387,444 research outputs found

    Origin of complexity in multicellular organisms

    Full text link
    Through extensive studies of dynamical system modeling cellular growth and reproduction, we find evidence that complexity arises in multicellular organisms naturally through evolution. Without any elaborate control mechanism, these systems can exhibit complex pattern formation with spontaneous cell differentiation. Such systems employ a `cooperative' use of resources and maintain a larger growth speed than simple cell systems, which exist in a homogeneous state and behave 'selfishly'. The relevance of the diversity of chemicals and reaction dynamics to the growth of a multicellular organism is demonstrated. Chaotic biochemical dynamics are found to provide the multi-potency of stem cells.Comment: 6 pages, 2 figures, Physical Review Letters, 84, 6130, (2000

    Population growth and persistence in a heterogeneous environment: the role of diffusion and advection

    Full text link
    The spatio-temporal dynamics of a population present one of the most fascinating aspects and challenges for ecological modelling. In this article we review some simple mathematical models, based on one dimensional reaction-diffusion-advection equations, for the growth of a population on a heterogeneous habitat. Considering a number of models of increasing complexity we investigate the often contrary roles of advection and diffusion for the persistence of the population. When it is possible we demonstrate basic mathematical techniques and give the critical conditions providing the survival of a population, in simple systems and in more complex resource-consumer models which describe the dynamics of phytoplankton in a water column.Comment: Introductory review of simple conceptual models. 45 pages, 15 figures v2: minor change

    BlenX-based compositional modeling of complex reaction mechanisms

    Full text link
    Molecular interactions are wired in a fascinating way resulting in complex behavior of biological systems. Theoretical modeling provides a useful framework for understanding the dynamics and the function of such networks. The complexity of the biological networks calls for conceptual tools that manage the combinatorial explosion of the set of possible interactions. A suitable conceptual tool to attack complexity is compositionality, already successfully used in the process algebra field to model computer systems. We rely on the BlenX programming language, originated by the beta-binders process calculus, to specify and simulate high-level descriptions of biological circuits. The Gillespie's stochastic framework of BlenX requires the decomposition of phenomenological functions into basic elementary reactions. Systematic unpacking of complex reaction mechanisms into BlenX templates is shown in this study. The estimation/derivation of missing parameters and the challenges emerging from compositional model building in stochastic process algebras are discussed. A biological example on circadian clock is presented as a case study of BlenX compositionality

    Fixed Points and Attractors of Reactantless and Inhibitorless Reaction Systems

    Full text link
    Reaction systems are discrete dynamical systems that model biochemical processes in living cells using finite sets of reactants, inhibitors, and products. We investigate the computational complexity of a comprehensive set of problems related to the existence of fixed points and attractors in two constrained classes of reaction systems, in which either reactants or inhibitors are disallowed. These problems have biological relevance and have been extensively studied in the unconstrained case; however, they remain unexplored in the context of reactantless or inhibitorless systems. Interestingly, we demonstrate that although the absence of reactants or inhibitors simplifies the system's dynamics, it does not always lead to a reduction in the complexity of the considered problems.Comment: 29 page

    Effective dynamics along given reaction coordinates, and reaction rate theory

    Get PDF
    In molecular dynamics and related fields one considers dynamical descriptions of complex systems in full (atomic) detail. In order to reduce the overwhelming complexity of realistic systems (high dimension, large timescale spread, limited computational resources) the projection of the full dynamics onto some reaction coordinates is examined in order to extract statistical information like free energies or reaction rates. In this context, the effective dynamics that is induced by the full dynamics on the reaction coordinate space has attracted considerable attention in the literature. In this article, we contribute to this discussion: we first show that if we start with an ergodic diffusion process whose invariant measure is unique then these properties are inherited by the effective dynamics. Then, we give equations for the effective dynamics, discuss whether the dominant timescales and reaction rates inferred from the effective dynamics are accurate approximations of such quantities for the full dynamics, and compare our findings to results from approaches like Mori–Zwanzig, averaging, or homogenization. Finally, by discussing the algorithmic realization of the effective dynamics, we demonstrate that recent algorithmic techniques like the “equation-free” approach and the “heterogeneous multiscale method” can be seen as special cases of our approach

    Stochastic dynamics of macromolecular-assembly networks

    Get PDF
    The formation and regulation of macromolecular complexes provides the backbone of most cellular processes, including gene regulation and signal transduction. The inherent complexity of assembling macromolecular structures makes current computational methods strongly limited for understanding how the physical interactions between cellular components give rise to systemic properties of cells. Here we present a stochastic approach to study the dynamics of networks formed by macromolecular complexes in terms of the molecular interactions of their components. Exploiting key thermodynamic concepts, this approach makes it possible to both estimate reaction rates and incorporate the resulting assembly dynamics into the stochastic kinetics of cellular networks. As prototype systems, we consider the lac operon and phage lambda induction switches, which rely on the formation of DNA loops by proteins and on the integration of these protein-DNA complexes into intracellular networks. This cross-scale approach offers an effective starting point to move forward from network diagrams, such as those of protein-protein and DNA-protein interaction networks, to the actual dynamics of cellular processes.Comment: Open Access article available at http://www.nature.com/msb/journal/v2/n1/full/msb4100061.htm

