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EFFECTIVE DYNAMICS ALONG GIVEN REACTION COORDINATES, AND

REACTION RATE THEORY

WEI ZHANG 1 , CARSTEN HARTMANN 1 3 , AND CHRISTOF SCHÜTTE 1 2

Abstract. In molecular dynamics and related fields one considers dynamical descriptions of complex systems

in full (atomic) detail. In order to reduce the overwhelming complexity of realistic systems (high dimension,

large timescale spread, limited computational resources) the projection of the full dynamics onto some reaction

coordinates is examined in order to extract statistical information like free energies or reaction rates. In this

context, the effective dynamics that is induced by the full dynamics on the reaction coordinate space has attracted

considerable attention in the literature. In this article, we contribute to this discussion: We first show that if we

start with an ergodic diffusion processes whose invariant measure is unique then these properties are inherited

by the effective dynamics. Then, we give equations for the effective dynamics, discuss whether the dominant

timescales and reaction rates inferred from the effective dynamics are accurate approximations of such quantities

for the full dynamics, and compare our findings to results from approaches like Zwanzig-Mori, averaging, or

homogenization. Finally, by discussing the algorithmic realization of the effective dynamics, we demonstrate that

recent algorithmic techniques like the ”equation-free” approach and the ”heterogeneous multiscale method” can

be seen as special cases of our approach.

Key words. Ergodic diffusion, reaction coordinate, effective dynamics, model reduction, equation-free,

heterogeneous multiscale method.

AMS subject classifications. 58J65, 62P35

1. Introduction. Diffusion processes are continuous-time Markov processes on a continu-

ous state space, typically Rn, and can be described by stochastic differential equations (SDE).

A diffusion process is said to be ergodic if it has a unique invariant (stationary) measure and

the ergodic theorem is satisfied, i.e. its stationary statistics can be realized by an infinitely long

trajectory [65, 14, 58].

In the past few decades, ergodic diffusion processes have been extensively investigated and

widely applied to complex systems arising from physics, biology and chemistry [26, 50, 87, 67].

In realistic applications, e.g. in molecular dynamics or materials science, the systems of interest

are high-dimensional and exhibit essential phenomena on vastly different time scales [67, 19,

64, 32]. Mostly, numerical simulation of the process of interest is performed in order to extract

particular quantities of interest, e.g., thermodynamic quantities like free energy, or dynamics-

related quantities, such as reaction or transition rates. In the latter case, computing good

approximations of dynamics-related quantities is often infeasible even on the fastest computers,

since the underlying processes (reactions, transitions) are rare events and the inherent timescale

are too long to allow for the extraction of reliable statistics from long simulation runs. In order

to circumvent this obstacle one selects some reaction coordinates or collective variables of the

system and then tries to compute the desired quantities by projection of the high-dimensional

full dynamics onto the low-dimensional reaction coordinate space [32, 35, 51, 57, 64], leading to

what we call an effective dynamics. There are various model reduction approaches that yield an
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effective dynamics starting from the full dynamics, and this article is about putting several of

these approaches into a common perspective.

Our key questions are the following:

Q1. Do the most prominent model reduction approaches lead to the same type of effective

dynamics?

Q2. Are structural properties the full (high-dimensional) dynamics like ergodicity / existence

of an invariant measure or reversibility inherited by the (low-dimensional) effective dy-

namics?

Q3. When dynamical properties like reaction/transition rates or inherent timescales are com-

puted based on the effective dynamics, how well do they approximate the associated

quantities of the full dynamics?

Q4. How are the most prominent approaches (e.g., the equation-free approach [42, 44, 43], the

heterogeneous multiscale method (HMM) [20, 21, 1, 77], or other approaches [19, 52]) for

performing numerical simulation of the effective dynamics related? Is there a unifying

framework for studying them in one setting?

Each of the above questions has been answered to some extent by researchers from different

disciplines.

Fig. 1.1: Outline of the article.

Here we discuss them based on a joint background, providing many links to the related

literature. However, developing this background requires an extended mathematical discussion

of structural and dynamical properties of ergodic diffusion processes. Based on this discussion

we will see that in most cases all well-known model reduction techniques yield the same kind of

effective dynamics (Q1), that many structural properties are inherited by the effective dynamics

(Q2) and that the most prominent simulation techniques for the effective dynamics blend well

into the joint background developed herein. The answers provided to questions (Q3) contain

completely new insights into the approximation quality of timescales and reaction rates computed

via the effective dynamics. Figure 1.1 summarizes these different aspects in a single diagram.

This paper is organized as follows. In Section 2, we discuss various properties of general

ergodic diffusion processes. In Section 3, we focus on the model reduction of ergodic diffusion

processes and study the preservation of various properties by the effective dynamics. Numerical
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methods for simulating the effective dynamics are discussed and compared with each other in

Section 3.4. Finally, we conclude our work with further discussions in Section 4.

2. Ergodic diffusion processes. In this section, we will introduce some notation related

to and study some common properties of diffusion processes that are ergodic with a unique

invariant measure.

Consider the diffusion process that satisfies the stochastic differential equation (SDE)

dx(s) = b(x(s))ds+
√

2β−1σ(x(s))dw(s) , s ≥ 0 ,

x(0) = x ,
(2.1)

where x(s) ∈ Rn, parameter β > 0 is the inverse of system’s temperature, and w(s) is a k-

dimensional Brownian motion. We assume that both, the drift vector b : Rn → Rn, and the

diffusion matrix σ : Rn → Rn×d are smooth functions. The infinitesimal generator of the

dynamics (2.1) is given by

L =

n∑

i=1

bi
∂

∂xi
+

1

β

n∑

i,j=1

aij
∂2

∂xi∂xj
, (2.2)

where the matrix a(x) = (σσT )(x) ∈ Rn×n, ∀x ∈ Rn. Subsequently we always assume

ηTa(x)η =
n∑

i,j=1

aij(x)ηiηj ≥ c1|η|2 , ∀ η , x ∈ Rn , (2.3)

for some constant c1 > 0. Here, bi, aij denote the components of vector b and matrix a, re-

spectively. Furthermore, let u(s, ·) be the probability density function (with respect to Lebesgue

measure) of system (2.1) at time s ≥ 0, i.e.

P(x(s) ∈ A | x(0) ∼ u0) =

∫

A

u(s, x) dx, ∀A ⊂ Rn , A is measurable ,

where x(0) ∼ u0 means that the initial probability distribution at time s = 0 has a density u0

with respect to the Lebesgue measure dx. Then u satisfies the Kolmogorov forward equation

(also called Fokker-Planck equation)

∂u

∂s
= −

n∑

i=1

∂(biu)

∂xi
+

1

β

n∑

i,j=1

∂2(aiju)

∂xi∂xj
, (2.4)

with initial probability density u(0, ·) = u0. We also assume that the process given by (2.1) is

ergodic and has a unique invariant measure µ whose probability density is ρ > 0, satisfying

dµ(dx) = ρ(x) dx , with

∫

Rn
ρ(x)dx = 1 . (2.5)

The invariant density ρ : Rn → R+ (set of positive real numbers) satisfies the PDE

−
n∑

i=1

∂(biρ)

∂xi
+

1

β

n∑

i,j=1

∂2(aijρ)

∂xi∂xj
= 0 , ∀x ∈ Rn , (2.6)

i.e. the right hand side of the Fokker-Planck equation (2.4) vanishes when we take u ≡ ρ.

Given a probability density function u : Rn → R+
0 with

∫
Rn u dx = 1, we also introduce the

relative entropy with respect to ρ, which is defined as

Ent(u) =

∫

Rn
u ln(

u

ρ
) dx . (2.7)

Applying Jensen’s inequality, we can verify that Ent(u) ≥ 0.
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2.1. Probability velocity, generator decomposition. In this part we introduce the

probability velocity of diffusion process given by (2.1), that is useful when investigating system’s

various properties [68, 86, 30, 78, 25]; some related work can also be found in [68] based on the

forward operator.

Specifically, given a probability density function u > 0 satisfying
∫
Rn u(x) dx = 1, we define

the probability velocity vector J(u) whose ith component is given by

Ji(u) = bi −
1

βu

n∑

j=1

∂(aiju)

∂xj
, 1 ≤ i ≤ n . (2.8)

The use of the terminology probability velocity is motivated by the fact that equation (2.4) can

be written as a continuity equation

∂u

∂s
= −div(J(u)u) , (2.9)

and the quantity J(u)u is usually called probability current or probability flux in the litera-

tures [86, 30, 25] (notice that the meaning of the notation J used in these citations is different

from ours). Especially for u ≡ ρ, the equilibrium probability density, we define Jst = J(ρ) and

call it stationary probability velocity. Using (2.8), we can directly verify that

Ji(u) = Jsti −
1

β

n∑

j=1

aij
∂

∂xj

(
ln
u

ρ

)
, (2.10)

and PDE (2.6) is equivalent to the equation

−div(Jstρ) = 0 . (2.11)

We will also frequently use the Hilbert space H = L2(Rn, µ) with inner product

〈f, g〉µ =

∫

Rn
f gρ dx , f, g ∈ H , (2.12)

and the norm |f |µ =
√
〈f, f〉µ , ∀f ∈ H. Using integration by parts formula, it is direct to check

that ∀f, g ∈ D(L) ⊂ H, we have

〈Lf, g〉µ = 〈f,Lg〉µ − 2〈f, Jst · ∇g〉µ = 〈Jst · ∇f, g〉µ −
1

β
〈a∇f,∇g〉µ ,

〈Jst · ∇f, g〉µ + 〈Jst · ∇g, f〉µ = 0 .

(2.13)

From the first equation in (2.13), we deduce that L∗ = L− 2Jst · ∇, where L∗ denotes the dual

operator of L in H. Especially, taking f = g ∈ D(L) (the domain of L) in (2.13), we obtain

〈Jst · ∇f, f〉µ = 0 ,

〈Lf, f〉µ = − 1

β
〈a∇f,∇f〉µ .

(2.14)

Furthermore, it is direct to verify that the following conditions are equivalent to each other.

