873 research outputs found

    Complexity of the Delaunay triangulation of points on polyhedral surfaces

    Get PDF
    It is well known that the complexity of the Delaunay triangulation of nn points in RdR ^d, i.e. the number of its simplices, can be Ω(n⌈d2⌉)\Omega (n^\lceil \frac{d{2}\rceil }). In particular, in R3R ^3, the number of tetrahedra can be quadratic. Differently, if the points are uniformly distributed in a cube or a ball, the expected complexity of the Delaunay triangulation is only linear. The case of points distributed on a surface is of great practical importance in reverse engineering since most surface reconstruction algorithms first construct the Delaunay triangulation of a set of points measured on a surface. In this paper, we bound the complexity of the Delaunay triangulation of points distributed on the boundary of a given polyhedron. Under a mild uniform sampling condition, we provide deterministic asymptotic bounds on the complexity of the 3D Delaunay triangula- tion of the points when the sampling density increases. More precisely, we show that the complexity is O(n1.8)O(n^1.8) for general polyhedral surfaces and O(n\sqrtn) for convex polyhedral surfaces. Our proof uses a geometric result of independent interest that states that the medial axis of a surface is well approximated by a subset of the Voronoi vertices of the sample points. The proof extends easily to higher dimensions, leading to the first non trivial bounds for the problem when d>3d>3

    Dense point sets have sparse Delaunay triangulations

    Full text link
    The spread of a finite set of points is the ratio between the longest and shortest pairwise distances. We prove that the Delaunay triangulation of any set of n points in R^3 with spread D has complexity O(D^3). This bound is tight in the worst case for all D = O(sqrt{n}). In particular, the Delaunay triangulation of any dense point set has linear complexity. We also generalize this upper bound to regular triangulations of k-ply systems of balls, unions of several dense point sets, and uniform samples of smooth surfaces. On the other hand, for any n and D=O(n), we construct a regular triangulation of complexity Omega(nD) whose n vertices have spread D.Comment: 31 pages, 11 figures. Full version of SODA 2002 paper. Also available at http://www.cs.uiuc.edu/~jeffe/pubs/screw.htm

    A Pseudopolynomial Algorithm for Alexandrov's Theorem

    Full text link
    Alexandrov's Theorem states that every metric with the global topology and local geometry required of a convex polyhedron is in fact the intrinsic metric of a unique convex polyhedron. Recent work by Bobenko and Izmestiev describes a differential equation whose solution leads to the polyhedron corresponding to a given metric. We describe an algorithm based on this differential equation to compute the polyhedron to arbitrary precision given the metric, and prove a pseudopolynomial bound on its running time. Along the way, we develop pseudopolynomial algorithms for computing shortest paths and weighted Delaunay triangulations on a polyhedral surface, even when the surface edges are not shortest paths.Comment: 25 pages; new Delaunay triangulation algorithm, minor other changes; an abbreviated v2 was at WADS 200

    A Linear Bound on the Complexity of the Delaunay triangulation of points on polyhedral surfaces

    Get PDF
    Delaunay triangulations and Voronoi diagrams have found numerous applications in surface modeling, surface mesh generation, deformable surface modeling and surface reconstruction. Many algorithms in these applications begin by constructing the three-dimensional Delaunay triangulation of a finite set of points scattered over a surface. Their running-time therefore depends on the complexity of the Delaunay triangulation of such point sets. Although the Delaunay triangulation of points in ^3 can be quadratic in the worst-case, we show that, under some mild sampling condition, the complexity of the 3D Delaunay triangulation of points distributed on a fixed number of facets of ^3 (e.g. the facets of a polyhedron) is linear. Our bound is deterministic and the constants are explicitly given

    Computational Geometry Column 42

    Get PDF
    A compendium of thirty previously published open problems in computational geometry is presented.Comment: 7 pages; 72 reference

    Meshing skin surfaces with certified topology

    Get PDF
    • …
    corecore