    Computationally-efficient stochastic cluster dynamics method for modeling damage accumulation in irradiated materials

    Full text link
    An improved version of a recently developed stochastic cluster dynamics (SCD) method {[}Marian, J. and Bulatov, V. V., {\it J. Nucl. Mater.} \textbf{415} (2014) 84-95{]} is introduced as an alternative to rate theory (RT) methods for solving coupled ordinary differential equation (ODE) systems for irradiation damage simulations. SCD circumvents by design the curse of dimensionality of the variable space that renders traditional ODE-based RT approaches inefficient when handling complex defect population comprised of multiple (more than two) defect species. Several improvements introduced here enable efficient and accurate simulations of irradiated materials up to realistic (high) damage doses characteristic of next-generation nuclear systems. The first improvement is a procedure for efficiently updating the defect reaction-network and event selection in the context of a dynamically expanding reaction-network. Next is a novel implementation of the τ\tau-leaping method that speeds up SCD simulations by advancing the state of the reaction network in large time increments when appropriate. Lastly, a volume rescaling procedure is introduced to control the computational complexity of the expanding reaction-network through occasional reductions of the defect population while maintaining accurate statistics. The enhanced SCD method is then applied to model defect cluster accumulation in iron thin films subjected to triple ion-beam (Fe3+\text{Fe}^{3+}, He+\text{He}^{+} and \text{H\ensuremath{{}^{+}}} ) irradiations, for which standard RT or spatially-resolved kinetic Monte Carlo simulations are prohibitively expensive

    Theory of Robustness of Irreversible Differentiation in a Stem Cell System: Chaos hypothesis

    Full text link
    Based on extensive study of a dynamical systems model of the development of a cell society, a novel theory for stem cell differentiation and its regulation is proposed as the ``chaos hypothesis''. Two fundamental features of stem cell systems - stochastic differentiation of stem cells and the robustness of a system due to regulation of this differentiation - are found to be general properties of a system of interacting cells exhibiting chaotic intra-cellular reaction dynamics and cell division, whose presence does not depend on the detail of the model. It is found that stem cells differentiate into other cell types stochastically due to a dynamical instability caused by cell-cell interactions, in a manner described by the Isologous Diversification theory. This developmental process is shown to be stable not only with respect to molecular fluctuations but also with respect to removal of cells. With this developmental process, the irreversible loss of multipotency accompanying the change from a stem cell to a differentiated cell is shown to be characterized by a decrease in the chemical diversity in the cell and of the complexity of the cellular dynamics. The relationship between the division speed and this loss of multipotency is also discussed. Using our model, some predictions that can be tested experimentally are made for a stem cell system.Comment: 31 pages, 10 figures, submitted to Jour. Theor. Bio

    A scalable computational framework for establishing long-term behavior of stochastic reaction networks

    Full text link
    Reaction networks are systems in which the populations of a finite number of species evolve through predefined interactions. Such networks are found as modeling tools in many biological disciplines such as biochemistry, ecology, epidemiology, immunology, systems biology and synthetic biology. It is now well-established that, for small population sizes, stochastic models for biochemical reaction networks are necessary to capture randomness in the interactions. The tools for analyzing such models, however, still lag far behind their deterministic counterparts. In this paper, we bridge this gap by developing a constructive framework for examining the long-term behavior and stability properties of the reaction dynamics in a stochastic setting. In particular, we address the problems of determining ergodicity of the reaction dynamics, which is analogous to having a globally attracting fixed point for deterministic dynamics. We also examine when the statistical moments of the underlying process remain bounded with time and when they converge to their steady state values. The framework we develop relies on a blend of ideas from probability theory, linear algebra and optimization theory. We demonstrate that the stability properties of a wide class of biological networks can be assessed from our sufficient theoretical conditions that can be recast as efficient and scalable linear programs, well-known for their tractability. It is notably shown that the computational complexity is often linear in the number of species. We illustrate the validity, the efficiency and the wide applicability of our results on several reaction networks arising in biochemistry, systems biology, epidemiology and ecology. The biological implications of the results as well as an example of a non-ergodic biological network are also discussed.Comment: 31 pages, 9 figure

    Molecular dynamics at water interfaces: from astrophysical to biochemical applications

    Get PDF
    This PhD thesis investgates the chemical and physical interactions between water and systems of different sizes. The first section illustrates the chemical context of the projects and methodological basis used. The second part studies the dynamics and reactivity of small systems of astrochemical interest on top of water ice, at each step the complexity of the model is increased. Initially the ice surface is characterized, then different aspects of the reaction are examined. The final part explores the interactions between water molecules and two different proteins, to understand water’s role as solvent and how it influences protein macromolecule dynamics. The appendix includes a discussion on the interatomic interaction of water and the contribution apported in CHARMM software package are presented
    corecore