Jst ≡ 0 ,

⇐⇒ bi −
1

βρ

n∑

j=1

∂(aijρ)

∂xj
≡ 0 , 1 ≤ i ≤ n ,

⇐⇒ L = L∗ , 〈Lf, g〉µ = 〈f,Lg〉µ = − 1

β
〈a∇f,∇g〉µ , ∀f, g ∈ D(L) .

(2.15)
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This also allows to check the reversibility of the diffusion process: Although reversibility may

have different meanings in different communities, roughly speaking, a diffusion process is said to

be reversible if its statistical properties are unchanged when we reverse time’s arrow [70, 61, 6].

Any of the conditions in (2.15) is equivalent to the process being reversible (see below).

In the general case (whether reversible or not), using equation (2.8) for the stationary

probability velocity Jst, we can recast (2.1) as

dxi(s) = Jsti ds+
1

βρ

n∑

j=1

∂(aijρ)

∂xj
ds+

√
2β−1

d∑

j=1

σij dwj(s) , 1 ≤ i ≤ n , (2.16)

and the generator as L = La + Ls where

La =
1

2
(L − L∗) = Jst · ∇ , Ls =

1

2
(L+ L∗) =

1

βρ
∇(ρa∇·) . (2.17)

The above relations can be obtained directly from (2.13) as well; the decomposition formula for

the forward operator was obtained in [68].

For the dual operator L∗, we have L∗ = L − 2Jst · ∇ = −La + Ls, and therefore the

corresponding (time reversed) dynamics is

d←−x i(s) = −Jsti ds+
1

βρ

n∑

j=1

∂(aijρ)

∂xj
ds+

√
2β−1

d∑

j=1

σij dwj(s) , 1 ≤ i ≤ n , (2.18)

which is obtained by changing the direction of the probability velocity Jst in the original dy-

namics (2.16). It is straightforward to verify that the time reversed dynamics (2.18) has the

same invariant measure µ as the original dynamics and both dynamics coincide with each other

if and only if they are reversible, i.e. when any of the conditions in (2.15) are satisfied.

Finally we turn our attention to the stationary flow governed by

φ̇s = Jst(φs) , φs : Rn → Rn , (2.19)

with φ0 = id. Assuming that (2.19) has a unique solution, it holds that φt+s = φt ◦φs, ∀s, t ≥ 0.

Let (φs)#ν denote the transportation of some probability measure ν under the map φs, being

defined by
(
(φs)#ν

)
(A) = ν(φ−1

s (A)) for any measurable set A ⊂ Rn (see Chapter 5 of [3] and

Chapter 1 of [83] for more details). We state the following result, the proof of which is given in

Appendix A:

Proposition 1. Let Jst be the stationary probability velocity of (2.1), and let φs be the

stationary flow map defined by (2.19). Then

1. (φs)#µ = µ, ∀s ≥ 0 , where µ is the unique invariant measure of dynamics (2.1).

2. Given a probability measure µv whose probability density function v satisfies
∫
v(x) dx =

1. Let d
(
(φs)#µv

)
= vs dx. Then Ent(vs) = Ent(v) ∀s ≥ 0.

These results show that both the invariant measure µ and the relative entropy (of any

probability density function) are invariant under the action of φt. Results similar to Proposition 1

were also obtained in [68] using a different argument.

2.2. Convergence to equilibrium. In the following we discuss the process’ speed of

converge to equilibrium. Let Tt be the semigroup defined by the infinitesimal generator L on the

Hilbert space H. It is known that for function f ∈ H, we have (Ttf)(x) = E(f(x(t)) | x(0) = x),
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where x(t) satisfies SDE (2.1). Given f ∈ H, it is often interesting to study the decay of the

quantity Varµ(Ttf) = |Ttf − Eµf |2µ, where Eµ, and Varµ denote the mathematical expectation

and the variance under probability measure µ, respectively (notice that EµTtf = Eµf). Without

loss of generality, we can assume Eµf = 0 and compute

∂

∂t
|Ttf |2µ = 2〈LTtf, Ttf〉µ = 2〈LsTtf, Ttf〉µ = − 2

β
〈a∇Ttf,∇Ttf〉µ ≤ 0 , (2.20)

where we have used relations (2.14), (2.17) and the assumption (2.3) for matrix a. The above

inequality implies that Varµ(Ttf) is nonincreasing as t → +∞. Furthermore if the Poincaré

inequality

|f |2µ ≤
1

λ
〈a∇f,∇f〉µ , (2.21)

holds for some fixed λ > 0, and for all f ∈ H such that Eµf = 0 and f is C1 differentiable, then

we can obtain

∂

∂t
|Ttf |2µ ≤ −

2λ

β
|Ttf |2µ =⇒ |Ttf |2µ ≤ e−

2λ
β t|f |2µ , ∀t > 0 .

The last inequality can be shown to hold for all f ∈ H by considering an approximation sequence

f (i) → f in H, where f (i) ∈ H and is C1 differentiable. Therefore we conclude that Varµ(Ttf)↘
0, for all f ∈ H as t→ +∞ and the decay is exponentially fast.

The trend towards equilibrium can also be characterized by considering the entropy decay

for the solution of the Fokker-Planck equation (2.9). We will only record the following simple

result; for a proof see Appendix A and Remark 1 for discussions.

Proposition 2. Suppose the condition (2.3) is satisfied by the dynamics (2.1) which is

ergodic with a unique invariant measure µ. Let ut be the solution of Fokker-Planck equation

(2.9) or, equivalently, (2.4). Then Ent(ut) is non-increasing as t→ +∞.

Remark 1. Much deeper and stronger results (mostly for reversible system) related to the

decay of relative entropy can be found in [82, 83, 3] and references therein. Here it might be

interesting to point out that Proposition 2 holds for general ergodic processes (2.1) which can be

either reversible or irreversible. Furthermore, the decay rate of the relative entropy only depends

on the reversible part of the infinitesimal generator.

Now we turn to the characterization of the time scales in dynamical system (2.1). In the

study of molecular dynamics, climate, chemical reactions et al., knowing the systems’ different

time scales as well as the dynamical behavior of the process at given time scales is an important

issue in order to understand the systems. See [67, 84, 73, 57, 45, 64] and references therein.

Here we assume the dynamics is reversible and therefore its infinitesimal generator L is a

symmetric (essentially self-adjoint) operator. We also assume that the essential spectrum of L is

empty [85], therefore its spectrum consists of a set of isolated eigenvalues [16, Theorem 4.1.5]. It

is known that the time scales of the dynamics are determined by the eigenvalue problem (notice

the minus sign)

−Lf = λf , (2.22)

which holds for some eigenfunction f ∈ D(L) ⊂ H and eigenvalue λ. Since L = L∗ is an

essentially self-adjoint operator, we know λ ∈ R. It is clear that λ = 0, f ≡ 1 is a solution of
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(2.22). Otherwise, we can assume |f |µ = 1 and ∇f 6≡ 0. Multiplying both sides of (2.22) by f

and integrating with respect to µ gives

λ = −〈Lf, f〉µ =
1

β
〈a∇f,∇f〉µ ≥

c1
β
|∇f |2µ > 0 , (2.23)

where we have used the assumption (2.3) for matrix a. Therefore, we can assume that there

are eigenvalues λi ∈ R, i ≥ 0, with 0 = λ0 < λ1 ≤ · · · ≤ λk ≤ · · · , and eigenfunctions

ϕi ∈ D(L) ⊂ H, s.t. −Lϕi = λiϕi.

For two eigenfunctions ϕi, ϕj corresponding to λi 6= λj , we have

λi〈ϕi, ϕj〉µ = −〈Lϕi, ϕj〉µ = −〈ϕi,Lϕj〉µ = λj〈ϕi, ϕj〉µ ,

which implies 〈ϕi, ϕj〉µ = 0. When λi = λj , we can also choose eigenfunctions ϕi, ϕj such that

〈ϕi, ϕj〉µ = 0. Thus, we can assume without loss of generality that eigenfunctions ϕi form an

orthonormal basis of H. And for all f ∈ D(L) with Eµf = 0, using the orthogonal expansion

f =
+∞∑
i=1

〈f, ϕi〉µ ϕi, we can verify that Poincaré inequality (2.21) holds for constant λ = λ1.

For an eigenfunction ϕi with i > 0, we have Eµϕi = 〈ϕi, ϕ0〉µ = 0 and

∂

∂t
|Ttϕi|2µ = 2〈LTtϕi, Ttϕi〉µ = −2λi|Ttϕi|2µ ,

which implies Varµ(Ttϕi) = |Ttϕi|2µ = e−2λit|ϕi|2µ = e−2λit, where λi > 0. Therefore we can

conclude that Varµ(Ttϕi) for an eigenfunction ϕi, i > 0 decays on time scales of order (2λi)
−1.

2.3. Connection with diffusions on Riemannian manifolds. Consider the process

(2.1) with the unique invariant measure µ in (2.5) whose probability density is ρ. By defining

the potential V = −β−1 ln ρ, we get from equation (2.8) that

bi = Jsti +
eβV

β

n∑

j=1

∂(aije
−βV )

∂xj
, 1 ≤ i ≤ n , (2.24)

and thus (2.1) can be rewritten as

dx(s) =
[
Jst(x(s))− a(x(s))∇V (x(s)) +

1

β
∇ · a(x(s))

]
ds+

√
2β−1σ(x(s))dw(s) , (2.25)

with x(0) = x. In the last equation, ∇ · a is a vector in Rn with components (∇ · a)i =
n∑
j=1

∂aij
∂xj

,

1 ≤ i ≤ n, also see (2.16). The decomposition of the infinitesimal generator in (2.17) now reads

L = Jst · ∇+
eβV

β
∇
(
e−βV a∇ ·

)
. (2.26)

Notice that (2.25) reduces to the standard overdamped dynamics when Jst = 0 and a = σ =

id ∈ Rn×n.

