:

& St S
S = ~ ~ . Bll
: <Sl,21 Sl,22> (B.11)

The ports indexed “1” refer to the left-hand side ports and the ports indexed
“2” refer to the right-hand side ports. The linear relationship between the
wave vectors in the figure can be expressed as

L

N =3 o =
c = S1,ndc + 81,1241

s
1]

N - S - S and = 26—1)2, (B12)

by = S1p1dc + 81,220,

with the boundary conditions
a =by and @ = b,. (B.13)

Note that all ports of S| may be normalised to distinct impedances as long

as the conjugate impedance condition is met at the interface to S,. Solving
. PR S .

above set of equations for b¢ in terms of dc yields

- 5 o . ~ ~ ~ 5 /3 & a\—1 &
bc = Scac, Wlth SC = Sl,ll + 51’1252 (1 — 51)2252) 51)21, (B14)
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Fig. B.4: Interpretation of the renormalisation procedure by means of a unity network.
(a) Wave quantities at the conceptual building blocks and (b) the corresponding signal
flow graph.

where Sc is the scattering matrix of the combined network in Fig. B.3b. The
resulting ports take on the normalisation of the input ports of S;.

B.1.3 Renormalisation

In most cases we can measure or simulate scattering matrices and far-field
patterns only with respect to the standard 50 Q normalisation impedance. In
order to fully exploit the theory developed in this thesis, we need the ability
to normalise our data to arbitrary complex impedances.

Renormalisation of power wave based scattering matrices was derived
by Kurokawa [54, Eqn. (32)], however, the formulae given in [125, Eqn. (10)]
will be preferred and stated here. We define the diagonal matrices ZO,old
and ZO,new to denote the normalising impedances before and after renormalisa-
tion, respectively. The ith diagonal element contains the impedance assigned
to port i. We define two diagonal auxiliary matrices

Zones ~ 2  [Re Zond Zou+ 2
a=22w 0 g B= {Zonen} Zoa 0o (B.15)
ZO,neW + ZO,old Re {ZO,OM} ZO,old + ZO,neW

Then the transformation between scattering matrices based on the old and the
new normalisation is given by

Snew ZB_I (SOId - d'*) (i_ &Sold)_lﬁ*~ (B16)

The problem of far-field pattern renormalisation can be solved by inter-
preting (B.16) as the interconnection of the original junction S,iq and a “unity
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network”, whose sole purpose is the translation of the normalising imped-
ances. Physically this network is a direct (i.e., zero length) connection bet-
ween its inputs and its outputs. Mathematically the network scattering matrix
carries the new and the old normalisation at its inputs and outputs, respecti-
vely. This is illustrated in Fig. B.4a. The scattering matrix S, of the unity
network can be shown to be
~, (() I ) renormalisation ~ (—dﬁ*ﬁ‘l B
So=17 =& Su = e ~
I 0 B a

o ) B.17)
It is straightforward to prove that the cascade connection of S, and S.iq by vir-
tue of (B.14) is indeed equivalent to the renormalisation according to (B.16)
once one has realised that @a* + 558* = I.

The original set of n far-field patterns ﬁold’i((ﬁ, 0) describes the far-field
response of the array when its ith port is excitet with unit power and all other
ports are terminated with matched loads. With reference to Fig. B.4 this is
the case when the ith element of the old excitation vector dyyq is equal to
one, and all other elements are zero. The renormalised set of far-field pat-
terns F new.i(¢, ) can thus be found by determining the excitations dyq which
belong to individual port excitations of the vector dpew. From the set of ma-
trix equations associated with the signal flow graph in the figure we obtain
the following relationship between ey and doq:

dog = Tlnew,  with 7= (T-aSya)” B (B.18)

The excitations d,g associated with individual port excitations of the renor-
malised antenna array are thus given by the columns of the matrix 7. This
finally leads us to the renormalisation formula for far-field patterns:

n
Frewi(.0) = Z #iF o0 (9.0), (B.19)
k=1

where 7y; denotes the matrix element in row k and column i.