We may also think of the space Rn as a Riemannian manifold M and consider the dynamics

(2.25) as a diffusion process on M . In this case, we can simply take the identity map id : M =

Rn → Rn to obtain a local coordinate. Specifically, from (2.3) we know that the matrix a = σσT

is positive definite, therefore we can define the metric tensor g(x) = a−1(x), x ∈ Rn with the

induced inner product 〈v1, v2〉 = vT1 gv2 for ∀v1, v2 ∈ Rn. We have (g−1(x))ij = gij(x) = aij(x),

7



1 ≤ i, j ≤ n. Also define G(x) = det g(x) and consider the nature volume measure µg(dx) =√
G(x) dx on M . Under this (global) coordinate chart, we have [39, 66]

∇gf =
n∑

i,j=1

gij
∂f

∂xi

∂

∂xj
,

∆gf =
1√
G

n∑

i,j=1

∂

∂xi

(√
Ggij

∂f

∂xj

)
,

(2.27)

where f ∈ C∞(M), ∇g, divg are the gradient, divergence operator respectively, and ∆g = divg∇g
is the Laplace-Beltrami operator on the manifold M . Using (2.26), we can write the infinitesimal

generator L as a 2nd order differential operator on M as

Lf = Jst · ∇f +
eβV

β

n∑

i,j=1

∂

∂xi

(e−βV√
G

√
Ggij

∂f

∂xj

)

= Jst · (gg−1∇f) +
1

β

n∑

i,j=1

[ ∂

∂xi

(
ln
e−βV√
G

)
gij

∂f

∂xj
+

1√
G

∂

∂xi

(√
Ggij

∂f

∂xj

)]

= 〈Jst,∇gf〉 − 〈∇g
(
V +

1

2β
lnG

)
,∇gf〉+

1

β
∆gf

=
[
Jst −∇g

(
V +

1

2β
lnG

)
+

1

β
∆g

]
f .

In the last equation above, Jst is considered as a vector field on M . Accordingly, (2.25) can be

written as an SDE on the Riemannian manifold M

dx(s) =
[
Jst −∇g(V +

1

2β
lnG)

]
ds+

√
2β−1dW (s) , (2.28)

where W (s) is the Brownian motion on manifold M [39]. Further notice that the stationary

probability velocity satisfies

−divg
(
Jste−β(V+ 1

2β lnG)
)

= 0 , (2.29)

which should be compared to (2.11). And dynamics (2.28) has a unique invariant measure µ

which is related to the measure µg by dµ = e−β(V+ 1
2β lnG) dµg.

Especially in the reversible case, our derivations above show that if dynamics (2.1) is both

reversible and ergodic, then we can always rewrite it as a gradient system (2.28) evolving on a

manifold. This point of view may be conceptually useful. For instance, consider the study of

rare events in the zero temperature limit. We can conclude that the most probable transition

path of system (2.1) connecting two metastable states is actually the minimal energy path

(on the manifold) and the string method (on the manifold) can be applied to compute the

path [23, 22, 81, 54]. This point of view will be further exploited in Section 3 when discussing

model reduction.

3. Model reduction of ergodic diffusions. In this section we consider the model reduc-

tion of dynamics (2.1) to a low dimensional effective dynamics [51]. Various properties of the

effective dynamics and the relations with the original dynamics will be studied. To this end,

we assume that there is a C2 function ξ : Rn → Rm, 1 ≤ m < n, which describes the reaction

coordinate of the system.
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3.1. Projection operator. We start by defining a projection operator on the Hilbert space

H. Given the reaction coordinate function ξ : Rn → Rm, we define Σz = {x ∈ Rn | ξ(x) = z}
and assume it is nonempty for all z ∈ Rm. For any function f ∈ H and x ∈ Rn, let

Pf(x) =

∫

Σz

f(x′) dµz(x
′)

=
1

Q(z)

∫

Σz

f(x′)ρ(x′)
[
det
(
∇ξT (x′)∇ξ(x′)

)]− 1
2

dσz(x
′) ,

(3.1)

where z = ξ(x) ∈ Rm, and σz denotes the surface measure on Σz. µz is the probability measure

on Σz whose probability density with respect to σz is ρ
Q(z)

[
det(∇ξT∇ξ)

]− 1
2 . The Jacobian

matrix ∇ξ(x) of the map ξ : Rn → Rm is an n ×m matrix. Q : Rm → R is the normalization

constant defined as

Q(z) =

∫

Σz

ρ
[
det(∇ξT∇ξ)

]− 1
2 dσz . (3.2)

We assume

0 < Q(z) < +∞, ∀z ∈ Rm ,

P(|∇ξη|2) = P
(
ηT∇ξT∇ξη

)
≥ c2|η|2 , ∀η ∈ Rm, z ∈ Rm ,

(3.3)

holds for some constant c2 > 0. Notice that we have P2 = P and the function Pf : Rn → R
actually only depends on z = ξ(x) ∈ Rm.

The definition of the projection P in (3.1) is motivated by the fact that, using the co-area

formula [48, 28], for any suitable function h̃ : Rm → R we have

∫

Rn
f(x) h̃(ξ(x)) ρ(x) dx =

∫

Rm
Pf(ξ−1(z)) h̃(z)Q(z) dz . (3.4)

The term Pf(ξ−1(z)) on the right hand side is well defined since Pf is constant on ξ−1(z).

Formally taking h̃ = δ(· − z), we see that definition (3.1) is equivalent to the perhaps more

familiar expression

Pf(x) =
1

Q(z)

∫

Rn
ρ(x′)f(x′)δ

(
ξ(x′)− z

)
dx′

=Eµ

(
f(x′) | ξ(x′) = z

)
,

(3.5)

where z = ξ(x). Also see [13, 51] for related discussions.

Taking f = h̃ = 1 in (3.4), we can obtain that
∫
Rm Q(z)dz = 1. Therefore we define

the probability measure ν on Rm with ν(dz) = Q(z) dz for z ∈ Rm and consider the Hilbert

space H̃ = L2(Rm, ν) as the space of functions on the reaction coordinate space Rm. H̃ induces

another function space on the full state space, namely

H0 =
{
f | f ∈ H, f = f̃ ◦ ξ, for some f̃ ∈ H̃

}
⊂ H . (3.6)

It can be verified that H0 forms a linear subspace of H and H0 = Im(P), i.e. the image of P

defined in (3.1). The relation between H̃ and H0 can be formalized by introducing the lift map

ι : H̃ → H0 by setting ι(f̃) = f̃ ◦ ξ ∈ H0 for f̃ ∈ H̃, i.e., ι(f̃)(x) = f̃(ξ(x)). Then using equality
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(3.4) and P(f̃ ◦ ξ) = f̃ ◦ ξ, we have

〈ι(f̃), ι(h̃)〉µ =

∫

Rn
f̃
(
ξ(x)

)
h̃
(
ξ(x)

)
ρ(x) dx

=

∫

Rm
f̃(z) h̃(z)Q(z) dz = 〈f̃ , h̃ 〉ν ,

(3.7)

i.e. ι is an isomorphism between spaces H̃ and H0. To simplify notations, we will use the same

notation P to denote both, the projection in (3.1) as well as the mapping ι−1 ◦ P : H → H̃.

Given some twice differentiable function f̃ ∈ H̃, we define the operator L̃ by

L̃f̃ =
m∑

l=1

P(Lξl)
∂f̃

∂zl
+

1

β

m∑

k,l=1

P
( n∑

i,j=1

aij
∂ξl
∂xi

∂ξk
∂xj

) ∂2f̃

∂zl∂zk
, (3.8)

where ξl is the lth component of the reaction coordinate map ξ, 1 ≤ l ≤ m. The following result

is useful for deriving the effective dynamics (for a proof see Appendix C):

Proposition 3. For f = f̃ ◦ ξ ∈ D(L) ∩H0 where f̃ ∈ D(L̃), we have PLf = L̃f̃ .

In other words: L̃ is the generator of the full dynamics after projection onto the reaction

coordinate function space.

3.2. Deriving the effective dynamics. In this subsection, based on the discussions in

Subsection 3.1, especially the result of Proposition 3, we consider different approaches to the

derivation of the effective dynamics.

3.2.1. Ito’s formula. The most straightforward way to derive the effective dynamics may

be by applying Ito’s formula. To this end we use ideas from [51]: Given the reaction coordinate

function ξ, we consider the quantity ξ(x(s)) ∈ Rm, where x(s) ∈ Rn satisfies dynamics (2.1). By

Ito’s formula and the definition of L in (2.2) , we have

dξl(x(s)) =
n∑

i=1

∂ξl
∂xi

bi ds+
1

β

n∑

i,j=1

∂2ξl
∂xi∂xj

aij ds+
√

2β−1

n∑

i=1

d∑

j=1

∂ξl
∂xi

σij dwj(s) ,

=(Lξl)(x(s))ds+
√

2β−1

n∑

i=1

d∑

j=1

∂ξl(x(s))

∂xi
σij(x(s)) dwj(s) , (3.9)

for 1 ≤ l ≤ m. Notice that the right hand side of (3.9) not only depends on the value of the

reaction coordinate ξ(x(s)) but also on the state of the original dynamics x(s). To obtain a

dynamics in the closed form (of the reaction coordinate), we replace the coefficients in (3.9) with

their projections onto the space H̃ defined in Subsection 3.1. That is, we consider the effective

dynamics (following the terminology of [51])

dz(s) = b̃(z(s)) ds+
√

2β−1σ̃(z(s)) dw(s) , (3.10)

where z(s) ∈ Rm and coefficients b̃ : Rm → Rm, σ̃ : Rm → Rm×m, with

b̃l(z) =P(Lξl)(z) , 1 ≤ l ≤ m,

ãlk(z) =(σ̃σ̃T )lk(z) = P
( n∑

i,j=1

aij
∂ξl
∂xi

∂ξk
∂xj

)
(z) , 1 ≤ l, k ≤ m,

(3.11)
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for ∀z ∈ Rm. Different from the setting in Section 2 where the noise intensity matrix σ is allowed

to have different numbers of rows and columns, here we can simply assume that σ̃ is an m×m
square matrix. Notice that derivatives of the reaction coordinate ξ are involved in (3.11). On the

other hand, recalling the definitions of the infinitesimal generator L and the quadratic variation

and using (3.9) we directly obtain the following alternative formula for b̃ and ã

b̃l(z) = lim
s→0+

E
(ξl(x(s))− zl

s

∣∣∣ x(0) ∼ µz
)
, 1 ≤ l ≤ m,

ãlk(z) =
β

2
lim
s→0+

E
( (ξl(x(s))− zl)(ξk(x(s))− zk)

s

∣∣∣ x(0) ∼ µz
)
, 1 ≤ l, k ≤ m,

(3.12)

where the conditional expectations are with respect to the ensemble of trajectories of the full

dynamics (2.1) with the initial distribution µz on Σz (see Subsection 3.1 for definitions). Numer-

ical algorithms for simulating the effective dynamics (3.10) based on formulas (3.11) and (3.12)

will be discussed in Subsection 3.4. Applying conditions (2.3) and (3.3), we also obtain

ηT ã(z)η = P
(
ηT∇ξTa∇ξη) ≥ c1P(|∇ξη|2) ≥ c1c2|η|2 , ∀z, η ∈ Rm . (3.13)

Using the form of the coefficient b̃ and ã from (3.11), it is clear that the operator L̃ defined by

(3.8) can alternatively be written as

L̃ =

m∑

l=1

b̃l
∂

∂zl
+

1

β

m∑

k,l=1

ãlk
∂2

∂zl∂zk
, (3.14)

which is exactly the form of the infinitesimal generator of dynamics (3.10). That is, the projection

L̃ of the full generator to the reduced space H̃ is identical to the generator of the effective

dynamics (3.10).

Remark 2. In general, the process z(s) resulting from the effective dynamics (3.10) is

not the same as the full process seen from the reaction coordinate space, ξ(x(s)), but just an

approximation of it. In [51], the associated approximation error was studied for the case that

(2.1) is a gradient system and m = 1, i.e. in the case that the reaction coordinate ξ is a scalar

function.

Remark 3. It is well known that the coefficients b and a in (2.1) satisfy the Kramers

Moyal expansion [70]

bl(x) = lim
s→0+

E
(x(s)− xl

s

∣∣∣ x(0) = x
)
, 1 ≤ l ≤ n ,

alk(x) =
β

2
lim
s→0+

E
( (xl(s)− xl)(xk(s)− xk)

s

∣∣∣ x(0) = x
)
, 1 ≤ l, k ≤ n ,

(3.15)

where x = (x1, x2, · · · , xn) ∈ Rn and the expectations are with respect to the ensemble of trajec-

tories under dynamics (2.1). (3.12) shows that similar expressions are satisfied by the effective

coefficients b̃ and ã. In several papers related to the equation-free approach [47, 27, 36, 75, 49],

the authors assumed the existence of Fokker-Planck equation of the coarse variables and compute

the coefficients using formula (3.12). In connection with our arguments, it is thus clear that the

coarse dynamics in the equation-free approach is actually the effective dynamics (3.10).

3.2.2. Mori-Zwanzig formalism. In this part, we give a reasoning to motivate the ef-

fective dynamics (3.10) using the Mori-Zwanzig formalism. The Mori-Zwanzig formalism is an
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operator approach to study the coarse-graining of dynamical systems [59, 88, 33]. Regarding

the use of this formalism, it is helpful to point out that recent publications in this field (see

[38, 41, 8, 9, 7, 15, 55] and references therein) mainly focused on the coarse graining of determin-

istic dynamical systems, especially Hamiltonian systems related to molecular dynamics, while

we consider the model reduction of the ergodic stochastic process (2.1).

Recall that L in (2.2) is the infinitesimal generator of dynamics (2.1), P is the projection

operator defined in Subsection 3.1, and the semigroup Tt = etL : H → H is introduced in

Section 2. Following the Mori-Zwanzig approach, for an arbitrary given function f ∈ D(L) ⊂ H,

we can directly verify the identity

etLf = etLPf +

∫ t

0

e(t−s)LPLfs ds+ ft , ∀t ≥ 0 , (3.16)

where P⊥ = id− P and ft = etP
⊥LP⊥f . Similarly, we obtain

d

dt
etLf = etLLf = etLPLf +

∫ t

0

e(t−s)LPLrs ds+ rt , ∀t ≥ 0 , (3.17)

where rt = etP
⊥LP⊥Lf .

We apply the operator P on both sides of (3.17) and notice that the third term on the right

hand side disappears since Prt ≡ 0. Then we follow a similar reasoning as in [8, 9, 7, 38] to drop

the memory (integral) term in (3.17). As a result, for function f = f̃ ◦ ξ ∈ H0, Proposition 3

entails that

d

dt
E
(
f̃
(
ξ(x(t))

) ∣∣∣ x(0) ∼ µz
)
≈ E

(
L̃f̃
(
ξ(x(t))

) ∣∣∣ x(0) ∼ µz
)
, (3.18)

where the expectation has the same meaning as in (3.12). Since our aim is to find a Markov

process z(t) ∈ Rm which can approximate ξ(x(t)), we assume the equality will hold in (3.18) if

the expectation is taken with respect to the law of z(t), i.e.

d

dt
E
(
f̃(z(t)) | z(0) = z

)
= E

(
L̃f̃(z(t)) | z(0) = z

)
, ∀f̃ ∈ H̃ . (3.19)

Then Dynkin’s formula (Chapter 7 of [60]) suggests that z(t) ∈ Rm satisfies the SDE whose

infinitesimal generator is given by L̃. From (3.14), we know this SDE coincides with (3.10) and

z(t) is the effective dynamics.

3.2.3. Galerkin method. In this part, we show that the effective dynamics (3.10) can

also be motivated by applying the Galerkin method [11]. Recall that (see Subsection 2.2) the

implicit time-scales of the full dynamics (2.1) are encoded in the eigenvalue problem

−Lφ = λφ , (3.20)

where L is the infinitesimal generator in (2.2). For simplicity, we assume the system is reversible

and therefore all the eigenvalues are real. (3.20) can be written in weak form as

−〈Lφ, ψ〉µ = λ〈φ, ψ〉µ , ∀ψ ∈ H . (3.21)

Now suppose we solve (3.21) using a Galerkin discretization with basis functions in the

subspace H0. Specifically, suppose k basis functions φ1, φ2, · · · , φk ∈ H0 are given with φi =
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φ̃i ◦ ξ, φ̃i ∈ H̃, 1 ≤ i ≤ k and consider the linear subspace spanned by these k functions,

span{φ1, φ2, · · · , φk} ⊂ H0 ⊂ H. The Galerkin discretization method amounts to finding an

approximation of the solution φ to (3.21) in this linear subspace. Let
k∑
i=1

αiφi denote this

approximate solution with (presently) unknown coefficients αi ∈ R. Substituting it into (3.21)

and using test functions ψ = φj , 1 ≤ j ≤ k , we obtain

−
k∑

i=1

αi〈Lφi, φj〉µ = λ
k∑

i=1

αi〈φi, φj〉µ = λ
k∑

i=1

αi〈φ̃i, φ̃j〉ν , (3.22)

where the second equality follows from relation (3.7). Equation (3.22) is a finite-dimensional

eigenvalue problem with the vector of the unknown coefficients αi as its eigenvectors. Since

φi, φj ∈ H0, using the co-area formula (3.4) and Proposition 3, it follows that

〈Lφi, φj〉µ

=

∫

Rn
Lφi(x) φ̃j(ξ(x)) ρ(x) dx

=

∫

Rm
(PLφi)(z) φ̃j(z)Q(z) dz

=〈L̃φ̃i, φ̃j〉ν , (3.23)

where the operator L̃ is defined in (3.8). Therefore, equation (3.22) takes the form

−
k∑

i=1

αi〈L̃φ̃i, φ̃j〉ν = λ
k∑

i=1

αi〈φ̃i, φ̃j〉ν . (3.24)

Now notice in addition that, on the other hand, the same equation (3.24) can be obtained

if we consider the Galerkin discretization of the eigenvalue problem

−L̃φ̃ = λφ̃ (3.25)

on the subspace span{φ̃1, φ̃2, · · · , φ̃k} ⊂ H̃. However, from (3.14), we know that equation (3.25)

is the corresponding eigenvalue problem for the effective dynamics (3.10).

Thus we have shown that the Galerkin discretization of the eigenvalue problem of the

generator of the full dynamics (2.1) is identical to the Galerkin discretization of the eigenvalue

problem of the projected generator (which is the generator of the effective dynamics (3.10). This

also suggests to approximate the original full dynamics using the effective dynamics (3.10). The

exact relation between the eigenvalues of the full dynamics and those of the effective dynamics

will be further studied in Subsection 3.3.

3.2.4. Averaging and homogenization. Here we discuss two special cases when x =

(z, y) and the dynamics is either

dz(s) =f(z(s), y(s))ds+ σ1(z(s), y(s))dw1(s)

dy(s) =
1

ε
g(z(s), y(s))ds+

1√
ε
σ2(z(s), y(s))dw2(s) ,

(3.26)

or
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dz(s) =
1

ε
f0(z(s), y(s))ds+ f(z(s), y(s))ds+ σ1(z(s), y(s))dw1(s)

dy(s) =
1

ε2
g(z(s), y(s))ds+

1

ε
σ2(z(s), y(s))dw2(s) ,

(3.27)

where x = (z, y) ∈ Rm × Rn−m = Rn, and the time scale separation between z and y is

explicitly characterized by the parameter ε � 1. Functions f, f0 : Rn → Rm, g : Rn → Rn−m,

σ1 : Rn → Rm×d1 , σ2 : Rn → R(n−m)×d2 are assumed to be smooth. Dynamics (3.26) and (3.27)

can be obtained from (2.1) by choosing

b =
( f

1
ε g

)
, σ =

√
β

2

( σ1 0

0 1√
ε
σ2

)
, and b =

( 1
ε f0 + f

1
ε2 g

)
, σ =

√
β

2

( σ1 0

0 1
εσ2

)
,

(3.28)

respectively. They are referred to as Averaging and Homogenization systems. They are consid-

ered as model problems for multiscale methods and have been extensively investigated [64]. As

in [64], we assume the dynamics

dy(s) =g(z, y(s))ds+ σ2(z, y(s))dw2(s) (3.29)

is ergodic and has a unique invariant measure whose probability density is ρz(·) for all fixed

z ∈ Rm. In the Homogenization case, we assume the validity of the so-called centering condition

for f0 in (3.27) :

∫

Rn−m
f0(z, y)ρz(y) dy = 0 , ∀z ∈ Rm . (3.30)

Now, we consider the reaction coordinate ξ : Rn → Rm given by ξ(x) = ξ(z, y) = z and the

measure dµz(y) = ρz(y)dy.