Most ideas in this thesis are, however, not based on the far-field patterns
themselves but rather on a derived quantity: the radiation matrix H, which
in later chapters becomes the covariance matrix of the received signal enve-
lopes. Since H is either based on the scattering matrix or, in some way, on the
far-field patterns of the array, renormalised versions can in principle be deter-
mined by renormalising the underlying quantities and then recomputing H.
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A much simpler method makes use of the helper matrix 7 introduced above.
Pursuant to Section 3.5 on page 64 we have

Hyew = 1 Hopg 7. (B.20)

B.2 Noise wave description

Working with signal waves and their “flow” through signal flow graphs is
common practice in the field of microwave engineering. It is probably one
of the reasons for the popularity of scattering parameters and signal flow
graphs [6, Chapter 9]. On the contrary, the noise properties of a system are
usually examined in terms of equivalent voltage and current sources. In order
to investigate the signal and the noise behaviour, one has to switch between
the wave domain on the one hand, and the impedance domain on the other;
the system equations must consequently be derived twice and the descriptive
signal flow graph analysis is available for only part of the problem.

Yet there is in fact little difference between signals and noise—both are
time-varying electric and magnetic fields that propagate through a microwave
circuit. Differences arise only in their respective descriptions. Whereas we
can assign a definite amplitude and phase to some signal wave a, we can-
not do so for a noise wave v because noise is a random phenomenon. We
can however model the properties of noise waves, namely its power and, for
more than one noise wave, the correlations between them. This topic was
rigorously treated by Bosma [118]; the essence of his work is summarised
in [16] and the application of noise waves to the analysis of noisy amplifiers
is demonstrated in [4, 65].

In the following, a concise overview of the mathematics behind noise
waves in the context of linear microwave systems will be given. For the un-
derstanding of the present thesis, it suffices to treat noise waves as complex
zero-mean Gaussian random variables with equal variance in the real and the
imaginary part. Such a random variable is uniquely characterised by its va-
riance, which happens to be the power of the travelling noise wave. Compare

*

Pgignal = lal* = aa 0 Puoise = B{V*} =E{w'} =kT,B, (B.21)

where T, is the equivalent noise temperature, B the bandwidth under consi-
deration, and k = 1.3806504 J/K the Boltzmann constant. The noise tempe-
rature T, is a function of frequency in the same way as a. The expectation
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Fig. B.5: Linear transformations on noise waves. (a) Via a path in a signal flow graph
or (b) by superposition. Superposition of correlated noise waves must be calculated
according to its equivalent representation (c).

operator performs the necessary conversion from the random to the determi-
nistic domain. The presence of several noise waves vy, v, ..., v, in a system
is uniquely modelled by the m X m covariance matrix or, alternatively, their
equivalent matrix of temperatures:

Var (¥} = E{W"} =kT,B,  with

<y
1l

(B.22)
Vin

If all noise waves are uncorrelated, then the matrix T, is diagonal. In any
case, the diagonal elements equal the variances of the respective waves and
thus their noise powers.

The effect on the covariance matrix when noise waves undergo a linear
transformation, i.e., traverse a path in a signal flow graph, is straightforward
to derive. Consider Fig. B.5a where a set of noise waves ¥ is transformed into
waves /i by the linear operation A. Then

gd=Av (B.23)
and thus
Var {1} = E{g"} = B {47 (A7)"} = AE {1} A"
= A Var {17} AR

(B.24)

where the matrix A need not be square necessarily. An important example of
anon-square A is the superposition of several waves at a node, as in Fig. B.5b.
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If the waves exhibit mutual correlation, their powers cannot simply be added.
Instead the addition must be written in form of a matrix product

p=vi+va+vs+va=(1 1 1 1) |2 =43 (B.25)

as in Fig. B.5c, so the variance (power) of the result i can be calculated by
virtue of (B.24):

E{lu} =AVar {7} A" =(1 1 1 1)-Var{¥}- (B.26)

b— it
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Notation and abbreviations

Mathematical notation

X

X2 g2
111,

scalar, complex unless otherwise noted
column vector, row vector

ith element of the vector ¥

matrix

matrix element in row i, column j

Real and imaginary parts of a complex number
absolute value

Euclidean vector norm

base-10 logarithm

complex conjugate, operates element-wise
on matrices and vectors

matrix transpose (without conjugation)
Hermitian transpose (conjugate transpose)
matrix trace

matrix determinant

matrix inverse

Moore-Penrose pseudo-inverse

square-root of a Hermitian matrix; its inverse

spectral matrix norm
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248 Notation and abbreviations