Then, on the one hand, the abstract form the SDE (3.9) for ξ(x(s)) = z(s) boils down to

the first equation of (3.26) in the Averaging case, and to (3.27) in the Homogenization case,

respectively.

On the other hand, for our effective dynamics of the form (3.10),

dz(s) = f̃(z(s))ds+ σ̃(z(s))dws , (3.31)

direct computations, using the above ergodicity and centering assumptions for both cases, result

in the following coefficients:

f̃(z) =

∫

Rn−m
f(z, y)ρz(y)dy , σ̃(z)σ̃(z)T =

∫

Rn−m
σ1(z, y)σ1(z, y)T ρz(y)dy , (3.32)

for all z ∈ Rm.

In [64] the limit dynamics of (3.26) and (3.27) for ε→ 0 is studied. Thus, we can compare

the effective dynamics to the limit dynamics in both cases: In the Averaging case, the effective

dynamics (3.31) obtained using conditional expectation is the same as the limit dynamics given

in [64]. In the Homogenization case, however, the effective dynamics (3.31) is different from

the limit dynamics. Roughly speaking, although the mean contribution of the term f0 in (3.27)

vanishes due to the centering condition (3.30), one needs to take into account its fluctuation

in order to obtain the correct limit dynamics. This requires to solve the “cell problem” and
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to add correction terms to (3.32), see [64] for details. Such corrections are ignored by the

model reduction approach using conditional expectation considered in our present work. The

underlying differences between Averaging and Homogenization systems have also been observed

when studying the parameter estimation problems for multiscale diffusions. We refer to [63, 62]

for more detailed discussions.

3.3. Properties of the effective dynamics. In this subsection we consider some prop-

erties of the effective dynamics (3.10).

3.3.1. Ergodicity, stationary probability velocity. We first consider the stationary

probability velocity and the invariant measure of the effective dynamics. See Section 2 for

related definitions. Notice that the invariant measure has been studied in [51] when the original

dynamics (2.1) is a gradient system.

Proposition 4. Assume that conditions ()2.3) and (3.3) hold. The effective dynamics

(3.10) has a unique invariant measure ν whose probability density with respect to Lebesgue mea-

sure is Q (Subsection 3.1). Define J̃st ∈ Rm whose components are given by

J̃ stk (z) = P(Jst · ∇ξk) , 1 ≤ k ≤ m, (3.33)

for z ∈ Rm where Jst is the stationary probability velocity of dynamics (2.1). Then we have

−div(J̃st(z)Q(z)) = 0 , (3.34)

i.e. J̃st is the stationary probability velocity of the effective dynamics (3.10).

Proof. For any smooth function φ̃ : Rm → R, using integration by parts, chain rule and the

co-area formula (3.4), we have

−
∫

Rm
div
(
J̃st(z)Q(z)

)
φ̃(z) dz

=

∫

Rm
J̃st(z) · ∇φ̃(z)Q(z) dz =

m∑

k=1

∫

Rm
P(Jst · ∇ξk)(z)

∂φ̃

∂zk
(z)Q(z) dz

=

∫

Rm
P
(
Jst · ∇(φ̃ ◦ ξ)

)
(z)Q(z) dz =

∫

Rn
Jst(x) · ∇(φ̃ ◦ ξ)(x) ρ(x) dx

=−
∫

Rn
div(Jstρ) φ̃ ◦ ξ dx = 0 ,

which implies (3.34). Using the identities (4.6) and (3.11), we can obtain

b̃l(z) = J̃stl (z) +
1

βQ(z)

m∑

k=1

∂

∂zk

(
ãlk(z)Q(z)

)
, 1 ≤ l ≤ m. (3.35)

It can be readily checked that

−
m∑

l=1

∂

∂zl

(
b̃l(z)Q(z)

)
+

1

β

m∑

l,k=1

∂2
(
ãlk(z)Q(z)

)

∂zl∂zk

=−
m∑

l=1

∂

∂zl

[
J̃stl (z)Q(z) +

1

β

m∑

k=1

∂

∂zk

(
ãlk(z)Q(z)

)]
+

1

β

m∑

l,k=1

∂2(ãlk(z)Q(z))

∂zl∂zk

=− div
(
J̃st(z)Q(z)

)
= 0 .
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Furthermore, conditions (2.3) and (3.3) imply that (3.13) holds for matrix ã. Comparing this

with equation (2.6) and the discussions in Section 2, this implies that the effective dynamics

(3.10) has a unique invariant measure ν whose probability density is Q.

Since the effective dynamics is ergodic with the invariant measure ν, we know it satisfies all

the properties discussed in Section 2. For example, similarly to (2.16) and (2.17), we can rewrite

the dynamics as

dzl(s) = J̃stl ds+
1

βQ

m∑

k=1

∂(ãlkQ)

∂zk
ds+

√
2β−1

m∑

k=1

σ̃lk dwk(s) , 1 ≤ l ≤ m, s ≥ 0 , (3.36)

and the infinitesimal generator L̃ in (3.8) allows the decomposition

L̃ = L̃a + L̃s = J̃st · ∇+
1

βQ
∇(Qã∇·) . (3.37)

Especially, Theorem 4 implies that when the original dynamics (2.1) is reversible, the effective

dynamics (3.10) is also reversible.

We can define the metric tensor g̃ = ã−1 and let G̃ = det g̃. The free energy is defined as

F (z) = −β−1 lnQ(z). Repeating the argument from Subsection 2.3, we can rewrite the effective

dynamics as

dz(s) =
[
J̃st −∇g̃(F +

1

2β
ln G̃)

]
ds+

√
2β−1dW (s) , (3.38)

where ∇g̃ is the gradient operator, W (s) is the Brownian motion on the m-dimensional manifold

M . It is known that both the free energy and the diffusion coefficients are relevant when studying

model reduction of diffusion processes [51]. Here we look at it in a slightly different way : the

effective dynamics can be considered as driven by the mean force and the “standard” Brownian

motion if we take a manifold point of view (Subsection 2.3).

3.3.2. Time scales. In this part, we consider the relations between the time scales of

the full dynamics (2.1) and the effective dynamics (3.10). As before, we assume that the full

dynamics (2.1) is reversible, then from the discussions above we know that the effective dynamics

is reversible as well. In addition we assume that the essential spectra of both L and L̃ are empty,

and therefore both spectra consist of isolated eigenvalues (see Subsection 2.2 for discussions).

Let the functions ϕi ∈ H be the orthonormal eigenfunctions of operator −L, i.e. −Lϕi = λiϕi ,

with eigenvalues

0 = λ0 < λ1 ≤ λ2 ≤ · · · , (3.39)

and ϕ0 ≡ 1. Similarly, let ϕ̃i ∈ H̃ be the orthonormal eigenfunctions of operator −L̃ correspond-

ing to eigenvalues λ̃i, where

0 = λ̃0 < λ̃1 ≤ λ̃2 ≤ · · · . (3.40)

In order to get a relation between the λi and the λ̃i we recall the following well known theorem [4,

76].

Theorem 3.1 (Min-Max). Let λi and λ̃i be the eigenvalues in (3.39), (3.40), corresponding

to operator L and L̃ respectively. For i ≥ 0, we have

λi = min
Hi+1

max
f∈Hi+1, |f |µ=1

〈−Lf, f〉µ ,

λ̃i = min
H̃i+1

max
f̃∈H̃i+1, |f̃ |ν=1

〈−L̃f̃ , f̃〉ν ,
(3.41)
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where Hi+1 and H̃i+1 are (i+ 1)-dimensional subspaces of H and H̃ respectively.

Using Theorem 3.1, we obtain the following result on the relation between the λi and the

λ̃i:

Proposition 5. For i ≥ 0, let ϕi and ϕ̃i be the normalized eigenfunctions of operator −L
and −L̃ corresponding to eigenvalues λi and λ̃i, respectively. We have

λi ≤ λ̃i ≤ λi +
1

β
〈a∇(ϕi − ϕ̃i ◦ ξ),∇(ϕi − ϕ̃i ◦ ξ)〉µ . (3.42)

Proof. For the lower bound, we consider the subspace S̃i+1 = span{ϕ̃0, ϕ̃1, · · · , ϕ̃i} ⊂ H̃.

Then it is direct to verify that the minimum is achieved in the second equation of (3.41) with

subspace S̃i+1. Also define Si+1 = {f̃ ◦ ξ | f̃ ∈ S̃i+1}, which is an (i+ 1)-dimensional subspace

of H. Applying Theorem 3.1, we have

λ̃i = max
f̃∈S̃i+1, |f̃ |ν=1

〈−L̃f̃ , f̃〉ν

= max
f̃∈S̃i+1, |f̃ |ν=1

〈−L(f̃ ◦ ξ), f̃ ◦ ξ〉µ

= max
f∈Si+1, |f |µ=1

〈−Lf, f〉µ ≥ min
Hi+1

max
f∈Hi+1, |f |µ=1

〈−Lf, f〉µ = λi .

Notice that we have used the relation (3.23), i.e. 〈L(f̃ ◦ ξ), (f̃ ◦ ξ)〉µ = 〈L̃f̃ , f̃〉ν , ∀f̃ ∈ H̃.

For the upper bound, using (2.13) in the reversible case and |ϕi|µ = |ϕ̃i|ν = |ϕ̃i ◦ ξ|µ = 1,

we have

1

β
〈a∇(ϕi − ϕ̃i ◦ ξ),∇(ϕi − ϕ̃i ◦ ξ)〉µ

=− 〈L(ϕi − ϕ̃i ◦ ξ), ϕi − ϕ̃i ◦ ξ〉µ
=λi〈ϕi, ϕi − ϕ̃i ◦ ξ〉µ − λi〈ϕi, ϕ̃i ◦ ξ〉µ − 〈L(ϕ̃i ◦ ξ), ϕ̃i ◦ ξ〉µ
=λi − 2λi〈ϕi, ϕ̃i ◦ ξ〉µ − 〈L̃ϕ̃i, ϕ̃i〉ν
=λi − 2λi〈ϕi, ϕ̃i ◦ ξ〉µ + λ̃i

=λ̃i − λi + λi〈ϕi − ϕ̃i ◦ ξ, ϕi − ϕ̃i ◦ ξ〉µ ≥ λ̃i − λi .

Remark 4. Proposition 5 shows that all eigenvalues λi (the time scales λ−1
i ) of the orig-

inal full dynamics are either preserved or overestimated (underestimated) if we compute them

using the effective dynamics. Furthermore, roughly speaking, the approximation error between

corresponding eigenvalues is bounded by the error between the corresponding eigenfunctions.

Estimating the eigenvalue approximation error by Galerkin methods is an important topic in

the field of finite element methods [4, 5]. Our proof above is also based on a basic analysis in [5].

Different from the setting in finite element methods, where a sequence of subspaces corresponding

to mesh resolutions are considered, here we have only one subspace which is determined by the

reactive coordinate.

Eigenvalue (time scales) approximations have also been studied for the transfer operator

(which is bounded and whose eigenvalues are between [0, 1]) in the context of Markov state mod-

els [67], which aim at approximating high-dimensional diffusion processes by jump processes on

a finite state space. See [72, 18, 71] for more details.
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Finally, we consider the special case when the reaction coordinate function ξ is defined

by the eigenfunctions ϕ(x) =
(
ϕ1(x), ϕ2(x), · · · , ϕm(x)

)
∈ Rm. Specifically, we assume ξ =

F ◦ ϕ(x) ∈ Rm, ∀x ∈ Rn, where F : Im(ϕ) → Rm is a C2 diffeomorphism from Im(ϕ) ⊂ Rm to

Rm and we denote G = F−1. The reason to introduce the function F is to guarantee that the

coefficients (3.11) are well defined on the whole space Rm. Furthermore, it demonstrates that

there is a freedom in choosing the reaction coordinate ξ.

To compute the coefficients in (3.11), we notice that the projection operator P is the ex-

pectation conditioned on

ξ(x) = F ◦ϕ(x) = z ∈ Rm ⇐⇒ ϕ(x) = G(z) .

For 1 ≤ l ≤ m, denote F (l)(z), G(l)(z) as the lth component of function F,G respectively. Then,

using the fact that ϕi are eigenfunctions, we can write the coefficients of the effective dynamics

(3.10) as

b̃l(z) =−
m∑

r=1

λr

(∂F (l)

∂zr
◦G
)

(z)G(r)(z) +
m∑

r,r′=1

( ∂2F (l)

∂zr∂zr′
◦G
)

(z)P
( n∑

i,j=1

aij
∂ϕr
∂xi

∂ϕr′

∂xj

)
(z) ,

ãkl(z) =

m∑

r,r′=1

(∂F (k)

∂zr
◦G
)

(z)
(∂F (l)

∂zr′
◦G
)

(z) P
( n∑

i,j=1

aij
∂ϕr
∂xi

∂ϕr′

∂xj

)
(z) ,

(3.43)

where z ∈ Rm, 1 ≤ l, k ≤ m. Applying the chain rule and differentiating the identityG(F (z)) = z

twice, then using (3.43), we can verify that L̃G(k) = λkG
(k), 1 ≤ k ≤ m, i.e. λk, G(k) are the

eigenvalues and eigenfunctions of the infinitesimal operator L̃, respectively.

In this case, we see that the corresponding eigenvalues λk of the original dynamics are

preserved in the effective dynamics and the equality is achieved in Proposition 5.

3.3.3. Reaction rates. In this part we discuss some issues related to the reaction rates

defined in the transition path theory (TPT) [25, 78, 24]. Suppose that two disjoint closed set

A,B ⊂ Rn are given. In many applications, it is often important to know the frequency for the

system to enter set B when starting from set A. The reaction rate between set A and B which

is defined in the TPT theory is a quantity to characterize this frequency and we will denote it

by kAB . It turns out that the committor function q : Rn → R, which satisfies

Lq = 0 , x ∈ (A ∪B)c ,

q|A = 0 , q|B = 1 ,
(3.44)

plays an important role for computing the rate kAB . In fact, we have

kAB =
1

β

∫

Rn

n∑

i,j=1

aij(x)
∂q(x)

∂xi

∂q(x)

∂xj
δ(q(x)− z) ρ(x) dx , ∀z ∈ [0, 1] ,

=
1

β

∫

(A∪B)c

n∑

i,j=1

aij(x)
∂q(x)

∂xi

∂q(x)

∂xj
ρ(x) dx ,

(3.45)

see equations (43) and (53) in [78] for more details. In general, however, solving the PDE (3.44)

and computing the reaction rate using formula (3.45) is impractical for high dimensions. In order

to see whether we can reduce the dimension by using reaction coordinates ξ, we first suppose
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that A = ξ−1(Ã) and B = ξ−1(B̃) for some disjoint closed sets Ã, B̃ ⊂ Rm, i.e. sets A,B are

defined through the reaction coordinate. Now consider that we compute the committor function

q from (3.44) by using the Galerkin method using the linear subspace of H̃ as above and assume

that this procedure results in an approximation in the form q̃(ξ(x)) with q̃ : Rm → R. Then, by

proceeding in a very similar way as in Subsection 3.2, it turns out that q̃ satisfies

L̃ q̃ = 0 , z ∈ (Ã ∪ B̃)c ,

q̃|Ã = 0 , q̃|B̃ = 1 ,
(3.46)

i.e. q̃ is actually the committor function of the effective dynamics (3.10) corresponding to sets

Ã and B̃. With the approximate solution q̃(ξ(x)), using the chain rule and the co-area formula

(3.4), formula (3.45) yields

kAB ≈
1

β

∫

(A∪B)c

n∑

i,j=1

aij
∂q̃(ξ(x))

∂xi

∂q̃(ξ(x))

∂xj
ρ(x) dx

=
1

β

∫

(A∪B)c

m∑

k,l=1

∂q̃(ξ(x))

∂zk

∂q̃(ξ(x))

∂zl

n∑

i,j=1

aij(x)
∂ξk(x)

∂xi

∂ξl(x)

∂xj
ρ(x) dx

=
1

β

∫

(Ã∪B̃)c

m∑

k,l=1

∂q̃(z)

∂zk

∂q̃(z)

∂zl
ãkl(z)Q(z) dz = k̃ÃB̃ , (3.47)

where k̃ÃB̃ is the reaction rate for the effective dynamics between set Ã and B̃.

In summary, if we compute the committor function q by solving the PDE (3.44) using

the Galerkin method based on a finite-dimensional linear subspace of H̃ and then compute the

reaction rate based on the approximate solution q̃(ξ(x)), then what we obtained is actually the

reaction rate for the effective dynamics.

In the reversible case, for any smooth function f : Rn → R we define

I(f) =
1

β

∫

(A∪B)c

n∑

i,j=1

aij(x)
∂f(x)

∂xi

∂f(x)

∂xj
ρ(x) dx . (3.48)

Then from (3.44) and (3.45) we know

kAB = I(q) = min
f
I(f) , (3.49)

where the minimum is taken wrt all smooth functions f such that f |A = 0, f |B = 1 [25].

Similarly, we define Ĩ(·) for the effective dynamics. Then, the derivations in (3.47) show

that k̃ÃB̃ = Ĩ(q̃) = I(q̃ ◦ ξ). Applying the calculus of variations to the functional I(·), we obtain

1

β

∫

(A∪B)c

n∑

i,j=1

aij(x)
∂q(x)

∂xi

∂h(x)

∂xj
ρ(x) dx = 0 , (3.50)

which holds for all smooth functions h : Rn → R, h|A∪B = 0. For all f : Rn → R with

f |A = 0, f |B = 1, since (f − q)|A∪B = 0, (3.50) yields that

I(f) =I(q) +
1

β

∫

(A∪B)c

n∑

i,j=1

aij(x)
∂(q(x)− f(x))

∂xi

∂(q(x)− f(x))

∂xj
ρ(x) dx

=I(q) + I(q − f) .

(3.51)
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Combining the above results, we conclude

Proposition 6. Assume that full dynamics (2.1) is reversible. Let kAB and k̃ÃB̃ be the

reaction rates of the full dynamics between the sets A and B and the effective dynamics between Ã

and B̃, respectively, as defined above. Let q and q̃ denote the corresponding committor functions,

respectively. Then, we have

kAB ≤ k̃ÃB̃ = kAB +
1

β

∫

(A∪B)c

n∑

i,j=1

aij
∂(q − q̃ ◦ ξ)

∂xi

∂(q − q̃ ◦ ξ)
∂xj

ρ dx . (3.52)

Proof. By inserting f = q̃ ◦ ξ into equation (3.51), we obtain I(q̃ ◦ ξ) = I(q) + I(q − q̃ ◦ ξ).
The assertion follows by noticing that k̃ÃB̃ = I(q̃ ◦ ξ) and kAB = I(q).

The above results imply that the reaction rate of the full dynamics is either preserved or

overestimated when we compute it using the effective dynamics. Furthermore, the approximation

error of the reaction rate depends on the approximation error between the respective committor

functions.

Finally we consider the special case when the reaction coordinate is constructed from the

committor function (3.44), i.e., the idea is to set ξ = q. To this end, we need some preparations.

First of all, in order to define a reaction coordinate mapping onto R, we need to modify the value

of the committor function q in Å ∪ B̊, the interior of the set A ∪B. We consider a modification

q̄ of q such that

q̄ : Rn → R is C2 smooth ,

q̄(Å) = (−∞, 0) , q̄(B̊) = (1,+∞),

q̄(x) = q(x) , ∀x ∈ (A ∪B)c .