E{x} expected value of random variable x
Var{x} variance of random variable x

Var{¥} covariance matrix of random vector ¥

Common quantities

All quantities related to electromagnetic fields are complex frequency-depen-
dent harmonic root-mean-square amplitudes unless stated otherwise.

a,b signal power waves, usually travelling in the trans-
mit (a) and in the receive (b) direction

d(o) SNR cumulative distribution function (CDF)

G4 diversity gain with respect to single-branch receiver
Fi(¢,0) embedded normalised far-field pattern of port i
radiation matrix; transposed covariance matrix
the identity matrix
Boltzmann constant, kK = 1.3806504 J/K

diversity loss with respect to ideal diversity receiver

=~ ml

h
a

number of antenna array ports
power

outage probability

probability density function (PDF)

=

unitary matrix of eigenvectors/eigenmodes of H
ith column of 0, ith eigenmode

scattering matrix

e e A O TN S I

=

equivalent noise temperature and temperature cova-
riance matrix

w  vector of weights of a linear diversity combiner
Zy characteristic impedance of a transmission line
Zi, internal or input impedance

I' single-port reflection coefficient



Notation and abbreviations

Xi
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diagonal scattering matrix of several single-port loads
ith modal reflection coefficient

elevation

diagonal matrix of eigenvalues/eigenefficiencies of H
free-space wavelength

guided wavelength on a transmission line

ith eigenefficiency

noise power waves, travelling in the transmit (v) and
in the receive (u) direction

complex envelope correlation coefficient between ports
iand j

signal-to-noise ratio (SNR)

azimuth

a phase angle

ith ohmic eigenefficiency

Common subscripts

no subscript
Hacc’ /lacc
Py, ayy
I:Ienw Tel’lV
ZinF» VF

Zina Fin

am, I'm

Sn, Gan

ZR» Tr

I:Irada /lrad

Ss., Hs, ds

commonly relates to the antenna array, e.g., S, @
relate to the power accepted by an array or system
power/power wave available from a source

relate to the communications environment

relate to the receiver front-end

internal or input impedance/reflection coefficient
indicate modal/eigenmode domain

relate to the array feed network

relate to quantities at the end of the receiver chain
relate to the power radiated by an array or system

relate to the antenna system, i.e., the combination
of array and network
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Notation and abbreviations

Abbreviations

ADC
ADS
AEN
AGC
C#
CDF
co-pol
D/A
DAC
DC
DMN
DSP
ENR
FIFO
FIR
FPGA
GPIF
GUI
HIJ-FET
ISI
ISM
LNA
LO
LTCC
MEG
MIMO
MN
MRC
NF
OFDM
PC
PCB
PDF
PIFA
PLL

Analogue-to-Digital Converter
Advanced Design System (Software)
Anpass- und Enkoppelnetzwerk
Automatic Gain Control
programming language, pronounce: “‘see sharp”
Cumulative Distribution Function
co-polar

Digital/Analogue
Digital-to-Analogue Converter
Direct Current

Decoupling and Matching Network
Digital Signal Processor

Excess Noise Ratio

First In, First Out

Finite Impulse Reponse

Field Programmable Gate Array
General Programmable Interface
Graphical User Interface
Hetero-Junction Field-Effect Transistor
Inter-Symbol Interference

Industrial, Scientific, Medical

Low Noise Amplifier

Local Oscillator

Low Temperature Co-fired Ceramic
Mean Effective Gain

Multiple Input Multiple Output
Matching Network

Maximal Ratio Combining

Noise Figure

Orthogonal Frequency Division Multiplex
Personal Computer

Printed Circuit Board

Probability Density Function

Planar Inverted-F Antenna
Phase-Locked Loop



Notation and abbreviations

PTFE
QPSK
RC
RF
SIMD
SMA
SNR
SRFT
USB
VCO
WLAN
XPR
x-pol

Polytetrafluorethylen, Teflon®
Quadrature Phase-Shift Keying
Resistor, Capacitor

Radio Frequency

Single Instruction Multiple Data
Sub-Miniature-A (RF connector)
Signal-to-Noise Ratio

Simplified Real-Frequency Technique
Universal Serial Bus
Voltage-Controlled Oscillator
Wireless Local Area Network
Cross-Polar Ratio

cross-polar
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