(3.53)

Based on this, we especially know that Lq̄ = 0 holds on (A ∪B)c. Then we consider the reaction

coordinate ξ(x) = q̄(x), x ∈ Rn. From (3.53) and the boundary conditions in (3.44), we know

A = ξ−1((−∞, 0]), B = ξ−1([1,+∞)), which implies that Ã = (−∞, 0], B̃ = [1,+∞). Notice

that for z ∈ (Ã∪ B̃)c = (0, 1), (3.53) implies that q̄−1(z) ⊂ (A∪B)c. Then, based on (3.11), the

coefficients satisfy

b̃(z) = 0, σ̃2(z) = P
( n∑

i,j=1

aij(x)
∂q(x)

∂xi

∂q(x)

∂xj

)
, ∀z ∈ (0, 1) , (3.54)

where the projection operator P is defined through the expectation conditioning on q̄(x) =

q(x) = z. We also know from the rate formula (3.45) that σ̃2(z) = βkAB
Q(z) . Therefore, on the

interval (0, 1), the effective dynamics satisfies the SDE

dz(s) =

√
2

kAB
Q(z(s))

dw(s) , (3.55)

where z(s) ∈ (0, 1) and w(s) is a one-dimensional Brownian motion. Accordingly, the infinites-

imal generator on (0, 1) is L̃ = kAB
Q(z)

d2

dz2 . Let q̃(z) be the committor function of the effective

dynamics corresponding to set Ã and B̃. Due to the specific form of L̃, equation (3.46) can be

analytically solved and we obtain that q̃(z) = z, for 0 ≤ z ≤ 1. Applying formula (3.47), we can

obtain that

k̃ÃB̃ =

∫ 1

0

Q(z)|q̃ ′(z)|2 kAB
Q(z)

dz = kAB . (3.56)
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In conclusion, the reaction rate constant kAB is preserved by the effective dynamics (and

equality is achieved in Proposition 6) when we take the committor function q̄(·) as the reaction

coordinate. The choice of optimal reaction coordinates is also discussed in [56].

3.4. Numerical methods. In this section, we discuss two different options for performing

numerical simulations of the effective dynamics. When considering numerical simulations one

has to overcome the obstacle that the equations for the coefficients b̃ and σ̃ determining the

effective dynamics are by no means explicit. That is, in most realistic cases the evaluation

of the coefficients is a difficult numerical problem in itself. The literature contains several

proposals for overcoming this obstacle. The two most prominent ones, the equation-free approach

[44, 42, 43, 40, 75, 49] and the heterogeneous multiscale method (HMM) [20, 21, 1, 77], are

utilizing short trajectories of the full dynamics in order to compute the coefficients of the effective

dynamics and advocate that this is efficient as long as required full trajectories are much shorter

than the resulting time-steps of the numerical simulation of the effective dynamics. Next we will

demonstrate how these two approaches blend into the general results established above.

Apart from simulations of the effective dynamics there is a huge number of articles related

to numerical methods for sampling the free energy space along a reaction coordinate; various

algorithms have been proposed [40, 2, 80, 10, 17, 12, 53]. These are only partially related to the

present investigation but contain tools that we can utilize, see below.

3.4.1. Two algorithms for simulating the effective dynamics. Next we will sketch

tow different algorithms for simulations based on the effective dynamics. Subsequently, we will

discuss their relation to the equation-free approach and HMM.

For the first algorithm, recall that the coefficients of the effective dynamics (3.10) are defined

in (3.11), where the projection operator P given in (3.1) or (3.5) is a conditional expectation

on Σz. Therefore for each z ∈ Rm, the coefficients b̃, ã can be calculated by generating a

long trajectory of the constrained full dynamics which evolves on Σz with the unique invariant

measure µz. The realization of this constrained full dynamics has already been discussed , e.g.,

in [12, 13]; we will denote it by y(s). Based on this, an algorithm for simulating the effective

dynamics (3.10) can be sketched as follows:

Algorithm 1.

1. Set t = 0, k = 0 and z(0) = z ∈ Rm. Choose time step size ∆s, ∆t and fix the parameters

i0,M ∈ N+.

2. At time t = k∆t, let z = z(k). Generate trajectories y(s) for (i0 + M) steps with time

step size ∆s and compute coefficients b̃, ã by

b̃l(z) =
1

M

i0+M∑

i=i0+1

Lξl(y(i)) ,

ãll′(z) =
1

M

i0+M∑

i=i0+1

( n∑

j,j′=1

ajj′(y
(i))

∂ξl(y
(i))

∂xj

∂ξl′(y
(i))

∂xj′

)
,

(3.57)

where 1 ≤ l, l′ ≤ m, y(s) is the dynamics on Σz with invariant measure µz and y(i) =

y(i∆s).
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3. Update z(k+1) due to

z
(k+1)
l = z

(k)
l + b̃l(z)∆t+

m∑

i=1

√
2∆t

β
σ̃li(z)ηi , 1 ≤ l ≤ m, (3.58)

where ηi are independent standard Gaussian variables, 1 ≤ i ≤ m (higher-order schemes

are also possible [37, 46]).

4. Set k := k + 1 and go back to step 2, or stop if the terminal time is arrived.

In the above algorithm, conditional expectations in the definition of (3.11) are replaced

by the time integration of the constrained full dynamics y(s) on Σz and only the segment of

trajectory y(s) after time i0∆s has been used. Here ∆s and ∆t are the time step sizes used

for integrating the dynamics y(s) and z(s), respectively. When the probability distribution of

y(s) converges quickly to the equilibrium distribution µz on Σz and the reaction coordinate ξ is

chosen appropriately, we can expect that (3.57) will be a good approximation of coefficients b̃, ã

in (3.11) for moderate M > 0, and also a large time step size ∆t can be used to integrate the

effective dynamics z(s). In particular, the above algorithm will accelerate the simulation if we

have ∆t� (M+ i0)∆s. Notice that coefficients σ̃ can be obtained by decomposing the matrix ã;

the computational cost is negligible compared to the other parts of the algorithm, since typically

dimensions m� n and σ̃ is only required to integrate dynamics z(s) with a large time step ∆t

(in Step 3).

For the second algorithm, we recall the alternative formulas (3.12) of the coefficients b̃, ã

of the effective dynamics. Based on these we can calculate the coefficients provided that we

approximate the limit s → 0+ by a small but finite time and replace the expectation by an

appropriate trajectory ensemble:

Algorithm 2.

1. Set t = 0, k = 0 and z(0) = z ∈ Rm. Choose time step size ∆s, ∆t. Set N ∈ N+ and

s̄ = k0∆s for some k0 ∈ N+. .

2. At time t = k∆t, let z = z(k). Generate N trajectories of length s of the unconstrained

full dynamics x(s) by discretization of (2.1) and initial distribution µz on Σz for k0 steps

with time step size ∆s and compute the coefficients b̃, ã by

b̃l(z) =
1

N

N∑

i=1

ξl(x(s̄))− zl
s̄

,

ãll′(z) =
β

2

[ 1

N

N∑

i=1

(ξl(x(s̄))− zl)(ξl′(x(s̄))− zl′)
s̄

− b̃lb̃l′ s̄
]
,

(3.59)

where 1 ≤ l, l′ ≤ m.

3. Update z(k+1) as in Algorithm 1 :

z
(k+1)
l = z

(k)
l + b̃l(z)∆t+

m∑

i=1

√
2∆t

β
σ̃li(z)ηi , 1 ≤ l ≤ m, (3.60)

where ηi are independent standard Gaussian variables, 1 ≤ i ≤ m.

4. Set k := k + 1 and go back to step 2, or stop if the terminal time is arrived.
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In Algorithm 2, we use trajectories of length s̄ = k0∆s to approximate the limit s → 0+

in (3.12). A correction term was added when computing ã in (3.59) due to this finite time

approximation [34, 69, 31, 74]. We expect that both, some small number of steps k0 as well as

and a small step size ∆s will be appropriate and sufficient to provide reasonable approximations.

The conditional expectations in (3.12) are replaced by taking the average with N trajectories

of the unconstrained full dynamics. The initial state that has to be distributed due µz can be

sampled either by using the dynamics y(s) or appropriate MCMC methods. As in the case of

Algorithm 1, Algorithm 2 will accelerate the simulation if ∆t� Nk0∆s.

3.4.2. Comparison. We can readily recognize that Algorithms 1 and 2 fit into the HMM

and equation-free approaches. More specifically, if we look at Algorithm 1 in the context of

HMM, one supplies the required data/coefficients in the “macro model” (our effective dynamics)

by simulating the “micro model” locally (constrained full dynamics). We refer to some general-

izations of HMM to the implicit time scale separation case that can be found in [29]. In contrast,

Algorithm 2, despite many similarities, utilizes the unconstrained full dynamics (called ”legacy

code” in the equation-free setting) for computing the coefficient of the effective dynamics ”on the

fly”. We can conclude that, in our setting, both the HMM and the equation-free approach can

be viewed as numerical approaches to simulate the same effective dynamics. More discussions on

the connections and comparisons of these two approaches can be found in [19, 79]; one obvious

advantage of Algorithm 2 is that computing the derivatives of the reaction coordinate ξ can be

avoided, while on the other hand bias may be introduced when computing the coefficients using

(3.59) due to the approximation of limit s→ 0+ by finite time length s̄.

4. Conclusions. Ergodic diffusion processes are ubiquitous in the real world applications

and have received considerable attentions in different disciplines during the past several decades.

In this article, we have studied some structural properties of ergodic diffusion processes as well as

their model reduction with respect to a low-dimensional reaction coordinate space. We showed

that the effective dynamics, which is obtained from model reduction as the low-dimensional

approximation of the full dynamics in the reaction coordinate space, inherits some important

structual properties like ergodicity and reversibility and that other dynamical properties like

inherent time-scales and reaction / transition rates of the full dynamics can be approximated

by the effective dynamics. Numerical algorithms for simulating the effective dynamics and their

relation to well-known approaches from the literature are discussed as well.

While Langevin dynamics is widely used in modeling chemical and biological systems, the

model reduction of this type of dynamics (with degenerate noise) is not covered in the current

work and will be studied in the future. However, the short introduction to this case in Appendix

D already outlines that many of the results of the present article might be extended to the case

of Langevin dynamics.

Acknowledgement. This research has been partially funded by Deutsche Forschungsge-

meinschaft (DFG) through grant CRC 1114, and by the Einstein Foundation Berlin through the

Einstein Center for Mathematics (ECMath).

Appendix. The appendix collects some rather technical aspects that have been taken out

of the main text for improving readability.
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A: Proof of Proposition 1.

Proof.

1. Let f : Rn → R be any integrable function. Applying some basic properties of the

transportation of measures and the integration by parts formula, we can directly compute

d

ds

∫

Rn
f d
(
(φs)#µ

)

=
d

dt

∫

Rn
f d
(
(φt+s)#µ

)∣∣∣
t=0

=
d

dt

∫

Rn
f(φs(φt)) dµ

∣∣∣
t=0

=

∫

Rn
∇(f ◦ φs)(x) · Jst(x) ρ(x) dx = −

∫

Rn
(f ◦ φs) div

(
Jstρ

)
dx = 0 ,

where equation (2.11) is used in the last step. Therefore we can conclude (φs)#µ ≡ µ

and the first assertion follows.

2. For any measurable function f : Rn → R, using the invariance (φs)#µ = µ and the

change of variables formula, we have

∫

Rn
fρ dx =

∫

Rn
f dµ =

∫

Rn
f d(φs)#µ =

∫

Rn
f(φs) dµ =

∫

Rn
f(φs)ρ dx ,

∫

Rn
fρ dx =

∫

Rn
f(φs(x)) ρ(φs(x)) |det(∇φs)| dx ,

(4.1)

where ∇φs denotes the Jacobian matrix of map φs. Combining the above two equalities,

we can conclude

ρ(x) = ρ(φs(x)) |det(∇φs)| , a.s. x ∈ Rn . (4.2)

A similar reasoning as in (4.1) gives

v(x) = vs(φs(x)) |det(∇φs)| , a.s. x ∈ Rn . (4.3)

Therefore, we can deduce that

Ent(vs) =

∫

Rn
vs ln

(vs
ρ

)
dx =

∫

Rn
ln
(vs
ρ

)
d
(
(φs)#µv

)

=

∫

Rn
ln
(vs(φs)
ρ(φs)

)
dµv =

∫

Rn
ln
(v
ρ

)
dµv = Ent(v) ,

(4.4)

which holds for ∀s ≥ 0.

B: Proof of Proposition 2.
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Proof. The conclusion follows by direct calculation. Using (2.9), (2.11), integration by parts

formula as well as (2.10), we obtain

d

dt
Ent(ut)

=

∫

Rn

∂ut
∂t

[
ln
(ut
ρ

)
+ 1
]
dx =

∫

Rn
J(ut) · ∇

(ut
ρ

)
ρ dx

=− 1

β

n∑

i,j=1

∫

Rn
aij

∂

∂xj

(
ln
ut
ρ

) ∂

∂xi

(
ln
ut
ρ

)
ut dx

=− 1

β

∫

Rn

(
∇ ln

(ut
ρ

))T
a
(
∇ ln

(ut
ρ

))
ut dx

=
4

β

〈
Ls
(ut
ρ

) 1
2

,
(ut
ρ

) 1
2
〉
µ
≤ 0 ,

which implies that the relative entropy is non-increasing.

C: Proof of Proposition 3.

Proof. Let us first assume that f ∈ D(L) and h̃ ∈ H̃ is a C1 function. The partial derivatives

of functions in H̃ will be denoted as ∂
∂zk

, 1 ≤ k ≤ m. Using relation (2.13) for the generator L,

the co-area formula (3.4) and the chain rule, we have
∫

Rm
(PLf)(z) h̃(z)Q(z) dz

=

∫

Rn
Lf(x) h̃(ξ(x)) ρ(x) dx

=

∫

Rn
(Jst · ∇f)(x) h̃

(
ξ(x)

)
ρ(x) dx− 1

β

∫

Rn

m∑

k=1

n∑

i,j=1

(
aij

∂f

∂xi

∂ξk
∂xj

)
(x)

∂h̃

∂zk

(
ξ(x)

)
ρ(x) dx

=

∫

Rm
P(Jst · ∇f)(z) h̃(z)Q(z) dz +

1

β

∫

Rm

m∑

k=1

∂

∂zk

[
Q(z)P

( n∑

i,j=1

aij
∂f

∂xi

∂ξk
∂xj

)
(z)
]
h̃(z) dz .

Therefore we have obtained the identity

P(Lf) = P(Jst · ∇f) +
1

βQ

m∑

k=1

∂

∂zk

[
QP

( n∑

i,j=1

aij
∂f

∂xi

∂ξk
∂xj

)]
. (4.5)

Especially, taking f = ξl, 1 ≤ l ≤ m, we have

P(Lξl) = P(Jst · ∇ξl) +
1

βQ

m∑

k=1

∂

∂zk

[
QP

( n∑

i,j=1

aij
∂ξl
∂xi

∂ξk
∂xj

)]
. (4.6)

Now consider function f = f̃ ◦ ξ ∈ H0 where f̃ ∈ D(L̃). Using (4.5), (4.6) and the chain rule, it

follows that

P(Lf) =

m∑

l=1

P(Jst · ∇ξl)
∂f̃

∂zl
+

1

βQ

m∑

k,l=1

∂

∂zk

[
QP

( n∑

i,j=1

aij
∂ξl
∂xi

∂ξk
∂xj

) ∂f̃
∂zl

]

=
m∑

l=1

P(Lξl)
∂f̃

∂zl
+

1

β

m∑

k,l=1

P
( n∑

i,j=1

aij
∂ξl
∂xi

∂ξk
∂xj

) ∂2f̃

∂zl∂zk

=L̃f̃ .

(4.7)
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D: Langevin dynamics. Consider the Langevin dynamics

ṙi = vi

miv̇i = −∂V
∂ri
− γvi +

√
2β−1γηi(t)

1 ≤ i ≤ n , (4.8)

where r = (r1, r2, · · · , rn), v = (v1, v2, · · · , vn) ∈ Rn. The infinitesimal generator is

L =

n∑

i=1

(
vi

∂

∂ri
− 1

mi

∂V

∂ri

∂

∂vi
− γvi
mi

∂

∂vi
+

γ

βm2
i

∂2

∂v2
i

)
. (4.9)

The system has an invariant measure

µ(dr, dv) = ρ(r, v)drdv =
1

Z
e−βH(r,v)drdv, H = V (r) +

1

2

n∑

i=1

miv
2
i . (4.10)

However it is not reversible, and at equilibrium there is a nonzero flux Jst with

Jsti =

{
vi, 1 ≤ i ≤ n ,
− 1
mi′

∂V
∂ri′

n+ 1 ≤ i = i′ + n ≤ 2n .
(4.11)

Now suppose a reaction coordinate z = ξ(r, v) ∈ Rm is given. Applying the previous derivations,

we have for f = f̃ ◦ ξ,

PLf =
m∑

k=1

P(Lξk)
∂f

∂zk
+
γ

β

m∑

j,k=1

P
( n∑

i=1

1

m2
i

∂ξk
∂vi

∂ξj
∂vi

) ∂2f

∂zj∂zk
= L̃f . (4.12)

The corresponding SDE in Rm is

dz(t) = b̃(z(t))dt+
√

2γβ−1 σ̃(z(t))dw(t) (4.13)

where for 1 ≤ j, k ≤ m,

b̃j(z) = P(Lξj), (ã)jk = σ̃ σ̃T (z)jk = P
( n∑

i=1

1

m2
i

∂ξk
∂vi

∂ξj
∂vi

)
. (4.14)

When z = (ξ(r), ξ′(v)) ∈ Rm × Rm, we have

dz1(t) =P
( n∑

i=1

vi
∂ξ

∂ri

)
dt

dz2(t) =P
[ n∑

i=1

(
− 1

mi

∂V

∂ri

∂ξ′

∂vi
− γvi
mi

∂ξ′

∂vi
+

γ

βm2
i

∂2ξ′

∂v2
i

)]
dt+

√
2β−1γσ̃(z)dw(t)

where for 1 ≤ j, k ≤ m,

(σ̃σ̃T )jk = P
( n∑

i=1

1

m2
i

∂ξ′j
∂vi

∂ξ′k
∂vi

)
. (4.15)
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[4] I. Babuška and J. E. Osborn, Finite element-Galerkin approximation of the eigenvalues and eigenvectors

of selfadjoint problems, Math. Comput., 52 (1989), pp. 275–297.

[5] , Eigenvalue problems, in Finite Element Methods (Part 1), vol. 2 of Handbook of Numerical Analysis,

Elsevier, 1991, pp. 641 – 787.

[6] H. B. G. Casimir, On Onsager’s principle of microscopic reversibility, Rev. Mod. Phys., 17 (1945), pp. 343–

350.

[7] A. J. Chorin, O. H. Hald, and R. Kupferman, Optimal prediction and the Mori-Zwanzig representation

of irreversible processes, Proc. Natl. Acad. Sci. U.S.A., 97 (2000), pp. 2968–2973.

[8] , Optimal prediction with memory, Physica D, 166 (2002), pp. 239–257.

[9] A. J. Chorin, R. Kupferman, and D. Levy, Optimal prediction for Hamiltonian partial differential

equations, J. Comput. Phys., 162 (2000), pp. 267 – 297.

[10] C. D. Christ, A. E. Mark, and W. F. van Gunsteren, Basic ingredients of free energy calculations: A

review, J. Comput. Chem., 31 (2010), pp. 1569–1582.

[11] P. Ciarlet, The Finite Element Method for Elliptic Problems, Classics in Applied Mathematics, Society

for Industrial and Applied Mathematics, 2002.

[12] G. Ciccotti, R. Kapral, and E. Vanden-Eijnden, Blue moon sampling, vectorial reaction coordinates,

and unbiased constrained dynamics, ChemPhysChem, 6 (2005), pp. 1809–1814.
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[72] M. Sarich and Ch. Schütte, Approximating selected non-dominant timescales by Markov state models,

Comm. Math. Sci., 10 (2012), pp. 1001 – 1013.
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